vm_page.c revision 70374
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37 * $FreeBSD: head/sys/vm/vm_page.c 70374 2000-12-26 19:41:38Z dillon $
38 */
39
40/*
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59 *  School of Computer Science
60 *  Carnegie Mellon University
61 *  Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67/*
68 *	Resident memory management module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/malloc.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/vnode.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80#include <sys/lock.h>
81#include <vm/vm_kern.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_pageout.h>
85#include <vm/vm_pager.h>
86#include <vm/vm_extern.h>
87
88static void	vm_page_queue_init __P((void));
89static vm_page_t vm_page_select_cache __P((vm_object_t, vm_pindex_t));
90
91/*
92 *	Associated with page of user-allocatable memory is a
93 *	page structure.
94 */
95
96static struct vm_page **vm_page_buckets; /* Array of buckets */
97static int vm_page_bucket_count;	/* How big is array? */
98static int vm_page_hash_mask;		/* Mask for hash function */
99static volatile int vm_page_bucket_generation;
100
101struct vpgqueues vm_page_queues[PQ_COUNT];
102
103static void
104vm_page_queue_init(void) {
105	int i;
106
107	for(i=0;i<PQ_L2_SIZE;i++) {
108		vm_page_queues[PQ_FREE+i].cnt = &cnt.v_free_count;
109	}
110	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
111
112	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
113	for(i=0;i<PQ_L2_SIZE;i++) {
114		vm_page_queues[PQ_CACHE+i].cnt = &cnt.v_cache_count;
115	}
116	for(i=0;i<PQ_COUNT;i++) {
117		TAILQ_INIT(&vm_page_queues[i].pl);
118	}
119}
120
121vm_page_t vm_page_array = 0;
122int vm_page_array_size = 0;
123long first_page = 0;
124int vm_page_zero_count = 0;
125
126static __inline int vm_page_hash __P((vm_object_t object, vm_pindex_t pindex));
127static void vm_page_free_wakeup __P((void));
128
129/*
130 *	vm_set_page_size:
131 *
132 *	Sets the page size, perhaps based upon the memory
133 *	size.  Must be called before any use of page-size
134 *	dependent functions.
135 */
136void
137vm_set_page_size()
138{
139	if (cnt.v_page_size == 0)
140		cnt.v_page_size = PAGE_SIZE;
141	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
142		panic("vm_set_page_size: page size not a power of two");
143}
144
145/*
146 *	vm_add_new_page:
147 *
148 *	Add a new page to the freelist for use by the system.
149 *	Must be called at splhigh().
150 */
151vm_page_t
152vm_add_new_page(pa)
153	vm_offset_t pa;
154{
155	vm_page_t m;
156
157	++cnt.v_page_count;
158	++cnt.v_free_count;
159	m = PHYS_TO_VM_PAGE(pa);
160	m->phys_addr = pa;
161	m->flags = 0;
162	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
163	m->queue = m->pc + PQ_FREE;
164	TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
165	vm_page_queues[m->queue].lcnt++;
166	return (m);
167}
168
169/*
170 *	vm_page_startup:
171 *
172 *	Initializes the resident memory module.
173 *
174 *	Allocates memory for the page cells, and
175 *	for the object/offset-to-page hash table headers.
176 *	Each page cell is initialized and placed on the free list.
177 */
178
179vm_offset_t
180vm_page_startup(starta, enda, vaddr)
181	register vm_offset_t starta;
182	vm_offset_t enda;
183	register vm_offset_t vaddr;
184{
185	register vm_offset_t mapped;
186	register struct vm_page **bucket;
187	vm_size_t npages, page_range;
188	register vm_offset_t new_start;
189	int i;
190	vm_offset_t pa;
191	int nblocks;
192	vm_offset_t first_managed_page;
193
194	/* the biggest memory array is the second group of pages */
195	vm_offset_t start;
196	vm_offset_t biggestone, biggestsize;
197
198	vm_offset_t total;
199
200	total = 0;
201	biggestsize = 0;
202	biggestone = 0;
203	nblocks = 0;
204	vaddr = round_page(vaddr);
205
206	for (i = 0; phys_avail[i + 1]; i += 2) {
207		phys_avail[i] = round_page(phys_avail[i]);
208		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
209	}
210
211	for (i = 0; phys_avail[i + 1]; i += 2) {
212		int size = phys_avail[i + 1] - phys_avail[i];
213
214		if (size > biggestsize) {
215			biggestone = i;
216			biggestsize = size;
217		}
218		++nblocks;
219		total += size;
220	}
221
222	start = phys_avail[biggestone];
223
224	/*
225	 * Initialize the queue headers for the free queue, the active queue
226	 * and the inactive queue.
227	 */
228
229	vm_page_queue_init();
230
231	/*
232	 * Allocate (and initialize) the hash table buckets.
233	 *
234	 * The number of buckets MUST BE a power of 2, and the actual value is
235	 * the next power of 2 greater than the number of physical pages in
236	 * the system.
237	 *
238	 * We make the hash table approximately 2x the number of pages to
239	 * reduce the chain length.  This is about the same size using the
240	 * singly-linked list as the 1x hash table we were using before
241	 * using TAILQ but the chain length will be smaller.
242	 *
243	 * Note: This computation can be tweaked if desired.
244	 */
245	vm_page_buckets = (struct vm_page **)vaddr;
246	bucket = vm_page_buckets;
247	if (vm_page_bucket_count == 0) {
248		vm_page_bucket_count = 1;
249		while (vm_page_bucket_count < atop(total))
250			vm_page_bucket_count <<= 1;
251	}
252	vm_page_bucket_count <<= 1;
253	vm_page_hash_mask = vm_page_bucket_count - 1;
254
255	/*
256	 * Validate these addresses.
257	 */
258
259	new_start = start + vm_page_bucket_count * sizeof(struct vm_page *);
260	new_start = round_page(new_start);
261	mapped = round_page(vaddr);
262	vaddr = pmap_map(mapped, start, new_start,
263	    VM_PROT_READ | VM_PROT_WRITE);
264	start = new_start;
265	vaddr = round_page(vaddr);
266	bzero((caddr_t) mapped, vaddr - mapped);
267
268	for (i = 0; i < vm_page_bucket_count; i++) {
269		*bucket = NULL;
270		bucket++;
271	}
272
273	/*
274	 * Compute the number of pages of memory that will be available for
275	 * use (taking into account the overhead of a page structure per
276	 * page).
277	 */
278
279	first_page = phys_avail[0] / PAGE_SIZE;
280
281	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
282	npages = (total - (page_range * sizeof(struct vm_page)) -
283	    (start - phys_avail[biggestone])) / PAGE_SIZE;
284
285	/*
286	 * Initialize the mem entry structures now, and put them in the free
287	 * queue.
288	 */
289	vm_page_array = (vm_page_t) vaddr;
290	mapped = vaddr;
291
292	/*
293	 * Validate these addresses.
294	 */
295	new_start = round_page(start + page_range * sizeof(struct vm_page));
296	mapped = pmap_map(mapped, start, new_start,
297	    VM_PROT_READ | VM_PROT_WRITE);
298	start = new_start;
299
300	first_managed_page = start / PAGE_SIZE;
301
302	/*
303	 * Clear all of the page structures
304	 */
305	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
306	vm_page_array_size = page_range;
307
308	/*
309	 * Construct the free queue(s) in descending order (by physical
310	 * address) so that the first 16MB of physical memory is allocated
311	 * last rather than first.  On large-memory machines, this avoids
312	 * the exhaustion of low physical memory before isa_dmainit has run.
313	 */
314	cnt.v_page_count = 0;
315	cnt.v_free_count = 0;
316	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
317		if (i == biggestone)
318			pa = ptoa(first_managed_page);
319		else
320			pa = phys_avail[i];
321		while (pa < phys_avail[i + 1] && npages-- > 0) {
322			vm_add_new_page(pa);
323			pa += PAGE_SIZE;
324		}
325	}
326	return (mapped);
327}
328
329/*
330 *	vm_page_hash:
331 *
332 *	Distributes the object/offset key pair among hash buckets.
333 *
334 *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
335 *	This routine may not block.
336 *
337 *	We try to randomize the hash based on the object to spread the pages
338 *	out in the hash table without it costing us too much.
339 */
340static __inline int
341vm_page_hash(object, pindex)
342	vm_object_t object;
343	vm_pindex_t pindex;
344{
345	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
346
347	return(i & vm_page_hash_mask);
348}
349
350/*
351 *	vm_page_insert:		[ internal use only ]
352 *
353 *	Inserts the given mem entry into the object and object list.
354 *
355 *	The pagetables are not updated but will presumably fault the page
356 *	in if necessary, or if a kernel page the caller will at some point
357 *	enter the page into the kernel's pmap.  We are not allowed to block
358 *	here so we *can't* do this anyway.
359 *
360 *	The object and page must be locked, and must be splhigh.
361 *	This routine may not block.
362 */
363
364void
365vm_page_insert(m, object, pindex)
366	register vm_page_t m;
367	register vm_object_t object;
368	register vm_pindex_t pindex;
369{
370	register struct vm_page **bucket;
371
372	if (m->object != NULL)
373		panic("vm_page_insert: already inserted");
374
375	/*
376	 * Record the object/offset pair in this page
377	 */
378
379	m->object = object;
380	m->pindex = pindex;
381
382	/*
383	 * Insert it into the object_object/offset hash table
384	 */
385
386	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
387	m->hnext = *bucket;
388	*bucket = m;
389	vm_page_bucket_generation++;
390
391	/*
392	 * Now link into the object's list of backed pages.
393	 */
394
395	TAILQ_INSERT_TAIL(&object->memq, m, listq);
396	object->generation++;
397
398	/*
399	 * show that the object has one more resident page.
400	 */
401
402	object->resident_page_count++;
403
404	/*
405	 * Since we are inserting a new and possibly dirty page,
406	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
407	 */
408	if (m->flags & PG_WRITEABLE)
409	    vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
410}
411
412/*
413 *	vm_page_remove:
414 *				NOTE: used by device pager as well -wfj
415 *
416 *	Removes the given mem entry from the object/offset-page
417 *	table and the object page list, but do not invalidate/terminate
418 *	the backing store.
419 *
420 *	The object and page must be locked, and at splhigh.
421 *	The underlying pmap entry (if any) is NOT removed here.
422 *	This routine may not block.
423 */
424
425void
426vm_page_remove(m)
427	vm_page_t m;
428{
429	vm_object_t object;
430
431	if (m->object == NULL)
432		return;
433
434	if ((m->flags & PG_BUSY) == 0) {
435		panic("vm_page_remove: page not busy");
436	}
437
438	/*
439	 * Basically destroy the page.
440	 */
441
442	vm_page_wakeup(m);
443
444	object = m->object;
445
446	/*
447	 * Remove from the object_object/offset hash table.  The object
448	 * must be on the hash queue, we will panic if it isn't
449	 *
450	 * Note: we must NULL-out m->hnext to prevent loops in detached
451	 * buffers with vm_page_lookup().
452	 */
453
454	{
455		struct vm_page **bucket;
456
457		bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
458		while (*bucket != m) {
459			if (*bucket == NULL)
460				panic("vm_page_remove(): page not found in hash");
461			bucket = &(*bucket)->hnext;
462		}
463		*bucket = m->hnext;
464		m->hnext = NULL;
465		vm_page_bucket_generation++;
466	}
467
468	/*
469	 * Now remove from the object's list of backed pages.
470	 */
471
472	TAILQ_REMOVE(&object->memq, m, listq);
473
474	/*
475	 * And show that the object has one fewer resident page.
476	 */
477
478	object->resident_page_count--;
479	object->generation++;
480
481	m->object = NULL;
482}
483
484/*
485 *	vm_page_lookup:
486 *
487 *	Returns the page associated with the object/offset
488 *	pair specified; if none is found, NULL is returned.
489 *
490 *	NOTE: the code below does not lock.  It will operate properly if
491 *	an interrupt makes a change, but the generation algorithm will not
492 *	operate properly in an SMP environment where both cpu's are able to run
493 *	kernel code simultaneously.
494 *
495 *	The object must be locked.  No side effects.
496 *	This routine may not block.
497 *	This is a critical path routine
498 */
499
500vm_page_t
501vm_page_lookup(object, pindex)
502	register vm_object_t object;
503	register vm_pindex_t pindex;
504{
505	register vm_page_t m;
506	register struct vm_page **bucket;
507	int generation;
508
509	/*
510	 * Search the hash table for this object/offset pair
511	 */
512
513retry:
514	generation = vm_page_bucket_generation;
515	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
516	for (m = *bucket; m != NULL; m = m->hnext) {
517		if ((m->object == object) && (m->pindex == pindex)) {
518			if (vm_page_bucket_generation != generation)
519				goto retry;
520			return (m);
521		}
522	}
523	if (vm_page_bucket_generation != generation)
524		goto retry;
525	return (NULL);
526}
527
528/*
529 *	vm_page_rename:
530 *
531 *	Move the given memory entry from its
532 *	current object to the specified target object/offset.
533 *
534 *	The object must be locked.
535 *	This routine may not block.
536 *
537 *	Note: this routine will raise itself to splvm(), the caller need not.
538 *
539 *	Note: swap associated with the page must be invalidated by the move.  We
540 *	      have to do this for several reasons:  (1) we aren't freeing the
541 *	      page, (2) we are dirtying the page, (3) the VM system is probably
542 *	      moving the page from object A to B, and will then later move
543 *	      the backing store from A to B and we can't have a conflict.
544 *
545 *	Note: we *always* dirty the page.  It is necessary both for the
546 *	      fact that we moved it, and because we may be invalidating
547 *	      swap.  If the page is on the cache, we have to deactivate it
548 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
549 *	      on the cache.
550 */
551
552void
553vm_page_rename(m, new_object, new_pindex)
554	register vm_page_t m;
555	register vm_object_t new_object;
556	vm_pindex_t new_pindex;
557{
558	int s;
559
560	s = splvm();
561	vm_page_remove(m);
562	vm_page_insert(m, new_object, new_pindex);
563	if (m->queue - m->pc == PQ_CACHE)
564		vm_page_deactivate(m);
565	vm_page_dirty(m);
566	splx(s);
567}
568
569/*
570 * vm_page_unqueue_nowakeup:
571 *
572 * 	vm_page_unqueue() without any wakeup
573 *
574 *	This routine must be called at splhigh().
575 *	This routine may not block.
576 */
577
578void
579vm_page_unqueue_nowakeup(m)
580	vm_page_t m;
581{
582	int queue = m->queue;
583	struct vpgqueues *pq;
584	if (queue != PQ_NONE) {
585		pq = &vm_page_queues[queue];
586		m->queue = PQ_NONE;
587		TAILQ_REMOVE(&pq->pl, m, pageq);
588		(*pq->cnt)--;
589		pq->lcnt--;
590	}
591}
592
593/*
594 * vm_page_unqueue:
595 *
596 *	Remove a page from its queue.
597 *
598 *	This routine must be called at splhigh().
599 *	This routine may not block.
600 */
601
602void
603vm_page_unqueue(m)
604	vm_page_t m;
605{
606	int queue = m->queue;
607	struct vpgqueues *pq;
608	if (queue != PQ_NONE) {
609		m->queue = PQ_NONE;
610		pq = &vm_page_queues[queue];
611		TAILQ_REMOVE(&pq->pl, m, pageq);
612		(*pq->cnt)--;
613		pq->lcnt--;
614		if ((queue - m->pc) == PQ_CACHE) {
615			if (vm_paging_needed())
616				pagedaemon_wakeup();
617		}
618	}
619}
620
621#if PQ_L2_SIZE > 1
622
623/*
624 *	vm_page_list_find:
625 *
626 *	Find a page on the specified queue with color optimization.
627 *
628 *	The page coloring optimization attempts to locate a page
629 *	that does not overload other nearby pages in the object in
630 *	the cpu's L1 or L2 caches.  We need this optimization because
631 *	cpu caches tend to be physical caches, while object spaces tend
632 *	to be virtual.
633 *
634 *	This routine must be called at splvm().
635 *	This routine may not block.
636 *
637 *	This routine may only be called from the vm_page_list_find() macro
638 *	in vm_page.h
639 */
640vm_page_t
641_vm_page_list_find(basequeue, index)
642	int basequeue, index;
643{
644	int i;
645	vm_page_t m = NULL;
646	struct vpgqueues *pq;
647
648	pq = &vm_page_queues[basequeue];
649
650	/*
651	 * Note that for the first loop, index+i and index-i wind up at the
652	 * same place.  Even though this is not totally optimal, we've already
653	 * blown it by missing the cache case so we do not care.
654	 */
655
656	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
657		if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
658			break;
659
660		if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
661			break;
662	}
663	return(m);
664}
665
666#endif
667
668/*
669 *	vm_page_select_cache:
670 *
671 *	Find a page on the cache queue with color optimization.  As pages
672 *	might be found, but not applicable, they are deactivated.  This
673 *	keeps us from using potentially busy cached pages.
674 *
675 *	This routine must be called at splvm().
676 *	This routine may not block.
677 */
678vm_page_t
679vm_page_select_cache(object, pindex)
680	vm_object_t object;
681	vm_pindex_t pindex;
682{
683	vm_page_t m;
684
685	while (TRUE) {
686		m = vm_page_list_find(
687		    PQ_CACHE,
688		    (pindex + object->pg_color) & PQ_L2_MASK,
689		    FALSE
690		);
691		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
692			       m->hold_count || m->wire_count)) {
693			vm_page_deactivate(m);
694			continue;
695		}
696		return m;
697	}
698}
699
700/*
701 *	vm_page_select_free:
702 *
703 *	Find a free or zero page, with specified preference.  We attempt to
704 *	inline the nominal case and fall back to _vm_page_select_free()
705 *	otherwise.
706 *
707 *	This routine must be called at splvm().
708 *	This routine may not block.
709 */
710
711static __inline vm_page_t
712vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
713{
714	vm_page_t m;
715
716	m = vm_page_list_find(
717		PQ_FREE,
718		(pindex + object->pg_color) & PQ_L2_MASK,
719		prefer_zero
720	);
721	return(m);
722}
723
724/*
725 *	vm_page_alloc:
726 *
727 *	Allocate and return a memory cell associated
728 *	with this VM object/offset pair.
729 *
730 *	page_req classes:
731 *	VM_ALLOC_NORMAL		normal process request
732 *	VM_ALLOC_SYSTEM		system *really* needs a page
733 *	VM_ALLOC_INTERRUPT	interrupt time request
734 *	VM_ALLOC_ZERO		zero page
735 *
736 *	Object must be locked.
737 *	This routine may not block.
738 *
739 *	Additional special handling is required when called from an
740 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
741 *	the page cache in this case.
742 */
743
744vm_page_t
745vm_page_alloc(object, pindex, page_req)
746	vm_object_t object;
747	vm_pindex_t pindex;
748	int page_req;
749{
750	register vm_page_t m = NULL;
751	int s;
752
753	KASSERT(!vm_page_lookup(object, pindex),
754		("vm_page_alloc: page already allocated"));
755
756	/*
757	 * The pager is allowed to eat deeper into the free page list.
758	 */
759
760	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
761		page_req = VM_ALLOC_SYSTEM;
762	};
763
764	s = splvm();
765
766loop:
767	if (cnt.v_free_count > cnt.v_free_reserved) {
768		/*
769		 * Allocate from the free queue if there are plenty of pages
770		 * in it.
771		 */
772		if (page_req == VM_ALLOC_ZERO)
773			m = vm_page_select_free(object, pindex, TRUE);
774		else
775			m = vm_page_select_free(object, pindex, FALSE);
776	} else if (
777	    (page_req == VM_ALLOC_SYSTEM &&
778	     cnt.v_cache_count == 0 &&
779	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
780	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
781	) {
782		/*
783		 * Interrupt or system, dig deeper into the free list.
784		 */
785		m = vm_page_select_free(object, pindex, FALSE);
786	} else if (page_req != VM_ALLOC_INTERRUPT) {
787		/*
788		 * Allocatable from cache (non-interrupt only).  On success,
789		 * we must free the page and try again, thus ensuring that
790		 * cnt.v_*_free_min counters are replenished.
791		 */
792		m = vm_page_select_cache(object, pindex);
793		if (m == NULL) {
794			splx(s);
795#if defined(DIAGNOSTIC)
796			if (cnt.v_cache_count > 0)
797				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
798#endif
799			vm_pageout_deficit++;
800			pagedaemon_wakeup();
801			return (NULL);
802		}
803		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
804		vm_page_busy(m);
805		vm_page_protect(m, VM_PROT_NONE);
806		vm_page_free(m);
807		goto loop;
808	} else {
809		/*
810		 * Not allocatable from cache from interrupt, give up.
811		 */
812		splx(s);
813		vm_pageout_deficit++;
814		pagedaemon_wakeup();
815		return (NULL);
816	}
817
818	/*
819	 *  At this point we had better have found a good page.
820	 */
821
822	KASSERT(
823	    m != NULL,
824	    ("vm_page_alloc(): missing page on free queue\n")
825	);
826
827	/*
828	 * Remove from free queue
829	 */
830
831	vm_page_unqueue_nowakeup(m);
832
833	/*
834	 * Initialize structure.  Only the PG_ZERO flag is inherited.
835	 */
836
837	if (m->flags & PG_ZERO) {
838		vm_page_zero_count--;
839		m->flags = PG_ZERO | PG_BUSY;
840	} else {
841		m->flags = PG_BUSY;
842	}
843	m->wire_count = 0;
844	m->hold_count = 0;
845	m->act_count = 0;
846	m->busy = 0;
847	m->valid = 0;
848	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
849
850	/*
851	 * vm_page_insert() is safe prior to the splx().  Note also that
852	 * inserting a page here does not insert it into the pmap (which
853	 * could cause us to block allocating memory).  We cannot block
854	 * anywhere.
855	 */
856
857	vm_page_insert(m, object, pindex);
858
859	/*
860	 * Don't wakeup too often - wakeup the pageout daemon when
861	 * we would be nearly out of memory.
862	 */
863	if (vm_paging_needed())
864		pagedaemon_wakeup();
865
866	splx(s);
867
868	return (m);
869}
870
871/*
872 *	vm_wait:	(also see VM_WAIT macro)
873 *
874 *	Block until free pages are available for allocation
875 */
876
877void
878vm_wait()
879{
880	int s;
881
882	s = splvm();
883	if (curproc == pageproc) {
884		vm_pageout_pages_needed = 1;
885		tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
886	} else {
887		if (!vm_pages_needed) {
888			vm_pages_needed = 1;
889			wakeup(&vm_pages_needed);
890		}
891		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
892	}
893	splx(s);
894}
895
896/*
897 *	vm_await:	(also see VM_AWAIT macro)
898 *
899 *	asleep on an event that will signal when free pages are available
900 *	for allocation.
901 */
902
903void
904vm_await()
905{
906	int s;
907
908	s = splvm();
909	if (curproc == pageproc) {
910		vm_pageout_pages_needed = 1;
911		asleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
912	} else {
913		if (!vm_pages_needed) {
914			vm_pages_needed++;
915			wakeup(&vm_pages_needed);
916		}
917		asleep(&cnt.v_free_count, PVM, "vmwait", 0);
918	}
919	splx(s);
920}
921
922#if 0
923/*
924 *	vm_page_sleep:
925 *
926 *	Block until page is no longer busy.
927 */
928
929int
930vm_page_sleep(vm_page_t m, char *msg, char *busy) {
931	int slept = 0;
932	if ((busy && *busy) || (m->flags & PG_BUSY)) {
933		int s;
934		s = splvm();
935		if ((busy && *busy) || (m->flags & PG_BUSY)) {
936			vm_page_flag_set(m, PG_WANTED);
937			tsleep(m, PVM, msg, 0);
938			slept = 1;
939		}
940		splx(s);
941	}
942	return slept;
943}
944
945#endif
946
947#if 0
948
949/*
950 *	vm_page_asleep:
951 *
952 *	Similar to vm_page_sleep(), but does not block.  Returns 0 if
953 *	the page is not busy, or 1 if the page is busy.
954 *
955 *	This routine has the side effect of calling asleep() if the page
956 *	was busy (1 returned).
957 */
958
959int
960vm_page_asleep(vm_page_t m, char *msg, char *busy) {
961	int slept = 0;
962	if ((busy && *busy) || (m->flags & PG_BUSY)) {
963		int s;
964		s = splvm();
965		if ((busy && *busy) || (m->flags & PG_BUSY)) {
966			vm_page_flag_set(m, PG_WANTED);
967			asleep(m, PVM, msg, 0);
968			slept = 1;
969		}
970		splx(s);
971	}
972	return slept;
973}
974
975#endif
976
977/*
978 *	vm_page_activate:
979 *
980 *	Put the specified page on the active list (if appropriate).
981 *	Ensure that act_count is at least ACT_INIT but do not otherwise
982 *	mess with it.
983 *
984 *	The page queues must be locked.
985 *	This routine may not block.
986 */
987void
988vm_page_activate(m)
989	register vm_page_t m;
990{
991	int s;
992
993	s = splvm();
994	if (m->queue != PQ_ACTIVE) {
995		if ((m->queue - m->pc) == PQ_CACHE)
996			cnt.v_reactivated++;
997
998		vm_page_unqueue(m);
999
1000		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1001			m->queue = PQ_ACTIVE;
1002			vm_page_queues[PQ_ACTIVE].lcnt++;
1003			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1004			if (m->act_count < ACT_INIT)
1005				m->act_count = ACT_INIT;
1006			cnt.v_active_count++;
1007		}
1008	} else {
1009		if (m->act_count < ACT_INIT)
1010			m->act_count = ACT_INIT;
1011	}
1012
1013	splx(s);
1014}
1015
1016/*
1017 *	vm_page_free_wakeup:
1018 *
1019 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1020 *	routine is called when a page has been added to the cache or free
1021 *	queues.
1022 *
1023 *	This routine may not block.
1024 *	This routine must be called at splvm()
1025 */
1026static __inline void
1027vm_page_free_wakeup()
1028{
1029	/*
1030	 * if pageout daemon needs pages, then tell it that there are
1031	 * some free.
1032	 */
1033	if (vm_pageout_pages_needed &&
1034	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1035		wakeup(&vm_pageout_pages_needed);
1036		vm_pageout_pages_needed = 0;
1037	}
1038	/*
1039	 * wakeup processes that are waiting on memory if we hit a
1040	 * high water mark. And wakeup scheduler process if we have
1041	 * lots of memory. this process will swapin processes.
1042	 */
1043	if (vm_pages_needed && !vm_page_count_min()) {
1044		vm_pages_needed = 0;
1045		wakeup(&cnt.v_free_count);
1046	}
1047}
1048
1049/*
1050 *	vm_page_free_toq:
1051 *
1052 *	Returns the given page to the PQ_FREE list,
1053 *	disassociating it with any VM object.
1054 *
1055 *	Object and page must be locked prior to entry.
1056 *	This routine may not block.
1057 */
1058
1059void
1060vm_page_free_toq(vm_page_t m)
1061{
1062	int s;
1063	struct vpgqueues *pq;
1064	vm_object_t object = m->object;
1065
1066	s = splvm();
1067
1068	cnt.v_tfree++;
1069
1070	if (m->busy || ((m->queue - m->pc) == PQ_FREE) ||
1071		(m->hold_count != 0)) {
1072		printf(
1073		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1074		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1075		    m->hold_count);
1076		if ((m->queue - m->pc) == PQ_FREE)
1077			panic("vm_page_free: freeing free page");
1078		else
1079			panic("vm_page_free: freeing busy page");
1080	}
1081
1082	/*
1083	 * unqueue, then remove page.  Note that we cannot destroy
1084	 * the page here because we do not want to call the pager's
1085	 * callback routine until after we've put the page on the
1086	 * appropriate free queue.
1087	 */
1088
1089	vm_page_unqueue_nowakeup(m);
1090	vm_page_remove(m);
1091
1092	/*
1093	 * If fictitious remove object association and
1094	 * return, otherwise delay object association removal.
1095	 */
1096
1097	if ((m->flags & PG_FICTITIOUS) != 0) {
1098		splx(s);
1099		return;
1100	}
1101
1102	m->valid = 0;
1103	vm_page_undirty(m);
1104
1105	if (m->wire_count != 0) {
1106		if (m->wire_count > 1) {
1107			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1108				m->wire_count, (long)m->pindex);
1109		}
1110		panic("vm_page_free: freeing wired page\n");
1111	}
1112
1113	/*
1114	 * If we've exhausted the object's resident pages we want to free
1115	 * it up.
1116	 */
1117
1118	if (object &&
1119	    (object->type == OBJT_VNODE) &&
1120	    ((object->flags & OBJ_DEAD) == 0)
1121	) {
1122		struct vnode *vp = (struct vnode *)object->handle;
1123
1124		if (vp && VSHOULDFREE(vp))
1125			vfree(vp);
1126	}
1127
1128	/*
1129	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1130	 */
1131
1132	if (m->flags & PG_UNMANAGED) {
1133	    m->flags &= ~PG_UNMANAGED;
1134	} else {
1135#ifdef __alpha__
1136	    pmap_page_is_free(m);
1137#endif
1138	}
1139
1140	m->queue = PQ_FREE + m->pc;
1141	pq = &vm_page_queues[m->queue];
1142	pq->lcnt++;
1143	++(*pq->cnt);
1144
1145	/*
1146	 * Put zero'd pages on the end ( where we look for zero'd pages
1147	 * first ) and non-zerod pages at the head.
1148	 */
1149
1150	if (m->flags & PG_ZERO) {
1151		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1152		++vm_page_zero_count;
1153	} else {
1154		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1155	}
1156
1157	vm_page_free_wakeup();
1158
1159	splx(s);
1160}
1161
1162/*
1163 *	vm_page_unmanage:
1164 *
1165 * 	Prevent PV management from being done on the page.  The page is
1166 *	removed from the paging queues as if it were wired, and as a
1167 *	consequence of no longer being managed the pageout daemon will not
1168 *	touch it (since there is no way to locate the pte mappings for the
1169 *	page).  madvise() calls that mess with the pmap will also no longer
1170 *	operate on the page.
1171 *
1172 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1173 *	will clear the flag.
1174 *
1175 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1176 *	physical memory as backing store rather then swap-backed memory and
1177 *	will eventually be extended to support 4MB unmanaged physical
1178 *	mappings.
1179 */
1180
1181void
1182vm_page_unmanage(vm_page_t m)
1183{
1184	int s;
1185
1186	s = splvm();
1187	if ((m->flags & PG_UNMANAGED) == 0) {
1188		if (m->wire_count == 0)
1189			vm_page_unqueue(m);
1190	}
1191	vm_page_flag_set(m, PG_UNMANAGED);
1192	splx(s);
1193}
1194
1195/*
1196 *	vm_page_wire:
1197 *
1198 *	Mark this page as wired down by yet
1199 *	another map, removing it from paging queues
1200 *	as necessary.
1201 *
1202 *	The page queues must be locked.
1203 *	This routine may not block.
1204 */
1205void
1206vm_page_wire(m)
1207	register vm_page_t m;
1208{
1209	int s;
1210
1211	/*
1212	 * Only bump the wire statistics if the page is not already wired,
1213	 * and only unqueue the page if it is on some queue (if it is unmanaged
1214	 * it is already off the queues).
1215	 */
1216	s = splvm();
1217	if (m->wire_count == 0) {
1218		if ((m->flags & PG_UNMANAGED) == 0)
1219			vm_page_unqueue(m);
1220		cnt.v_wire_count++;
1221	}
1222	m->wire_count++;
1223	splx(s);
1224	vm_page_flag_set(m, PG_MAPPED);
1225}
1226
1227/*
1228 *	vm_page_unwire:
1229 *
1230 *	Release one wiring of this page, potentially
1231 *	enabling it to be paged again.
1232 *
1233 *	Many pages placed on the inactive queue should actually go
1234 *	into the cache, but it is difficult to figure out which.  What
1235 *	we do instead, if the inactive target is well met, is to put
1236 *	clean pages at the head of the inactive queue instead of the tail.
1237 *	This will cause them to be moved to the cache more quickly and
1238 *	if not actively re-referenced, freed more quickly.  If we just
1239 *	stick these pages at the end of the inactive queue, heavy filesystem
1240 *	meta-data accesses can cause an unnecessary paging load on memory bound
1241 *	processes.  This optimization causes one-time-use metadata to be
1242 *	reused more quickly.
1243 *
1244 *	BUT, if we are in a low-memory situation we have no choice but to
1245 *	put clean pages on the cache queue.
1246 *
1247 *	A number of routines use vm_page_unwire() to guarantee that the page
1248 *	will go into either the inactive or active queues, and will NEVER
1249 *	be placed in the cache - for example, just after dirtying a page.
1250 *	dirty pages in the cache are not allowed.
1251 *
1252 *	The page queues must be locked.
1253 *	This routine may not block.
1254 */
1255void
1256vm_page_unwire(m, activate)
1257	register vm_page_t m;
1258	int activate;
1259{
1260	int s;
1261
1262	s = splvm();
1263
1264	if (m->wire_count > 0) {
1265		m->wire_count--;
1266		if (m->wire_count == 0) {
1267			cnt.v_wire_count--;
1268			if (m->flags & PG_UNMANAGED) {
1269				;
1270			} else if (activate) {
1271				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1272				m->queue = PQ_ACTIVE;
1273				vm_page_queues[PQ_ACTIVE].lcnt++;
1274				cnt.v_active_count++;
1275			} else {
1276				vm_page_flag_clear(m, PG_WINATCFLS);
1277				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1278				m->queue = PQ_INACTIVE;
1279				vm_page_queues[PQ_INACTIVE].lcnt++;
1280				cnt.v_inactive_count++;
1281			}
1282		}
1283	} else {
1284		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1285	}
1286	splx(s);
1287}
1288
1289
1290/*
1291 * Move the specified page to the inactive queue.  If the page has
1292 * any associated swap, the swap is deallocated.
1293 *
1294 * Normally athead is 0 resulting in LRU operation.  athead is set
1295 * to 1 if we want this page to be 'as if it were placed in the cache',
1296 * except without unmapping it from the process address space.
1297 *
1298 * This routine may not block.
1299 */
1300static __inline void
1301_vm_page_deactivate(vm_page_t m, int athead)
1302{
1303	int s;
1304
1305	/*
1306	 * Ignore if already inactive.
1307	 */
1308	if (m->queue == PQ_INACTIVE)
1309		return;
1310
1311	s = splvm();
1312	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1313		if ((m->queue - m->pc) == PQ_CACHE)
1314			cnt.v_reactivated++;
1315		vm_page_flag_clear(m, PG_WINATCFLS);
1316		vm_page_unqueue(m);
1317		if (athead)
1318			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1319		else
1320			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1321		m->queue = PQ_INACTIVE;
1322		vm_page_queues[PQ_INACTIVE].lcnt++;
1323		cnt.v_inactive_count++;
1324	}
1325	splx(s);
1326}
1327
1328void
1329vm_page_deactivate(vm_page_t m)
1330{
1331    _vm_page_deactivate(m, 0);
1332}
1333
1334/*
1335 * vm_page_try_to_cache:
1336 *
1337 * Returns 0 on failure, 1 on success
1338 */
1339int
1340vm_page_try_to_cache(vm_page_t m)
1341{
1342	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1343	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1344		return(0);
1345	}
1346	vm_page_test_dirty(m);
1347	if (m->dirty)
1348		return(0);
1349	vm_page_cache(m);
1350	return(1);
1351}
1352
1353/*
1354 * vm_page_cache
1355 *
1356 * Put the specified page onto the page cache queue (if appropriate).
1357 *
1358 * This routine may not block.
1359 */
1360void
1361vm_page_cache(m)
1362	register vm_page_t m;
1363{
1364	int s;
1365
1366	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1367		printf("vm_page_cache: attempting to cache busy page\n");
1368		return;
1369	}
1370	if ((m->queue - m->pc) == PQ_CACHE)
1371		return;
1372
1373	/*
1374	 * Remove all pmaps and indicate that the page is not
1375	 * writeable or mapped.
1376	 */
1377
1378	vm_page_protect(m, VM_PROT_NONE);
1379	if (m->dirty != 0) {
1380		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1381			(long)m->pindex);
1382	}
1383	s = splvm();
1384	vm_page_unqueue_nowakeup(m);
1385	m->queue = PQ_CACHE + m->pc;
1386	vm_page_queues[m->queue].lcnt++;
1387	TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1388	cnt.v_cache_count++;
1389	vm_page_free_wakeup();
1390	splx(s);
1391}
1392
1393/*
1394 * vm_page_dontneed
1395 *
1396 *	Cache, deactivate, or do nothing as appropriate.  This routine
1397 *	is typically used by madvise() MADV_DONTNEED.
1398 *
1399 *	Generally speaking we want to move the page into the cache so
1400 *	it gets reused quickly.  However, this can result in a silly syndrome
1401 *	due to the page recycling too quickly.  Small objects will not be
1402 *	fully cached.  On the otherhand, if we move the page to the inactive
1403 *	queue we wind up with a problem whereby very large objects
1404 *	unnecessarily blow away our inactive and cache queues.
1405 *
1406 *	The solution is to move the pages based on a fixed weighting.  We
1407 *	either leave them alone, deactivate them, or move them to the cache,
1408 *	where moving them to the cache has the highest weighting.
1409 *	By forcing some pages into other queues we eventually force the
1410 *	system to balance the queues, potentially recovering other unrelated
1411 *	space from active.  The idea is to not force this to happen too
1412 *	often.
1413 */
1414
1415void
1416vm_page_dontneed(m)
1417	vm_page_t m;
1418{
1419	static int dnweight;
1420	int dnw;
1421	int head;
1422
1423	dnw = ++dnweight;
1424
1425	/*
1426	 * occassionally leave the page alone
1427	 */
1428
1429	if ((dnw & 0x01F0) == 0 ||
1430	    m->queue == PQ_INACTIVE ||
1431	    m->queue - m->pc == PQ_CACHE
1432	) {
1433		if (m->act_count >= ACT_INIT)
1434			--m->act_count;
1435		return;
1436	}
1437
1438	if (m->dirty == 0)
1439		vm_page_test_dirty(m);
1440
1441	if (m->dirty || (dnw & 0x0070) == 0) {
1442		/*
1443		 * Deactivate the page 3 times out of 32.
1444		 */
1445		head = 0;
1446	} else {
1447		/*
1448		 * Cache the page 28 times out of every 32.  Note that
1449		 * the page is deactivated instead of cached, but placed
1450		 * at the head of the queue instead of the tail.
1451		 */
1452		head = 1;
1453	}
1454	_vm_page_deactivate(m, head);
1455}
1456
1457/*
1458 * Grab a page, waiting until we are waken up due to the page
1459 * changing state.  We keep on waiting, if the page continues
1460 * to be in the object.  If the page doesn't exist, allocate it.
1461 *
1462 * This routine may block.
1463 */
1464vm_page_t
1465vm_page_grab(object, pindex, allocflags)
1466	vm_object_t object;
1467	vm_pindex_t pindex;
1468	int allocflags;
1469{
1470
1471	vm_page_t m;
1472	int s, generation;
1473
1474retrylookup:
1475	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1476		if (m->busy || (m->flags & PG_BUSY)) {
1477			generation = object->generation;
1478
1479			s = splvm();
1480			while ((object->generation == generation) &&
1481					(m->busy || (m->flags & PG_BUSY))) {
1482				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1483				tsleep(m, PVM, "pgrbwt", 0);
1484				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1485					splx(s);
1486					return NULL;
1487				}
1488			}
1489			splx(s);
1490			goto retrylookup;
1491		} else {
1492			vm_page_busy(m);
1493			return m;
1494		}
1495	}
1496
1497	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1498	if (m == NULL) {
1499		VM_WAIT;
1500		if ((allocflags & VM_ALLOC_RETRY) == 0)
1501			return NULL;
1502		goto retrylookup;
1503	}
1504
1505	return m;
1506}
1507
1508/*
1509 * Mapping function for valid bits or for dirty bits in
1510 * a page.  May not block.
1511 *
1512 * Inputs are required to range within a page.
1513 */
1514
1515__inline int
1516vm_page_bits(int base, int size)
1517{
1518	int first_bit;
1519	int last_bit;
1520
1521	KASSERT(
1522	    base + size <= PAGE_SIZE,
1523	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1524	);
1525
1526	if (size == 0)		/* handle degenerate case */
1527		return(0);
1528
1529	first_bit = base >> DEV_BSHIFT;
1530	last_bit = (base + size - 1) >> DEV_BSHIFT;
1531
1532	return ((2 << last_bit) - (1 << first_bit));
1533}
1534
1535/*
1536 *	vm_page_set_validclean:
1537 *
1538 *	Sets portions of a page valid and clean.  The arguments are expected
1539 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1540 *	of any partial chunks touched by the range.  The invalid portion of
1541 *	such chunks will be zero'd.
1542 *
1543 *	This routine may not block.
1544 *
1545 *	(base + size) must be less then or equal to PAGE_SIZE.
1546 */
1547void
1548vm_page_set_validclean(m, base, size)
1549	vm_page_t m;
1550	int base;
1551	int size;
1552{
1553	int pagebits;
1554	int frag;
1555	int endoff;
1556
1557	if (size == 0)	/* handle degenerate case */
1558		return;
1559
1560	/*
1561	 * If the base is not DEV_BSIZE aligned and the valid
1562	 * bit is clear, we have to zero out a portion of the
1563	 * first block.
1564	 */
1565
1566	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1567	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1568	) {
1569		pmap_zero_page_area(
1570		    VM_PAGE_TO_PHYS(m),
1571		    frag,
1572		    base - frag
1573		);
1574	}
1575
1576	/*
1577	 * If the ending offset is not DEV_BSIZE aligned and the
1578	 * valid bit is clear, we have to zero out a portion of
1579	 * the last block.
1580	 */
1581
1582	endoff = base + size;
1583
1584	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1585	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1586	) {
1587		pmap_zero_page_area(
1588		    VM_PAGE_TO_PHYS(m),
1589		    endoff,
1590		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1591		);
1592	}
1593
1594	/*
1595	 * Set valid, clear dirty bits.  If validating the entire
1596	 * page we can safely clear the pmap modify bit.  We also
1597	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1598	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1599	 * be set again.
1600	 */
1601
1602	pagebits = vm_page_bits(base, size);
1603	m->valid |= pagebits;
1604	m->dirty &= ~pagebits;
1605	if (base == 0 && size == PAGE_SIZE) {
1606		pmap_clear_modify(m);
1607		vm_page_flag_clear(m, PG_NOSYNC);
1608	}
1609}
1610
1611#if 0
1612
1613void
1614vm_page_set_dirty(m, base, size)
1615	vm_page_t m;
1616	int base;
1617	int size;
1618{
1619	m->dirty |= vm_page_bits(base, size);
1620}
1621
1622#endif
1623
1624void
1625vm_page_clear_dirty(m, base, size)
1626	vm_page_t m;
1627	int base;
1628	int size;
1629{
1630	m->dirty &= ~vm_page_bits(base, size);
1631}
1632
1633/*
1634 *	vm_page_set_invalid:
1635 *
1636 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1637 *	valid and dirty bits for the effected areas are cleared.
1638 *
1639 *	May not block.
1640 */
1641void
1642vm_page_set_invalid(m, base, size)
1643	vm_page_t m;
1644	int base;
1645	int size;
1646{
1647	int bits;
1648
1649	bits = vm_page_bits(base, size);
1650	m->valid &= ~bits;
1651	m->dirty &= ~bits;
1652	m->object->generation++;
1653}
1654
1655/*
1656 * vm_page_zero_invalid()
1657 *
1658 *	The kernel assumes that the invalid portions of a page contain
1659 *	garbage, but such pages can be mapped into memory by user code.
1660 *	When this occurs, we must zero out the non-valid portions of the
1661 *	page so user code sees what it expects.
1662 *
1663 *	Pages are most often semi-valid when the end of a file is mapped
1664 *	into memory and the file's size is not page aligned.
1665 */
1666
1667void
1668vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1669{
1670	int b;
1671	int i;
1672
1673	/*
1674	 * Scan the valid bits looking for invalid sections that
1675	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1676	 * valid bit may be set ) have already been zerod by
1677	 * vm_page_set_validclean().
1678	 */
1679
1680	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1681		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1682		    (m->valid & (1 << i))
1683		) {
1684			if (i > b) {
1685				pmap_zero_page_area(
1686				    VM_PAGE_TO_PHYS(m),
1687				    b << DEV_BSHIFT,
1688				    (i - b) << DEV_BSHIFT
1689				);
1690			}
1691			b = i + 1;
1692		}
1693	}
1694
1695	/*
1696	 * setvalid is TRUE when we can safely set the zero'd areas
1697	 * as being valid.  We can do this if there are no cache consistancy
1698	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1699	 */
1700
1701	if (setvalid)
1702		m->valid = VM_PAGE_BITS_ALL;
1703}
1704
1705/*
1706 *	vm_page_is_valid:
1707 *
1708 *	Is (partial) page valid?  Note that the case where size == 0
1709 *	will return FALSE in the degenerate case where the page is
1710 *	entirely invalid, and TRUE otherwise.
1711 *
1712 *	May not block.
1713 */
1714
1715int
1716vm_page_is_valid(m, base, size)
1717	vm_page_t m;
1718	int base;
1719	int size;
1720{
1721	int bits = vm_page_bits(base, size);
1722
1723	if (m->valid && ((m->valid & bits) == bits))
1724		return 1;
1725	else
1726		return 0;
1727}
1728
1729/*
1730 * update dirty bits from pmap/mmu.  May not block.
1731 */
1732
1733void
1734vm_page_test_dirty(m)
1735	vm_page_t m;
1736{
1737	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1738		vm_page_dirty(m);
1739	}
1740}
1741
1742/*
1743 * This interface is for merging with malloc() someday.
1744 * Even if we never implement compaction so that contiguous allocation
1745 * works after initialization time, malloc()'s data structures are good
1746 * for statistics and for allocations of less than a page.
1747 */
1748void *
1749contigmalloc1(size, type, flags, low, high, alignment, boundary, map)
1750	unsigned long size;	/* should be size_t here and for malloc() */
1751	struct malloc_type *type;
1752	int flags;
1753	unsigned long low;
1754	unsigned long high;
1755	unsigned long alignment;
1756	unsigned long boundary;
1757	vm_map_t map;
1758{
1759	int i, s, start;
1760	vm_offset_t addr, phys, tmp_addr;
1761	int pass;
1762	vm_page_t pga = vm_page_array;
1763
1764	size = round_page(size);
1765	if (size == 0)
1766		panic("contigmalloc1: size must not be 0");
1767	if ((alignment & (alignment - 1)) != 0)
1768		panic("contigmalloc1: alignment must be a power of 2");
1769	if ((boundary & (boundary - 1)) != 0)
1770		panic("contigmalloc1: boundary must be a power of 2");
1771
1772	start = 0;
1773	for (pass = 0; pass <= 1; pass++) {
1774		s = splvm();
1775again:
1776		/*
1777		 * Find first page in array that is free, within range, aligned, and
1778		 * such that the boundary won't be crossed.
1779		 */
1780		for (i = start; i < cnt.v_page_count; i++) {
1781			int pqtype;
1782			phys = VM_PAGE_TO_PHYS(&pga[i]);
1783			pqtype = pga[i].queue - pga[i].pc;
1784			if (((pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
1785			    (phys >= low) && (phys < high) &&
1786			    ((phys & (alignment - 1)) == 0) &&
1787			    (((phys ^ (phys + size - 1)) & ~(boundary - 1)) == 0))
1788				break;
1789		}
1790
1791		/*
1792		 * If the above failed or we will exceed the upper bound, fail.
1793		 */
1794		if ((i == cnt.v_page_count) ||
1795			((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
1796			vm_page_t m, next;
1797
1798again1:
1799			for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
1800				m != NULL;
1801				m = next) {
1802
1803				KASSERT(m->queue == PQ_INACTIVE,
1804					("contigmalloc1: page %p is not PQ_INACTIVE", m));
1805
1806				next = TAILQ_NEXT(m, pageq);
1807				if (vm_page_sleep_busy(m, TRUE, "vpctw0"))
1808					goto again1;
1809				vm_page_test_dirty(m);
1810				if (m->dirty) {
1811					if (m->object->type == OBJT_VNODE) {
1812						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1813						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1814						VOP_UNLOCK(m->object->handle, 0, curproc);
1815						goto again1;
1816					} else if (m->object->type == OBJT_SWAP ||
1817								m->object->type == OBJT_DEFAULT) {
1818						vm_pageout_flush(&m, 1, 0);
1819						goto again1;
1820					}
1821				}
1822				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1823					vm_page_cache(m);
1824			}
1825
1826			for (m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1827				m != NULL;
1828				m = next) {
1829
1830				KASSERT(m->queue == PQ_ACTIVE,
1831					("contigmalloc1: page %p is not PQ_ACTIVE", m));
1832
1833				next = TAILQ_NEXT(m, pageq);
1834				if (vm_page_sleep_busy(m, TRUE, "vpctw1"))
1835					goto again1;
1836				vm_page_test_dirty(m);
1837				if (m->dirty) {
1838					if (m->object->type == OBJT_VNODE) {
1839						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1840						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1841						VOP_UNLOCK(m->object->handle, 0, curproc);
1842						goto again1;
1843					} else if (m->object->type == OBJT_SWAP ||
1844								m->object->type == OBJT_DEFAULT) {
1845						vm_pageout_flush(&m, 1, 0);
1846						goto again1;
1847					}
1848				}
1849				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1850					vm_page_cache(m);
1851			}
1852
1853			splx(s);
1854			continue;
1855		}
1856		start = i;
1857
1858		/*
1859		 * Check successive pages for contiguous and free.
1860		 */
1861		for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
1862			int pqtype;
1863			pqtype = pga[i].queue - pga[i].pc;
1864			if ((VM_PAGE_TO_PHYS(&pga[i]) !=
1865			    (VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
1866			    ((pqtype != PQ_FREE) && (pqtype != PQ_CACHE))) {
1867				start++;
1868				goto again;
1869			}
1870		}
1871
1872		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1873			int pqtype;
1874			vm_page_t m = &pga[i];
1875
1876			pqtype = m->queue - m->pc;
1877			if (pqtype == PQ_CACHE) {
1878				vm_page_busy(m);
1879				vm_page_free(m);
1880			}
1881
1882			TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
1883			vm_page_queues[m->queue].lcnt--;
1884			cnt.v_free_count--;
1885			m->valid = VM_PAGE_BITS_ALL;
1886			m->flags = 0;
1887			KASSERT(m->dirty == 0, ("contigmalloc1: page %p was dirty", m));
1888			m->wire_count = 0;
1889			m->busy = 0;
1890			m->queue = PQ_NONE;
1891			m->object = NULL;
1892			vm_page_wire(m);
1893		}
1894
1895		/*
1896		 * We've found a contiguous chunk that meets are requirements.
1897		 * Allocate kernel VM, unfree and assign the physical pages to it and
1898		 * return kernel VM pointer.
1899		 */
1900		tmp_addr = addr = kmem_alloc_pageable(map, size);
1901		if (addr == 0) {
1902			/*
1903			 * XXX We almost never run out of kernel virtual
1904			 * space, so we don't make the allocated memory
1905			 * above available.
1906			 */
1907			splx(s);
1908			return (NULL);
1909		}
1910
1911		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1912			vm_page_t m = &pga[i];
1913			vm_page_insert(m, kernel_object,
1914				OFF_TO_IDX(tmp_addr - VM_MIN_KERNEL_ADDRESS));
1915			pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m));
1916			tmp_addr += PAGE_SIZE;
1917		}
1918
1919		splx(s);
1920		return ((void *)addr);
1921	}
1922	return NULL;
1923}
1924
1925void *
1926contigmalloc(size, type, flags, low, high, alignment, boundary)
1927	unsigned long size;	/* should be size_t here and for malloc() */
1928	struct malloc_type *type;
1929	int flags;
1930	unsigned long low;
1931	unsigned long high;
1932	unsigned long alignment;
1933	unsigned long boundary;
1934{
1935	return contigmalloc1(size, type, flags, low, high, alignment, boundary,
1936			     kernel_map);
1937}
1938
1939void
1940contigfree(addr, size, type)
1941	void *addr;
1942	unsigned long size;
1943	struct malloc_type *type;
1944{
1945	kmem_free(kernel_map, (vm_offset_t)addr, size);
1946}
1947
1948vm_offset_t
1949vm_page_alloc_contig(size, low, high, alignment)
1950	vm_offset_t size;
1951	vm_offset_t low;
1952	vm_offset_t high;
1953	vm_offset_t alignment;
1954{
1955	return ((vm_offset_t)contigmalloc1(size, M_DEVBUF, M_NOWAIT, low, high,
1956					  alignment, 0ul, kernel_map));
1957}
1958
1959#include "opt_ddb.h"
1960#ifdef DDB
1961#include <sys/kernel.h>
1962
1963#include <ddb/ddb.h>
1964
1965DB_SHOW_COMMAND(page, vm_page_print_page_info)
1966{
1967	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1968	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1969	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1970	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1971	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1972	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1973	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1974	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1975	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1976	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1977}
1978
1979DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1980{
1981	int i;
1982	db_printf("PQ_FREE:");
1983	for(i=0;i<PQ_L2_SIZE;i++) {
1984		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1985	}
1986	db_printf("\n");
1987
1988	db_printf("PQ_CACHE:");
1989	for(i=0;i<PQ_L2_SIZE;i++) {
1990		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1991	}
1992	db_printf("\n");
1993
1994	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1995		vm_page_queues[PQ_ACTIVE].lcnt,
1996		vm_page_queues[PQ_INACTIVE].lcnt);
1997}
1998#endif /* DDB */
1999