vm_page.c revision 61081
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37 * $FreeBSD: head/sys/vm/vm_page.c 61081 2000-05-29 22:40:54Z dillon $
38 */
39
40/*
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59 *  School of Computer Science
60 *  Carnegie Mellon University
61 *  Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67/*
68 *	Resident memory management module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/malloc.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/vnode.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80#include <sys/lock.h>
81#include <vm/vm_kern.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_pageout.h>
85#include <vm/vm_pager.h>
86#include <vm/vm_extern.h>
87
88static void	vm_page_queue_init __P((void));
89static vm_page_t vm_page_select_cache __P((vm_object_t, vm_pindex_t));
90
91/*
92 *	Associated with page of user-allocatable memory is a
93 *	page structure.
94 */
95
96static struct vm_page **vm_page_buckets; /* Array of buckets */
97static int vm_page_bucket_count;	/* How big is array? */
98static int vm_page_hash_mask;		/* Mask for hash function */
99static volatile int vm_page_bucket_generation;
100
101struct vpgqueues vm_page_queues[PQ_COUNT];
102
103static void
104vm_page_queue_init(void) {
105	int i;
106
107	for(i=0;i<PQ_L2_SIZE;i++) {
108		vm_page_queues[PQ_FREE+i].cnt = &cnt.v_free_count;
109	}
110	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
111
112	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
113	for(i=0;i<PQ_L2_SIZE;i++) {
114		vm_page_queues[PQ_CACHE+i].cnt = &cnt.v_cache_count;
115	}
116	for(i=0;i<PQ_COUNT;i++) {
117		TAILQ_INIT(&vm_page_queues[i].pl);
118	}
119}
120
121vm_page_t vm_page_array = 0;
122int vm_page_array_size = 0;
123long first_page = 0;
124int vm_page_zero_count = 0;
125
126static __inline int vm_page_hash __P((vm_object_t object, vm_pindex_t pindex));
127static void vm_page_free_wakeup __P((void));
128
129/*
130 *	vm_set_page_size:
131 *
132 *	Sets the page size, perhaps based upon the memory
133 *	size.  Must be called before any use of page-size
134 *	dependent functions.
135 */
136void
137vm_set_page_size()
138{
139	if (cnt.v_page_size == 0)
140		cnt.v_page_size = PAGE_SIZE;
141	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
142		panic("vm_set_page_size: page size not a power of two");
143}
144
145/*
146 *	vm_add_new_page:
147 *
148 *	Add a new page to the freelist for use by the system.
149 *	Must be called at splhigh().
150 */
151vm_page_t
152vm_add_new_page(pa)
153	vm_offset_t pa;
154{
155	vm_page_t m;
156
157	++cnt.v_page_count;
158	++cnt.v_free_count;
159	m = PHYS_TO_VM_PAGE(pa);
160	m->phys_addr = pa;
161	m->flags = 0;
162	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
163	m->queue = m->pc + PQ_FREE;
164	TAILQ_INSERT_HEAD(&vm_page_queues[m->queue].pl, m, pageq);
165	vm_page_queues[m->queue].lcnt++;
166	return (m);
167}
168
169/*
170 *	vm_page_startup:
171 *
172 *	Initializes the resident memory module.
173 *
174 *	Allocates memory for the page cells, and
175 *	for the object/offset-to-page hash table headers.
176 *	Each page cell is initialized and placed on the free list.
177 */
178
179vm_offset_t
180vm_page_startup(starta, enda, vaddr)
181	register vm_offset_t starta;
182	vm_offset_t enda;
183	register vm_offset_t vaddr;
184{
185	register vm_offset_t mapped;
186	register struct vm_page **bucket;
187	vm_size_t npages, page_range;
188	register vm_offset_t new_start;
189	int i;
190	vm_offset_t pa;
191	int nblocks;
192	vm_offset_t first_managed_page;
193
194	/* the biggest memory array is the second group of pages */
195	vm_offset_t start;
196	vm_offset_t biggestone, biggestsize;
197
198	vm_offset_t total;
199
200	total = 0;
201	biggestsize = 0;
202	biggestone = 0;
203	nblocks = 0;
204	vaddr = round_page(vaddr);
205
206	for (i = 0; phys_avail[i + 1]; i += 2) {
207		phys_avail[i] = round_page(phys_avail[i]);
208		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
209	}
210
211	for (i = 0; phys_avail[i + 1]; i += 2) {
212		int size = phys_avail[i + 1] - phys_avail[i];
213
214		if (size > biggestsize) {
215			biggestone = i;
216			biggestsize = size;
217		}
218		++nblocks;
219		total += size;
220	}
221
222	start = phys_avail[biggestone];
223
224	/*
225	 * Initialize the queue headers for the free queue, the active queue
226	 * and the inactive queue.
227	 */
228
229	vm_page_queue_init();
230
231	/*
232	 * Allocate (and initialize) the hash table buckets.
233	 *
234	 * The number of buckets MUST BE a power of 2, and the actual value is
235	 * the next power of 2 greater than the number of physical pages in
236	 * the system.
237	 *
238	 * We make the hash table approximately 2x the number of pages to
239	 * reduce the chain length.  This is about the same size using the
240	 * singly-linked list as the 1x hash table we were using before
241	 * using TAILQ but the chain length will be smaller.
242	 *
243	 * Note: This computation can be tweaked if desired.
244	 */
245	vm_page_buckets = (struct vm_page **)vaddr;
246	bucket = vm_page_buckets;
247	if (vm_page_bucket_count == 0) {
248		vm_page_bucket_count = 1;
249		while (vm_page_bucket_count < atop(total))
250			vm_page_bucket_count <<= 1;
251	}
252	vm_page_bucket_count <<= 1;
253	vm_page_hash_mask = vm_page_bucket_count - 1;
254
255	/*
256	 * Validate these addresses.
257	 */
258
259	new_start = start + vm_page_bucket_count * sizeof(struct vm_page *);
260	new_start = round_page(new_start);
261	mapped = round_page(vaddr);
262	vaddr = pmap_map(mapped, start, new_start,
263	    VM_PROT_READ | VM_PROT_WRITE);
264	start = new_start;
265	vaddr = round_page(vaddr);
266	bzero((caddr_t) mapped, vaddr - mapped);
267
268	for (i = 0; i < vm_page_bucket_count; i++) {
269		*bucket = NULL;
270		bucket++;
271	}
272
273	/*
274	 * Compute the number of pages of memory that will be available for
275	 * use (taking into account the overhead of a page structure per
276	 * page).
277	 */
278
279	first_page = phys_avail[0] / PAGE_SIZE;
280
281	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
282	npages = (total - (page_range * sizeof(struct vm_page)) -
283	    (start - phys_avail[biggestone])) / PAGE_SIZE;
284
285	/*
286	 * Initialize the mem entry structures now, and put them in the free
287	 * queue.
288	 */
289	vm_page_array = (vm_page_t) vaddr;
290	mapped = vaddr;
291
292	/*
293	 * Validate these addresses.
294	 */
295	new_start = round_page(start + page_range * sizeof(struct vm_page));
296	mapped = pmap_map(mapped, start, new_start,
297	    VM_PROT_READ | VM_PROT_WRITE);
298	start = new_start;
299
300	first_managed_page = start / PAGE_SIZE;
301
302	/*
303	 * Clear all of the page structures
304	 */
305	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
306	vm_page_array_size = page_range;
307
308	/*
309	 * Construct the free queue(s) in descending order (by physical
310	 * address) so that the first 16MB of physical memory is allocated
311	 * last rather than first.  On large-memory machines, this avoids
312	 * the exhaustion of low physical memory before isa_dmainit has run.
313	 */
314	cnt.v_page_count = 0;
315	cnt.v_free_count = 0;
316	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
317		if (i == biggestone)
318			pa = ptoa(first_managed_page);
319		else
320			pa = phys_avail[i];
321		while (pa < phys_avail[i + 1] && npages-- > 0) {
322			vm_add_new_page(pa);
323			pa += PAGE_SIZE;
324		}
325	}
326	return (mapped);
327}
328
329/*
330 *	vm_page_hash:
331 *
332 *	Distributes the object/offset key pair among hash buckets.
333 *
334 *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
335 *	This routine may not block.
336 *
337 *	We try to randomize the hash based on the object to spread the pages
338 *	out in the hash table without it costing us too much.
339 */
340static __inline int
341vm_page_hash(object, pindex)
342	vm_object_t object;
343	vm_pindex_t pindex;
344{
345	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
346
347	return(i & vm_page_hash_mask);
348}
349
350/*
351 *	vm_page_insert:		[ internal use only ]
352 *
353 *	Inserts the given mem entry into the object and object list.
354 *
355 *	The pagetables are not updated but will presumably fault the page
356 *	in if necessary, or if a kernel page the caller will at some point
357 *	enter the page into the kernel's pmap.  We are not allowed to block
358 *	here so we *can't* do this anyway.
359 *
360 *	The object and page must be locked, and must be splhigh.
361 *	This routine may not block.
362 */
363
364void
365vm_page_insert(m, object, pindex)
366	register vm_page_t m;
367	register vm_object_t object;
368	register vm_pindex_t pindex;
369{
370	register struct vm_page **bucket;
371
372	if (m->object != NULL)
373		panic("vm_page_insert: already inserted");
374
375	/*
376	 * Record the object/offset pair in this page
377	 */
378
379	m->object = object;
380	m->pindex = pindex;
381
382	/*
383	 * Insert it into the object_object/offset hash table
384	 */
385
386	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
387	m->hnext = *bucket;
388	*bucket = m;
389	vm_page_bucket_generation++;
390
391	/*
392	 * Now link into the object's list of backed pages.
393	 */
394
395	TAILQ_INSERT_TAIL(&object->memq, m, listq);
396	object->generation++;
397
398	/*
399	 * show that the object has one more resident page.
400	 */
401
402	object->resident_page_count++;
403
404	/*
405	 * Since we are inserting a new and possibly dirty page,
406	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
407	 */
408	if (m->flags & PG_WRITEABLE)
409	    vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
410}
411
412/*
413 *	vm_page_remove:
414 *				NOTE: used by device pager as well -wfj
415 *
416 *	Removes the given mem entry from the object/offset-page
417 *	table and the object page list, but do not invalidate/terminate
418 *	the backing store.
419 *
420 *	The object and page must be locked, and at splhigh.
421 *	The underlying pmap entry (if any) is NOT removed here.
422 *	This routine may not block.
423 */
424
425void
426vm_page_remove(m)
427	vm_page_t m;
428{
429	vm_object_t object;
430
431	if (m->object == NULL)
432		return;
433
434	if ((m->flags & PG_BUSY) == 0) {
435		panic("vm_page_remove: page not busy");
436	}
437
438	/*
439	 * Basically destroy the page.
440	 */
441
442	vm_page_wakeup(m);
443
444	object = m->object;
445
446	/*
447	 * Remove from the object_object/offset hash table.  The object
448	 * must be on the hash queue, we will panic if it isn't
449	 *
450	 * Note: we must NULL-out m->hnext to prevent loops in detached
451	 * buffers with vm_page_lookup().
452	 */
453
454	{
455		struct vm_page **bucket;
456
457		bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
458		while (*bucket != m) {
459			if (*bucket == NULL)
460				panic("vm_page_remove(): page not found in hash");
461			bucket = &(*bucket)->hnext;
462		}
463		*bucket = m->hnext;
464		m->hnext = NULL;
465		vm_page_bucket_generation++;
466	}
467
468	/*
469	 * Now remove from the object's list of backed pages.
470	 */
471
472	TAILQ_REMOVE(&object->memq, m, listq);
473
474	/*
475	 * And show that the object has one fewer resident page.
476	 */
477
478	object->resident_page_count--;
479	object->generation++;
480
481	m->object = NULL;
482}
483
484/*
485 *	vm_page_lookup:
486 *
487 *	Returns the page associated with the object/offset
488 *	pair specified; if none is found, NULL is returned.
489 *
490 *	NOTE: the code below does not lock.  It will operate properly if
491 *	an interrupt makes a change, but the generation algorithm will not
492 *	operate properly in an SMP environment where both cpu's are able to run
493 *	kernel code simultaneously.
494 *
495 *	The object must be locked.  No side effects.
496 *	This routine may not block.
497 *	This is a critical path routine
498 */
499
500vm_page_t
501vm_page_lookup(object, pindex)
502	register vm_object_t object;
503	register vm_pindex_t pindex;
504{
505	register vm_page_t m;
506	register struct vm_page **bucket;
507	int generation;
508
509	/*
510	 * Search the hash table for this object/offset pair
511	 */
512
513retry:
514	generation = vm_page_bucket_generation;
515	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
516	for (m = *bucket; m != NULL; m = m->hnext) {
517		if ((m->object == object) && (m->pindex == pindex)) {
518			if (vm_page_bucket_generation != generation)
519				goto retry;
520			return (m);
521		}
522	}
523	if (vm_page_bucket_generation != generation)
524		goto retry;
525	return (NULL);
526}
527
528/*
529 *	vm_page_rename:
530 *
531 *	Move the given memory entry from its
532 *	current object to the specified target object/offset.
533 *
534 *	The object must be locked.
535 *	This routine may not block.
536 *
537 *	Note: this routine will raise itself to splvm(), the caller need not.
538 *
539 *	Note: swap associated with the page must be invalidated by the move.  We
540 *	      have to do this for several reasons:  (1) we aren't freeing the
541 *	      page, (2) we are dirtying the page, (3) the VM system is probably
542 *	      moving the page from object A to B, and will then later move
543 *	      the backing store from A to B and we can't have a conflict.
544 *
545 *	Note: we *always* dirty the page.  It is necessary both for the
546 *	      fact that we moved it, and because we may be invalidating
547 *	      swap.  If the page is on the cache, we have to deactivate it
548 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
549 *	      on the cache.
550 */
551
552void
553vm_page_rename(m, new_object, new_pindex)
554	register vm_page_t m;
555	register vm_object_t new_object;
556	vm_pindex_t new_pindex;
557{
558	int s;
559
560	s = splvm();
561	vm_page_remove(m);
562	vm_page_insert(m, new_object, new_pindex);
563	if (m->queue - m->pc == PQ_CACHE)
564		vm_page_deactivate(m);
565	vm_page_dirty(m);
566	splx(s);
567}
568
569/*
570 * vm_page_unqueue_nowakeup:
571 *
572 * 	vm_page_unqueue() without any wakeup
573 *
574 *	This routine must be called at splhigh().
575 *	This routine may not block.
576 */
577
578void
579vm_page_unqueue_nowakeup(m)
580	vm_page_t m;
581{
582	int queue = m->queue;
583	struct vpgqueues *pq;
584	if (queue != PQ_NONE) {
585		pq = &vm_page_queues[queue];
586		m->queue = PQ_NONE;
587		TAILQ_REMOVE(&pq->pl, m, pageq);
588		(*pq->cnt)--;
589		pq->lcnt--;
590	}
591}
592
593/*
594 * vm_page_unqueue:
595 *
596 *	Remove a page from its queue.
597 *
598 *	This routine must be called at splhigh().
599 *	This routine may not block.
600 */
601
602void
603vm_page_unqueue(m)
604	vm_page_t m;
605{
606	int queue = m->queue;
607	struct vpgqueues *pq;
608	if (queue != PQ_NONE) {
609		m->queue = PQ_NONE;
610		pq = &vm_page_queues[queue];
611		TAILQ_REMOVE(&pq->pl, m, pageq);
612		(*pq->cnt)--;
613		pq->lcnt--;
614		if ((queue - m->pc) == PQ_CACHE) {
615			if (vm_paging_needed())
616				pagedaemon_wakeup();
617		}
618	}
619}
620
621#if PQ_L2_SIZE > 1
622
623/*
624 *	vm_page_list_find:
625 *
626 *	Find a page on the specified queue with color optimization.
627 *
628 *	The page coloring optimization attempts to locate a page
629 *	that does not overload other nearby pages in the object in
630 *	the cpu's L1 or L2 caches.  We need this optimization because
631 *	cpu caches tend to be physical caches, while object spaces tend
632 *	to be virtual.
633 *
634 *	This routine must be called at splvm().
635 *	This routine may not block.
636 *
637 *	This routine may only be called from the vm_page_list_find() macro
638 *	in vm_page.h
639 */
640vm_page_t
641_vm_page_list_find(basequeue, index)
642	int basequeue, index;
643{
644	int i;
645	vm_page_t m = NULL;
646	struct vpgqueues *pq;
647
648	pq = &vm_page_queues[basequeue];
649
650	/*
651	 * Note that for the first loop, index+i and index-i wind up at the
652	 * same place.  Even though this is not totally optimal, we've already
653	 * blown it by missing the cache case so we do not care.
654	 */
655
656	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
657		if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
658			break;
659
660		if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
661			break;
662	}
663	return(m);
664}
665
666#endif
667
668/*
669 *	vm_page_select_cache:
670 *
671 *	Find a page on the cache queue with color optimization.  As pages
672 *	might be found, but not applicable, they are deactivated.  This
673 *	keeps us from using potentially busy cached pages.
674 *
675 *	This routine must be called at splvm().
676 *	This routine may not block.
677 */
678vm_page_t
679vm_page_select_cache(object, pindex)
680	vm_object_t object;
681	vm_pindex_t pindex;
682{
683	vm_page_t m;
684
685	while (TRUE) {
686		m = vm_page_list_find(
687		    PQ_CACHE,
688		    (pindex + object->pg_color) & PQ_L2_MASK,
689		    FALSE
690		);
691		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
692			       m->hold_count || m->wire_count)) {
693			vm_page_deactivate(m);
694			continue;
695		}
696		return m;
697	}
698}
699
700/*
701 *	vm_page_select_free:
702 *
703 *	Find a free or zero page, with specified preference.  We attempt to
704 *	inline the nominal case and fall back to _vm_page_select_free()
705 *	otherwise.
706 *
707 *	This routine must be called at splvm().
708 *	This routine may not block.
709 */
710
711static __inline vm_page_t
712vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
713{
714	vm_page_t m;
715
716	m = vm_page_list_find(
717		PQ_FREE,
718		(pindex + object->pg_color) & PQ_L2_MASK,
719		prefer_zero
720	);
721	return(m);
722}
723
724/*
725 *	vm_page_alloc:
726 *
727 *	Allocate and return a memory cell associated
728 *	with this VM object/offset pair.
729 *
730 *	page_req classes:
731 *	VM_ALLOC_NORMAL		normal process request
732 *	VM_ALLOC_SYSTEM		system *really* needs a page
733 *	VM_ALLOC_INTERRUPT	interrupt time request
734 *	VM_ALLOC_ZERO		zero page
735 *
736 *	Object must be locked.
737 *	This routine may not block.
738 *
739 *	Additional special handling is required when called from an
740 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
741 *	the page cache in this case.
742 */
743
744vm_page_t
745vm_page_alloc(object, pindex, page_req)
746	vm_object_t object;
747	vm_pindex_t pindex;
748	int page_req;
749{
750	register vm_page_t m = NULL;
751	int s;
752
753	KASSERT(!vm_page_lookup(object, pindex),
754		("vm_page_alloc: page already allocated"));
755
756	/*
757	 * The pager is allowed to eat deeper into the free page list.
758	 */
759
760	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
761		page_req = VM_ALLOC_SYSTEM;
762	};
763
764	s = splvm();
765
766loop:
767	if (cnt.v_free_count > cnt.v_free_reserved) {
768		/*
769		 * Allocate from the free queue if there are plenty of pages
770		 * in it.
771		 */
772		if (page_req == VM_ALLOC_ZERO)
773			m = vm_page_select_free(object, pindex, TRUE);
774		else
775			m = vm_page_select_free(object, pindex, FALSE);
776	} else if (
777	    (page_req == VM_ALLOC_SYSTEM &&
778	     cnt.v_cache_count == 0 &&
779	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
780	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
781	) {
782		/*
783		 * Interrupt or system, dig deeper into the free list.
784		 */
785		m = vm_page_select_free(object, pindex, FALSE);
786	} else if (page_req != VM_ALLOC_INTERRUPT) {
787		/*
788		 * Allocatable from cache (non-interrupt only).  On success,
789		 * we must free the page and try again, thus ensuring that
790		 * cnt.v_*_free_min counters are replenished.
791		 */
792		m = vm_page_select_cache(object, pindex);
793		if (m == NULL) {
794			splx(s);
795#if defined(DIAGNOSTIC)
796			if (cnt.v_cache_count > 0)
797				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
798#endif
799			vm_pageout_deficit++;
800			pagedaemon_wakeup();
801			return (NULL);
802		}
803		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
804		vm_page_busy(m);
805		vm_page_protect(m, VM_PROT_NONE);
806		vm_page_free(m);
807		goto loop;
808	} else {
809		/*
810		 * Not allocatable from cache from interrupt, give up.
811		 */
812		splx(s);
813		vm_pageout_deficit++;
814		pagedaemon_wakeup();
815		return (NULL);
816	}
817
818	/*
819	 *  At this point we had better have found a good page.
820	 */
821
822	KASSERT(
823	    m != NULL,
824	    ("vm_page_alloc(): missing page on free queue\n")
825	);
826
827	/*
828	 * Remove from free queue
829	 */
830
831	vm_page_unqueue_nowakeup(m);
832
833	/*
834	 * Initialize structure.  Only the PG_ZERO flag is inherited.
835	 */
836
837	if (m->flags & PG_ZERO) {
838		vm_page_zero_count--;
839		m->flags = PG_ZERO | PG_BUSY;
840	} else {
841		m->flags = PG_BUSY;
842	}
843	m->wire_count = 0;
844	m->hold_count = 0;
845	m->act_count = 0;
846	m->busy = 0;
847	m->valid = 0;
848	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
849
850	/*
851	 * vm_page_insert() is safe prior to the splx().  Note also that
852	 * inserting a page here does not insert it into the pmap (which
853	 * could cause us to block allocating memory).  We cannot block
854	 * anywhere.
855	 */
856
857	vm_page_insert(m, object, pindex);
858
859	/*
860	 * Don't wakeup too often - wakeup the pageout daemon when
861	 * we would be nearly out of memory.
862	 */
863	if (vm_paging_needed() || cnt.v_free_count < cnt.v_pageout_free_min)
864		pagedaemon_wakeup();
865
866	splx(s);
867
868	return (m);
869}
870
871/*
872 *	vm_wait:	(also see VM_WAIT macro)
873 *
874 *	Block until free pages are available for allocation
875 */
876
877void
878vm_wait()
879{
880	int s;
881
882	s = splvm();
883	if (curproc == pageproc) {
884		vm_pageout_pages_needed = 1;
885		tsleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
886	} else {
887		if (!vm_pages_needed) {
888			vm_pages_needed++;
889			wakeup(&vm_pages_needed);
890		}
891		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
892	}
893	splx(s);
894}
895
896/*
897 *	vm_await:	(also see VM_AWAIT macro)
898 *
899 *	asleep on an event that will signal when free pages are available
900 *	for allocation.
901 */
902
903void
904vm_await()
905{
906	int s;
907
908	s = splvm();
909	if (curproc == pageproc) {
910		vm_pageout_pages_needed = 1;
911		asleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
912	} else {
913		if (!vm_pages_needed) {
914			vm_pages_needed++;
915			wakeup(&vm_pages_needed);
916		}
917		asleep(&cnt.v_free_count, PVM, "vmwait", 0);
918	}
919	splx(s);
920}
921
922#if 0
923/*
924 *	vm_page_sleep:
925 *
926 *	Block until page is no longer busy.
927 */
928
929int
930vm_page_sleep(vm_page_t m, char *msg, char *busy) {
931	int slept = 0;
932	if ((busy && *busy) || (m->flags & PG_BUSY)) {
933		int s;
934		s = splvm();
935		if ((busy && *busy) || (m->flags & PG_BUSY)) {
936			vm_page_flag_set(m, PG_WANTED);
937			tsleep(m, PVM, msg, 0);
938			slept = 1;
939		}
940		splx(s);
941	}
942	return slept;
943}
944
945#endif
946
947#if 0
948
949/*
950 *	vm_page_asleep:
951 *
952 *	Similar to vm_page_sleep(), but does not block.  Returns 0 if
953 *	the page is not busy, or 1 if the page is busy.
954 *
955 *	This routine has the side effect of calling asleep() if the page
956 *	was busy (1 returned).
957 */
958
959int
960vm_page_asleep(vm_page_t m, char *msg, char *busy) {
961	int slept = 0;
962	if ((busy && *busy) || (m->flags & PG_BUSY)) {
963		int s;
964		s = splvm();
965		if ((busy && *busy) || (m->flags & PG_BUSY)) {
966			vm_page_flag_set(m, PG_WANTED);
967			asleep(m, PVM, msg, 0);
968			slept = 1;
969		}
970		splx(s);
971	}
972	return slept;
973}
974
975#endif
976
977/*
978 *	vm_page_activate:
979 *
980 *	Put the specified page on the active list (if appropriate).
981 *	Ensure that act_count is at least ACT_INIT but do not otherwise
982 *	mess with it.
983 *
984 *	The page queues must be locked.
985 *	This routine may not block.
986 */
987void
988vm_page_activate(m)
989	register vm_page_t m;
990{
991	int s;
992
993	s = splvm();
994	if (m->queue != PQ_ACTIVE) {
995		if ((m->queue - m->pc) == PQ_CACHE)
996			cnt.v_reactivated++;
997
998		vm_page_unqueue(m);
999
1000		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1001			m->queue = PQ_ACTIVE;
1002			vm_page_queues[PQ_ACTIVE].lcnt++;
1003			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1004			if (m->act_count < ACT_INIT)
1005				m->act_count = ACT_INIT;
1006			cnt.v_active_count++;
1007		}
1008	} else {
1009		if (m->act_count < ACT_INIT)
1010			m->act_count = ACT_INIT;
1011	}
1012
1013	splx(s);
1014}
1015
1016/*
1017 *	vm_page_free_wakeup:
1018 *
1019 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1020 *	routine is called when a page has been added to the cache or free
1021 *	queues.
1022 *
1023 *	This routine may not block.
1024 *	This routine must be called at splvm()
1025 */
1026static __inline void
1027vm_page_free_wakeup()
1028{
1029	/*
1030	 * if pageout daemon needs pages, then tell it that there are
1031	 * some free.
1032	 */
1033	if (vm_pageout_pages_needed) {
1034		wakeup(&vm_pageout_pages_needed);
1035		vm_pageout_pages_needed = 0;
1036	}
1037	/*
1038	 * wakeup processes that are waiting on memory if we hit a
1039	 * high water mark. And wakeup scheduler process if we have
1040	 * lots of memory. this process will swapin processes.
1041	 */
1042	if (vm_pages_needed && vm_page_count_min()) {
1043		wakeup(&cnt.v_free_count);
1044		vm_pages_needed = 0;
1045	}
1046}
1047
1048/*
1049 *	vm_page_free_toq:
1050 *
1051 *	Returns the given page to the PQ_FREE list,
1052 *	disassociating it with any VM object.
1053 *
1054 *	Object and page must be locked prior to entry.
1055 *	This routine may not block.
1056 */
1057
1058void
1059vm_page_free_toq(vm_page_t m)
1060{
1061	int s;
1062	struct vpgqueues *pq;
1063	vm_object_t object = m->object;
1064
1065	s = splvm();
1066
1067	cnt.v_tfree++;
1068
1069	if (m->busy || ((m->queue - m->pc) == PQ_FREE) ||
1070		(m->hold_count != 0)) {
1071		printf(
1072		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1073		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1074		    m->hold_count);
1075		if ((m->queue - m->pc) == PQ_FREE)
1076			panic("vm_page_free: freeing free page");
1077		else
1078			panic("vm_page_free: freeing busy page");
1079	}
1080
1081	/*
1082	 * unqueue, then remove page.  Note that we cannot destroy
1083	 * the page here because we do not want to call the pager's
1084	 * callback routine until after we've put the page on the
1085	 * appropriate free queue.
1086	 */
1087
1088	vm_page_unqueue_nowakeup(m);
1089	vm_page_remove(m);
1090
1091	/*
1092	 * If fictitious remove object association and
1093	 * return, otherwise delay object association removal.
1094	 */
1095
1096	if ((m->flags & PG_FICTITIOUS) != 0) {
1097		splx(s);
1098		return;
1099	}
1100
1101	m->valid = 0;
1102	vm_page_undirty(m);
1103
1104	if (m->wire_count != 0) {
1105		if (m->wire_count > 1) {
1106			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1107				m->wire_count, (long)m->pindex);
1108		}
1109		panic("vm_page_free: freeing wired page\n");
1110	}
1111
1112	/*
1113	 * If we've exhausted the object's resident pages we want to free
1114	 * it up.
1115	 */
1116
1117	if (object &&
1118	    (object->type == OBJT_VNODE) &&
1119	    ((object->flags & OBJ_DEAD) == 0)
1120	) {
1121		struct vnode *vp = (struct vnode *)object->handle;
1122
1123		if (vp && VSHOULDFREE(vp)) {
1124			if ((vp->v_flag & (VTBFREE|VDOOMED|VFREE)) == 0) {
1125				TAILQ_INSERT_TAIL(&vnode_tobefree_list, vp, v_freelist);
1126				vp->v_flag |= VTBFREE;
1127			}
1128		}
1129	}
1130
1131	/*
1132	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1133	 */
1134
1135	if (m->flags & PG_UNMANAGED) {
1136	    m->flags &= ~PG_UNMANAGED;
1137	} else {
1138#ifdef __alpha__
1139	    pmap_page_is_free(m);
1140#endif
1141	}
1142
1143	m->queue = PQ_FREE + m->pc;
1144	pq = &vm_page_queues[m->queue];
1145	pq->lcnt++;
1146	++(*pq->cnt);
1147
1148	/*
1149	 * Put zero'd pages on the end ( where we look for zero'd pages
1150	 * first ) and non-zerod pages at the head.
1151	 */
1152
1153	if (m->flags & PG_ZERO) {
1154		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1155		++vm_page_zero_count;
1156	} else {
1157		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1158	}
1159
1160	vm_page_free_wakeup();
1161
1162	splx(s);
1163}
1164
1165/*
1166 *	vm_page_unmanage:
1167 *
1168 * 	Prevent PV management from being done on the page.  The page is
1169 *	removed from the paging queues as if it were wired, and as a
1170 *	consequence of no longer being managed the pageout daemon will not
1171 *	touch it (since there is no way to locate the pte mappings for the
1172 *	page).  madvise() calls that mess with the pmap will also no longer
1173 *	operate on the page.
1174 *
1175 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1176 *	will clear the flag.
1177 *
1178 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1179 *	physical memory as backing store rather then swap-backed memory and
1180 *	will eventually be extended to support 4MB unmanaged physical
1181 *	mappings.
1182 */
1183
1184void
1185vm_page_unmanage(vm_page_t m)
1186{
1187	int s;
1188
1189	s = splvm();
1190	if ((m->flags & PG_UNMANAGED) == 0) {
1191		if (m->wire_count == 0)
1192			vm_page_unqueue(m);
1193	}
1194	vm_page_flag_set(m, PG_UNMANAGED);
1195	splx(s);
1196}
1197
1198/*
1199 *	vm_page_wire:
1200 *
1201 *	Mark this page as wired down by yet
1202 *	another map, removing it from paging queues
1203 *	as necessary.
1204 *
1205 *	The page queues must be locked.
1206 *	This routine may not block.
1207 */
1208void
1209vm_page_wire(m)
1210	register vm_page_t m;
1211{
1212	int s;
1213
1214	/*
1215	 * Only bump the wire statistics if the page is not already wired,
1216	 * and only unqueue the page if it is on some queue (if it is unmanaged
1217	 * it is already off the queues).
1218	 */
1219	s = splvm();
1220	if (m->wire_count == 0) {
1221		if ((m->flags & PG_UNMANAGED) == 0)
1222			vm_page_unqueue(m);
1223		cnt.v_wire_count++;
1224	}
1225	m->wire_count++;
1226	splx(s);
1227	vm_page_flag_set(m, PG_MAPPED);
1228}
1229
1230/*
1231 *	vm_page_unwire:
1232 *
1233 *	Release one wiring of this page, potentially
1234 *	enabling it to be paged again.
1235 *
1236 *	Many pages placed on the inactive queue should actually go
1237 *	into the cache, but it is difficult to figure out which.  What
1238 *	we do instead, if the inactive target is well met, is to put
1239 *	clean pages at the head of the inactive queue instead of the tail.
1240 *	This will cause them to be moved to the cache more quickly and
1241 *	if not actively re-referenced, freed more quickly.  If we just
1242 *	stick these pages at the end of the inactive queue, heavy filesystem
1243 *	meta-data accesses can cause an unnecessary paging load on memory bound
1244 *	processes.  This optimization causes one-time-use metadata to be
1245 *	reused more quickly.
1246 *
1247 *	A number of routines use vm_page_unwire() to guarantee that the page
1248 *	will go into either the inactive or active queues, and will NEVER
1249 *	be placed in the cache - for example, just after dirtying a page.
1250 *	dirty pages in the cache are not allowed.
1251 *
1252 *	The page queues must be locked.
1253 *	This routine may not block.
1254 */
1255void
1256vm_page_unwire(m, activate)
1257	register vm_page_t m;
1258	int activate;
1259{
1260	int s;
1261
1262	s = splvm();
1263
1264	if (m->wire_count > 0) {
1265		m->wire_count--;
1266		if (m->wire_count == 0) {
1267			cnt.v_wire_count--;
1268			if (m->flags & PG_UNMANAGED) {
1269				;
1270			} else if (activate) {
1271				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1272				m->queue = PQ_ACTIVE;
1273				vm_page_queues[PQ_ACTIVE].lcnt++;
1274				cnt.v_active_count++;
1275			} else {
1276				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1277				m->queue = PQ_INACTIVE;
1278				vm_page_queues[PQ_INACTIVE].lcnt++;
1279				cnt.v_inactive_count++;
1280			}
1281		}
1282	} else {
1283		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1284	}
1285	splx(s);
1286}
1287
1288
1289/*
1290 * Move the specified page to the inactive queue.  If the page has
1291 * any associated swap, the swap is deallocated.
1292 *
1293 * Normally athead is 0 resulting in LRU operation.  athead is set
1294 * to 1 if we want this page to be 'as if it were placed in the cache',
1295 * except without unmapping it from the process address space.
1296 *
1297 * This routine may not block.
1298 */
1299static __inline void
1300_vm_page_deactivate(vm_page_t m, int athead)
1301{
1302	int s;
1303
1304	/*
1305	 * Ignore if already inactive.
1306	 */
1307	if (m->queue == PQ_INACTIVE)
1308		return;
1309
1310	s = splvm();
1311	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1312		if ((m->queue - m->pc) == PQ_CACHE)
1313			cnt.v_reactivated++;
1314		vm_page_unqueue(m);
1315		if (athead)
1316			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1317		else
1318			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1319		m->queue = PQ_INACTIVE;
1320		vm_page_queues[PQ_INACTIVE].lcnt++;
1321		cnt.v_inactive_count++;
1322	}
1323	splx(s);
1324}
1325
1326void
1327vm_page_deactivate(vm_page_t m)
1328{
1329    _vm_page_deactivate(m, 0);
1330}
1331
1332/*
1333 * vm_page_cache
1334 *
1335 * Put the specified page onto the page cache queue (if appropriate).
1336 *
1337 * This routine may not block.
1338 */
1339void
1340vm_page_cache(m)
1341	register vm_page_t m;
1342{
1343	int s;
1344
1345	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1346		printf("vm_page_cache: attempting to cache busy page\n");
1347		return;
1348	}
1349	if ((m->queue - m->pc) == PQ_CACHE)
1350		return;
1351
1352	/*
1353	 * Remove all pmaps and indicate that the page is not
1354	 * writeable or mapped.
1355	 */
1356
1357	vm_page_protect(m, VM_PROT_NONE);
1358	if (m->dirty != 0) {
1359		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1360			(long)m->pindex);
1361	}
1362	s = splvm();
1363	vm_page_unqueue_nowakeup(m);
1364	m->queue = PQ_CACHE + m->pc;
1365	vm_page_queues[m->queue].lcnt++;
1366	TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1367	cnt.v_cache_count++;
1368	vm_page_free_wakeup();
1369	splx(s);
1370}
1371
1372/*
1373 * vm_page_dontneed
1374 *
1375 *	Cache, deactivate, or do nothing as appropriate.  This routine
1376 *	is typically used by madvise() MADV_DONTNEED.
1377 *
1378 *	Generally speaking we want to move the page into the cache so
1379 *	it gets reused quickly.  However, this can result in a silly syndrome
1380 *	due to the page recycling too quickly.  Small objects will not be
1381 *	fully cached.  On the otherhand, if we move the page to the inactive
1382 *	queue we wind up with a problem whereby very large objects
1383 *	unnecessarily blow away our inactive and cache queues.
1384 *
1385 *	The solution is to move the pages based on a fixed weighting.  We
1386 *	either leave them alone, deactivate them, or move them to the cache,
1387 *	where moving them to the cache has the highest weighting.
1388 *	By forcing some pages into other queues we eventually force the
1389 *	system to balance the queues, potentially recovering other unrelated
1390 *	space from active.  The idea is to not force this to happen too
1391 *	often.
1392 */
1393
1394void
1395vm_page_dontneed(m)
1396	vm_page_t m;
1397{
1398	static int dnweight;
1399	int dnw;
1400	int head;
1401
1402	dnw = ++dnweight;
1403
1404	/*
1405	 * occassionally leave the page alone
1406	 */
1407
1408	if ((dnw & 0x01F0) == 0 ||
1409	    m->queue == PQ_INACTIVE ||
1410	    m->queue - m->pc == PQ_CACHE
1411	) {
1412		if (m->act_count >= ACT_INIT)
1413			--m->act_count;
1414		return;
1415	}
1416
1417	if (m->dirty == 0)
1418		vm_page_test_dirty(m);
1419
1420	if (m->dirty || (dnw & 0x0070) == 0) {
1421		/*
1422		 * Deactivate the page 3 times out of 32.
1423		 */
1424		head = 0;
1425	} else {
1426		/*
1427		 * Cache the page 28 times out of every 32.  Note that
1428		 * the page is deactivated instead of cached, but placed
1429		 * at the head of the queue instead of the tail.
1430		 */
1431		head = 1;
1432	}
1433	_vm_page_deactivate(m, head);
1434}
1435
1436/*
1437 * Grab a page, waiting until we are waken up due to the page
1438 * changing state.  We keep on waiting, if the page continues
1439 * to be in the object.  If the page doesn't exist, allocate it.
1440 *
1441 * This routine may block.
1442 */
1443vm_page_t
1444vm_page_grab(object, pindex, allocflags)
1445	vm_object_t object;
1446	vm_pindex_t pindex;
1447	int allocflags;
1448{
1449
1450	vm_page_t m;
1451	int s, generation;
1452
1453retrylookup:
1454	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1455		if (m->busy || (m->flags & PG_BUSY)) {
1456			generation = object->generation;
1457
1458			s = splvm();
1459			while ((object->generation == generation) &&
1460					(m->busy || (m->flags & PG_BUSY))) {
1461				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1462				tsleep(m, PVM, "pgrbwt", 0);
1463				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1464					splx(s);
1465					return NULL;
1466				}
1467			}
1468			splx(s);
1469			goto retrylookup;
1470		} else {
1471			vm_page_busy(m);
1472			return m;
1473		}
1474	}
1475
1476	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1477	if (m == NULL) {
1478		VM_WAIT;
1479		if ((allocflags & VM_ALLOC_RETRY) == 0)
1480			return NULL;
1481		goto retrylookup;
1482	}
1483
1484	return m;
1485}
1486
1487/*
1488 * Mapping function for valid bits or for dirty bits in
1489 * a page.  May not block.
1490 *
1491 * Inputs are required to range within a page.
1492 */
1493
1494__inline int
1495vm_page_bits(int base, int size)
1496{
1497	int first_bit;
1498	int last_bit;
1499
1500	KASSERT(
1501	    base + size <= PAGE_SIZE,
1502	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1503	);
1504
1505	if (size == 0)		/* handle degenerate case */
1506		return(0);
1507
1508	first_bit = base >> DEV_BSHIFT;
1509	last_bit = (base + size - 1) >> DEV_BSHIFT;
1510
1511	return ((2 << last_bit) - (1 << first_bit));
1512}
1513
1514/*
1515 *	vm_page_set_validclean:
1516 *
1517 *	Sets portions of a page valid and clean.  The arguments are expected
1518 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1519 *	of any partial chunks touched by the range.  The invalid portion of
1520 *	such chunks will be zero'd.
1521 *
1522 *	This routine may not block.
1523 *
1524 *	(base + size) must be less then or equal to PAGE_SIZE.
1525 */
1526void
1527vm_page_set_validclean(m, base, size)
1528	vm_page_t m;
1529	int base;
1530	int size;
1531{
1532	int pagebits;
1533	int frag;
1534	int endoff;
1535
1536	if (size == 0)	/* handle degenerate case */
1537		return;
1538
1539	/*
1540	 * If the base is not DEV_BSIZE aligned and the valid
1541	 * bit is clear, we have to zero out a portion of the
1542	 * first block.
1543	 */
1544
1545	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1546	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1547	) {
1548		pmap_zero_page_area(
1549		    VM_PAGE_TO_PHYS(m),
1550		    frag,
1551		    base - frag
1552		);
1553	}
1554
1555	/*
1556	 * If the ending offset is not DEV_BSIZE aligned and the
1557	 * valid bit is clear, we have to zero out a portion of
1558	 * the last block.
1559	 */
1560
1561	endoff = base + size;
1562
1563	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1564	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1565	) {
1566		pmap_zero_page_area(
1567		    VM_PAGE_TO_PHYS(m),
1568		    endoff,
1569		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1570		);
1571	}
1572
1573	/*
1574	 * Set valid, clear dirty bits.  If validating the entire
1575	 * page we can safely clear the pmap modify bit.  We also
1576	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1577	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1578	 * be set again.
1579	 */
1580
1581	pagebits = vm_page_bits(base, size);
1582	m->valid |= pagebits;
1583	m->dirty &= ~pagebits;
1584	if (base == 0 && size == PAGE_SIZE) {
1585		pmap_clear_modify(m);
1586		vm_page_flag_clear(m, PG_NOSYNC);
1587	}
1588}
1589
1590#if 0
1591
1592void
1593vm_page_set_dirty(m, base, size)
1594	vm_page_t m;
1595	int base;
1596	int size;
1597{
1598	m->dirty |= vm_page_bits(base, size);
1599}
1600
1601#endif
1602
1603void
1604vm_page_clear_dirty(m, base, size)
1605	vm_page_t m;
1606	int base;
1607	int size;
1608{
1609	m->dirty &= ~vm_page_bits(base, size);
1610}
1611
1612/*
1613 *	vm_page_set_invalid:
1614 *
1615 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1616 *	valid and dirty bits for the effected areas are cleared.
1617 *
1618 *	May not block.
1619 */
1620void
1621vm_page_set_invalid(m, base, size)
1622	vm_page_t m;
1623	int base;
1624	int size;
1625{
1626	int bits;
1627
1628	bits = vm_page_bits(base, size);
1629	m->valid &= ~bits;
1630	m->dirty &= ~bits;
1631	m->object->generation++;
1632}
1633
1634/*
1635 * vm_page_zero_invalid()
1636 *
1637 *	The kernel assumes that the invalid portions of a page contain
1638 *	garbage, but such pages can be mapped into memory by user code.
1639 *	When this occurs, we must zero out the non-valid portions of the
1640 *	page so user code sees what it expects.
1641 *
1642 *	Pages are most often semi-valid when the end of a file is mapped
1643 *	into memory and the file's size is not page aligned.
1644 */
1645
1646void
1647vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1648{
1649	int b;
1650	int i;
1651
1652	/*
1653	 * Scan the valid bits looking for invalid sections that
1654	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1655	 * valid bit may be set ) have already been zerod by
1656	 * vm_page_set_validclean().
1657	 */
1658
1659	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1660		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1661		    (m->valid & (1 << i))
1662		) {
1663			if (i > b) {
1664				pmap_zero_page_area(
1665				    VM_PAGE_TO_PHYS(m),
1666				    b << DEV_BSHIFT,
1667				    (i - b) << DEV_BSHIFT
1668				);
1669			}
1670			b = i + 1;
1671		}
1672	}
1673
1674	/*
1675	 * setvalid is TRUE when we can safely set the zero'd areas
1676	 * as being valid.  We can do this if there are no cache consistancy
1677	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1678	 */
1679
1680	if (setvalid)
1681		m->valid = VM_PAGE_BITS_ALL;
1682}
1683
1684/*
1685 *	vm_page_is_valid:
1686 *
1687 *	Is (partial) page valid?  Note that the case where size == 0
1688 *	will return FALSE in the degenerate case where the page is
1689 *	entirely invalid, and TRUE otherwise.
1690 *
1691 *	May not block.
1692 */
1693
1694int
1695vm_page_is_valid(m, base, size)
1696	vm_page_t m;
1697	int base;
1698	int size;
1699{
1700	int bits = vm_page_bits(base, size);
1701
1702	if (m->valid && ((m->valid & bits) == bits))
1703		return 1;
1704	else
1705		return 0;
1706}
1707
1708/*
1709 * update dirty bits from pmap/mmu.  May not block.
1710 */
1711
1712void
1713vm_page_test_dirty(m)
1714	vm_page_t m;
1715{
1716	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1717		vm_page_dirty(m);
1718	}
1719}
1720
1721/*
1722 * This interface is for merging with malloc() someday.
1723 * Even if we never implement compaction so that contiguous allocation
1724 * works after initialization time, malloc()'s data structures are good
1725 * for statistics and for allocations of less than a page.
1726 */
1727void *
1728contigmalloc1(size, type, flags, low, high, alignment, boundary, map)
1729	unsigned long size;	/* should be size_t here and for malloc() */
1730	struct malloc_type *type;
1731	int flags;
1732	unsigned long low;
1733	unsigned long high;
1734	unsigned long alignment;
1735	unsigned long boundary;
1736	vm_map_t map;
1737{
1738	int i, s, start;
1739	vm_offset_t addr, phys, tmp_addr;
1740	int pass;
1741	vm_page_t pga = vm_page_array;
1742
1743	size = round_page(size);
1744	if (size == 0)
1745		panic("contigmalloc1: size must not be 0");
1746	if ((alignment & (alignment - 1)) != 0)
1747		panic("contigmalloc1: alignment must be a power of 2");
1748	if ((boundary & (boundary - 1)) != 0)
1749		panic("contigmalloc1: boundary must be a power of 2");
1750
1751	start = 0;
1752	for (pass = 0; pass <= 1; pass++) {
1753		s = splvm();
1754again:
1755		/*
1756		 * Find first page in array that is free, within range, aligned, and
1757		 * such that the boundary won't be crossed.
1758		 */
1759		for (i = start; i < cnt.v_page_count; i++) {
1760			int pqtype;
1761			phys = VM_PAGE_TO_PHYS(&pga[i]);
1762			pqtype = pga[i].queue - pga[i].pc;
1763			if (((pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
1764			    (phys >= low) && (phys < high) &&
1765			    ((phys & (alignment - 1)) == 0) &&
1766			    (((phys ^ (phys + size - 1)) & ~(boundary - 1)) == 0))
1767				break;
1768		}
1769
1770		/*
1771		 * If the above failed or we will exceed the upper bound, fail.
1772		 */
1773		if ((i == cnt.v_page_count) ||
1774			((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
1775			vm_page_t m, next;
1776
1777again1:
1778			for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
1779				m != NULL;
1780				m = next) {
1781
1782				KASSERT(m->queue == PQ_INACTIVE,
1783					("contigmalloc1: page %p is not PQ_INACTIVE", m));
1784
1785				next = TAILQ_NEXT(m, pageq);
1786				if (vm_page_sleep_busy(m, TRUE, "vpctw0"))
1787					goto again1;
1788				vm_page_test_dirty(m);
1789				if (m->dirty) {
1790					if (m->object->type == OBJT_VNODE) {
1791						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1792						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1793						VOP_UNLOCK(m->object->handle, 0, curproc);
1794						goto again1;
1795					} else if (m->object->type == OBJT_SWAP ||
1796								m->object->type == OBJT_DEFAULT) {
1797						vm_pageout_flush(&m, 1, 0);
1798						goto again1;
1799					}
1800				}
1801				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1802					vm_page_cache(m);
1803			}
1804
1805			for (m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1806				m != NULL;
1807				m = next) {
1808
1809				KASSERT(m->queue == PQ_ACTIVE,
1810					("contigmalloc1: page %p is not PQ_ACTIVE", m));
1811
1812				next = TAILQ_NEXT(m, pageq);
1813				if (vm_page_sleep_busy(m, TRUE, "vpctw1"))
1814					goto again1;
1815				vm_page_test_dirty(m);
1816				if (m->dirty) {
1817					if (m->object->type == OBJT_VNODE) {
1818						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1819						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1820						VOP_UNLOCK(m->object->handle, 0, curproc);
1821						goto again1;
1822					} else if (m->object->type == OBJT_SWAP ||
1823								m->object->type == OBJT_DEFAULT) {
1824						vm_pageout_flush(&m, 1, 0);
1825						goto again1;
1826					}
1827				}
1828				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1829					vm_page_cache(m);
1830			}
1831
1832			splx(s);
1833			continue;
1834		}
1835		start = i;
1836
1837		/*
1838		 * Check successive pages for contiguous and free.
1839		 */
1840		for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
1841			int pqtype;
1842			pqtype = pga[i].queue - pga[i].pc;
1843			if ((VM_PAGE_TO_PHYS(&pga[i]) !=
1844			    (VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
1845			    ((pqtype != PQ_FREE) && (pqtype != PQ_CACHE))) {
1846				start++;
1847				goto again;
1848			}
1849		}
1850
1851		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1852			int pqtype;
1853			vm_page_t m = &pga[i];
1854
1855			pqtype = m->queue - m->pc;
1856			if (pqtype == PQ_CACHE) {
1857				vm_page_busy(m);
1858				vm_page_free(m);
1859			}
1860
1861			TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
1862			vm_page_queues[m->queue].lcnt--;
1863			cnt.v_free_count--;
1864			m->valid = VM_PAGE_BITS_ALL;
1865			m->flags = 0;
1866			KASSERT(m->dirty == 0, ("contigmalloc1: page %p was dirty", m));
1867			m->wire_count = 0;
1868			m->busy = 0;
1869			m->queue = PQ_NONE;
1870			m->object = NULL;
1871			vm_page_wire(m);
1872		}
1873
1874		/*
1875		 * We've found a contiguous chunk that meets are requirements.
1876		 * Allocate kernel VM, unfree and assign the physical pages to it and
1877		 * return kernel VM pointer.
1878		 */
1879		tmp_addr = addr = kmem_alloc_pageable(map, size);
1880		if (addr == 0) {
1881			/*
1882			 * XXX We almost never run out of kernel virtual
1883			 * space, so we don't make the allocated memory
1884			 * above available.
1885			 */
1886			splx(s);
1887			return (NULL);
1888		}
1889
1890		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1891			vm_page_t m = &pga[i];
1892			vm_page_insert(m, kernel_object,
1893				OFF_TO_IDX(tmp_addr - VM_MIN_KERNEL_ADDRESS));
1894			pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m));
1895			tmp_addr += PAGE_SIZE;
1896		}
1897
1898		splx(s);
1899		return ((void *)addr);
1900	}
1901	return NULL;
1902}
1903
1904void *
1905contigmalloc(size, type, flags, low, high, alignment, boundary)
1906	unsigned long size;	/* should be size_t here and for malloc() */
1907	struct malloc_type *type;
1908	int flags;
1909	unsigned long low;
1910	unsigned long high;
1911	unsigned long alignment;
1912	unsigned long boundary;
1913{
1914	return contigmalloc1(size, type, flags, low, high, alignment, boundary,
1915			     kernel_map);
1916}
1917
1918void
1919contigfree(addr, size, type)
1920	void *addr;
1921	unsigned long size;
1922	struct malloc_type *type;
1923{
1924	kmem_free(kernel_map, (vm_offset_t)addr, size);
1925}
1926
1927vm_offset_t
1928vm_page_alloc_contig(size, low, high, alignment)
1929	vm_offset_t size;
1930	vm_offset_t low;
1931	vm_offset_t high;
1932	vm_offset_t alignment;
1933{
1934	return ((vm_offset_t)contigmalloc1(size, M_DEVBUF, M_NOWAIT, low, high,
1935					  alignment, 0ul, kernel_map));
1936}
1937
1938#include "opt_ddb.h"
1939#ifdef DDB
1940#include <sys/kernel.h>
1941
1942#include <ddb/ddb.h>
1943
1944DB_SHOW_COMMAND(page, vm_page_print_page_info)
1945{
1946	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1947	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1948	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1949	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1950	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1951	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1952	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1953	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1954	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1955	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1956}
1957
1958DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1959{
1960	int i;
1961	db_printf("PQ_FREE:");
1962	for(i=0;i<PQ_L2_SIZE;i++) {
1963		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1964	}
1965	db_printf("\n");
1966
1967	db_printf("PQ_CACHE:");
1968	for(i=0;i<PQ_L2_SIZE;i++) {
1969		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1970	}
1971	db_printf("\n");
1972
1973	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1974		vm_page_queues[PQ_ACTIVE].lcnt,
1975		vm_page_queues[PQ_INACTIVE].lcnt);
1976}
1977#endif /* DDB */
1978