vm_page.c revision 44880
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37 *	$Id: vm_page.c,v 1.127 1999/02/24 21:26:26 dillon Exp $
38 */
39
40/*
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59 *  School of Computer Science
60 *  Carnegie Mellon University
61 *  Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67/*
68 *	Resident memory management module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/malloc.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/vnode.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80#include <vm/vm_prot.h>
81#include <sys/lock.h>
82#include <vm/vm_kern.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/vm_pageout.h>
86#include <vm/vm_pager.h>
87#include <vm/vm_extern.h>
88
89static void	vm_page_queue_init __P((void));
90static vm_page_t vm_page_select_cache __P((vm_object_t, vm_pindex_t));
91
92/*
93 *	Associated with page of user-allocatable memory is a
94 *	page structure.
95 */
96
97static struct vm_page **vm_page_buckets; /* Array of buckets */
98static int vm_page_bucket_count;	/* How big is array? */
99static int vm_page_hash_mask;		/* Mask for hash function */
100static volatile int vm_page_bucket_generation;
101
102struct pglist vm_page_queue_free[PQ_L2_SIZE] = {{0}};
103struct pglist vm_page_queue_active = {0};
104struct pglist vm_page_queue_inactive = {0};
105struct pglist vm_page_queue_cache[PQ_L2_SIZE] = {{0}};
106
107static int no_queue=0;
108
109struct vpgqueues vm_page_queues[PQ_COUNT] = {{0}};
110static int pqcnt[PQ_COUNT] = {0};
111
112static void
113vm_page_queue_init(void) {
114	int i;
115
116	vm_page_queues[PQ_NONE].pl = NULL;
117	vm_page_queues[PQ_NONE].cnt = &no_queue;
118	for(i=0;i<PQ_L2_SIZE;i++) {
119		vm_page_queues[PQ_FREE+i].pl = &vm_page_queue_free[i];
120		vm_page_queues[PQ_FREE+i].cnt = &cnt.v_free_count;
121	}
122	vm_page_queues[PQ_INACTIVE].pl = &vm_page_queue_inactive;
123	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
124
125	vm_page_queues[PQ_ACTIVE].pl = &vm_page_queue_active;
126	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
127	for(i=0;i<PQ_L2_SIZE;i++) {
128		vm_page_queues[PQ_CACHE+i].pl = &vm_page_queue_cache[i];
129		vm_page_queues[PQ_CACHE+i].cnt = &cnt.v_cache_count;
130	}
131	for(i=0;i<PQ_COUNT;i++) {
132		if (vm_page_queues[i].pl) {
133			TAILQ_INIT(vm_page_queues[i].pl);
134		} else if (i != 0) {
135			panic("vm_page_queue_init: queue %d is null", i);
136		}
137		vm_page_queues[i].lcnt = &pqcnt[i];
138	}
139}
140
141vm_page_t vm_page_array = 0;
142static int vm_page_array_size = 0;
143long first_page = 0;
144static long last_page;
145static vm_size_t page_mask;
146static int page_shift;
147int vm_page_zero_count = 0;
148
149/*
150 * map of contiguous valid DEV_BSIZE chunks in a page
151 * (this list is valid for page sizes upto 16*DEV_BSIZE)
152 */
153static u_short vm_page_dev_bsize_chunks[] = {
154	0x0, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f, 0xff,
155	0x1ff, 0x3ff, 0x7ff, 0xfff, 0x1fff, 0x3fff, 0x7fff, 0xffff
156};
157
158static __inline int vm_page_hash __P((vm_object_t object, vm_pindex_t pindex));
159static void vm_page_free_wakeup __P((void));
160
161/*
162 *	vm_set_page_size:
163 *
164 *	Sets the page size, perhaps based upon the memory
165 *	size.  Must be called before any use of page-size
166 *	dependent functions.
167 *
168 *	Sets page_shift and page_mask from cnt.v_page_size.
169 */
170void
171vm_set_page_size()
172{
173
174	if (cnt.v_page_size == 0)
175		cnt.v_page_size = DEFAULT_PAGE_SIZE;
176	page_mask = cnt.v_page_size - 1;
177	if ((page_mask & cnt.v_page_size) != 0)
178		panic("vm_set_page_size: page size not a power of two");
179	for (page_shift = 0;; page_shift++)
180		if ((1 << page_shift) == cnt.v_page_size)
181			break;
182}
183
184/*
185 *	vm_page_startup:
186 *
187 *	Initializes the resident memory module.
188 *
189 *	Allocates memory for the page cells, and
190 *	for the object/offset-to-page hash table headers.
191 *	Each page cell is initialized and placed on the free list.
192 */
193
194vm_offset_t
195vm_page_startup(starta, enda, vaddr)
196	register vm_offset_t starta;
197	vm_offset_t enda;
198	register vm_offset_t vaddr;
199{
200	register vm_offset_t mapped;
201	register vm_page_t m;
202	register struct vm_page **bucket;
203	vm_size_t npages, page_range;
204	register vm_offset_t new_start;
205	int i;
206	vm_offset_t pa;
207	int nblocks;
208	vm_offset_t first_managed_page;
209
210	/* the biggest memory array is the second group of pages */
211	vm_offset_t start;
212	vm_offset_t biggestone, biggestsize;
213
214	vm_offset_t total;
215
216	total = 0;
217	biggestsize = 0;
218	biggestone = 0;
219	nblocks = 0;
220	vaddr = round_page(vaddr);
221
222	for (i = 0; phys_avail[i + 1]; i += 2) {
223		phys_avail[i] = round_page(phys_avail[i]);
224		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
225	}
226
227	for (i = 0; phys_avail[i + 1]; i += 2) {
228		int size = phys_avail[i + 1] - phys_avail[i];
229
230		if (size > biggestsize) {
231			biggestone = i;
232			biggestsize = size;
233		}
234		++nblocks;
235		total += size;
236	}
237
238	start = phys_avail[biggestone];
239
240	/*
241	 * Initialize the queue headers for the free queue, the active queue
242	 * and the inactive queue.
243	 */
244
245	vm_page_queue_init();
246
247	/*
248	 * Allocate (and initialize) the hash table buckets.
249	 *
250	 * The number of buckets MUST BE a power of 2, and the actual value is
251	 * the next power of 2 greater than the number of physical pages in
252	 * the system.
253	 *
254	 * We make the hash table approximately 2x the number of pages to
255	 * reduce the chain length.  This is about the same size using the
256	 * singly-linked list as the 1x hash table we were using before
257	 * using TAILQ but the chain length will be smaller.
258	 *
259	 * Note: This computation can be tweaked if desired.
260	 */
261	vm_page_buckets = (struct vm_page **)vaddr;
262	bucket = vm_page_buckets;
263	if (vm_page_bucket_count == 0) {
264		vm_page_bucket_count = 1;
265		while (vm_page_bucket_count < atop(total))
266			vm_page_bucket_count <<= 1;
267	}
268	vm_page_bucket_count <<= 1;
269	vm_page_hash_mask = vm_page_bucket_count - 1;
270
271	/*
272	 * Validate these addresses.
273	 */
274
275	new_start = start + vm_page_bucket_count * sizeof(struct vm_page *);
276	new_start = round_page(new_start);
277	mapped = round_page(vaddr);
278	vaddr = pmap_map(mapped, start, new_start,
279	    VM_PROT_READ | VM_PROT_WRITE);
280	start = new_start;
281	vaddr = round_page(vaddr);
282	bzero((caddr_t) mapped, vaddr - mapped);
283
284	for (i = 0; i < vm_page_bucket_count; i++) {
285		*bucket = NULL;
286		bucket++;
287	}
288
289	/*
290	 * Compute the number of pages of memory that will be available for
291	 * use (taking into account the overhead of a page structure per
292	 * page).
293	 */
294
295	first_page = phys_avail[0] / PAGE_SIZE;
296	last_page = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
297
298	page_range = last_page - (phys_avail[0] / PAGE_SIZE);
299	npages = (total - (page_range * sizeof(struct vm_page)) -
300	    (start - phys_avail[biggestone])) / PAGE_SIZE;
301
302	/*
303	 * Initialize the mem entry structures now, and put them in the free
304	 * queue.
305	 */
306	vm_page_array = (vm_page_t) vaddr;
307	mapped = vaddr;
308
309	/*
310	 * Validate these addresses.
311	 */
312	new_start = round_page(start + page_range * sizeof(struct vm_page));
313	mapped = pmap_map(mapped, start, new_start,
314	    VM_PROT_READ | VM_PROT_WRITE);
315	start = new_start;
316
317	first_managed_page = start / PAGE_SIZE;
318
319	/*
320	 * Clear all of the page structures
321	 */
322	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
323	vm_page_array_size = page_range;
324
325	/*
326	 * Construct the free queue(s) in descending order (by physical
327	 * address) so that the first 16MB of physical memory is allocated
328	 * last rather than first.  On large-memory machines, this avoids
329	 * the exhaustion of low physical memory before isa_dmainit has run.
330	 */
331	cnt.v_page_count = 0;
332	cnt.v_free_count = 0;
333	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
334		if (i == biggestone)
335			pa = ptoa(first_managed_page);
336		else
337			pa = phys_avail[i];
338		while (pa < phys_avail[i + 1] && npages-- > 0) {
339			++cnt.v_page_count;
340			++cnt.v_free_count;
341			m = PHYS_TO_VM_PAGE(pa);
342			m->phys_addr = pa;
343			m->flags = 0;
344			m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
345			m->queue = m->pc + PQ_FREE;
346			TAILQ_INSERT_HEAD(vm_page_queues[m->queue].pl, m, pageq);
347			++(*vm_page_queues[m->queue].lcnt);
348			pa += PAGE_SIZE;
349		}
350	}
351	return (mapped);
352}
353
354/*
355 *	vm_page_hash:
356 *
357 *	Distributes the object/offset key pair among hash buckets.
358 *
359 *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
360 *	This routine may not block.
361 *
362 *	We try to randomize the hash based on the object to spread the pages
363 *	out in the hash table without it costing us too much.
364 */
365static __inline int
366vm_page_hash(object, pindex)
367	vm_object_t object;
368	vm_pindex_t pindex;
369{
370	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
371
372	return(i & vm_page_hash_mask);
373}
374
375/*
376 *	vm_page_insert:		[ internal use only ]
377 *
378 *	Inserts the given mem entry into the object and object list.
379 *
380 *	The pagetables are not updated but will presumably fault the page
381 *	in if necessary, or if a kernel page the caller will at some point
382 *	enter the page into the kernel's pmap.  We are not allowed to block
383 *	here so we *can't* do this anyway.
384 *
385 *	The object and page must be locked, and must be splhigh.
386 *	This routine may not block.
387 */
388
389void
390vm_page_insert(m, object, pindex)
391	register vm_page_t m;
392	register vm_object_t object;
393	register vm_pindex_t pindex;
394{
395	register struct vm_page **bucket;
396
397	if (m->object != NULL)
398		panic("vm_page_insert: already inserted");
399
400	/*
401	 * Record the object/offset pair in this page
402	 */
403
404	m->object = object;
405	m->pindex = pindex;
406
407	/*
408	 * Insert it into the object_object/offset hash table
409	 */
410
411	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
412	m->hnext = *bucket;
413	*bucket = m;
414	vm_page_bucket_generation++;
415
416	/*
417	 * Now link into the object's list of backed pages.
418	 */
419
420	TAILQ_INSERT_TAIL(&object->memq, m, listq);
421	m->object->generation++;
422
423	if (m->wire_count)
424		object->wire_count++;
425
426	if ((m->queue - m->pc) == PQ_CACHE)
427		object->cache_count++;
428
429	/*
430	 * show that the object has one more resident page.
431	 */
432
433	object->resident_page_count++;
434
435	/*
436	 * Since we are inserting a new and possibly dirty page,
437	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
438	 */
439	if (m->flags & PG_WRITEABLE)
440	    vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
441}
442
443/*
444 *	vm_page_remove:
445 *				NOTE: used by device pager as well -wfj
446 *
447 *	Removes the given mem entry from the object/offset-page
448 *	table and the object page list, but do not invalidate/terminate
449 *	the backing store.
450 *
451 *	The object and page must be locked, and at splhigh.
452 *	The underlying pmap entry (if any) is NOT removed here.
453 *	This routine may not block.
454 */
455
456void
457vm_page_remove(m)
458	vm_page_t m;
459{
460	vm_object_t object;
461
462	if (m->object == NULL)
463		return;
464
465#if !defined(MAX_PERF)
466	if ((m->flags & PG_BUSY) == 0) {
467		panic("vm_page_remove: page not busy");
468	}
469#endif
470
471	/*
472	 * Basically destroy the page.
473	 */
474
475	vm_page_wakeup(m);
476
477	object = m->object;
478
479	if (m->wire_count)
480		object->wire_count--;
481
482	if ((m->queue - m->pc) == PQ_CACHE)
483		object->cache_count--;
484
485	/*
486	 * Remove from the object_object/offset hash table.  The object
487	 * must be on the hash queue, we will panic if it isn't
488	 *
489	 * Note: we must NULL-out m->hnext to prevent loops in detached
490	 * buffers with vm_page_lookup().
491	 */
492
493	{
494		struct vm_page **bucket;
495
496		bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
497		while (*bucket != m) {
498#if !defined(MAX_PERF)
499			if (*bucket == NULL)
500				panic("vm_page_remove(): page not found in hash");
501#endif
502			bucket = &(*bucket)->hnext;
503		}
504		*bucket = m->hnext;
505		m->hnext = NULL;
506		vm_page_bucket_generation++;
507	}
508
509	/*
510	 * Now remove from the object's list of backed pages.
511	 */
512
513	TAILQ_REMOVE(&object->memq, m, listq);
514
515	/*
516	 * And show that the object has one fewer resident page.
517	 */
518
519	object->resident_page_count--;
520	object->generation++;
521
522	m->object = NULL;
523}
524
525/*
526 *	vm_page_lookup:
527 *
528 *	Returns the page associated with the object/offset
529 *	pair specified; if none is found, NULL is returned.
530 *
531 *	NOTE: the code below does not lock.  It will operate properly if
532 *	an interrupt makes a change, but the generation algorithm will not
533 *	operate properly in an SMP environment where both cpu's are able to run
534 *	kernel code simultaniously.
535 *
536 *	The object must be locked.  No side effects.
537 *	This routine may not block.
538 *	This is a critical path routine
539 */
540
541vm_page_t
542vm_page_lookup(object, pindex)
543	register vm_object_t object;
544	register vm_pindex_t pindex;
545{
546	register vm_page_t m;
547	register struct vm_page **bucket;
548	int generation;
549
550	/*
551	 * Search the hash table for this object/offset pair
552	 */
553
554retry:
555	generation = vm_page_bucket_generation;
556	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
557	for (m = *bucket; m != NULL; m = m->hnext) {
558		if ((m->object == object) && (m->pindex == pindex)) {
559			if (vm_page_bucket_generation != generation)
560				goto retry;
561			return (m);
562		}
563	}
564	if (vm_page_bucket_generation != generation)
565		goto retry;
566	return (NULL);
567}
568
569/*
570 *	vm_page_rename:
571 *
572 *	Move the given memory entry from its
573 *	current object to the specified target object/offset.
574 *
575 *	The object must be locked.
576 *	This routine may not block.
577 *
578 *	Note: this routine will raise itself to splvm(), the caller need not.
579 *
580 *	Note: swap associated with the page must be invalidated by the move.  We
581 *	      have to do this for several reasons:  (1) we aren't freeing the
582 *	      page, (2) we are dirtying the page, (3) the VM system is probably
583 *	      moving the page from object A to B, and will then later move
584 *	      the backing store from A to B and we can't have a conflict.
585 *
586 *	Note: we *always* dirty the page.  It is necessary both for the
587 *	      fact that we moved it, and because we may be invalidating
588 *	      swap.  If the page is on the cache, we have to deactivate it
589 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
590 *	      on the cache.
591 */
592
593void
594vm_page_rename(m, new_object, new_pindex)
595	register vm_page_t m;
596	register vm_object_t new_object;
597	vm_pindex_t new_pindex;
598{
599	int s;
600
601	s = splvm();
602	vm_page_remove(m);
603	vm_page_insert(m, new_object, new_pindex);
604	if (m->queue - m->pc == PQ_CACHE)
605		vm_page_deactivate(m);
606	vm_page_dirty(m);
607	splx(s);
608}
609
610/*
611 * vm_page_unqueue_nowakeup:
612 *
613 * 	vm_page_unqueue() without any wakeup
614 *
615 *	This routine must be called at splhigh().
616 *	This routine may not block.
617 */
618
619void
620vm_page_unqueue_nowakeup(m)
621	vm_page_t m;
622{
623	int queue = m->queue;
624	struct vpgqueues *pq;
625	if (queue != PQ_NONE) {
626		pq = &vm_page_queues[queue];
627		m->queue = PQ_NONE;
628		TAILQ_REMOVE(pq->pl, m, pageq);
629		(*pq->cnt)--;
630		(*pq->lcnt)--;
631		if ((queue - m->pc) == PQ_CACHE) {
632			if (m->object)
633				m->object->cache_count--;
634		}
635	}
636}
637
638/*
639 * vm_page_unqueue:
640 *
641 *	Remove a page from its queue.
642 *
643 *	This routine must be called at splhigh().
644 *	This routine may not block.
645 */
646
647void
648vm_page_unqueue(m)
649	vm_page_t m;
650{
651	int queue = m->queue;
652	struct vpgqueues *pq;
653	if (queue != PQ_NONE) {
654		m->queue = PQ_NONE;
655		pq = &vm_page_queues[queue];
656		TAILQ_REMOVE(pq->pl, m, pageq);
657		(*pq->cnt)--;
658		(*pq->lcnt)--;
659		if ((queue - m->pc) == PQ_CACHE) {
660			if ((cnt.v_cache_count + cnt.v_free_count) <
661				(cnt.v_free_reserved + cnt.v_cache_min))
662				pagedaemon_wakeup();
663			if (m->object)
664				m->object->cache_count--;
665		}
666	}
667}
668
669#if PQ_L2_SIZE > 1
670
671/*
672 *	vm_page_list_find:
673 *
674 *	Find a page on the specified queue with color optimization.
675 *
676 *	The page coloring optimization attempts to locate a page
677 *	that does not overload other nearby pages in the object in
678 *	the cpu's L1 or L2 caches.  We need this optmization because
679 *	cpu caches tend to be physical caches, while object spaces tend
680 *	to be virtual.
681 *
682 *	This routine must be called at splvm().
683 *	This routine may not block.
684 *
685 *	This routine may only be called from the vm_page_list_find() macro
686 *	in vm_page.h
687 */
688vm_page_t
689_vm_page_list_find(basequeue, index)
690	int basequeue, index;
691{
692	int i;
693	vm_page_t m = NULL;
694	struct vpgqueues *pq;
695
696	pq = &vm_page_queues[basequeue];
697
698	/*
699	 * Note that for the first loop, index+i and index-i wind up at the
700	 * same place.  Even though this is not totally optimal, we've already
701	 * blown it by missing the cache case so we do not care.
702	 */
703
704	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
705		if ((m = TAILQ_FIRST(pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
706			break;
707
708		if ((m = TAILQ_FIRST(pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
709			break;
710	}
711	return(m);
712}
713
714#endif
715
716/*
717 *	vm_page_select_cache:
718 *
719 *	Find a page on the cache queue with color optimization.  As pages
720 *	might be found, but not applicable, they are deactivated.  This
721 *	keeps us from using potentially busy cached pages.
722 *
723 *	This routine must be called at splvm().
724 *	This routine may not block.
725 */
726vm_page_t
727vm_page_select_cache(object, pindex)
728	vm_object_t object;
729	vm_pindex_t pindex;
730{
731	vm_page_t m;
732
733	while (TRUE) {
734		m = vm_page_list_find(
735		    PQ_CACHE,
736		    (pindex + object->pg_color) & PQ_L2_MASK,
737		    FALSE
738		);
739		if (m && ((m->flags & PG_BUSY) || m->busy ||
740			       m->hold_count || m->wire_count)) {
741			vm_page_deactivate(m);
742			continue;
743		}
744		return m;
745	}
746}
747
748/*
749 *	vm_page_select_free:
750 *
751 *	Find a free or zero page, with specified preference.  We attempt to
752 *	inline the nominal case and fall back to _vm_page_select_free()
753 *	otherwise.
754 *
755 *	This routine must be called at splvm().
756 *	This routine may not block.
757 */
758
759static __inline vm_page_t
760vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
761{
762	vm_page_t m;
763
764	m = vm_page_list_find(
765		PQ_FREE,
766		(pindex + object->pg_color) & PQ_L2_MASK,
767		prefer_zero
768	);
769	return(m);
770}
771
772/*
773 *	vm_page_alloc:
774 *
775 *	Allocate and return a memory cell associated
776 *	with this VM object/offset pair.
777 *
778 *	page_req classes:
779 *	VM_ALLOC_NORMAL		normal process request
780 *	VM_ALLOC_SYSTEM		system *really* needs a page
781 *	VM_ALLOC_INTERRUPT	interrupt time request
782 *	VM_ALLOC_ZERO		zero page
783 *
784 *	Object must be locked.
785 *	This routine may not block.
786 *
787 *	Additional special handling is required when called from an
788 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
789 *	the page cache in this case.
790 */
791
792vm_page_t
793vm_page_alloc(object, pindex, page_req)
794	vm_object_t object;
795	vm_pindex_t pindex;
796	int page_req;
797{
798	register vm_page_t m = NULL;
799	int s;
800
801	KASSERT(!vm_page_lookup(object, pindex),
802		("vm_page_alloc: page already allocated"));
803
804	/*
805	 * The pager is allowed to eat deeper into the free page list.
806	 */
807
808	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
809		page_req = VM_ALLOC_SYSTEM;
810	};
811
812	s = splvm();
813
814loop:
815	if (cnt.v_free_count > cnt.v_free_reserved) {
816		/*
817		 * Allocate from the free queue if there are plenty of pages
818		 * in it.
819		 */
820		if (page_req == VM_ALLOC_ZERO)
821			m = vm_page_select_free(object, pindex, TRUE);
822		else
823			m = vm_page_select_free(object, pindex, FALSE);
824	} else if (
825	    (page_req == VM_ALLOC_SYSTEM &&
826	     cnt.v_cache_count == 0 &&
827	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
828	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
829	) {
830		/*
831		 * Interrupt or system, dig deeper into the free list.
832		 */
833		m = vm_page_select_free(object, pindex, FALSE);
834	} else if (page_req != VM_ALLOC_INTERRUPT) {
835		/*
836		 * Allocateable from cache (non-interrupt only).  On success,
837		 * we must free the page and try again, thus ensuring that
838		 * cnt.v_*_free_min counters are replenished.
839		 */
840		m = vm_page_select_cache(object, pindex);
841		if (m == NULL) {
842			splx(s);
843#if defined(DIAGNOSTIC)
844			if (cnt.v_cache_count > 0)
845				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
846#endif
847			vm_pageout_deficit++;
848			pagedaemon_wakeup();
849			return (NULL);
850		}
851		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
852		vm_page_busy(m);
853		vm_page_protect(m, VM_PROT_NONE);
854		vm_page_free(m);
855		goto loop;
856	} else {
857		/*
858		 * Not allocateable from cache from interrupt, give up.
859		 */
860		splx(s);
861		vm_pageout_deficit++;
862		pagedaemon_wakeup();
863		return (NULL);
864	}
865
866	/*
867	 *  At this point we had better have found a good page.
868	 */
869
870	KASSERT(
871	    m != NULL,
872	    ("vm_page_alloc(): missing page on free queue\n")
873	);
874
875	/*
876	 * Remove from free queue
877	 */
878
879	{
880		struct vpgqueues *pq = &vm_page_queues[m->queue];
881
882		TAILQ_REMOVE(pq->pl, m, pageq);
883		(*pq->cnt)--;
884		(*pq->lcnt)--;
885	}
886
887	/*
888	 * Initialize structure.  Only the PG_ZERO flag is inherited.
889	 */
890
891	if (m->flags & PG_ZERO) {
892		vm_page_zero_count--;
893		m->flags = PG_ZERO | PG_BUSY;
894	} else {
895		m->flags = PG_BUSY;
896	}
897	m->wire_count = 0;
898	m->hold_count = 0;
899	m->act_count = 0;
900	m->busy = 0;
901	m->valid = 0;
902	m->dirty = 0;
903	m->queue = PQ_NONE;
904
905	/*
906	 * vm_page_insert() is safe prior to the splx().  Note also that
907	 * inserting a page here does not insert it into the pmap (which
908	 * could cause us to block allocating memory).  We cannot block
909	 * anywhere.
910	 */
911
912	vm_page_insert(m, object, pindex);
913
914	/*
915	 * Don't wakeup too often - wakeup the pageout daemon when
916	 * we would be nearly out of memory.
917	 */
918	if (((cnt.v_free_count + cnt.v_cache_count) <
919		(cnt.v_free_reserved + cnt.v_cache_min)) ||
920			(cnt.v_free_count < cnt.v_pageout_free_min))
921		pagedaemon_wakeup();
922
923	splx(s);
924
925	return (m);
926}
927
928/*
929 *	vm_wait:	(also see VM_WAIT macro)
930 *
931 *	Block until free pages are available for allocation
932 */
933
934void
935vm_wait()
936{
937	int s;
938
939	s = splvm();
940	if (curproc == pageproc) {
941		vm_pageout_pages_needed = 1;
942		tsleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
943	} else {
944		if (!vm_pages_needed) {
945			vm_pages_needed++;
946			wakeup(&vm_pages_needed);
947		}
948		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
949	}
950	splx(s);
951}
952
953/*
954 *	vm_await:	(also see VM_AWAIT macro)
955 *
956 *	asleep on an event that will signal when free pages are available
957 *	for allocation.
958 */
959
960void
961vm_await()
962{
963	int s;
964
965	s = splvm();
966	if (curproc == pageproc) {
967		vm_pageout_pages_needed = 1;
968		asleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
969	} else {
970		if (!vm_pages_needed) {
971			vm_pages_needed++;
972			wakeup(&vm_pages_needed);
973		}
974		asleep(&cnt.v_free_count, PVM, "vmwait", 0);
975	}
976	splx(s);
977}
978
979#if 0
980/*
981 *	vm_page_sleep:
982 *
983 *	Block until page is no longer busy.
984 */
985
986int
987vm_page_sleep(vm_page_t m, char *msg, char *busy) {
988	int slept = 0;
989	if ((busy && *busy) || (m->flags & PG_BUSY)) {
990		int s;
991		s = splvm();
992		if ((busy && *busy) || (m->flags & PG_BUSY)) {
993			vm_page_flag_set(m, PG_WANTED);
994			tsleep(m, PVM, msg, 0);
995			slept = 1;
996		}
997		splx(s);
998	}
999	return slept;
1000}
1001
1002#endif
1003
1004#if 0
1005
1006/*
1007 *	vm_page_asleep:
1008 *
1009 *	Similar to vm_page_sleep(), but does not block.  Returns 0 if
1010 *	the page is not busy, or 1 if the page is busy.
1011 *
1012 *	This routine has the side effect of calling asleep() if the page
1013 *	was busy (1 returned).
1014 */
1015
1016int
1017vm_page_asleep(vm_page_t m, char *msg, char *busy) {
1018	int slept = 0;
1019	if ((busy && *busy) || (m->flags & PG_BUSY)) {
1020		int s;
1021		s = splvm();
1022		if ((busy && *busy) || (m->flags & PG_BUSY)) {
1023			vm_page_flag_set(m, PG_WANTED);
1024			asleep(m, PVM, msg, 0);
1025			slept = 1;
1026		}
1027		splx(s);
1028	}
1029	return slept;
1030}
1031
1032#endif
1033
1034/*
1035 *	vm_page_activate:
1036 *
1037 *	Put the specified page on the active list (if appropriate).
1038 *
1039 *	The page queues must be locked.
1040 *	This routine may not block.
1041 */
1042void
1043vm_page_activate(m)
1044	register vm_page_t m;
1045{
1046	int s;
1047
1048	s = splvm();
1049	if (m->queue != PQ_ACTIVE) {
1050		if ((m->queue - m->pc) == PQ_CACHE)
1051			cnt.v_reactivated++;
1052
1053		vm_page_unqueue(m);
1054
1055		if (m->wire_count == 0) {
1056			m->queue = PQ_ACTIVE;
1057			++(*vm_page_queues[PQ_ACTIVE].lcnt);
1058			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1059			if (m->act_count < ACT_INIT)
1060				m->act_count = ACT_INIT;
1061			cnt.v_active_count++;
1062		}
1063	} else {
1064		if (m->act_count < ACT_INIT)
1065			m->act_count = ACT_INIT;
1066	}
1067
1068	splx(s);
1069}
1070
1071/*
1072 *	vm_page_free_wakeup:
1073 *
1074 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1075 *	routine is called when a page has been added to the cache or free
1076 *	queues.
1077 *
1078 *	This routine may not block.
1079 *	This routine must be called at splvm()
1080 */
1081static __inline void
1082vm_page_free_wakeup()
1083{
1084	/*
1085	 * if pageout daemon needs pages, then tell it that there are
1086	 * some free.
1087	 */
1088	if (vm_pageout_pages_needed) {
1089		wakeup(&vm_pageout_pages_needed);
1090		vm_pageout_pages_needed = 0;
1091	}
1092	/*
1093	 * wakeup processes that are waiting on memory if we hit a
1094	 * high water mark. And wakeup scheduler process if we have
1095	 * lots of memory. this process will swapin processes.
1096	 */
1097	if (vm_pages_needed &&
1098		((cnt.v_free_count + cnt.v_cache_count) >= cnt.v_free_min)) {
1099		wakeup(&cnt.v_free_count);
1100		vm_pages_needed = 0;
1101	}
1102}
1103
1104/*
1105 *	vm_page_free_toq:
1106 *
1107 *	Returns the given page to the PQ_FREE or PQ_ZERO list,
1108 *	disassociating it with any VM object.
1109 *
1110 *	Object and page must be locked prior to entry.
1111 *	This routine may not block.
1112 */
1113
1114void
1115vm_page_free_toq(vm_page_t m)
1116{
1117	int s;
1118	struct vpgqueues *pq;
1119	vm_object_t object = m->object;
1120
1121	s = splvm();
1122
1123	cnt.v_tfree++;
1124
1125#if !defined(MAX_PERF)
1126	if (m->busy || ((m->queue - m->pc) == PQ_FREE) ||
1127		(m->hold_count != 0)) {
1128		printf(
1129		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1130		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1131		    m->hold_count);
1132		if ((m->queue - m->pc) == PQ_FREE)
1133			panic("vm_page_free: freeing free page");
1134		else
1135			panic("vm_page_free: freeing busy page");
1136	}
1137#endif
1138
1139	/*
1140	 * unqueue, then remove page.  Note that we cannot destroy
1141	 * the page here because we do not want to call the pager's
1142	 * callback routine until after we've put the page on the
1143	 * appropriate free queue.
1144	 */
1145
1146	vm_page_unqueue_nowakeup(m);
1147	vm_page_remove(m);
1148
1149	/*
1150	 * If fictitious remove object association and
1151	 * return, otherwise delay object association removal.
1152	 */
1153
1154	if ((m->flags & PG_FICTITIOUS) != 0) {
1155		splx(s);
1156		return;
1157	}
1158
1159	m->valid = 0;
1160
1161	if (m->wire_count != 0) {
1162#if !defined(MAX_PERF)
1163		if (m->wire_count > 1) {
1164			panic("vm_page_free: invalid wire count (%d), pindex: 0x%x",
1165				m->wire_count, m->pindex);
1166		}
1167#endif
1168		printf("vm_page_free: freeing wired page\n");
1169		m->wire_count = 0;
1170		if (m->object)
1171			m->object->wire_count--;
1172		cnt.v_wire_count--;
1173	}
1174
1175	/*
1176	 * If we've exhausted the object's resident pages we want to free
1177	 * it up.
1178	 */
1179
1180	if (object &&
1181	    (object->type == OBJT_VNODE) &&
1182	    ((object->flags & OBJ_DEAD) == 0)
1183	) {
1184		struct vnode *vp = (struct vnode *)object->handle;
1185
1186		if (vp && VSHOULDFREE(vp)) {
1187			if ((vp->v_flag & (VTBFREE|VDOOMED|VFREE)) == 0) {
1188				TAILQ_INSERT_TAIL(&vnode_tobefree_list, vp, v_freelist);
1189				vp->v_flag |= VTBFREE;
1190			}
1191		}
1192	}
1193
1194#ifdef __alpha__
1195	pmap_page_is_free(m);
1196#endif
1197
1198	m->queue = PQ_FREE + m->pc;
1199	pq = &vm_page_queues[m->queue];
1200	++(*pq->lcnt);
1201	++(*pq->cnt);
1202
1203	/*
1204	 * Put zero'd pages on the end ( where we look for zero'd pages
1205	 * first ) and non-zerod pages at the head.
1206	 */
1207
1208	if (m->flags & PG_ZERO) {
1209		TAILQ_INSERT_TAIL(pq->pl, m, pageq);
1210		++vm_page_zero_count;
1211	} else if (curproc == pageproc) {
1212		/*
1213		 * If the pageout daemon is freeing pages, the pages are
1214		 * likely to NOT be in the L1 or L2 caches due to their age.
1215		 * For now we do not try to do anything special with this
1216		 * info.
1217		 */
1218		TAILQ_INSERT_HEAD(pq->pl, m, pageq);
1219	} else {
1220		TAILQ_INSERT_HEAD(pq->pl, m, pageq);
1221	}
1222
1223	vm_page_free_wakeup();
1224
1225	splx(s);
1226}
1227
1228/*
1229 *	vm_page_wire:
1230 *
1231 *	Mark this page as wired down by yet
1232 *	another map, removing it from paging queues
1233 *	as necessary.
1234 *
1235 *	The page queues must be locked.
1236 *	This routine may not block.
1237 */
1238void
1239vm_page_wire(m)
1240	register vm_page_t m;
1241{
1242	int s;
1243
1244	s = splvm();
1245	if (m->wire_count == 0) {
1246		vm_page_unqueue(m);
1247		cnt.v_wire_count++;
1248		if (m->object)
1249			m->object->wire_count++;
1250	}
1251	m->wire_count++;
1252	splx(s);
1253	(*vm_page_queues[PQ_NONE].lcnt)++;
1254	vm_page_flag_set(m, PG_MAPPED);
1255}
1256
1257/*
1258 *	vm_page_unwire:
1259 *
1260 *	Release one wiring of this page, potentially
1261 *	enabling it to be paged again.
1262 *
1263 *	Many pages placed on the inactive queue should actually go
1264 *	into the cache, but it is difficult to figure out which.  What
1265 *	we do instead, if the inactive target is well met, is to put
1266 *	clean pages at the head of the inactive queue instead of the tail.
1267 *	This will cause them to be moved to the cache more quickly and
1268 *	if not actively re-referenced, freed more quickly.  If we just
1269 *	stick these pages at the end of the inactive queue, heavy filesystem
1270 *	meta-data accesses can cause an unnecessary paging load on memory bound
1271 *	processes.  This optimization causes one-time-use metadata to be
1272 *	reused more quickly.
1273 *
1274 *	A number of routines use vm_page_unwire() to guarentee that the page
1275 *	will go into either the inactive or active queues, and will NEVER
1276 *	be placed in the cache - for example, just after dirtying a page.
1277 *	dirty pages in the cache are not allowed.
1278 *
1279 *	The page queues must be locked.
1280 *	This routine may not block.
1281 */
1282void
1283vm_page_unwire(m, activate)
1284	register vm_page_t m;
1285	int activate;
1286{
1287	int s;
1288
1289	s = splvm();
1290
1291	if (m->wire_count > 0) {
1292		m->wire_count--;
1293		if (m->wire_count == 0) {
1294			if (m->object)
1295				m->object->wire_count--;
1296			cnt.v_wire_count--;
1297			if (activate) {
1298				TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1299				m->queue = PQ_ACTIVE;
1300				(*vm_page_queues[PQ_ACTIVE].lcnt)++;
1301				cnt.v_active_count++;
1302			} else {
1303				TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
1304				m->queue = PQ_INACTIVE;
1305				(*vm_page_queues[PQ_INACTIVE].lcnt)++;
1306				cnt.v_inactive_count++;
1307			}
1308		}
1309	} else {
1310#if !defined(MAX_PERF)
1311		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1312#endif
1313	}
1314	splx(s);
1315}
1316
1317
1318/*
1319 * Move the specified page to the inactive queue.  If the page has
1320 * any associated swap, the swap is deallocated.
1321 *
1322 * This routine may not block.
1323 */
1324void
1325vm_page_deactivate(m)
1326	register vm_page_t m;
1327{
1328	int s;
1329
1330	/*
1331	 * Ignore if already inactive.
1332	 */
1333	if (m->queue == PQ_INACTIVE)
1334		return;
1335
1336	s = splvm();
1337	if (m->wire_count == 0) {
1338		if ((m->queue - m->pc) == PQ_CACHE)
1339			cnt.v_reactivated++;
1340		vm_page_unqueue(m);
1341		TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
1342		m->queue = PQ_INACTIVE;
1343		++(*vm_page_queues[PQ_INACTIVE].lcnt);
1344		cnt.v_inactive_count++;
1345	}
1346	splx(s);
1347}
1348
1349/*
1350 * vm_page_cache
1351 *
1352 * Put the specified page onto the page cache queue (if appropriate).
1353 *
1354 * This routine may not block.
1355 */
1356void
1357vm_page_cache(m)
1358	register vm_page_t m;
1359{
1360	int s;
1361
1362#if !defined(MAX_PERF)
1363	if ((m->flags & PG_BUSY) || m->busy || m->wire_count) {
1364		printf("vm_page_cache: attempting to cache busy page\n");
1365		return;
1366	}
1367#endif
1368	if ((m->queue - m->pc) == PQ_CACHE)
1369		return;
1370
1371	/*
1372	 * Remove all pmaps and indicate that the page is not
1373	 * writeable or mapped.
1374	 */
1375
1376	vm_page_protect(m, VM_PROT_NONE);
1377#if !defined(MAX_PERF)
1378	if (m->dirty != 0) {
1379		panic("vm_page_cache: caching a dirty page, pindex: %d", m->pindex);
1380	}
1381#endif
1382	s = splvm();
1383	vm_page_unqueue_nowakeup(m);
1384	m->queue = PQ_CACHE + m->pc;
1385	(*vm_page_queues[m->queue].lcnt)++;
1386	TAILQ_INSERT_TAIL(vm_page_queues[m->queue].pl, m, pageq);
1387	cnt.v_cache_count++;
1388	m->object->cache_count++;
1389	vm_page_free_wakeup();
1390	splx(s);
1391}
1392
1393/*
1394 * Grab a page, waiting until we are waken up due to the page
1395 * changing state.  We keep on waiting, if the page continues
1396 * to be in the object.  If the page doesn't exist, allocate it.
1397 *
1398 * This routine may block.
1399 */
1400vm_page_t
1401vm_page_grab(object, pindex, allocflags)
1402	vm_object_t object;
1403	vm_pindex_t pindex;
1404	int allocflags;
1405{
1406
1407	vm_page_t m;
1408	int s, generation;
1409
1410retrylookup:
1411	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1412		if (m->busy || (m->flags & PG_BUSY)) {
1413			generation = object->generation;
1414
1415			s = splvm();
1416			while ((object->generation == generation) &&
1417					(m->busy || (m->flags & PG_BUSY))) {
1418				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1419				tsleep(m, PVM, "pgrbwt", 0);
1420				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1421					splx(s);
1422					return NULL;
1423				}
1424			}
1425			splx(s);
1426			goto retrylookup;
1427		} else {
1428			vm_page_busy(m);
1429			return m;
1430		}
1431	}
1432
1433	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1434	if (m == NULL) {
1435		VM_WAIT;
1436		if ((allocflags & VM_ALLOC_RETRY) == 0)
1437			return NULL;
1438		goto retrylookup;
1439	}
1440
1441	return m;
1442}
1443
1444/*
1445 * mapping function for valid bits or for dirty bits in
1446 * a page.  May not block.
1447 */
1448__inline int
1449vm_page_bits(int base, int size)
1450{
1451	u_short chunk;
1452
1453	if ((base == 0) && (size >= PAGE_SIZE))
1454		return VM_PAGE_BITS_ALL;
1455
1456	size = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1457	base &= PAGE_MASK;
1458	if (size > PAGE_SIZE - base) {
1459		size = PAGE_SIZE - base;
1460	}
1461
1462	base = base / DEV_BSIZE;
1463	chunk = vm_page_dev_bsize_chunks[size / DEV_BSIZE];
1464	return (chunk << base) & VM_PAGE_BITS_ALL;
1465}
1466
1467/*
1468 * set a page valid and clean.  May not block.
1469 */
1470void
1471vm_page_set_validclean(m, base, size)
1472	vm_page_t m;
1473	int base;
1474	int size;
1475{
1476	int pagebits = vm_page_bits(base, size);
1477	m->valid |= pagebits;
1478	m->dirty &= ~pagebits;
1479	if( base == 0 && size == PAGE_SIZE)
1480		pmap_clear_modify(VM_PAGE_TO_PHYS(m));
1481}
1482
1483/*
1484 * set a page (partially) invalid.  May not block.
1485 */
1486void
1487vm_page_set_invalid(m, base, size)
1488	vm_page_t m;
1489	int base;
1490	int size;
1491{
1492	int bits;
1493
1494	m->valid &= ~(bits = vm_page_bits(base, size));
1495	if (m->valid == 0)
1496		m->dirty &= ~bits;
1497	m->object->generation++;
1498}
1499
1500/*
1501 * is (partial) page valid?  May not block.
1502 */
1503int
1504vm_page_is_valid(m, base, size)
1505	vm_page_t m;
1506	int base;
1507	int size;
1508{
1509	int bits = vm_page_bits(base, size);
1510
1511	if (m->valid && ((m->valid & bits) == bits))
1512		return 1;
1513	else
1514		return 0;
1515}
1516
1517/*
1518 * update dirty bits from pmap/mmu.  May not block.
1519 */
1520
1521void
1522vm_page_test_dirty(m)
1523	vm_page_t m;
1524{
1525	if ((m->dirty != VM_PAGE_BITS_ALL) &&
1526	    pmap_is_modified(VM_PAGE_TO_PHYS(m))) {
1527		vm_page_dirty(m);
1528	}
1529}
1530
1531/*
1532 * This interface is for merging with malloc() someday.
1533 * Even if we never implement compaction so that contiguous allocation
1534 * works after initialization time, malloc()'s data structures are good
1535 * for statistics and for allocations of less than a page.
1536 */
1537void *
1538contigmalloc1(size, type, flags, low, high, alignment, boundary, map)
1539	unsigned long size;	/* should be size_t here and for malloc() */
1540	struct malloc_type *type;
1541	int flags;
1542	unsigned long low;
1543	unsigned long high;
1544	unsigned long alignment;
1545	unsigned long boundary;
1546	vm_map_t map;
1547{
1548	int i, s, start;
1549	vm_offset_t addr, phys, tmp_addr;
1550	int pass;
1551	vm_page_t pga = vm_page_array;
1552
1553	size = round_page(size);
1554#if !defined(MAX_PERF)
1555	if (size == 0)
1556		panic("contigmalloc1: size must not be 0");
1557	if ((alignment & (alignment - 1)) != 0)
1558		panic("contigmalloc1: alignment must be a power of 2");
1559	if ((boundary & (boundary - 1)) != 0)
1560		panic("contigmalloc1: boundary must be a power of 2");
1561#endif
1562
1563	start = 0;
1564	for (pass = 0; pass <= 1; pass++) {
1565		s = splvm();
1566again:
1567		/*
1568		 * Find first page in array that is free, within range, aligned, and
1569		 * such that the boundary won't be crossed.
1570		 */
1571		for (i = start; i < cnt.v_page_count; i++) {
1572			int pqtype;
1573			phys = VM_PAGE_TO_PHYS(&pga[i]);
1574			pqtype = pga[i].queue - pga[i].pc;
1575			if (((pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
1576			    (phys >= low) && (phys < high) &&
1577			    ((phys & (alignment - 1)) == 0) &&
1578			    (((phys ^ (phys + size - 1)) & ~(boundary - 1)) == 0))
1579				break;
1580		}
1581
1582		/*
1583		 * If the above failed or we will exceed the upper bound, fail.
1584		 */
1585		if ((i == cnt.v_page_count) ||
1586			((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
1587			vm_page_t m, next;
1588
1589again1:
1590			for (m = TAILQ_FIRST(&vm_page_queue_inactive);
1591				m != NULL;
1592				m = next) {
1593
1594				if (m->queue != PQ_INACTIVE) {
1595					break;
1596				}
1597
1598				next = TAILQ_NEXT(m, pageq);
1599				if (vm_page_sleep_busy(m, TRUE, "vpctw0"))
1600					goto again1;
1601				vm_page_test_dirty(m);
1602				if (m->dirty) {
1603					if (m->object->type == OBJT_VNODE) {
1604						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1605						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1606						VOP_UNLOCK(m->object->handle, 0, curproc);
1607						goto again1;
1608					} else if (m->object->type == OBJT_SWAP ||
1609								m->object->type == OBJT_DEFAULT) {
1610						vm_pageout_flush(&m, 1, 0);
1611						goto again1;
1612					}
1613				}
1614				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1615					vm_page_cache(m);
1616			}
1617
1618			for (m = TAILQ_FIRST(&vm_page_queue_active);
1619				m != NULL;
1620				m = next) {
1621
1622				if (m->queue != PQ_ACTIVE) {
1623					break;
1624				}
1625
1626				next = TAILQ_NEXT(m, pageq);
1627				if (vm_page_sleep_busy(m, TRUE, "vpctw1"))
1628					goto again1;
1629				vm_page_test_dirty(m);
1630				if (m->dirty) {
1631					if (m->object->type == OBJT_VNODE) {
1632						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1633						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1634						VOP_UNLOCK(m->object->handle, 0, curproc);
1635						goto again1;
1636					} else if (m->object->type == OBJT_SWAP ||
1637								m->object->type == OBJT_DEFAULT) {
1638						vm_pageout_flush(&m, 1, 0);
1639						goto again1;
1640					}
1641				}
1642				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1643					vm_page_cache(m);
1644			}
1645
1646			splx(s);
1647			continue;
1648		}
1649		start = i;
1650
1651		/*
1652		 * Check successive pages for contiguous and free.
1653		 */
1654		for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
1655			int pqtype;
1656			pqtype = pga[i].queue - pga[i].pc;
1657			if ((VM_PAGE_TO_PHYS(&pga[i]) !=
1658			    (VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
1659			    ((pqtype != PQ_FREE) && (pqtype != PQ_CACHE))) {
1660				start++;
1661				goto again;
1662			}
1663		}
1664
1665		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1666			int pqtype;
1667			vm_page_t m = &pga[i];
1668
1669			pqtype = m->queue - m->pc;
1670			if (pqtype == PQ_CACHE) {
1671				vm_page_busy(m);
1672				vm_page_free(m);
1673			}
1674
1675			TAILQ_REMOVE(vm_page_queues[m->queue].pl, m, pageq);
1676			(*vm_page_queues[m->queue].lcnt)--;
1677			cnt.v_free_count--;
1678			m->valid = VM_PAGE_BITS_ALL;
1679			m->flags = 0;
1680			m->dirty = 0;
1681			m->wire_count = 0;
1682			m->busy = 0;
1683			m->queue = PQ_NONE;
1684			m->object = NULL;
1685			vm_page_wire(m);
1686		}
1687
1688		/*
1689		 * We've found a contiguous chunk that meets are requirements.
1690		 * Allocate kernel VM, unfree and assign the physical pages to it and
1691		 * return kernel VM pointer.
1692		 */
1693		tmp_addr = addr = kmem_alloc_pageable(map, size);
1694		if (addr == 0) {
1695			/*
1696			 * XXX We almost never run out of kernel virtual
1697			 * space, so we don't make the allocated memory
1698			 * above available.
1699			 */
1700			splx(s);
1701			return (NULL);
1702		}
1703
1704		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1705			vm_page_t m = &pga[i];
1706			vm_page_insert(m, kernel_object,
1707				OFF_TO_IDX(tmp_addr - VM_MIN_KERNEL_ADDRESS));
1708			pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m));
1709			tmp_addr += PAGE_SIZE;
1710		}
1711
1712		splx(s);
1713		return ((void *)addr);
1714	}
1715	return NULL;
1716}
1717
1718void *
1719contigmalloc(size, type, flags, low, high, alignment, boundary)
1720	unsigned long size;	/* should be size_t here and for malloc() */
1721	struct malloc_type *type;
1722	int flags;
1723	unsigned long low;
1724	unsigned long high;
1725	unsigned long alignment;
1726	unsigned long boundary;
1727{
1728	return contigmalloc1(size, type, flags, low, high, alignment, boundary,
1729			     kernel_map);
1730}
1731
1732vm_offset_t
1733vm_page_alloc_contig(size, low, high, alignment)
1734	vm_offset_t size;
1735	vm_offset_t low;
1736	vm_offset_t high;
1737	vm_offset_t alignment;
1738{
1739	return ((vm_offset_t)contigmalloc1(size, M_DEVBUF, M_NOWAIT, low, high,
1740					  alignment, 0ul, kernel_map));
1741}
1742
1743#include "opt_ddb.h"
1744#ifdef DDB
1745#include <sys/kernel.h>
1746
1747#include <ddb/ddb.h>
1748
1749DB_SHOW_COMMAND(page, vm_page_print_page_info)
1750{
1751	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1752	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1753	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1754	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1755	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1756	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1757	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1758	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1759	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1760	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1761}
1762
1763DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1764{
1765	int i;
1766	db_printf("PQ_FREE:");
1767	for(i=0;i<PQ_L2_SIZE;i++) {
1768		db_printf(" %d", *vm_page_queues[PQ_FREE + i].lcnt);
1769	}
1770	db_printf("\n");
1771
1772	db_printf("PQ_CACHE:");
1773	for(i=0;i<PQ_L2_SIZE;i++) {
1774		db_printf(" %d", *vm_page_queues[PQ_CACHE + i].lcnt);
1775	}
1776	db_printf("\n");
1777
1778	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1779		*vm_page_queues[PQ_ACTIVE].lcnt,
1780		*vm_page_queues[PQ_INACTIVE].lcnt);
1781}
1782#endif /* DDB */
1783