vm_page.c revision 254065
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- A page queue lock is required when adding or removing a page from a
67 *	  page queue regardless of other locks or the busy state of a page.
68 *
69 *		* In general, no thread besides the page daemon can acquire or
70 *		  hold more than one page queue lock at a time.
71 *
72 *		* The page daemon can acquire and hold any pair of page queue
73 *		  locks in any order.
74 *
75 *	- The object lock is required when inserting or removing
76 *	  pages from an object (vm_page_insert() or vm_page_remove()).
77 *
78 */
79
80/*
81 *	Resident memory management module.
82 */
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 254065 2013-08-07 16:36:38Z kib $");
86
87#include "opt_vm.h"
88
89#include <sys/param.h>
90#include <sys/systm.h>
91#include <sys/lock.h>
92#include <sys/kernel.h>
93#include <sys/limits.h>
94#include <sys/malloc.h>
95#include <sys/mman.h>
96#include <sys/msgbuf.h>
97#include <sys/mutex.h>
98#include <sys/proc.h>
99#include <sys/rwlock.h>
100#include <sys/sysctl.h>
101#include <sys/vmmeter.h>
102#include <sys/vnode.h>
103
104#include <vm/vm.h>
105#include <vm/pmap.h>
106#include <vm/vm_param.h>
107#include <vm/vm_kern.h>
108#include <vm/vm_object.h>
109#include <vm/vm_page.h>
110#include <vm/vm_pageout.h>
111#include <vm/vm_pager.h>
112#include <vm/vm_phys.h>
113#include <vm/vm_radix.h>
114#include <vm/vm_reserv.h>
115#include <vm/vm_extern.h>
116#include <vm/uma.h>
117#include <vm/uma_int.h>
118
119#include <machine/md_var.h>
120
121/*
122 *	Associated with page of user-allocatable memory is a
123 *	page structure.
124 */
125
126struct vm_domain vm_dom[MAXMEMDOM];
127struct mtx_padalign vm_page_queue_free_mtx;
128
129struct mtx_padalign pa_lock[PA_LOCK_COUNT];
130
131vm_page_t vm_page_array;
132long vm_page_array_size;
133long first_page;
134int vm_page_zero_count;
135
136static int boot_pages = UMA_BOOT_PAGES;
137TUNABLE_INT("vm.boot_pages", &boot_pages);
138SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
139	"number of pages allocated for bootstrapping the VM system");
140
141static int pa_tryrelock_restart;
142SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
143    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
144
145static uma_zone_t fakepg_zone;
146
147static struct vnode *vm_page_alloc_init(vm_page_t m);
148static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
149static void vm_page_enqueue(int queue, vm_page_t m);
150static void vm_page_init_fakepg(void *dummy);
151static void vm_page_insert_after(vm_page_t m, vm_object_t object,
152    vm_pindex_t pindex, vm_page_t mpred);
153
154SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
155
156static void
157vm_page_init_fakepg(void *dummy)
158{
159
160	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
161	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
162}
163
164/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
165#if PAGE_SIZE == 32768
166#ifdef CTASSERT
167CTASSERT(sizeof(u_long) >= 8);
168#endif
169#endif
170
171/*
172 * Try to acquire a physical address lock while a pmap is locked.  If we
173 * fail to trylock we unlock and lock the pmap directly and cache the
174 * locked pa in *locked.  The caller should then restart their loop in case
175 * the virtual to physical mapping has changed.
176 */
177int
178vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
179{
180	vm_paddr_t lockpa;
181
182	lockpa = *locked;
183	*locked = pa;
184	if (lockpa) {
185		PA_LOCK_ASSERT(lockpa, MA_OWNED);
186		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
187			return (0);
188		PA_UNLOCK(lockpa);
189	}
190	if (PA_TRYLOCK(pa))
191		return (0);
192	PMAP_UNLOCK(pmap);
193	atomic_add_int(&pa_tryrelock_restart, 1);
194	PA_LOCK(pa);
195	PMAP_LOCK(pmap);
196	return (EAGAIN);
197}
198
199/*
200 *	vm_set_page_size:
201 *
202 *	Sets the page size, perhaps based upon the memory
203 *	size.  Must be called before any use of page-size
204 *	dependent functions.
205 */
206void
207vm_set_page_size(void)
208{
209	if (cnt.v_page_size == 0)
210		cnt.v_page_size = PAGE_SIZE;
211	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
212		panic("vm_set_page_size: page size not a power of two");
213}
214
215/*
216 *	vm_page_blacklist_lookup:
217 *
218 *	See if a physical address in this page has been listed
219 *	in the blacklist tunable.  Entries in the tunable are
220 *	separated by spaces or commas.  If an invalid integer is
221 *	encountered then the rest of the string is skipped.
222 */
223static int
224vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
225{
226	vm_paddr_t bad;
227	char *cp, *pos;
228
229	for (pos = list; *pos != '\0'; pos = cp) {
230		bad = strtoq(pos, &cp, 0);
231		if (*cp != '\0') {
232			if (*cp == ' ' || *cp == ',') {
233				cp++;
234				if (cp == pos)
235					continue;
236			} else
237				break;
238		}
239		if (pa == trunc_page(bad))
240			return (1);
241	}
242	return (0);
243}
244
245static void
246vm_page_domain_init(struct vm_domain *vmd)
247{
248	struct vm_pagequeue *pq;
249	int i;
250
251	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
252	    "vm inactive pagequeue";
253	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
254	    &cnt.v_inactive_count;
255	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
256	    "vm active pagequeue";
257	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
258	    &cnt.v_active_count;
259	vmd->vmd_fullintervalcount = 0;
260	vmd->vmd_page_count = 0;
261	vmd->vmd_free_count = 0;
262	vmd->vmd_segs = 0;
263	vmd->vmd_oom = FALSE;
264	vmd->vmd_pass = 0;
265	for (i = 0; i < PQ_COUNT; i++) {
266		pq = &vmd->vmd_pagequeues[i];
267		TAILQ_INIT(&pq->pq_pl);
268		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
269		    MTX_DEF | MTX_DUPOK);
270	}
271}
272
273/*
274 *	vm_page_startup:
275 *
276 *	Initializes the resident memory module.
277 *
278 *	Allocates memory for the page cells, and
279 *	for the object/offset-to-page hash table headers.
280 *	Each page cell is initialized and placed on the free list.
281 */
282vm_offset_t
283vm_page_startup(vm_offset_t vaddr)
284{
285	vm_offset_t mapped;
286	vm_paddr_t page_range;
287	vm_paddr_t new_end;
288	int i;
289	vm_paddr_t pa;
290	vm_paddr_t last_pa;
291	char *list;
292
293	/* the biggest memory array is the second group of pages */
294	vm_paddr_t end;
295	vm_paddr_t biggestsize;
296	vm_paddr_t low_water, high_water;
297	int biggestone;
298
299	biggestsize = 0;
300	biggestone = 0;
301	vaddr = round_page(vaddr);
302
303	for (i = 0; phys_avail[i + 1]; i += 2) {
304		phys_avail[i] = round_page(phys_avail[i]);
305		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
306	}
307
308	low_water = phys_avail[0];
309	high_water = phys_avail[1];
310
311	for (i = 0; phys_avail[i + 1]; i += 2) {
312		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
313
314		if (size > biggestsize) {
315			biggestone = i;
316			biggestsize = size;
317		}
318		if (phys_avail[i] < low_water)
319			low_water = phys_avail[i];
320		if (phys_avail[i + 1] > high_water)
321			high_water = phys_avail[i + 1];
322	}
323
324#ifdef XEN
325	low_water = 0;
326#endif
327
328	end = phys_avail[biggestone+1];
329
330	/*
331	 * Initialize the page and queue locks.
332	 */
333	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
334	for (i = 0; i < PA_LOCK_COUNT; i++)
335		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
336	for (i = 0; i < vm_ndomains; i++)
337		vm_page_domain_init(&vm_dom[i]);
338
339	/*
340	 * Allocate memory for use when boot strapping the kernel memory
341	 * allocator.
342	 */
343	new_end = end - (boot_pages * UMA_SLAB_SIZE);
344	new_end = trunc_page(new_end);
345	mapped = pmap_map(&vaddr, new_end, end,
346	    VM_PROT_READ | VM_PROT_WRITE);
347	bzero((void *)mapped, end - new_end);
348	uma_startup((void *)mapped, boot_pages);
349
350#if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
351    defined(__mips__)
352	/*
353	 * Allocate a bitmap to indicate that a random physical page
354	 * needs to be included in a minidump.
355	 *
356	 * The amd64 port needs this to indicate which direct map pages
357	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
358	 *
359	 * However, i386 still needs this workspace internally within the
360	 * minidump code.  In theory, they are not needed on i386, but are
361	 * included should the sf_buf code decide to use them.
362	 */
363	last_pa = 0;
364	for (i = 0; dump_avail[i + 1] != 0; i += 2)
365		if (dump_avail[i + 1] > last_pa)
366			last_pa = dump_avail[i + 1];
367	page_range = last_pa / PAGE_SIZE;
368	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
369	new_end -= vm_page_dump_size;
370	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
371	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
372	bzero((void *)vm_page_dump, vm_page_dump_size);
373#endif
374#ifdef __amd64__
375	/*
376	 * Request that the physical pages underlying the message buffer be
377	 * included in a crash dump.  Since the message buffer is accessed
378	 * through the direct map, they are not automatically included.
379	 */
380	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
381	last_pa = pa + round_page(msgbufsize);
382	while (pa < last_pa) {
383		dump_add_page(pa);
384		pa += PAGE_SIZE;
385	}
386#endif
387	/*
388	 * Compute the number of pages of memory that will be available for
389	 * use (taking into account the overhead of a page structure per
390	 * page).
391	 */
392	first_page = low_water / PAGE_SIZE;
393#ifdef VM_PHYSSEG_SPARSE
394	page_range = 0;
395	for (i = 0; phys_avail[i + 1] != 0; i += 2)
396		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
397#elif defined(VM_PHYSSEG_DENSE)
398	page_range = high_water / PAGE_SIZE - first_page;
399#else
400#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
401#endif
402	end = new_end;
403
404	/*
405	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
406	 */
407	vaddr += PAGE_SIZE;
408
409	/*
410	 * Initialize the mem entry structures now, and put them in the free
411	 * queue.
412	 */
413	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
414	mapped = pmap_map(&vaddr, new_end, end,
415	    VM_PROT_READ | VM_PROT_WRITE);
416	vm_page_array = (vm_page_t) mapped;
417#if VM_NRESERVLEVEL > 0
418	/*
419	 * Allocate memory for the reservation management system's data
420	 * structures.
421	 */
422	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
423#endif
424#if defined(__amd64__) || defined(__mips__)
425	/*
426	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
427	 * like i386, so the pages must be tracked for a crashdump to include
428	 * this data.  This includes the vm_page_array and the early UMA
429	 * bootstrap pages.
430	 */
431	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
432		dump_add_page(pa);
433#endif
434	phys_avail[biggestone + 1] = new_end;
435
436	/*
437	 * Clear all of the page structures
438	 */
439	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
440	for (i = 0; i < page_range; i++)
441		vm_page_array[i].order = VM_NFREEORDER;
442	vm_page_array_size = page_range;
443
444	/*
445	 * Initialize the physical memory allocator.
446	 */
447	vm_phys_init();
448
449	/*
450	 * Add every available physical page that is not blacklisted to
451	 * the free lists.
452	 */
453	cnt.v_page_count = 0;
454	cnt.v_free_count = 0;
455	list = getenv("vm.blacklist");
456	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
457		pa = phys_avail[i];
458		last_pa = phys_avail[i + 1];
459		while (pa < last_pa) {
460			if (list != NULL &&
461			    vm_page_blacklist_lookup(list, pa))
462				printf("Skipping page with pa 0x%jx\n",
463				    (uintmax_t)pa);
464			else
465				vm_phys_add_page(pa);
466			pa += PAGE_SIZE;
467		}
468	}
469	freeenv(list);
470#if VM_NRESERVLEVEL > 0
471	/*
472	 * Initialize the reservation management system.
473	 */
474	vm_reserv_init();
475#endif
476	return (vaddr);
477}
478
479void
480vm_page_reference(vm_page_t m)
481{
482
483	vm_page_aflag_set(m, PGA_REFERENCED);
484}
485
486void
487vm_page_busy(vm_page_t m)
488{
489
490	VM_OBJECT_ASSERT_WLOCKED(m->object);
491	KASSERT((m->oflags & VPO_BUSY) == 0,
492	    ("vm_page_busy: page already busy!!!"));
493	m->oflags |= VPO_BUSY;
494}
495
496/*
497 *      vm_page_flash:
498 *
499 *      wakeup anyone waiting for the page.
500 */
501void
502vm_page_flash(vm_page_t m)
503{
504
505	VM_OBJECT_ASSERT_WLOCKED(m->object);
506	if (m->oflags & VPO_WANTED) {
507		m->oflags &= ~VPO_WANTED;
508		wakeup(m);
509	}
510}
511
512/*
513 *      vm_page_wakeup:
514 *
515 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
516 *      page.
517 *
518 */
519void
520vm_page_wakeup(vm_page_t m)
521{
522
523	VM_OBJECT_ASSERT_WLOCKED(m->object);
524	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
525	m->oflags &= ~VPO_BUSY;
526	vm_page_flash(m);
527}
528
529void
530vm_page_io_start(vm_page_t m)
531{
532
533	VM_OBJECT_ASSERT_WLOCKED(m->object);
534	m->busy++;
535}
536
537void
538vm_page_io_finish(vm_page_t m)
539{
540
541	VM_OBJECT_ASSERT_WLOCKED(m->object);
542	KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m));
543	m->busy--;
544	if (m->busy == 0)
545		vm_page_flash(m);
546}
547
548/*
549 * Keep page from being freed by the page daemon
550 * much of the same effect as wiring, except much lower
551 * overhead and should be used only for *very* temporary
552 * holding ("wiring").
553 */
554void
555vm_page_hold(vm_page_t mem)
556{
557
558	vm_page_lock_assert(mem, MA_OWNED);
559        mem->hold_count++;
560}
561
562void
563vm_page_unhold(vm_page_t mem)
564{
565
566	vm_page_lock_assert(mem, MA_OWNED);
567	--mem->hold_count;
568	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
569	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
570		vm_page_free_toq(mem);
571}
572
573/*
574 *	vm_page_unhold_pages:
575 *
576 *	Unhold each of the pages that is referenced by the given array.
577 */
578void
579vm_page_unhold_pages(vm_page_t *ma, int count)
580{
581	struct mtx *mtx, *new_mtx;
582
583	mtx = NULL;
584	for (; count != 0; count--) {
585		/*
586		 * Avoid releasing and reacquiring the same page lock.
587		 */
588		new_mtx = vm_page_lockptr(*ma);
589		if (mtx != new_mtx) {
590			if (mtx != NULL)
591				mtx_unlock(mtx);
592			mtx = new_mtx;
593			mtx_lock(mtx);
594		}
595		vm_page_unhold(*ma);
596		ma++;
597	}
598	if (mtx != NULL)
599		mtx_unlock(mtx);
600}
601
602vm_page_t
603PHYS_TO_VM_PAGE(vm_paddr_t pa)
604{
605	vm_page_t m;
606
607#ifdef VM_PHYSSEG_SPARSE
608	m = vm_phys_paddr_to_vm_page(pa);
609	if (m == NULL)
610		m = vm_phys_fictitious_to_vm_page(pa);
611	return (m);
612#elif defined(VM_PHYSSEG_DENSE)
613	long pi;
614
615	pi = atop(pa);
616	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
617		m = &vm_page_array[pi - first_page];
618		return (m);
619	}
620	return (vm_phys_fictitious_to_vm_page(pa));
621#else
622#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
623#endif
624}
625
626/*
627 *	vm_page_getfake:
628 *
629 *	Create a fictitious page with the specified physical address and
630 *	memory attribute.  The memory attribute is the only the machine-
631 *	dependent aspect of a fictitious page that must be initialized.
632 */
633vm_page_t
634vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
635{
636	vm_page_t m;
637
638	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
639	vm_page_initfake(m, paddr, memattr);
640	return (m);
641}
642
643void
644vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
645{
646
647	if ((m->flags & PG_FICTITIOUS) != 0) {
648		/*
649		 * The page's memattr might have changed since the
650		 * previous initialization.  Update the pmap to the
651		 * new memattr.
652		 */
653		goto memattr;
654	}
655	m->phys_addr = paddr;
656	m->queue = PQ_NONE;
657	/* Fictitious pages don't use "segind". */
658	m->flags = PG_FICTITIOUS;
659	/* Fictitious pages don't use "order" or "pool". */
660	m->oflags = VPO_BUSY | VPO_UNMANAGED;
661	m->wire_count = 1;
662	pmap_page_init(m);
663memattr:
664	pmap_page_set_memattr(m, memattr);
665}
666
667/*
668 *	vm_page_putfake:
669 *
670 *	Release a fictitious page.
671 */
672void
673vm_page_putfake(vm_page_t m)
674{
675
676	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
677	KASSERT((m->flags & PG_FICTITIOUS) != 0,
678	    ("vm_page_putfake: bad page %p", m));
679	uma_zfree(fakepg_zone, m);
680}
681
682/*
683 *	vm_page_updatefake:
684 *
685 *	Update the given fictitious page to the specified physical address and
686 *	memory attribute.
687 */
688void
689vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
690{
691
692	KASSERT((m->flags & PG_FICTITIOUS) != 0,
693	    ("vm_page_updatefake: bad page %p", m));
694	m->phys_addr = paddr;
695	pmap_page_set_memattr(m, memattr);
696}
697
698/*
699 *	vm_page_free:
700 *
701 *	Free a page.
702 */
703void
704vm_page_free(vm_page_t m)
705{
706
707	m->flags &= ~PG_ZERO;
708	vm_page_free_toq(m);
709}
710
711/*
712 *	vm_page_free_zero:
713 *
714 *	Free a page to the zerod-pages queue
715 */
716void
717vm_page_free_zero(vm_page_t m)
718{
719
720	m->flags |= PG_ZERO;
721	vm_page_free_toq(m);
722}
723
724/*
725 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
726 * array which is not the request page.
727 */
728void
729vm_page_readahead_finish(vm_page_t m)
730{
731
732	if (m->valid != 0) {
733		/*
734		 * Since the page is not the requested page, whether
735		 * it should be activated or deactivated is not
736		 * obvious.  Empirical results have shown that
737		 * deactivating the page is usually the best choice,
738		 * unless the page is wanted by another thread.
739		 */
740		if (m->oflags & VPO_WANTED) {
741			vm_page_lock(m);
742			vm_page_activate(m);
743			vm_page_unlock(m);
744		} else {
745			vm_page_lock(m);
746			vm_page_deactivate(m);
747			vm_page_unlock(m);
748		}
749		vm_page_wakeup(m);
750	} else {
751		/*
752		 * Free the completely invalid page.  Such page state
753		 * occurs due to the short read operation which did
754		 * not covered our page at all, or in case when a read
755		 * error happens.
756		 */
757		vm_page_lock(m);
758		vm_page_free(m);
759		vm_page_unlock(m);
760	}
761}
762
763/*
764 *	vm_page_sleep:
765 *
766 *	Sleep and release the page lock.
767 *
768 *	The object containing the given page must be locked.
769 */
770void
771vm_page_sleep(vm_page_t m, const char *msg)
772{
773
774	VM_OBJECT_ASSERT_WLOCKED(m->object);
775	if (mtx_owned(vm_page_lockptr(m)))
776		vm_page_unlock(m);
777
778	/*
779	 * It's possible that while we sleep, the page will get
780	 * unbusied and freed.  If we are holding the object
781	 * lock, we will assume we hold a reference to the object
782	 * such that even if m->object changes, we can re-lock
783	 * it.
784	 */
785	m->oflags |= VPO_WANTED;
786	VM_OBJECT_SLEEP(m->object, m, PVM, msg, 0);
787}
788
789/*
790 *	vm_page_dirty_KBI:		[ internal use only ]
791 *
792 *	Set all bits in the page's dirty field.
793 *
794 *	The object containing the specified page must be locked if the
795 *	call is made from the machine-independent layer.
796 *
797 *	See vm_page_clear_dirty_mask().
798 *
799 *	This function should only be called by vm_page_dirty().
800 */
801void
802vm_page_dirty_KBI(vm_page_t m)
803{
804
805	/* These assertions refer to this operation by its public name. */
806	KASSERT((m->flags & PG_CACHED) == 0,
807	    ("vm_page_dirty: page in cache!"));
808	KASSERT(!VM_PAGE_IS_FREE(m),
809	    ("vm_page_dirty: page is free!"));
810	KASSERT(m->valid == VM_PAGE_BITS_ALL,
811	    ("vm_page_dirty: page is invalid!"));
812	m->dirty = VM_PAGE_BITS_ALL;
813}
814
815/*
816 *	vm_page_insert:		[ internal use only ]
817 *
818 *	Inserts the given mem entry into the object and object list.
819 *
820 *	The object must be locked.
821 */
822void
823vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
824{
825	vm_page_t mpred;
826
827	VM_OBJECT_ASSERT_WLOCKED(object);
828	mpred = vm_radix_lookup_le(&object->rtree, pindex);
829	vm_page_insert_after(m, object, pindex, mpred);
830}
831
832/*
833 *	vm_page_insert_after:
834 *
835 *	Inserts the page "m" into the specified object at offset "pindex".
836 *
837 *	The page "mpred" must immediately precede the offset "pindex" within
838 *	the specified object.
839 *
840 *	The object must be locked.
841 */
842static void
843vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
844    vm_page_t mpred)
845{
846	vm_page_t msucc;
847
848	VM_OBJECT_ASSERT_WLOCKED(object);
849	KASSERT(m->object == NULL,
850	    ("vm_page_insert_after: page already inserted"));
851	if (mpred != NULL) {
852		KASSERT(mpred->object == object ||
853		    (mpred->flags & PG_SLAB) != 0,
854		    ("vm_page_insert_after: object doesn't contain mpred"));
855		KASSERT(mpred->pindex < pindex,
856		    ("vm_page_insert_after: mpred doesn't precede pindex"));
857		msucc = TAILQ_NEXT(mpred, listq);
858	} else
859		msucc = TAILQ_FIRST(&object->memq);
860	if (msucc != NULL)
861		KASSERT(msucc->pindex > pindex,
862		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
863
864	/*
865	 * Record the object/offset pair in this page
866	 */
867	m->object = object;
868	m->pindex = pindex;
869
870	/*
871	 * Now link into the object's ordered list of backed pages.
872	 */
873	if (mpred != NULL)
874		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
875	else
876		TAILQ_INSERT_HEAD(&object->memq, m, listq);
877	vm_radix_insert(&object->rtree, m);
878
879	/*
880	 * Show that the object has one more resident page.
881	 */
882	object->resident_page_count++;
883
884	/*
885	 * Hold the vnode until the last page is released.
886	 */
887	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
888		vhold(object->handle);
889
890	/*
891	 * Since we are inserting a new and possibly dirty page,
892	 * update the object's OBJ_MIGHTBEDIRTY flag.
893	 */
894	if (pmap_page_is_write_mapped(m))
895		vm_object_set_writeable_dirty(object);
896}
897
898/*
899 *	vm_page_remove:
900 *
901 *	Removes the given mem entry from the object/offset-page
902 *	table and the object page list, but do not invalidate/terminate
903 *	the backing store.
904 *
905 *	The object must be locked.  The page must be locked if it is managed.
906 */
907void
908vm_page_remove(vm_page_t m)
909{
910	vm_object_t object;
911
912	if ((m->oflags & VPO_UNMANAGED) == 0)
913		vm_page_lock_assert(m, MA_OWNED);
914	if ((object = m->object) == NULL)
915		return;
916	VM_OBJECT_ASSERT_WLOCKED(object);
917	if (m->oflags & VPO_BUSY) {
918		m->oflags &= ~VPO_BUSY;
919		vm_page_flash(m);
920	}
921
922	/*
923	 * Now remove from the object's list of backed pages.
924	 */
925	vm_radix_remove(&object->rtree, m->pindex);
926	TAILQ_REMOVE(&object->memq, m, listq);
927
928	/*
929	 * And show that the object has one fewer resident page.
930	 */
931	object->resident_page_count--;
932
933	/*
934	 * The vnode may now be recycled.
935	 */
936	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
937		vdrop(object->handle);
938
939	m->object = NULL;
940}
941
942/*
943 *	vm_page_lookup:
944 *
945 *	Returns the page associated with the object/offset
946 *	pair specified; if none is found, NULL is returned.
947 *
948 *	The object must be locked.
949 */
950vm_page_t
951vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
952{
953
954	VM_OBJECT_ASSERT_LOCKED(object);
955	return (vm_radix_lookup(&object->rtree, pindex));
956}
957
958/*
959 *	vm_page_find_least:
960 *
961 *	Returns the page associated with the object with least pindex
962 *	greater than or equal to the parameter pindex, or NULL.
963 *
964 *	The object must be locked.
965 */
966vm_page_t
967vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
968{
969	vm_page_t m;
970
971	VM_OBJECT_ASSERT_LOCKED(object);
972	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
973		m = vm_radix_lookup_ge(&object->rtree, pindex);
974	return (m);
975}
976
977/*
978 * Returns the given page's successor (by pindex) within the object if it is
979 * resident; if none is found, NULL is returned.
980 *
981 * The object must be locked.
982 */
983vm_page_t
984vm_page_next(vm_page_t m)
985{
986	vm_page_t next;
987
988	VM_OBJECT_ASSERT_WLOCKED(m->object);
989	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
990	    next->pindex != m->pindex + 1)
991		next = NULL;
992	return (next);
993}
994
995/*
996 * Returns the given page's predecessor (by pindex) within the object if it is
997 * resident; if none is found, NULL is returned.
998 *
999 * The object must be locked.
1000 */
1001vm_page_t
1002vm_page_prev(vm_page_t m)
1003{
1004	vm_page_t prev;
1005
1006	VM_OBJECT_ASSERT_WLOCKED(m->object);
1007	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1008	    prev->pindex != m->pindex - 1)
1009		prev = NULL;
1010	return (prev);
1011}
1012
1013/*
1014 *	vm_page_rename:
1015 *
1016 *	Move the given memory entry from its
1017 *	current object to the specified target object/offset.
1018 *
1019 *	Note: swap associated with the page must be invalidated by the move.  We
1020 *	      have to do this for several reasons:  (1) we aren't freeing the
1021 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1022 *	      moving the page from object A to B, and will then later move
1023 *	      the backing store from A to B and we can't have a conflict.
1024 *
1025 *	Note: we *always* dirty the page.  It is necessary both for the
1026 *	      fact that we moved it, and because we may be invalidating
1027 *	      swap.  If the page is on the cache, we have to deactivate it
1028 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1029 *	      on the cache.
1030 *
1031 *	The objects must be locked.  The page must be locked if it is managed.
1032 */
1033void
1034vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1035{
1036
1037	vm_page_remove(m);
1038	vm_page_insert(m, new_object, new_pindex);
1039	vm_page_dirty(m);
1040}
1041
1042/*
1043 *	Convert all of the given object's cached pages that have a
1044 *	pindex within the given range into free pages.  If the value
1045 *	zero is given for "end", then the range's upper bound is
1046 *	infinity.  If the given object is backed by a vnode and it
1047 *	transitions from having one or more cached pages to none, the
1048 *	vnode's hold count is reduced.
1049 */
1050void
1051vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1052{
1053	vm_page_t m;
1054	boolean_t empty;
1055
1056	mtx_lock(&vm_page_queue_free_mtx);
1057	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1058		mtx_unlock(&vm_page_queue_free_mtx);
1059		return;
1060	}
1061	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1062		if (end != 0 && m->pindex >= end)
1063			break;
1064		vm_radix_remove(&object->cache, m->pindex);
1065		m->object = NULL;
1066		m->valid = 0;
1067		/* Clear PG_CACHED and set PG_FREE. */
1068		m->flags ^= PG_CACHED | PG_FREE;
1069		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
1070		    ("vm_page_cache_free: page %p has inconsistent flags", m));
1071		cnt.v_cache_count--;
1072		vm_phys_freecnt_adj(m, 1);
1073	}
1074	empty = vm_radix_is_empty(&object->cache);
1075	mtx_unlock(&vm_page_queue_free_mtx);
1076	if (object->type == OBJT_VNODE && empty)
1077		vdrop(object->handle);
1078}
1079
1080/*
1081 *	Returns the cached page that is associated with the given
1082 *	object and offset.  If, however, none exists, returns NULL.
1083 *
1084 *	The free page queue must be locked.
1085 */
1086static inline vm_page_t
1087vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1088{
1089
1090	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1091	return (vm_radix_lookup(&object->cache, pindex));
1092}
1093
1094/*
1095 *	Remove the given cached page from its containing object's
1096 *	collection of cached pages.
1097 *
1098 *	The free page queue must be locked.
1099 */
1100static void
1101vm_page_cache_remove(vm_page_t m)
1102{
1103
1104	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1105	KASSERT((m->flags & PG_CACHED) != 0,
1106	    ("vm_page_cache_remove: page %p is not cached", m));
1107	vm_radix_remove(&m->object->cache, m->pindex);
1108	m->object = NULL;
1109	cnt.v_cache_count--;
1110}
1111
1112/*
1113 *	Transfer all of the cached pages with offset greater than or
1114 *	equal to 'offidxstart' from the original object's cache to the
1115 *	new object's cache.  However, any cached pages with offset
1116 *	greater than or equal to the new object's size are kept in the
1117 *	original object.  Initially, the new object's cache must be
1118 *	empty.  Offset 'offidxstart' in the original object must
1119 *	correspond to offset zero in the new object.
1120 *
1121 *	The new object must be locked.
1122 */
1123void
1124vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1125    vm_object_t new_object)
1126{
1127	vm_page_t m;
1128
1129	/*
1130	 * Insertion into an object's collection of cached pages
1131	 * requires the object to be locked.  In contrast, removal does
1132	 * not.
1133	 */
1134	VM_OBJECT_ASSERT_WLOCKED(new_object);
1135	KASSERT(vm_radix_is_empty(&new_object->cache),
1136	    ("vm_page_cache_transfer: object %p has cached pages",
1137	    new_object));
1138	mtx_lock(&vm_page_queue_free_mtx);
1139	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1140	    offidxstart)) != NULL) {
1141		/*
1142		 * Transfer all of the pages with offset greater than or
1143		 * equal to 'offidxstart' from the original object's
1144		 * cache to the new object's cache.
1145		 */
1146		if ((m->pindex - offidxstart) >= new_object->size)
1147			break;
1148		vm_radix_remove(&orig_object->cache, m->pindex);
1149		/* Update the page's object and offset. */
1150		m->object = new_object;
1151		m->pindex -= offidxstart;
1152		vm_radix_insert(&new_object->cache, m);
1153	}
1154	mtx_unlock(&vm_page_queue_free_mtx);
1155}
1156
1157/*
1158 *	Returns TRUE if a cached page is associated with the given object and
1159 *	offset, and FALSE otherwise.
1160 *
1161 *	The object must be locked.
1162 */
1163boolean_t
1164vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1165{
1166	vm_page_t m;
1167
1168	/*
1169	 * Insertion into an object's collection of cached pages requires the
1170	 * object to be locked.  Therefore, if the object is locked and the
1171	 * object's collection is empty, there is no need to acquire the free
1172	 * page queues lock in order to prove that the specified page doesn't
1173	 * exist.
1174	 */
1175	VM_OBJECT_ASSERT_WLOCKED(object);
1176	if (__predict_true(vm_object_cache_is_empty(object)))
1177		return (FALSE);
1178	mtx_lock(&vm_page_queue_free_mtx);
1179	m = vm_page_cache_lookup(object, pindex);
1180	mtx_unlock(&vm_page_queue_free_mtx);
1181	return (m != NULL);
1182}
1183
1184/*
1185 *	vm_page_alloc:
1186 *
1187 *	Allocate and return a page that is associated with the specified
1188 *	object and offset pair.  By default, this page has the flag VPO_BUSY
1189 *	set.
1190 *
1191 *	The caller must always specify an allocation class.
1192 *
1193 *	allocation classes:
1194 *	VM_ALLOC_NORMAL		normal process request
1195 *	VM_ALLOC_SYSTEM		system *really* needs a page
1196 *	VM_ALLOC_INTERRUPT	interrupt time request
1197 *
1198 *	optional allocation flags:
1199 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1200 *				intends to allocate
1201 *	VM_ALLOC_IFCACHED	return page only if it is cached
1202 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1203 *				is cached
1204 *	VM_ALLOC_NOBUSY		do not set the flag VPO_BUSY on the page
1205 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1206 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1207 *				should not have the flag VPO_BUSY set
1208 *	VM_ALLOC_WIRED		wire the allocated page
1209 *	VM_ALLOC_ZERO		prefer a zeroed page
1210 *
1211 *	This routine may not sleep.
1212 */
1213vm_page_t
1214vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1215{
1216	struct vnode *vp = NULL;
1217	vm_object_t m_object;
1218	vm_page_t m, mpred;
1219	int flags, req_class;
1220
1221	mpred = 0;	/* XXX: pacify gcc */
1222	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0),
1223	    ("vm_page_alloc: inconsistent object/req"));
1224	if (object != NULL)
1225		VM_OBJECT_ASSERT_WLOCKED(object);
1226
1227	req_class = req & VM_ALLOC_CLASS_MASK;
1228
1229	/*
1230	 * The page daemon is allowed to dig deeper into the free page list.
1231	 */
1232	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1233		req_class = VM_ALLOC_SYSTEM;
1234
1235	if (object != NULL) {
1236		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1237		KASSERT(mpred == NULL || mpred->pindex != pindex,
1238		   ("vm_page_alloc: pindex already allocated"));
1239	}
1240	mtx_lock(&vm_page_queue_free_mtx);
1241	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1242	    (req_class == VM_ALLOC_SYSTEM &&
1243	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1244	    (req_class == VM_ALLOC_INTERRUPT &&
1245	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1246		/*
1247		 * Allocate from the free queue if the number of free pages
1248		 * exceeds the minimum for the request class.
1249		 */
1250		if (object != NULL &&
1251		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1252			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1253				mtx_unlock(&vm_page_queue_free_mtx);
1254				return (NULL);
1255			}
1256			if (vm_phys_unfree_page(m))
1257				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1258#if VM_NRESERVLEVEL > 0
1259			else if (!vm_reserv_reactivate_page(m))
1260#else
1261			else
1262#endif
1263				panic("vm_page_alloc: cache page %p is missing"
1264				    " from the free queue", m);
1265		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1266			mtx_unlock(&vm_page_queue_free_mtx);
1267			return (NULL);
1268#if VM_NRESERVLEVEL > 0
1269		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1270		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1271		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1272#else
1273		} else {
1274#endif
1275			m = vm_phys_alloc_pages(object != NULL ?
1276			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1277#if VM_NRESERVLEVEL > 0
1278			if (m == NULL && vm_reserv_reclaim_inactive()) {
1279				m = vm_phys_alloc_pages(object != NULL ?
1280				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1281				    0);
1282			}
1283#endif
1284		}
1285	} else {
1286		/*
1287		 * Not allocatable, give up.
1288		 */
1289		mtx_unlock(&vm_page_queue_free_mtx);
1290		atomic_add_int(&vm_pageout_deficit,
1291		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1292		pagedaemon_wakeup();
1293		return (NULL);
1294	}
1295
1296	/*
1297	 *  At this point we had better have found a good page.
1298	 */
1299	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1300	KASSERT(m->queue == PQ_NONE,
1301	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1302	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1303	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1304	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1305	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1306	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1307	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1308	    pmap_page_get_memattr(m)));
1309	if ((m->flags & PG_CACHED) != 0) {
1310		KASSERT((m->flags & PG_ZERO) == 0,
1311		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1312		KASSERT(m->valid != 0,
1313		    ("vm_page_alloc: cached page %p is invalid", m));
1314		if (m->object == object && m->pindex == pindex)
1315	  		cnt.v_reactivated++;
1316		else
1317			m->valid = 0;
1318		m_object = m->object;
1319		vm_page_cache_remove(m);
1320		if (m_object->type == OBJT_VNODE &&
1321		    vm_object_cache_is_empty(m_object))
1322			vp = m_object->handle;
1323	} else {
1324		KASSERT(VM_PAGE_IS_FREE(m),
1325		    ("vm_page_alloc: page %p is not free", m));
1326		KASSERT(m->valid == 0,
1327		    ("vm_page_alloc: free page %p is valid", m));
1328		vm_phys_freecnt_adj(m, -1);
1329	}
1330
1331	/*
1332	 * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
1333	 * must be cleared before the free page queues lock is released.
1334	 */
1335	flags = 0;
1336	if (m->flags & PG_ZERO) {
1337		vm_page_zero_count--;
1338		if (req & VM_ALLOC_ZERO)
1339			flags = PG_ZERO;
1340	}
1341	if (req & VM_ALLOC_NODUMP)
1342		flags |= PG_NODUMP;
1343	m->flags = flags;
1344	mtx_unlock(&vm_page_queue_free_mtx);
1345	m->aflags = 0;
1346	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1347	    VPO_UNMANAGED : 0;
1348	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) == 0)
1349		m->oflags |= VPO_BUSY;
1350	if (req & VM_ALLOC_WIRED) {
1351		/*
1352		 * The page lock is not required for wiring a page until that
1353		 * page is inserted into the object.
1354		 */
1355		atomic_add_int(&cnt.v_wire_count, 1);
1356		m->wire_count = 1;
1357	}
1358	m->act_count = 0;
1359
1360	if (object != NULL) {
1361		/* Ignore device objects; the pager sets "memattr" for them. */
1362		if (object->memattr != VM_MEMATTR_DEFAULT &&
1363		    (object->flags & OBJ_FICTITIOUS) == 0)
1364			pmap_page_set_memattr(m, object->memattr);
1365		vm_page_insert_after(m, object, pindex, mpred);
1366	} else
1367		m->pindex = pindex;
1368
1369	/*
1370	 * The following call to vdrop() must come after the above call
1371	 * to vm_page_insert() in case both affect the same object and
1372	 * vnode.  Otherwise, the affected vnode's hold count could
1373	 * temporarily become zero.
1374	 */
1375	if (vp != NULL)
1376		vdrop(vp);
1377
1378	/*
1379	 * Don't wakeup too often - wakeup the pageout daemon when
1380	 * we would be nearly out of memory.
1381	 */
1382	if (vm_paging_needed())
1383		pagedaemon_wakeup();
1384
1385	return (m);
1386}
1387
1388/*
1389 *	vm_page_alloc_contig:
1390 *
1391 *	Allocate a contiguous set of physical pages of the given size "npages"
1392 *	from the free lists.  All of the physical pages must be at or above
1393 *	the given physical address "low" and below the given physical address
1394 *	"high".  The given value "alignment" determines the alignment of the
1395 *	first physical page in the set.  If the given value "boundary" is
1396 *	non-zero, then the set of physical pages cannot cross any physical
1397 *	address boundary that is a multiple of that value.  Both "alignment"
1398 *	and "boundary" must be a power of two.
1399 *
1400 *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1401 *	then the memory attribute setting for the physical pages is configured
1402 *	to the object's memory attribute setting.  Otherwise, the memory
1403 *	attribute setting for the physical pages is configured to "memattr",
1404 *	overriding the object's memory attribute setting.  However, if the
1405 *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1406 *	memory attribute setting for the physical pages cannot be configured
1407 *	to VM_MEMATTR_DEFAULT.
1408 *
1409 *	The caller must always specify an allocation class.
1410 *
1411 *	allocation classes:
1412 *	VM_ALLOC_NORMAL		normal process request
1413 *	VM_ALLOC_SYSTEM		system *really* needs a page
1414 *	VM_ALLOC_INTERRUPT	interrupt time request
1415 *
1416 *	optional allocation flags:
1417 *	VM_ALLOC_NOBUSY		do not set the flag VPO_BUSY on the page
1418 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1419 *				should not have the flag VPO_BUSY set
1420 *	VM_ALLOC_WIRED		wire the allocated page
1421 *	VM_ALLOC_ZERO		prefer a zeroed page
1422 *
1423 *	This routine may not sleep.
1424 */
1425vm_page_t
1426vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1427    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1428    vm_paddr_t boundary, vm_memattr_t memattr)
1429{
1430	struct vnode *drop;
1431	vm_page_t deferred_vdrop_list, m, m_ret;
1432	u_int flags, oflags;
1433	int req_class;
1434
1435	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0),
1436	    ("vm_page_alloc_contig: inconsistent object/req"));
1437	if (object != NULL) {
1438		VM_OBJECT_ASSERT_WLOCKED(object);
1439		KASSERT(object->type == OBJT_PHYS,
1440		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1441		    object));
1442	}
1443	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1444	req_class = req & VM_ALLOC_CLASS_MASK;
1445
1446	/*
1447	 * The page daemon is allowed to dig deeper into the free page list.
1448	 */
1449	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1450		req_class = VM_ALLOC_SYSTEM;
1451
1452	deferred_vdrop_list = NULL;
1453	mtx_lock(&vm_page_queue_free_mtx);
1454	if (cnt.v_free_count + cnt.v_cache_count >= npages +
1455	    cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1456	    cnt.v_free_count + cnt.v_cache_count >= npages +
1457	    cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1458	    cnt.v_free_count + cnt.v_cache_count >= npages)) {
1459#if VM_NRESERVLEVEL > 0
1460retry:
1461		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1462		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1463		    low, high, alignment, boundary)) == NULL)
1464#endif
1465			m_ret = vm_phys_alloc_contig(npages, low, high,
1466			    alignment, boundary);
1467	} else {
1468		mtx_unlock(&vm_page_queue_free_mtx);
1469		atomic_add_int(&vm_pageout_deficit, npages);
1470		pagedaemon_wakeup();
1471		return (NULL);
1472	}
1473	if (m_ret != NULL)
1474		for (m = m_ret; m < &m_ret[npages]; m++) {
1475			drop = vm_page_alloc_init(m);
1476			if (drop != NULL) {
1477				/*
1478				 * Enqueue the vnode for deferred vdrop().
1479				 *
1480				 * Once the pages are removed from the free
1481				 * page list, "pageq" can be safely abused to
1482				 * construct a short-lived list of vnodes.
1483				 */
1484				m->pageq.tqe_prev = (void *)drop;
1485				m->pageq.tqe_next = deferred_vdrop_list;
1486				deferred_vdrop_list = m;
1487			}
1488		}
1489	else {
1490#if VM_NRESERVLEVEL > 0
1491		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1492		    boundary))
1493			goto retry;
1494#endif
1495	}
1496	mtx_unlock(&vm_page_queue_free_mtx);
1497	if (m_ret == NULL)
1498		return (NULL);
1499
1500	/*
1501	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1502	 */
1503	flags = 0;
1504	if ((req & VM_ALLOC_ZERO) != 0)
1505		flags = PG_ZERO;
1506	if ((req & VM_ALLOC_NODUMP) != 0)
1507		flags |= PG_NODUMP;
1508	if ((req & VM_ALLOC_WIRED) != 0)
1509		atomic_add_int(&cnt.v_wire_count, npages);
1510	oflags = VPO_UNMANAGED;
1511	if (object != NULL) {
1512		if ((req & VM_ALLOC_NOBUSY) == 0)
1513			oflags |= VPO_BUSY;
1514		if (object->memattr != VM_MEMATTR_DEFAULT &&
1515		    memattr == VM_MEMATTR_DEFAULT)
1516			memattr = object->memattr;
1517	}
1518	for (m = m_ret; m < &m_ret[npages]; m++) {
1519		m->aflags = 0;
1520		m->flags = (m->flags | PG_NODUMP) & flags;
1521		if ((req & VM_ALLOC_WIRED) != 0)
1522			m->wire_count = 1;
1523		/* Unmanaged pages don't use "act_count". */
1524		m->oflags = oflags;
1525		if (memattr != VM_MEMATTR_DEFAULT)
1526			pmap_page_set_memattr(m, memattr);
1527		if (object != NULL)
1528			vm_page_insert(m, object, pindex);
1529		else
1530			m->pindex = pindex;
1531		pindex++;
1532	}
1533	while (deferred_vdrop_list != NULL) {
1534		vdrop((struct vnode *)deferred_vdrop_list->pageq.tqe_prev);
1535		deferred_vdrop_list = deferred_vdrop_list->pageq.tqe_next;
1536	}
1537	if (vm_paging_needed())
1538		pagedaemon_wakeup();
1539	return (m_ret);
1540}
1541
1542/*
1543 * Initialize a page that has been freshly dequeued from a freelist.
1544 * The caller has to drop the vnode returned, if it is not NULL.
1545 *
1546 * This function may only be used to initialize unmanaged pages.
1547 *
1548 * To be called with vm_page_queue_free_mtx held.
1549 */
1550static struct vnode *
1551vm_page_alloc_init(vm_page_t m)
1552{
1553	struct vnode *drop;
1554	vm_object_t m_object;
1555
1556	KASSERT(m->queue == PQ_NONE,
1557	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1558	    m, m->queue));
1559	KASSERT(m->wire_count == 0,
1560	    ("vm_page_alloc_init: page %p is wired", m));
1561	KASSERT(m->hold_count == 0,
1562	    ("vm_page_alloc_init: page %p is held", m));
1563	KASSERT(m->busy == 0,
1564	    ("vm_page_alloc_init: page %p is busy", m));
1565	KASSERT(m->dirty == 0,
1566	    ("vm_page_alloc_init: page %p is dirty", m));
1567	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1568	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1569	    m, pmap_page_get_memattr(m)));
1570	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1571	drop = NULL;
1572	if ((m->flags & PG_CACHED) != 0) {
1573		KASSERT((m->flags & PG_ZERO) == 0,
1574		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1575		m->valid = 0;
1576		m_object = m->object;
1577		vm_page_cache_remove(m);
1578		if (m_object->type == OBJT_VNODE &&
1579		    vm_object_cache_is_empty(m_object))
1580			drop = m_object->handle;
1581	} else {
1582		KASSERT(VM_PAGE_IS_FREE(m),
1583		    ("vm_page_alloc_init: page %p is not free", m));
1584		KASSERT(m->valid == 0,
1585		    ("vm_page_alloc_init: free page %p is valid", m));
1586		vm_phys_freecnt_adj(m, -1);
1587		if ((m->flags & PG_ZERO) != 0)
1588			vm_page_zero_count--;
1589	}
1590	/* Don't clear the PG_ZERO flag; we'll need it later. */
1591	m->flags &= PG_ZERO;
1592	return (drop);
1593}
1594
1595/*
1596 * 	vm_page_alloc_freelist:
1597 *
1598 *	Allocate a physical page from the specified free page list.
1599 *
1600 *	The caller must always specify an allocation class.
1601 *
1602 *	allocation classes:
1603 *	VM_ALLOC_NORMAL		normal process request
1604 *	VM_ALLOC_SYSTEM		system *really* needs a page
1605 *	VM_ALLOC_INTERRUPT	interrupt time request
1606 *
1607 *	optional allocation flags:
1608 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1609 *				intends to allocate
1610 *	VM_ALLOC_WIRED		wire the allocated page
1611 *	VM_ALLOC_ZERO		prefer a zeroed page
1612 *
1613 *	This routine may not sleep.
1614 */
1615vm_page_t
1616vm_page_alloc_freelist(int flind, int req)
1617{
1618	struct vnode *drop;
1619	vm_page_t m;
1620	u_int flags;
1621	int req_class;
1622
1623	req_class = req & VM_ALLOC_CLASS_MASK;
1624
1625	/*
1626	 * The page daemon is allowed to dig deeper into the free page list.
1627	 */
1628	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1629		req_class = VM_ALLOC_SYSTEM;
1630
1631	/*
1632	 * Do not allocate reserved pages unless the req has asked for it.
1633	 */
1634	mtx_lock(&vm_page_queue_free_mtx);
1635	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1636	    (req_class == VM_ALLOC_SYSTEM &&
1637	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1638	    (req_class == VM_ALLOC_INTERRUPT &&
1639	    cnt.v_free_count + cnt.v_cache_count > 0))
1640		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1641	else {
1642		mtx_unlock(&vm_page_queue_free_mtx);
1643		atomic_add_int(&vm_pageout_deficit,
1644		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1645		pagedaemon_wakeup();
1646		return (NULL);
1647	}
1648	if (m == NULL) {
1649		mtx_unlock(&vm_page_queue_free_mtx);
1650		return (NULL);
1651	}
1652	drop = vm_page_alloc_init(m);
1653	mtx_unlock(&vm_page_queue_free_mtx);
1654
1655	/*
1656	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1657	 */
1658	m->aflags = 0;
1659	flags = 0;
1660	if ((req & VM_ALLOC_ZERO) != 0)
1661		flags = PG_ZERO;
1662	m->flags &= flags;
1663	if ((req & VM_ALLOC_WIRED) != 0) {
1664		/*
1665		 * The page lock is not required for wiring a page that does
1666		 * not belong to an object.
1667		 */
1668		atomic_add_int(&cnt.v_wire_count, 1);
1669		m->wire_count = 1;
1670	}
1671	/* Unmanaged pages don't use "act_count". */
1672	m->oflags = VPO_UNMANAGED;
1673	if (drop != NULL)
1674		vdrop(drop);
1675	if (vm_paging_needed())
1676		pagedaemon_wakeup();
1677	return (m);
1678}
1679
1680/*
1681 *	vm_wait:	(also see VM_WAIT macro)
1682 *
1683 *	Sleep until free pages are available for allocation.
1684 *	- Called in various places before memory allocations.
1685 */
1686void
1687vm_wait(void)
1688{
1689
1690	mtx_lock(&vm_page_queue_free_mtx);
1691	if (curproc == pageproc) {
1692		vm_pageout_pages_needed = 1;
1693		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1694		    PDROP | PSWP, "VMWait", 0);
1695	} else {
1696		if (!vm_pages_needed) {
1697			vm_pages_needed = 1;
1698			wakeup(&vm_pages_needed);
1699		}
1700		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1701		    "vmwait", 0);
1702	}
1703}
1704
1705/*
1706 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1707 *
1708 *	Sleep until free pages are available for allocation.
1709 *	- Called only in vm_fault so that processes page faulting
1710 *	  can be easily tracked.
1711 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1712 *	  processes will be able to grab memory first.  Do not change
1713 *	  this balance without careful testing first.
1714 */
1715void
1716vm_waitpfault(void)
1717{
1718
1719	mtx_lock(&vm_page_queue_free_mtx);
1720	if (!vm_pages_needed) {
1721		vm_pages_needed = 1;
1722		wakeup(&vm_pages_needed);
1723	}
1724	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1725	    "pfault", 0);
1726}
1727
1728struct vm_pagequeue *
1729vm_page_pagequeue(vm_page_t m)
1730{
1731
1732	return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
1733}
1734
1735/*
1736 *	vm_page_dequeue:
1737 *
1738 *	Remove the given page from its current page queue.
1739 *
1740 *	The page must be locked.
1741 */
1742void
1743vm_page_dequeue(vm_page_t m)
1744{
1745	struct vm_pagequeue *pq;
1746
1747	vm_page_lock_assert(m, MA_OWNED);
1748	KASSERT(m->queue != PQ_NONE,
1749	    ("vm_page_dequeue: page %p is not queued", m));
1750	pq = vm_page_pagequeue(m);
1751	vm_pagequeue_lock(pq);
1752	m->queue = PQ_NONE;
1753	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1754	vm_pagequeue_cnt_dec(pq);
1755	vm_pagequeue_unlock(pq);
1756}
1757
1758/*
1759 *	vm_page_dequeue_locked:
1760 *
1761 *	Remove the given page from its current page queue.
1762 *
1763 *	The page and page queue must be locked.
1764 */
1765void
1766vm_page_dequeue_locked(vm_page_t m)
1767{
1768	struct vm_pagequeue *pq;
1769
1770	vm_page_lock_assert(m, MA_OWNED);
1771	pq = vm_page_pagequeue(m);
1772	vm_pagequeue_assert_locked(pq);
1773	m->queue = PQ_NONE;
1774	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1775	vm_pagequeue_cnt_dec(pq);
1776}
1777
1778/*
1779 *	vm_page_enqueue:
1780 *
1781 *	Add the given page to the specified page queue.
1782 *
1783 *	The page must be locked.
1784 */
1785static void
1786vm_page_enqueue(int queue, vm_page_t m)
1787{
1788	struct vm_pagequeue *pq;
1789
1790	vm_page_lock_assert(m, MA_OWNED);
1791	pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
1792	vm_pagequeue_lock(pq);
1793	m->queue = queue;
1794	TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
1795	vm_pagequeue_cnt_inc(pq);
1796	vm_pagequeue_unlock(pq);
1797}
1798
1799/*
1800 *	vm_page_requeue:
1801 *
1802 *	Move the given page to the tail of its current page queue.
1803 *
1804 *	The page must be locked.
1805 */
1806void
1807vm_page_requeue(vm_page_t m)
1808{
1809	struct vm_pagequeue *pq;
1810
1811	vm_page_lock_assert(m, MA_OWNED);
1812	KASSERT(m->queue != PQ_NONE,
1813	    ("vm_page_requeue: page %p is not queued", m));
1814	pq = vm_page_pagequeue(m);
1815	vm_pagequeue_lock(pq);
1816	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1817	TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
1818	vm_pagequeue_unlock(pq);
1819}
1820
1821/*
1822 *	vm_page_requeue_locked:
1823 *
1824 *	Move the given page to the tail of its current page queue.
1825 *
1826 *	The page queue must be locked.
1827 */
1828void
1829vm_page_requeue_locked(vm_page_t m)
1830{
1831	struct vm_pagequeue *pq;
1832
1833	KASSERT(m->queue != PQ_NONE,
1834	    ("vm_page_requeue_locked: page %p is not queued", m));
1835	pq = vm_page_pagequeue(m);
1836	vm_pagequeue_assert_locked(pq);
1837	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1838	TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
1839}
1840
1841/*
1842 *	vm_page_activate:
1843 *
1844 *	Put the specified page on the active list (if appropriate).
1845 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1846 *	mess with it.
1847 *
1848 *	The page must be locked.
1849 */
1850void
1851vm_page_activate(vm_page_t m)
1852{
1853	int queue;
1854
1855	vm_page_lock_assert(m, MA_OWNED);
1856	if ((queue = m->queue) != PQ_ACTIVE) {
1857		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
1858			if (m->act_count < ACT_INIT)
1859				m->act_count = ACT_INIT;
1860			if (queue != PQ_NONE)
1861				vm_page_dequeue(m);
1862			vm_page_enqueue(PQ_ACTIVE, m);
1863		} else
1864			KASSERT(queue == PQ_NONE,
1865			    ("vm_page_activate: wired page %p is queued", m));
1866	} else {
1867		if (m->act_count < ACT_INIT)
1868			m->act_count = ACT_INIT;
1869	}
1870}
1871
1872/*
1873 *	vm_page_free_wakeup:
1874 *
1875 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1876 *	routine is called when a page has been added to the cache or free
1877 *	queues.
1878 *
1879 *	The page queues must be locked.
1880 */
1881static inline void
1882vm_page_free_wakeup(void)
1883{
1884
1885	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1886	/*
1887	 * if pageout daemon needs pages, then tell it that there are
1888	 * some free.
1889	 */
1890	if (vm_pageout_pages_needed &&
1891	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1892		wakeup(&vm_pageout_pages_needed);
1893		vm_pageout_pages_needed = 0;
1894	}
1895	/*
1896	 * wakeup processes that are waiting on memory if we hit a
1897	 * high water mark. And wakeup scheduler process if we have
1898	 * lots of memory. this process will swapin processes.
1899	 */
1900	if (vm_pages_needed && !vm_page_count_min()) {
1901		vm_pages_needed = 0;
1902		wakeup(&cnt.v_free_count);
1903	}
1904}
1905
1906/*
1907 *	vm_page_free_toq:
1908 *
1909 *	Returns the given page to the free list,
1910 *	disassociating it with any VM object.
1911 *
1912 *	The object must be locked.  The page must be locked if it is managed.
1913 */
1914void
1915vm_page_free_toq(vm_page_t m)
1916{
1917
1918	if ((m->oflags & VPO_UNMANAGED) == 0) {
1919		vm_page_lock_assert(m, MA_OWNED);
1920		KASSERT(!pmap_page_is_mapped(m),
1921		    ("vm_page_free_toq: freeing mapped page %p", m));
1922	} else
1923		KASSERT(m->queue == PQ_NONE,
1924		    ("vm_page_free_toq: unmanaged page %p is queued", m));
1925	PCPU_INC(cnt.v_tfree);
1926
1927	if (VM_PAGE_IS_FREE(m))
1928		panic("vm_page_free: freeing free page %p", m);
1929	else if (m->busy != 0)
1930		panic("vm_page_free: freeing busy page %p", m);
1931
1932	/*
1933	 * Unqueue, then remove page.  Note that we cannot destroy
1934	 * the page here because we do not want to call the pager's
1935	 * callback routine until after we've put the page on the
1936	 * appropriate free queue.
1937	 */
1938	vm_page_remque(m);
1939	vm_page_remove(m);
1940
1941	/*
1942	 * If fictitious remove object association and
1943	 * return, otherwise delay object association removal.
1944	 */
1945	if ((m->flags & PG_FICTITIOUS) != 0) {
1946		return;
1947	}
1948
1949	m->valid = 0;
1950	vm_page_undirty(m);
1951
1952	if (m->wire_count != 0)
1953		panic("vm_page_free: freeing wired page %p", m);
1954	if (m->hold_count != 0) {
1955		m->flags &= ~PG_ZERO;
1956		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
1957		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
1958		m->flags |= PG_UNHOLDFREE;
1959	} else {
1960		/*
1961		 * Restore the default memory attribute to the page.
1962		 */
1963		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1964			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1965
1966		/*
1967		 * Insert the page into the physical memory allocator's
1968		 * cache/free page queues.
1969		 */
1970		mtx_lock(&vm_page_queue_free_mtx);
1971		m->flags |= PG_FREE;
1972		vm_phys_freecnt_adj(m, 1);
1973#if VM_NRESERVLEVEL > 0
1974		if (!vm_reserv_free_page(m))
1975#else
1976		if (TRUE)
1977#endif
1978			vm_phys_free_pages(m, 0);
1979		if ((m->flags & PG_ZERO) != 0)
1980			++vm_page_zero_count;
1981		else
1982			vm_page_zero_idle_wakeup();
1983		vm_page_free_wakeup();
1984		mtx_unlock(&vm_page_queue_free_mtx);
1985	}
1986}
1987
1988/*
1989 *	vm_page_wire:
1990 *
1991 *	Mark this page as wired down by yet
1992 *	another map, removing it from paging queues
1993 *	as necessary.
1994 *
1995 *	If the page is fictitious, then its wire count must remain one.
1996 *
1997 *	The page must be locked.
1998 */
1999void
2000vm_page_wire(vm_page_t m)
2001{
2002
2003	/*
2004	 * Only bump the wire statistics if the page is not already wired,
2005	 * and only unqueue the page if it is on some queue (if it is unmanaged
2006	 * it is already off the queues).
2007	 */
2008	vm_page_lock_assert(m, MA_OWNED);
2009	if ((m->flags & PG_FICTITIOUS) != 0) {
2010		KASSERT(m->wire_count == 1,
2011		    ("vm_page_wire: fictitious page %p's wire count isn't one",
2012		    m));
2013		return;
2014	}
2015	if (m->wire_count == 0) {
2016		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
2017		    m->queue == PQ_NONE,
2018		    ("vm_page_wire: unmanaged page %p is queued", m));
2019		vm_page_remque(m);
2020		atomic_add_int(&cnt.v_wire_count, 1);
2021	}
2022	m->wire_count++;
2023	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2024}
2025
2026/*
2027 * vm_page_unwire:
2028 *
2029 * Release one wiring of the specified page, potentially enabling it to be
2030 * paged again.  If paging is enabled, then the value of the parameter
2031 * "activate" determines to which queue the page is added.  If "activate" is
2032 * non-zero, then the page is added to the active queue.  Otherwise, it is
2033 * added to the inactive queue.
2034 *
2035 * However, unless the page belongs to an object, it is not enqueued because
2036 * it cannot be paged out.
2037 *
2038 * If a page is fictitious, then its wire count must always be one.
2039 *
2040 * A managed page must be locked.
2041 */
2042void
2043vm_page_unwire(vm_page_t m, int activate)
2044{
2045
2046	if ((m->oflags & VPO_UNMANAGED) == 0)
2047		vm_page_lock_assert(m, MA_OWNED);
2048	if ((m->flags & PG_FICTITIOUS) != 0) {
2049		KASSERT(m->wire_count == 1,
2050	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2051		return;
2052	}
2053	if (m->wire_count > 0) {
2054		m->wire_count--;
2055		if (m->wire_count == 0) {
2056			atomic_subtract_int(&cnt.v_wire_count, 1);
2057			if ((m->oflags & VPO_UNMANAGED) != 0 ||
2058			    m->object == NULL)
2059				return;
2060			if (!activate)
2061				m->flags &= ~PG_WINATCFLS;
2062			vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m);
2063		}
2064	} else
2065		panic("vm_page_unwire: page %p's wire count is zero", m);
2066}
2067
2068/*
2069 * Move the specified page to the inactive queue.
2070 *
2071 * Many pages placed on the inactive queue should actually go
2072 * into the cache, but it is difficult to figure out which.  What
2073 * we do instead, if the inactive target is well met, is to put
2074 * clean pages at the head of the inactive queue instead of the tail.
2075 * This will cause them to be moved to the cache more quickly and
2076 * if not actively re-referenced, reclaimed more quickly.  If we just
2077 * stick these pages at the end of the inactive queue, heavy filesystem
2078 * meta-data accesses can cause an unnecessary paging load on memory bound
2079 * processes.  This optimization causes one-time-use metadata to be
2080 * reused more quickly.
2081 *
2082 * Normally athead is 0 resulting in LRU operation.  athead is set
2083 * to 1 if we want this page to be 'as if it were placed in the cache',
2084 * except without unmapping it from the process address space.
2085 *
2086 * The page must be locked.
2087 */
2088static inline void
2089_vm_page_deactivate(vm_page_t m, int athead)
2090{
2091	struct vm_pagequeue *pq;
2092	int queue;
2093
2094	vm_page_lock_assert(m, MA_OWNED);
2095
2096	/*
2097	 * Ignore if already inactive.
2098	 */
2099	if ((queue = m->queue) == PQ_INACTIVE)
2100		return;
2101	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2102		if (queue != PQ_NONE)
2103			vm_page_dequeue(m);
2104		m->flags &= ~PG_WINATCFLS;
2105		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
2106		vm_pagequeue_lock(pq);
2107		m->queue = PQ_INACTIVE;
2108		if (athead)
2109			TAILQ_INSERT_HEAD(&pq->pq_pl, m, pageq);
2110		else
2111			TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
2112		vm_pagequeue_cnt_inc(pq);
2113		vm_pagequeue_unlock(pq);
2114	}
2115}
2116
2117/*
2118 * Move the specified page to the inactive queue.
2119 *
2120 * The page must be locked.
2121 */
2122void
2123vm_page_deactivate(vm_page_t m)
2124{
2125
2126	_vm_page_deactivate(m, 0);
2127}
2128
2129/*
2130 * vm_page_try_to_cache:
2131 *
2132 * Returns 0 on failure, 1 on success
2133 */
2134int
2135vm_page_try_to_cache(vm_page_t m)
2136{
2137
2138	vm_page_lock_assert(m, MA_OWNED);
2139	VM_OBJECT_ASSERT_WLOCKED(m->object);
2140	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2141	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2142		return (0);
2143	pmap_remove_all(m);
2144	if (m->dirty)
2145		return (0);
2146	vm_page_cache(m);
2147	return (1);
2148}
2149
2150/*
2151 * vm_page_try_to_free()
2152 *
2153 *	Attempt to free the page.  If we cannot free it, we do nothing.
2154 *	1 is returned on success, 0 on failure.
2155 */
2156int
2157vm_page_try_to_free(vm_page_t m)
2158{
2159
2160	vm_page_lock_assert(m, MA_OWNED);
2161	if (m->object != NULL)
2162		VM_OBJECT_ASSERT_WLOCKED(m->object);
2163	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2164	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2165		return (0);
2166	pmap_remove_all(m);
2167	if (m->dirty)
2168		return (0);
2169	vm_page_free(m);
2170	return (1);
2171}
2172
2173/*
2174 * vm_page_cache
2175 *
2176 * Put the specified page onto the page cache queue (if appropriate).
2177 *
2178 * The object and page must be locked.
2179 */
2180void
2181vm_page_cache(vm_page_t m)
2182{
2183	vm_object_t object;
2184	boolean_t cache_was_empty;
2185
2186	vm_page_lock_assert(m, MA_OWNED);
2187	object = m->object;
2188	VM_OBJECT_ASSERT_WLOCKED(object);
2189	if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) || m->busy ||
2190	    m->hold_count || m->wire_count)
2191		panic("vm_page_cache: attempting to cache busy page");
2192	KASSERT(!pmap_page_is_mapped(m),
2193	    ("vm_page_cache: page %p is mapped", m));
2194	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
2195	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2196	    (object->type == OBJT_SWAP &&
2197	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2198		/*
2199		 * Hypothesis: A cache-elgible page belonging to a
2200		 * default object or swap object but without a backing
2201		 * store must be zero filled.
2202		 */
2203		vm_page_free(m);
2204		return;
2205	}
2206	KASSERT((m->flags & PG_CACHED) == 0,
2207	    ("vm_page_cache: page %p is already cached", m));
2208	PCPU_INC(cnt.v_tcached);
2209
2210	/*
2211	 * Remove the page from the paging queues.
2212	 */
2213	vm_page_remque(m);
2214
2215	/*
2216	 * Remove the page from the object's collection of resident
2217	 * pages.
2218	 */
2219	vm_radix_remove(&object->rtree, m->pindex);
2220	TAILQ_REMOVE(&object->memq, m, listq);
2221	object->resident_page_count--;
2222
2223	/*
2224	 * Restore the default memory attribute to the page.
2225	 */
2226	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2227		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2228
2229	/*
2230	 * Insert the page into the object's collection of cached pages
2231	 * and the physical memory allocator's cache/free page queues.
2232	 */
2233	m->flags &= ~PG_ZERO;
2234	mtx_lock(&vm_page_queue_free_mtx);
2235	m->flags |= PG_CACHED;
2236	cnt.v_cache_count++;
2237	cache_was_empty = vm_radix_is_empty(&object->cache);
2238	vm_radix_insert(&object->cache, m);
2239#if VM_NRESERVLEVEL > 0
2240	if (!vm_reserv_free_page(m)) {
2241#else
2242	if (TRUE) {
2243#endif
2244		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2245		vm_phys_free_pages(m, 0);
2246	}
2247	vm_page_free_wakeup();
2248	mtx_unlock(&vm_page_queue_free_mtx);
2249
2250	/*
2251	 * Increment the vnode's hold count if this is the object's only
2252	 * cached page.  Decrement the vnode's hold count if this was
2253	 * the object's only resident page.
2254	 */
2255	if (object->type == OBJT_VNODE) {
2256		if (cache_was_empty && object->resident_page_count != 0)
2257			vhold(object->handle);
2258		else if (!cache_was_empty && object->resident_page_count == 0)
2259			vdrop(object->handle);
2260	}
2261}
2262
2263/*
2264 * vm_page_advise
2265 *
2266 *	Cache, deactivate, or do nothing as appropriate.  This routine
2267 *	is used by madvise().
2268 *
2269 *	Generally speaking we want to move the page into the cache so
2270 *	it gets reused quickly.  However, this can result in a silly syndrome
2271 *	due to the page recycling too quickly.  Small objects will not be
2272 *	fully cached.  On the other hand, if we move the page to the inactive
2273 *	queue we wind up with a problem whereby very large objects
2274 *	unnecessarily blow away our inactive and cache queues.
2275 *
2276 *	The solution is to move the pages based on a fixed weighting.  We
2277 *	either leave them alone, deactivate them, or move them to the cache,
2278 *	where moving them to the cache has the highest weighting.
2279 *	By forcing some pages into other queues we eventually force the
2280 *	system to balance the queues, potentially recovering other unrelated
2281 *	space from active.  The idea is to not force this to happen too
2282 *	often.
2283 *
2284 *	The object and page must be locked.
2285 */
2286void
2287vm_page_advise(vm_page_t m, int advice)
2288{
2289	int dnw, head;
2290
2291	vm_page_assert_locked(m);
2292	VM_OBJECT_ASSERT_WLOCKED(m->object);
2293	if (advice == MADV_FREE) {
2294		/*
2295		 * Mark the page clean.  This will allow the page to be freed
2296		 * up by the system.  However, such pages are often reused
2297		 * quickly by malloc() so we do not do anything that would
2298		 * cause a page fault if we can help it.
2299		 *
2300		 * Specifically, we do not try to actually free the page now
2301		 * nor do we try to put it in the cache (which would cause a
2302		 * page fault on reuse).
2303		 *
2304		 * But we do make the page is freeable as we can without
2305		 * actually taking the step of unmapping it.
2306		 */
2307		pmap_clear_modify(m);
2308		m->dirty = 0;
2309		m->act_count = 0;
2310	} else if (advice != MADV_DONTNEED)
2311		return;
2312	dnw = PCPU_GET(dnweight);
2313	PCPU_INC(dnweight);
2314
2315	/*
2316	 * Occasionally leave the page alone.
2317	 */
2318	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2319		if (m->act_count >= ACT_INIT)
2320			--m->act_count;
2321		return;
2322	}
2323
2324	/*
2325	 * Clear any references to the page.  Otherwise, the page daemon will
2326	 * immediately reactivate the page.
2327	 *
2328	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
2329	 * pmap operation, such as pmap_remove(), could clear a reference in
2330	 * the pmap and set PGA_REFERENCED on the page before the
2331	 * pmap_clear_reference() had completed.  Consequently, the page would
2332	 * appear referenced based upon an old reference that occurred before
2333	 * this function ran.
2334	 */
2335	pmap_clear_reference(m);
2336	vm_page_aflag_clear(m, PGA_REFERENCED);
2337
2338	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
2339		vm_page_dirty(m);
2340
2341	if (m->dirty || (dnw & 0x0070) == 0) {
2342		/*
2343		 * Deactivate the page 3 times out of 32.
2344		 */
2345		head = 0;
2346	} else {
2347		/*
2348		 * Cache the page 28 times out of every 32.  Note that
2349		 * the page is deactivated instead of cached, but placed
2350		 * at the head of the queue instead of the tail.
2351		 */
2352		head = 1;
2353	}
2354	_vm_page_deactivate(m, head);
2355}
2356
2357/*
2358 * Grab a page, waiting until we are waken up due to the page
2359 * changing state.  We keep on waiting, if the page continues
2360 * to be in the object.  If the page doesn't exist, first allocate it
2361 * and then conditionally zero it.
2362 *
2363 * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
2364 * to facilitate its eventual removal.
2365 *
2366 * This routine may sleep.
2367 *
2368 * The object must be locked on entry.  The lock will, however, be released
2369 * and reacquired if the routine sleeps.
2370 */
2371vm_page_t
2372vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2373{
2374	vm_page_t m;
2375
2376	VM_OBJECT_ASSERT_WLOCKED(object);
2377	KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
2378	    ("vm_page_grab: VM_ALLOC_RETRY is required"));
2379retrylookup:
2380	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2381		if ((m->oflags & VPO_BUSY) != 0 ||
2382		    ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
2383			/*
2384			 * Reference the page before unlocking and
2385			 * sleeping so that the page daemon is less
2386			 * likely to reclaim it.
2387			 */
2388			vm_page_aflag_set(m, PGA_REFERENCED);
2389			vm_page_sleep(m, "pgrbwt");
2390			goto retrylookup;
2391		} else {
2392			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2393				vm_page_lock(m);
2394				vm_page_wire(m);
2395				vm_page_unlock(m);
2396			}
2397			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2398				vm_page_busy(m);
2399			return (m);
2400		}
2401	}
2402	m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
2403	    VM_ALLOC_IGN_SBUSY));
2404	if (m == NULL) {
2405		VM_OBJECT_WUNLOCK(object);
2406		VM_WAIT;
2407		VM_OBJECT_WLOCK(object);
2408		goto retrylookup;
2409	} else if (m->valid != 0)
2410		return (m);
2411	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2412		pmap_zero_page(m);
2413	return (m);
2414}
2415
2416/*
2417 * Mapping function for valid or dirty bits in a page.
2418 *
2419 * Inputs are required to range within a page.
2420 */
2421vm_page_bits_t
2422vm_page_bits(int base, int size)
2423{
2424	int first_bit;
2425	int last_bit;
2426
2427	KASSERT(
2428	    base + size <= PAGE_SIZE,
2429	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2430	);
2431
2432	if (size == 0)		/* handle degenerate case */
2433		return (0);
2434
2435	first_bit = base >> DEV_BSHIFT;
2436	last_bit = (base + size - 1) >> DEV_BSHIFT;
2437
2438	return (((vm_page_bits_t)2 << last_bit) -
2439	    ((vm_page_bits_t)1 << first_bit));
2440}
2441
2442/*
2443 *	vm_page_set_valid_range:
2444 *
2445 *	Sets portions of a page valid.  The arguments are expected
2446 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2447 *	of any partial chunks touched by the range.  The invalid portion of
2448 *	such chunks will be zeroed.
2449 *
2450 *	(base + size) must be less then or equal to PAGE_SIZE.
2451 */
2452void
2453vm_page_set_valid_range(vm_page_t m, int base, int size)
2454{
2455	int endoff, frag;
2456
2457	VM_OBJECT_ASSERT_WLOCKED(m->object);
2458	if (size == 0)	/* handle degenerate case */
2459		return;
2460
2461	/*
2462	 * If the base is not DEV_BSIZE aligned and the valid
2463	 * bit is clear, we have to zero out a portion of the
2464	 * first block.
2465	 */
2466	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2467	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2468		pmap_zero_page_area(m, frag, base - frag);
2469
2470	/*
2471	 * If the ending offset is not DEV_BSIZE aligned and the
2472	 * valid bit is clear, we have to zero out a portion of
2473	 * the last block.
2474	 */
2475	endoff = base + size;
2476	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2477	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2478		pmap_zero_page_area(m, endoff,
2479		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2480
2481	/*
2482	 * Assert that no previously invalid block that is now being validated
2483	 * is already dirty.
2484	 */
2485	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2486	    ("vm_page_set_valid_range: page %p is dirty", m));
2487
2488	/*
2489	 * Set valid bits inclusive of any overlap.
2490	 */
2491	m->valid |= vm_page_bits(base, size);
2492}
2493
2494/*
2495 * Clear the given bits from the specified page's dirty field.
2496 */
2497static __inline void
2498vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2499{
2500	uintptr_t addr;
2501#if PAGE_SIZE < 16384
2502	int shift;
2503#endif
2504
2505	/*
2506	 * If the object is locked and the page is neither VPO_BUSY nor
2507	 * write mapped, then the page's dirty field cannot possibly be
2508	 * set by a concurrent pmap operation.
2509	 */
2510	VM_OBJECT_ASSERT_WLOCKED(m->object);
2511	if ((m->oflags & VPO_BUSY) == 0 && !pmap_page_is_write_mapped(m))
2512		m->dirty &= ~pagebits;
2513	else {
2514		/*
2515		 * The pmap layer can call vm_page_dirty() without
2516		 * holding a distinguished lock.  The combination of
2517		 * the object's lock and an atomic operation suffice
2518		 * to guarantee consistency of the page dirty field.
2519		 *
2520		 * For PAGE_SIZE == 32768 case, compiler already
2521		 * properly aligns the dirty field, so no forcible
2522		 * alignment is needed. Only require existence of
2523		 * atomic_clear_64 when page size is 32768.
2524		 */
2525		addr = (uintptr_t)&m->dirty;
2526#if PAGE_SIZE == 32768
2527		atomic_clear_64((uint64_t *)addr, pagebits);
2528#elif PAGE_SIZE == 16384
2529		atomic_clear_32((uint32_t *)addr, pagebits);
2530#else		/* PAGE_SIZE <= 8192 */
2531		/*
2532		 * Use a trick to perform a 32-bit atomic on the
2533		 * containing aligned word, to not depend on the existence
2534		 * of atomic_clear_{8, 16}.
2535		 */
2536		shift = addr & (sizeof(uint32_t) - 1);
2537#if BYTE_ORDER == BIG_ENDIAN
2538		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2539#else
2540		shift *= NBBY;
2541#endif
2542		addr &= ~(sizeof(uint32_t) - 1);
2543		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2544#endif		/* PAGE_SIZE */
2545	}
2546}
2547
2548/*
2549 *	vm_page_set_validclean:
2550 *
2551 *	Sets portions of a page valid and clean.  The arguments are expected
2552 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2553 *	of any partial chunks touched by the range.  The invalid portion of
2554 *	such chunks will be zero'd.
2555 *
2556 *	(base + size) must be less then or equal to PAGE_SIZE.
2557 */
2558void
2559vm_page_set_validclean(vm_page_t m, int base, int size)
2560{
2561	vm_page_bits_t oldvalid, pagebits;
2562	int endoff, frag;
2563
2564	VM_OBJECT_ASSERT_WLOCKED(m->object);
2565	if (size == 0)	/* handle degenerate case */
2566		return;
2567
2568	/*
2569	 * If the base is not DEV_BSIZE aligned and the valid
2570	 * bit is clear, we have to zero out a portion of the
2571	 * first block.
2572	 */
2573	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2574	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2575		pmap_zero_page_area(m, frag, base - frag);
2576
2577	/*
2578	 * If the ending offset is not DEV_BSIZE aligned and the
2579	 * valid bit is clear, we have to zero out a portion of
2580	 * the last block.
2581	 */
2582	endoff = base + size;
2583	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2584	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2585		pmap_zero_page_area(m, endoff,
2586		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2587
2588	/*
2589	 * Set valid, clear dirty bits.  If validating the entire
2590	 * page we can safely clear the pmap modify bit.  We also
2591	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2592	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2593	 * be set again.
2594	 *
2595	 * We set valid bits inclusive of any overlap, but we can only
2596	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2597	 * the range.
2598	 */
2599	oldvalid = m->valid;
2600	pagebits = vm_page_bits(base, size);
2601	m->valid |= pagebits;
2602#if 0	/* NOT YET */
2603	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2604		frag = DEV_BSIZE - frag;
2605		base += frag;
2606		size -= frag;
2607		if (size < 0)
2608			size = 0;
2609	}
2610	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2611#endif
2612	if (base == 0 && size == PAGE_SIZE) {
2613		/*
2614		 * The page can only be modified within the pmap if it is
2615		 * mapped, and it can only be mapped if it was previously
2616		 * fully valid.
2617		 */
2618		if (oldvalid == VM_PAGE_BITS_ALL)
2619			/*
2620			 * Perform the pmap_clear_modify() first.  Otherwise,
2621			 * a concurrent pmap operation, such as
2622			 * pmap_protect(), could clear a modification in the
2623			 * pmap and set the dirty field on the page before
2624			 * pmap_clear_modify() had begun and after the dirty
2625			 * field was cleared here.
2626			 */
2627			pmap_clear_modify(m);
2628		m->dirty = 0;
2629		m->oflags &= ~VPO_NOSYNC;
2630	} else if (oldvalid != VM_PAGE_BITS_ALL)
2631		m->dirty &= ~pagebits;
2632	else
2633		vm_page_clear_dirty_mask(m, pagebits);
2634}
2635
2636void
2637vm_page_clear_dirty(vm_page_t m, int base, int size)
2638{
2639
2640	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2641}
2642
2643/*
2644 *	vm_page_set_invalid:
2645 *
2646 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2647 *	valid and dirty bits for the effected areas are cleared.
2648 */
2649void
2650vm_page_set_invalid(vm_page_t m, int base, int size)
2651{
2652	vm_page_bits_t bits;
2653
2654	VM_OBJECT_ASSERT_WLOCKED(m->object);
2655	bits = vm_page_bits(base, size);
2656	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2657		pmap_remove_all(m);
2658	KASSERT(!pmap_page_is_mapped(m),
2659	    ("vm_page_set_invalid: page %p is mapped", m));
2660	m->valid &= ~bits;
2661	m->dirty &= ~bits;
2662}
2663
2664/*
2665 * vm_page_zero_invalid()
2666 *
2667 *	The kernel assumes that the invalid portions of a page contain
2668 *	garbage, but such pages can be mapped into memory by user code.
2669 *	When this occurs, we must zero out the non-valid portions of the
2670 *	page so user code sees what it expects.
2671 *
2672 *	Pages are most often semi-valid when the end of a file is mapped
2673 *	into memory and the file's size is not page aligned.
2674 */
2675void
2676vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2677{
2678	int b;
2679	int i;
2680
2681	VM_OBJECT_ASSERT_WLOCKED(m->object);
2682	/*
2683	 * Scan the valid bits looking for invalid sections that
2684	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2685	 * valid bit may be set ) have already been zerod by
2686	 * vm_page_set_validclean().
2687	 */
2688	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2689		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2690		    (m->valid & ((vm_page_bits_t)1 << i))) {
2691			if (i > b) {
2692				pmap_zero_page_area(m,
2693				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2694			}
2695			b = i + 1;
2696		}
2697	}
2698
2699	/*
2700	 * setvalid is TRUE when we can safely set the zero'd areas
2701	 * as being valid.  We can do this if there are no cache consistancy
2702	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2703	 */
2704	if (setvalid)
2705		m->valid = VM_PAGE_BITS_ALL;
2706}
2707
2708/*
2709 *	vm_page_is_valid:
2710 *
2711 *	Is (partial) page valid?  Note that the case where size == 0
2712 *	will return FALSE in the degenerate case where the page is
2713 *	entirely invalid, and TRUE otherwise.
2714 */
2715int
2716vm_page_is_valid(vm_page_t m, int base, int size)
2717{
2718	vm_page_bits_t bits;
2719
2720	VM_OBJECT_ASSERT_WLOCKED(m->object);
2721	bits = vm_page_bits(base, size);
2722	return (m->valid != 0 && (m->valid & bits) == bits);
2723}
2724
2725/*
2726 * Set the page's dirty bits if the page is modified.
2727 */
2728void
2729vm_page_test_dirty(vm_page_t m)
2730{
2731
2732	VM_OBJECT_ASSERT_WLOCKED(m->object);
2733	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2734		vm_page_dirty(m);
2735}
2736
2737void
2738vm_page_lock_KBI(vm_page_t m, const char *file, int line)
2739{
2740
2741	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
2742}
2743
2744void
2745vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
2746{
2747
2748	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
2749}
2750
2751int
2752vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
2753{
2754
2755	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
2756}
2757
2758#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
2759void
2760vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
2761{
2762
2763	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
2764}
2765
2766void
2767vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
2768{
2769
2770	mtx_assert_(vm_page_lockptr(m), a, file, line);
2771}
2772#endif
2773
2774int so_zerocp_fullpage = 0;
2775
2776/*
2777 *	Replace the given page with a copy.  The copied page assumes
2778 *	the portion of the given page's "wire_count" that is not the
2779 *	responsibility of this copy-on-write mechanism.
2780 *
2781 *	The object containing the given page must have a non-zero
2782 *	paging-in-progress count and be locked.
2783 */
2784void
2785vm_page_cowfault(vm_page_t m)
2786{
2787	vm_page_t mnew;
2788	vm_object_t object;
2789	vm_pindex_t pindex;
2790
2791	vm_page_lock_assert(m, MA_OWNED);
2792	object = m->object;
2793	VM_OBJECT_ASSERT_WLOCKED(object);
2794	KASSERT(object->paging_in_progress != 0,
2795	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2796	    object));
2797	pindex = m->pindex;
2798
2799 retry_alloc:
2800	pmap_remove_all(m);
2801	vm_page_remove(m);
2802	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2803	if (mnew == NULL) {
2804		vm_page_insert(m, object, pindex);
2805		vm_page_unlock(m);
2806		VM_OBJECT_WUNLOCK(object);
2807		VM_WAIT;
2808		VM_OBJECT_WLOCK(object);
2809		if (m == vm_page_lookup(object, pindex)) {
2810			vm_page_lock(m);
2811			goto retry_alloc;
2812		} else {
2813			/*
2814			 * Page disappeared during the wait.
2815			 */
2816			return;
2817		}
2818	}
2819
2820	if (m->cow == 0) {
2821		/*
2822		 * check to see if we raced with an xmit complete when
2823		 * waiting to allocate a page.  If so, put things back
2824		 * the way they were
2825		 */
2826		vm_page_unlock(m);
2827		vm_page_lock(mnew);
2828		vm_page_free(mnew);
2829		vm_page_unlock(mnew);
2830		vm_page_insert(m, object, pindex);
2831	} else { /* clear COW & copy page */
2832		if (!so_zerocp_fullpage)
2833			pmap_copy_page(m, mnew);
2834		mnew->valid = VM_PAGE_BITS_ALL;
2835		vm_page_dirty(mnew);
2836		mnew->wire_count = m->wire_count - m->cow;
2837		m->wire_count = m->cow;
2838		vm_page_unlock(m);
2839	}
2840}
2841
2842void
2843vm_page_cowclear(vm_page_t m)
2844{
2845
2846	vm_page_lock_assert(m, MA_OWNED);
2847	if (m->cow) {
2848		m->cow--;
2849		/*
2850		 * let vm_fault add back write permission  lazily
2851		 */
2852	}
2853	/*
2854	 *  sf_buf_free() will free the page, so we needn't do it here
2855	 */
2856}
2857
2858int
2859vm_page_cowsetup(vm_page_t m)
2860{
2861
2862	vm_page_lock_assert(m, MA_OWNED);
2863	if ((m->flags & PG_FICTITIOUS) != 0 ||
2864	    (m->oflags & VPO_UNMANAGED) != 0 ||
2865	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYWLOCK(m->object))
2866		return (EBUSY);
2867	m->cow++;
2868	pmap_remove_write(m);
2869	VM_OBJECT_WUNLOCK(m->object);
2870	return (0);
2871}
2872
2873#ifdef INVARIANTS
2874void
2875vm_page_object_lock_assert(vm_page_t m)
2876{
2877
2878	/*
2879	 * Certain of the page's fields may only be modified by the
2880	 * holder of the containing object's lock or the setter of the
2881	 * page's VPO_BUSY flag.  Unfortunately, the setter of the
2882	 * VPO_BUSY flag is not recorded, and thus cannot be checked
2883	 * here.
2884	 */
2885	if (m->object != NULL && (m->oflags & VPO_BUSY) == 0)
2886		VM_OBJECT_ASSERT_WLOCKED(m->object);
2887}
2888#endif
2889
2890#include "opt_ddb.h"
2891#ifdef DDB
2892#include <sys/kernel.h>
2893
2894#include <ddb/ddb.h>
2895
2896DB_SHOW_COMMAND(page, vm_page_print_page_info)
2897{
2898	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2899	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2900	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2901	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2902	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2903	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2904	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2905	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2906	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2907	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2908}
2909
2910DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2911{
2912	int dom;
2913
2914	db_printf("pq_free %d pq_cache %d\n",
2915	    cnt.v_free_count, cnt.v_cache_count);
2916	for (dom = 0; dom < vm_ndomains; dom++) {
2917		db_printf(
2918	"dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
2919		    dom,
2920		    vm_dom[dom].vmd_page_count,
2921		    vm_dom[dom].vmd_free_count,
2922		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
2923		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
2924		    vm_dom[dom].vmd_pass);
2925	}
2926}
2927
2928DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
2929{
2930	vm_page_t m;
2931	boolean_t phys;
2932
2933	if (!have_addr) {
2934		db_printf("show pginfo addr\n");
2935		return;
2936	}
2937
2938	phys = strchr(modif, 'p') != NULL;
2939	if (phys)
2940		m = PHYS_TO_VM_PAGE(addr);
2941	else
2942		m = (vm_page_t)addr;
2943	db_printf(
2944    "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
2945    "  af 0x%x of 0x%x f 0x%x act %d busy %d valid 0x%x dirty 0x%x\n",
2946	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
2947	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
2948	    m->flags, m->act_count, m->busy, m->valid, m->dirty);
2949}
2950#endif /* DDB */
2951