vm_page.c revision 239040
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- a pageq mutex is required when adding or removing a page from a
67 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68 *	  busy state of a page.
69 *
70 *	- The object mutex is held when inserting or removing
71 *	  pages from an object (vm_page_insert() or vm_page_remove()).
72 *
73 */
74
75/*
76 *	Resident memory management module.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 239040 2012-08-04 18:16:43Z kib $");
81
82#include "opt_vm.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/lock.h>
87#include <sys/kernel.h>
88#include <sys/limits.h>
89#include <sys/malloc.h>
90#include <sys/msgbuf.h>
91#include <sys/mutex.h>
92#include <sys/proc.h>
93#include <sys/sysctl.h>
94#include <sys/vmmeter.h>
95#include <sys/vnode.h>
96
97#include <vm/vm.h>
98#include <vm/pmap.h>
99#include <vm/vm_param.h>
100#include <vm/vm_kern.h>
101#include <vm/vm_object.h>
102#include <vm/vm_page.h>
103#include <vm/vm_pageout.h>
104#include <vm/vm_pager.h>
105#include <vm/vm_phys.h>
106#include <vm/vm_reserv.h>
107#include <vm/vm_extern.h>
108#include <vm/uma.h>
109#include <vm/uma_int.h>
110
111#include <machine/md_var.h>
112
113/*
114 *	Associated with page of user-allocatable memory is a
115 *	page structure.
116 */
117
118struct vpgqueues vm_page_queues[PQ_COUNT];
119struct vpglocks vm_page_queue_lock;
120struct vpglocks vm_page_queue_free_lock;
121
122struct vpglocks	pa_lock[PA_LOCK_COUNT];
123
124vm_page_t vm_page_array;
125long vm_page_array_size;
126long first_page;
127int vm_page_zero_count;
128
129static int boot_pages = UMA_BOOT_PAGES;
130TUNABLE_INT("vm.boot_pages", &boot_pages);
131SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
132	"number of pages allocated for bootstrapping the VM system");
133
134static int pa_tryrelock_restart;
135SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
136    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
137
138static uma_zone_t fakepg_zone;
139
140static struct vnode *vm_page_alloc_init(vm_page_t m);
141static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
142static void vm_page_queue_remove(int queue, vm_page_t m);
143static void vm_page_enqueue(int queue, vm_page_t m);
144static void vm_page_init_fakepg(void *dummy);
145
146SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
147
148static void
149vm_page_init_fakepg(void *dummy)
150{
151
152	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
153	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
154}
155
156/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
157#if PAGE_SIZE == 32768
158#ifdef CTASSERT
159CTASSERT(sizeof(u_long) >= 8);
160#endif
161#endif
162
163/*
164 * Try to acquire a physical address lock while a pmap is locked.  If we
165 * fail to trylock we unlock and lock the pmap directly and cache the
166 * locked pa in *locked.  The caller should then restart their loop in case
167 * the virtual to physical mapping has changed.
168 */
169int
170vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
171{
172	vm_paddr_t lockpa;
173
174	lockpa = *locked;
175	*locked = pa;
176	if (lockpa) {
177		PA_LOCK_ASSERT(lockpa, MA_OWNED);
178		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
179			return (0);
180		PA_UNLOCK(lockpa);
181	}
182	if (PA_TRYLOCK(pa))
183		return (0);
184	PMAP_UNLOCK(pmap);
185	atomic_add_int(&pa_tryrelock_restart, 1);
186	PA_LOCK(pa);
187	PMAP_LOCK(pmap);
188	return (EAGAIN);
189}
190
191/*
192 *	vm_set_page_size:
193 *
194 *	Sets the page size, perhaps based upon the memory
195 *	size.  Must be called before any use of page-size
196 *	dependent functions.
197 */
198void
199vm_set_page_size(void)
200{
201	if (cnt.v_page_size == 0)
202		cnt.v_page_size = PAGE_SIZE;
203	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
204		panic("vm_set_page_size: page size not a power of two");
205}
206
207/*
208 *	vm_page_blacklist_lookup:
209 *
210 *	See if a physical address in this page has been listed
211 *	in the blacklist tunable.  Entries in the tunable are
212 *	separated by spaces or commas.  If an invalid integer is
213 *	encountered then the rest of the string is skipped.
214 */
215static int
216vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
217{
218	vm_paddr_t bad;
219	char *cp, *pos;
220
221	for (pos = list; *pos != '\0'; pos = cp) {
222		bad = strtoq(pos, &cp, 0);
223		if (*cp != '\0') {
224			if (*cp == ' ' || *cp == ',') {
225				cp++;
226				if (cp == pos)
227					continue;
228			} else
229				break;
230		}
231		if (pa == trunc_page(bad))
232			return (1);
233	}
234	return (0);
235}
236
237/*
238 *	vm_page_startup:
239 *
240 *	Initializes the resident memory module.
241 *
242 *	Allocates memory for the page cells, and
243 *	for the object/offset-to-page hash table headers.
244 *	Each page cell is initialized and placed on the free list.
245 */
246vm_offset_t
247vm_page_startup(vm_offset_t vaddr)
248{
249	vm_offset_t mapped;
250	vm_paddr_t page_range;
251	vm_paddr_t new_end;
252	int i;
253	vm_paddr_t pa;
254	vm_paddr_t last_pa;
255	char *list;
256
257	/* the biggest memory array is the second group of pages */
258	vm_paddr_t end;
259	vm_paddr_t biggestsize;
260	vm_paddr_t low_water, high_water;
261	int biggestone;
262
263	biggestsize = 0;
264	biggestone = 0;
265	vaddr = round_page(vaddr);
266
267	for (i = 0; phys_avail[i + 1]; i += 2) {
268		phys_avail[i] = round_page(phys_avail[i]);
269		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
270	}
271
272	low_water = phys_avail[0];
273	high_water = phys_avail[1];
274
275	for (i = 0; phys_avail[i + 1]; i += 2) {
276		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
277
278		if (size > biggestsize) {
279			biggestone = i;
280			biggestsize = size;
281		}
282		if (phys_avail[i] < low_water)
283			low_water = phys_avail[i];
284		if (phys_avail[i + 1] > high_water)
285			high_water = phys_avail[i + 1];
286	}
287
288#ifdef XEN
289	low_water = 0;
290#endif
291
292	end = phys_avail[biggestone+1];
293
294	/*
295	 * Initialize the page and queue locks.
296	 */
297	mtx_init(&vm_page_queue_mtx, "vm page queue", NULL, MTX_DEF |
298	    MTX_RECURSE);
299	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
300	for (i = 0; i < PA_LOCK_COUNT; i++)
301		mtx_init(&pa_lock[i].data, "vm page", NULL, MTX_DEF);
302
303	/*
304	 * Initialize the queue headers for the hold queue, the active queue,
305	 * and the inactive queue.
306	 */
307	for (i = 0; i < PQ_COUNT; i++)
308		TAILQ_INIT(&vm_page_queues[i].pl);
309	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
310	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
311	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
312
313	/*
314	 * Allocate memory for use when boot strapping the kernel memory
315	 * allocator.
316	 */
317	new_end = end - (boot_pages * UMA_SLAB_SIZE);
318	new_end = trunc_page(new_end);
319	mapped = pmap_map(&vaddr, new_end, end,
320	    VM_PROT_READ | VM_PROT_WRITE);
321	bzero((void *)mapped, end - new_end);
322	uma_startup((void *)mapped, boot_pages);
323
324#if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
325    defined(__mips__)
326	/*
327	 * Allocate a bitmap to indicate that a random physical page
328	 * needs to be included in a minidump.
329	 *
330	 * The amd64 port needs this to indicate which direct map pages
331	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
332	 *
333	 * However, i386 still needs this workspace internally within the
334	 * minidump code.  In theory, they are not needed on i386, but are
335	 * included should the sf_buf code decide to use them.
336	 */
337	last_pa = 0;
338	for (i = 0; dump_avail[i + 1] != 0; i += 2)
339		if (dump_avail[i + 1] > last_pa)
340			last_pa = dump_avail[i + 1];
341	page_range = last_pa / PAGE_SIZE;
342	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
343	new_end -= vm_page_dump_size;
344	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
345	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
346	bzero((void *)vm_page_dump, vm_page_dump_size);
347#endif
348#ifdef __amd64__
349	/*
350	 * Request that the physical pages underlying the message buffer be
351	 * included in a crash dump.  Since the message buffer is accessed
352	 * through the direct map, they are not automatically included.
353	 */
354	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
355	last_pa = pa + round_page(msgbufsize);
356	while (pa < last_pa) {
357		dump_add_page(pa);
358		pa += PAGE_SIZE;
359	}
360#endif
361	/*
362	 * Compute the number of pages of memory that will be available for
363	 * use (taking into account the overhead of a page structure per
364	 * page).
365	 */
366	first_page = low_water / PAGE_SIZE;
367#ifdef VM_PHYSSEG_SPARSE
368	page_range = 0;
369	for (i = 0; phys_avail[i + 1] != 0; i += 2)
370		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
371#elif defined(VM_PHYSSEG_DENSE)
372	page_range = high_water / PAGE_SIZE - first_page;
373#else
374#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
375#endif
376	end = new_end;
377
378	/*
379	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
380	 */
381	vaddr += PAGE_SIZE;
382
383	/*
384	 * Initialize the mem entry structures now, and put them in the free
385	 * queue.
386	 */
387	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
388	mapped = pmap_map(&vaddr, new_end, end,
389	    VM_PROT_READ | VM_PROT_WRITE);
390	vm_page_array = (vm_page_t) mapped;
391#if VM_NRESERVLEVEL > 0
392	/*
393	 * Allocate memory for the reservation management system's data
394	 * structures.
395	 */
396	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
397#endif
398#if defined(__amd64__) || defined(__mips__)
399	/*
400	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
401	 * like i386, so the pages must be tracked for a crashdump to include
402	 * this data.  This includes the vm_page_array and the early UMA
403	 * bootstrap pages.
404	 */
405	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
406		dump_add_page(pa);
407#endif
408	phys_avail[biggestone + 1] = new_end;
409
410	/*
411	 * Clear all of the page structures
412	 */
413	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
414	for (i = 0; i < page_range; i++)
415		vm_page_array[i].order = VM_NFREEORDER;
416	vm_page_array_size = page_range;
417
418	/*
419	 * Initialize the physical memory allocator.
420	 */
421	vm_phys_init();
422
423	/*
424	 * Add every available physical page that is not blacklisted to
425	 * the free lists.
426	 */
427	cnt.v_page_count = 0;
428	cnt.v_free_count = 0;
429	list = getenv("vm.blacklist");
430	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
431		pa = phys_avail[i];
432		last_pa = phys_avail[i + 1];
433		while (pa < last_pa) {
434			if (list != NULL &&
435			    vm_page_blacklist_lookup(list, pa))
436				printf("Skipping page with pa 0x%jx\n",
437				    (uintmax_t)pa);
438			else
439				vm_phys_add_page(pa);
440			pa += PAGE_SIZE;
441		}
442	}
443	freeenv(list);
444#if VM_NRESERVLEVEL > 0
445	/*
446	 * Initialize the reservation management system.
447	 */
448	vm_reserv_init();
449#endif
450	return (vaddr);
451}
452
453void
454vm_page_reference(vm_page_t m)
455{
456
457	vm_page_aflag_set(m, PGA_REFERENCED);
458}
459
460void
461vm_page_busy(vm_page_t m)
462{
463
464	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
465	KASSERT((m->oflags & VPO_BUSY) == 0,
466	    ("vm_page_busy: page already busy!!!"));
467	m->oflags |= VPO_BUSY;
468}
469
470/*
471 *      vm_page_flash:
472 *
473 *      wakeup anyone waiting for the page.
474 */
475void
476vm_page_flash(vm_page_t m)
477{
478
479	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
480	if (m->oflags & VPO_WANTED) {
481		m->oflags &= ~VPO_WANTED;
482		wakeup(m);
483	}
484}
485
486/*
487 *      vm_page_wakeup:
488 *
489 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
490 *      page.
491 *
492 */
493void
494vm_page_wakeup(vm_page_t m)
495{
496
497	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
498	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
499	m->oflags &= ~VPO_BUSY;
500	vm_page_flash(m);
501}
502
503void
504vm_page_io_start(vm_page_t m)
505{
506
507	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
508	m->busy++;
509}
510
511void
512vm_page_io_finish(vm_page_t m)
513{
514
515	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
516	KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m));
517	m->busy--;
518	if (m->busy == 0)
519		vm_page_flash(m);
520}
521
522/*
523 * Keep page from being freed by the page daemon
524 * much of the same effect as wiring, except much lower
525 * overhead and should be used only for *very* temporary
526 * holding ("wiring").
527 */
528void
529vm_page_hold(vm_page_t mem)
530{
531
532	vm_page_lock_assert(mem, MA_OWNED);
533        mem->hold_count++;
534}
535
536void
537vm_page_unhold(vm_page_t mem)
538{
539
540	vm_page_lock_assert(mem, MA_OWNED);
541	--mem->hold_count;
542	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
543	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
544		vm_page_free_toq(mem);
545}
546
547/*
548 *	vm_page_unhold_pages:
549 *
550 *	Unhold each of the pages that is referenced by the given array.
551 */
552void
553vm_page_unhold_pages(vm_page_t *ma, int count)
554{
555	struct mtx *mtx, *new_mtx;
556
557	mtx = NULL;
558	for (; count != 0; count--) {
559		/*
560		 * Avoid releasing and reacquiring the same page lock.
561		 */
562		new_mtx = vm_page_lockptr(*ma);
563		if (mtx != new_mtx) {
564			if (mtx != NULL)
565				mtx_unlock(mtx);
566			mtx = new_mtx;
567			mtx_lock(mtx);
568		}
569		vm_page_unhold(*ma);
570		ma++;
571	}
572	if (mtx != NULL)
573		mtx_unlock(mtx);
574}
575
576vm_page_t
577PHYS_TO_VM_PAGE(vm_paddr_t pa)
578{
579	vm_page_t m;
580
581#ifdef VM_PHYSSEG_SPARSE
582	m = vm_phys_paddr_to_vm_page(pa);
583	if (m == NULL)
584		m = vm_phys_fictitious_to_vm_page(pa);
585	return (m);
586#elif defined(VM_PHYSSEG_DENSE)
587	long pi;
588
589	pi = atop(pa);
590	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
591		m = &vm_page_array[pi - first_page];
592		return (m);
593	}
594	return (vm_phys_fictitious_to_vm_page(pa));
595#else
596#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
597#endif
598}
599
600/*
601 *	vm_page_getfake:
602 *
603 *	Create a fictitious page with the specified physical address and
604 *	memory attribute.  The memory attribute is the only the machine-
605 *	dependent aspect of a fictitious page that must be initialized.
606 */
607vm_page_t
608vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
609{
610	vm_page_t m;
611
612	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
613	vm_page_initfake(m, paddr, memattr);
614	return (m);
615}
616
617void
618vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
619{
620
621	if ((m->flags & PG_FICTITIOUS) != 0) {
622		/*
623		 * The page's memattr might have changed since the
624		 * previous initialization.  Update the pmap to the
625		 * new memattr.
626		 */
627		goto memattr;
628	}
629	m->phys_addr = paddr;
630	m->queue = PQ_NONE;
631	/* Fictitious pages don't use "segind". */
632	m->flags = PG_FICTITIOUS;
633	/* Fictitious pages don't use "order" or "pool". */
634	m->oflags = VPO_BUSY | VPO_UNMANAGED;
635	m->wire_count = 1;
636memattr:
637	pmap_page_set_memattr(m, memattr);
638}
639
640/*
641 *	vm_page_putfake:
642 *
643 *	Release a fictitious page.
644 */
645void
646vm_page_putfake(vm_page_t m)
647{
648
649	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
650	KASSERT((m->flags & PG_FICTITIOUS) != 0,
651	    ("vm_page_putfake: bad page %p", m));
652	uma_zfree(fakepg_zone, m);
653}
654
655/*
656 *	vm_page_updatefake:
657 *
658 *	Update the given fictitious page to the specified physical address and
659 *	memory attribute.
660 */
661void
662vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
663{
664
665	KASSERT((m->flags & PG_FICTITIOUS) != 0,
666	    ("vm_page_updatefake: bad page %p", m));
667	m->phys_addr = paddr;
668	pmap_page_set_memattr(m, memattr);
669}
670
671/*
672 *	vm_page_free:
673 *
674 *	Free a page.
675 */
676void
677vm_page_free(vm_page_t m)
678{
679
680	m->flags &= ~PG_ZERO;
681	vm_page_free_toq(m);
682}
683
684/*
685 *	vm_page_free_zero:
686 *
687 *	Free a page to the zerod-pages queue
688 */
689void
690vm_page_free_zero(vm_page_t m)
691{
692
693	m->flags |= PG_ZERO;
694	vm_page_free_toq(m);
695}
696
697/*
698 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
699 * array which is not the request page.
700 */
701void
702vm_page_readahead_finish(vm_page_t m, int error)
703{
704
705	if (error == 0) {
706		/*
707		 * Since the page is not the requested page, whether
708		 * it should be activated or deactivated is not
709		 * obvious.  Empirical results have shown that
710		 * deactivating the page is usually the best choice,
711		 * unless the page is wanted by another thread.
712		 */
713		if (m->oflags & VPO_WANTED) {
714			vm_page_lock(m);
715			vm_page_activate(m);
716			vm_page_unlock(m);
717		} else {
718			vm_page_lock(m);
719			vm_page_deactivate(m);
720			vm_page_unlock(m);
721		}
722		vm_page_wakeup(m);
723	} else {
724		vm_page_lock(m);
725		vm_page_free(m);
726		vm_page_unlock(m);
727	}
728}
729
730/*
731 *	vm_page_sleep:
732 *
733 *	Sleep and release the page and page queues locks.
734 *
735 *	The object containing the given page must be locked.
736 */
737void
738vm_page_sleep(vm_page_t m, const char *msg)
739{
740
741	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
742	if (mtx_owned(&vm_page_queue_mtx))
743		vm_page_unlock_queues();
744	if (mtx_owned(vm_page_lockptr(m)))
745		vm_page_unlock(m);
746
747	/*
748	 * It's possible that while we sleep, the page will get
749	 * unbusied and freed.  If we are holding the object
750	 * lock, we will assume we hold a reference to the object
751	 * such that even if m->object changes, we can re-lock
752	 * it.
753	 */
754	m->oflags |= VPO_WANTED;
755	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
756}
757
758/*
759 *	vm_page_dirty_KBI:		[ internal use only ]
760 *
761 *	Set all bits in the page's dirty field.
762 *
763 *	The object containing the specified page must be locked if the
764 *	call is made from the machine-independent layer.
765 *
766 *	See vm_page_clear_dirty_mask().
767 *
768 *	This function should only be called by vm_page_dirty().
769 */
770void
771vm_page_dirty_KBI(vm_page_t m)
772{
773
774	/* These assertions refer to this operation by its public name. */
775	KASSERT((m->flags & PG_CACHED) == 0,
776	    ("vm_page_dirty: page in cache!"));
777	KASSERT(!VM_PAGE_IS_FREE(m),
778	    ("vm_page_dirty: page is free!"));
779	KASSERT(m->valid == VM_PAGE_BITS_ALL,
780	    ("vm_page_dirty: page is invalid!"));
781	m->dirty = VM_PAGE_BITS_ALL;
782}
783
784/*
785 *	vm_page_splay:
786 *
787 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
788 *	the vm_page containing the given pindex.  If, however, that
789 *	pindex is not found in the vm_object, returns a vm_page that is
790 *	adjacent to the pindex, coming before or after it.
791 */
792vm_page_t
793vm_page_splay(vm_pindex_t pindex, vm_page_t root)
794{
795	struct vm_page dummy;
796	vm_page_t lefttreemax, righttreemin, y;
797
798	if (root == NULL)
799		return (root);
800	lefttreemax = righttreemin = &dummy;
801	for (;; root = y) {
802		if (pindex < root->pindex) {
803			if ((y = root->left) == NULL)
804				break;
805			if (pindex < y->pindex) {
806				/* Rotate right. */
807				root->left = y->right;
808				y->right = root;
809				root = y;
810				if ((y = root->left) == NULL)
811					break;
812			}
813			/* Link into the new root's right tree. */
814			righttreemin->left = root;
815			righttreemin = root;
816		} else if (pindex > root->pindex) {
817			if ((y = root->right) == NULL)
818				break;
819			if (pindex > y->pindex) {
820				/* Rotate left. */
821				root->right = y->left;
822				y->left = root;
823				root = y;
824				if ((y = root->right) == NULL)
825					break;
826			}
827			/* Link into the new root's left tree. */
828			lefttreemax->right = root;
829			lefttreemax = root;
830		} else
831			break;
832	}
833	/* Assemble the new root. */
834	lefttreemax->right = root->left;
835	righttreemin->left = root->right;
836	root->left = dummy.right;
837	root->right = dummy.left;
838	return (root);
839}
840
841/*
842 *	vm_page_insert:		[ internal use only ]
843 *
844 *	Inserts the given mem entry into the object and object list.
845 *
846 *	The pagetables are not updated but will presumably fault the page
847 *	in if necessary, or if a kernel page the caller will at some point
848 *	enter the page into the kernel's pmap.  We are not allowed to block
849 *	here so we *can't* do this anyway.
850 *
851 *	The object and page must be locked.
852 *	This routine may not block.
853 */
854void
855vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
856{
857	vm_page_t root;
858
859	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
860	if (m->object != NULL)
861		panic("vm_page_insert: page already inserted");
862
863	/*
864	 * Record the object/offset pair in this page
865	 */
866	m->object = object;
867	m->pindex = pindex;
868
869	/*
870	 * Now link into the object's ordered list of backed pages.
871	 */
872	root = object->root;
873	if (root == NULL) {
874		m->left = NULL;
875		m->right = NULL;
876		TAILQ_INSERT_TAIL(&object->memq, m, listq);
877	} else {
878		root = vm_page_splay(pindex, root);
879		if (pindex < root->pindex) {
880			m->left = root->left;
881			m->right = root;
882			root->left = NULL;
883			TAILQ_INSERT_BEFORE(root, m, listq);
884		} else if (pindex == root->pindex)
885			panic("vm_page_insert: offset already allocated");
886		else {
887			m->right = root->right;
888			m->left = root;
889			root->right = NULL;
890			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
891		}
892	}
893	object->root = m;
894
895	/*
896	 * show that the object has one more resident page.
897	 */
898	object->resident_page_count++;
899	/*
900	 * Hold the vnode until the last page is released.
901	 */
902	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
903		vhold((struct vnode *)object->handle);
904
905	/*
906	 * Since we are inserting a new and possibly dirty page,
907	 * update the object's OBJ_MIGHTBEDIRTY flag.
908	 */
909	if (pmap_page_is_write_mapped(m))
910		vm_object_set_writeable_dirty(object);
911}
912
913/*
914 *	vm_page_remove:
915 *				NOTE: used by device pager as well -wfj
916 *
917 *	Removes the given mem entry from the object/offset-page
918 *	table and the object page list, but do not invalidate/terminate
919 *	the backing store.
920 *
921 *	The object and page must be locked.
922 *	The underlying pmap entry (if any) is NOT removed here.
923 *	This routine may not block.
924 */
925void
926vm_page_remove(vm_page_t m)
927{
928	vm_object_t object;
929	vm_page_t next, prev, root;
930
931	if ((m->oflags & VPO_UNMANAGED) == 0)
932		vm_page_lock_assert(m, MA_OWNED);
933	if ((object = m->object) == NULL)
934		return;
935	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
936	if (m->oflags & VPO_BUSY) {
937		m->oflags &= ~VPO_BUSY;
938		vm_page_flash(m);
939	}
940
941	/*
942	 * Now remove from the object's list of backed pages.
943	 */
944	if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) {
945		/*
946		 * Since the page's successor in the list is also its parent
947		 * in the tree, its right subtree must be empty.
948		 */
949		next->left = m->left;
950		KASSERT(m->right == NULL,
951		    ("vm_page_remove: page %p has right child", m));
952	} else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
953	    prev->right == m) {
954		/*
955		 * Since the page's predecessor in the list is also its parent
956		 * in the tree, its left subtree must be empty.
957		 */
958		KASSERT(m->left == NULL,
959		    ("vm_page_remove: page %p has left child", m));
960		prev->right = m->right;
961	} else {
962		if (m != object->root)
963			vm_page_splay(m->pindex, object->root);
964		if (m->left == NULL)
965			root = m->right;
966		else if (m->right == NULL)
967			root = m->left;
968		else {
969			/*
970			 * Move the page's successor to the root, because
971			 * pages are usually removed in ascending order.
972			 */
973			if (m->right != next)
974				vm_page_splay(m->pindex, m->right);
975			next->left = m->left;
976			root = next;
977		}
978		object->root = root;
979	}
980	TAILQ_REMOVE(&object->memq, m, listq);
981
982	/*
983	 * And show that the object has one fewer resident page.
984	 */
985	object->resident_page_count--;
986	/*
987	 * The vnode may now be recycled.
988	 */
989	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
990		vdrop((struct vnode *)object->handle);
991
992	m->object = NULL;
993}
994
995/*
996 *	vm_page_lookup:
997 *
998 *	Returns the page associated with the object/offset
999 *	pair specified; if none is found, NULL is returned.
1000 *
1001 *	The object must be locked.
1002 *	This routine may not block.
1003 *	This is a critical path routine
1004 */
1005vm_page_t
1006vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1007{
1008	vm_page_t m;
1009
1010	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1011	if ((m = object->root) != NULL && m->pindex != pindex) {
1012		m = vm_page_splay(pindex, m);
1013		if ((object->root = m)->pindex != pindex)
1014			m = NULL;
1015	}
1016	return (m);
1017}
1018
1019/*
1020 *	vm_page_find_least:
1021 *
1022 *	Returns the page associated with the object with least pindex
1023 *	greater than or equal to the parameter pindex, or NULL.
1024 *
1025 *	The object must be locked.
1026 *	The routine may not block.
1027 */
1028vm_page_t
1029vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1030{
1031	vm_page_t m;
1032
1033	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1034	if ((m = TAILQ_FIRST(&object->memq)) != NULL) {
1035		if (m->pindex < pindex) {
1036			m = vm_page_splay(pindex, object->root);
1037			if ((object->root = m)->pindex < pindex)
1038				m = TAILQ_NEXT(m, listq);
1039		}
1040	}
1041	return (m);
1042}
1043
1044/*
1045 * Returns the given page's successor (by pindex) within the object if it is
1046 * resident; if none is found, NULL is returned.
1047 *
1048 * The object must be locked.
1049 */
1050vm_page_t
1051vm_page_next(vm_page_t m)
1052{
1053	vm_page_t next;
1054
1055	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1056	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1057	    next->pindex != m->pindex + 1)
1058		next = NULL;
1059	return (next);
1060}
1061
1062/*
1063 * Returns the given page's predecessor (by pindex) within the object if it is
1064 * resident; if none is found, NULL is returned.
1065 *
1066 * The object must be locked.
1067 */
1068vm_page_t
1069vm_page_prev(vm_page_t m)
1070{
1071	vm_page_t prev;
1072
1073	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1074	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1075	    prev->pindex != m->pindex - 1)
1076		prev = NULL;
1077	return (prev);
1078}
1079
1080/*
1081 *	vm_page_rename:
1082 *
1083 *	Move the given memory entry from its
1084 *	current object to the specified target object/offset.
1085 *
1086 *	The object must be locked.
1087 *	This routine may not block.
1088 *
1089 *	Note: swap associated with the page must be invalidated by the move.  We
1090 *	      have to do this for several reasons:  (1) we aren't freeing the
1091 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1092 *	      moving the page from object A to B, and will then later move
1093 *	      the backing store from A to B and we can't have a conflict.
1094 *
1095 *	Note: we *always* dirty the page.  It is necessary both for the
1096 *	      fact that we moved it, and because we may be invalidating
1097 *	      swap.  If the page is on the cache, we have to deactivate it
1098 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1099 *	      on the cache.
1100 */
1101void
1102vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1103{
1104
1105	vm_page_remove(m);
1106	vm_page_insert(m, new_object, new_pindex);
1107	vm_page_dirty(m);
1108}
1109
1110/*
1111 *	Convert all of the given object's cached pages that have a
1112 *	pindex within the given range into free pages.  If the value
1113 *	zero is given for "end", then the range's upper bound is
1114 *	infinity.  If the given object is backed by a vnode and it
1115 *	transitions from having one or more cached pages to none, the
1116 *	vnode's hold count is reduced.
1117 */
1118void
1119vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1120{
1121	vm_page_t m, m_next;
1122	boolean_t empty;
1123
1124	mtx_lock(&vm_page_queue_free_mtx);
1125	if (__predict_false(object->cache == NULL)) {
1126		mtx_unlock(&vm_page_queue_free_mtx);
1127		return;
1128	}
1129	m = object->cache = vm_page_splay(start, object->cache);
1130	if (m->pindex < start) {
1131		if (m->right == NULL)
1132			m = NULL;
1133		else {
1134			m_next = vm_page_splay(start, m->right);
1135			m_next->left = m;
1136			m->right = NULL;
1137			m = object->cache = m_next;
1138		}
1139	}
1140
1141	/*
1142	 * At this point, "m" is either (1) a reference to the page
1143	 * with the least pindex that is greater than or equal to
1144	 * "start" or (2) NULL.
1145	 */
1146	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
1147		/*
1148		 * Find "m"'s successor and remove "m" from the
1149		 * object's cache.
1150		 */
1151		if (m->right == NULL) {
1152			object->cache = m->left;
1153			m_next = NULL;
1154		} else {
1155			m_next = vm_page_splay(start, m->right);
1156			m_next->left = m->left;
1157			object->cache = m_next;
1158		}
1159		/* Convert "m" to a free page. */
1160		m->object = NULL;
1161		m->valid = 0;
1162		/* Clear PG_CACHED and set PG_FREE. */
1163		m->flags ^= PG_CACHED | PG_FREE;
1164		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
1165		    ("vm_page_cache_free: page %p has inconsistent flags", m));
1166		cnt.v_cache_count--;
1167		cnt.v_free_count++;
1168	}
1169	empty = object->cache == NULL;
1170	mtx_unlock(&vm_page_queue_free_mtx);
1171	if (object->type == OBJT_VNODE && empty)
1172		vdrop(object->handle);
1173}
1174
1175/*
1176 *	Returns the cached page that is associated with the given
1177 *	object and offset.  If, however, none exists, returns NULL.
1178 *
1179 *	The free page queue must be locked.
1180 */
1181static inline vm_page_t
1182vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1183{
1184	vm_page_t m;
1185
1186	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1187	if ((m = object->cache) != NULL && m->pindex != pindex) {
1188		m = vm_page_splay(pindex, m);
1189		if ((object->cache = m)->pindex != pindex)
1190			m = NULL;
1191	}
1192	return (m);
1193}
1194
1195/*
1196 *	Remove the given cached page from its containing object's
1197 *	collection of cached pages.
1198 *
1199 *	The free page queue must be locked.
1200 */
1201static void
1202vm_page_cache_remove(vm_page_t m)
1203{
1204	vm_object_t object;
1205	vm_page_t root;
1206
1207	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1208	KASSERT((m->flags & PG_CACHED) != 0,
1209	    ("vm_page_cache_remove: page %p is not cached", m));
1210	object = m->object;
1211	if (m != object->cache) {
1212		root = vm_page_splay(m->pindex, object->cache);
1213		KASSERT(root == m,
1214		    ("vm_page_cache_remove: page %p is not cached in object %p",
1215		    m, object));
1216	}
1217	if (m->left == NULL)
1218		root = m->right;
1219	else if (m->right == NULL)
1220		root = m->left;
1221	else {
1222		root = vm_page_splay(m->pindex, m->left);
1223		root->right = m->right;
1224	}
1225	object->cache = root;
1226	m->object = NULL;
1227	cnt.v_cache_count--;
1228}
1229
1230/*
1231 *	Transfer all of the cached pages with offset greater than or
1232 *	equal to 'offidxstart' from the original object's cache to the
1233 *	new object's cache.  However, any cached pages with offset
1234 *	greater than or equal to the new object's size are kept in the
1235 *	original object.  Initially, the new object's cache must be
1236 *	empty.  Offset 'offidxstart' in the original object must
1237 *	correspond to offset zero in the new object.
1238 *
1239 *	The new object must be locked.
1240 */
1241void
1242vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1243    vm_object_t new_object)
1244{
1245	vm_page_t m, m_next;
1246
1247	/*
1248	 * Insertion into an object's collection of cached pages
1249	 * requires the object to be locked.  In contrast, removal does
1250	 * not.
1251	 */
1252	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
1253	KASSERT(new_object->cache == NULL,
1254	    ("vm_page_cache_transfer: object %p has cached pages",
1255	    new_object));
1256	mtx_lock(&vm_page_queue_free_mtx);
1257	if ((m = orig_object->cache) != NULL) {
1258		/*
1259		 * Transfer all of the pages with offset greater than or
1260		 * equal to 'offidxstart' from the original object's
1261		 * cache to the new object's cache.
1262		 */
1263		m = vm_page_splay(offidxstart, m);
1264		if (m->pindex < offidxstart) {
1265			orig_object->cache = m;
1266			new_object->cache = m->right;
1267			m->right = NULL;
1268		} else {
1269			orig_object->cache = m->left;
1270			new_object->cache = m;
1271			m->left = NULL;
1272		}
1273		while ((m = new_object->cache) != NULL) {
1274			if ((m->pindex - offidxstart) >= new_object->size) {
1275				/*
1276				 * Return all of the cached pages with
1277				 * offset greater than or equal to the
1278				 * new object's size to the original
1279				 * object's cache.
1280				 */
1281				new_object->cache = m->left;
1282				m->left = orig_object->cache;
1283				orig_object->cache = m;
1284				break;
1285			}
1286			m_next = vm_page_splay(m->pindex, m->right);
1287			/* Update the page's object and offset. */
1288			m->object = new_object;
1289			m->pindex -= offidxstart;
1290			if (m_next == NULL)
1291				break;
1292			m->right = NULL;
1293			m_next->left = m;
1294			new_object->cache = m_next;
1295		}
1296		KASSERT(new_object->cache == NULL ||
1297		    new_object->type == OBJT_SWAP,
1298		    ("vm_page_cache_transfer: object %p's type is incompatible"
1299		    " with cached pages", new_object));
1300	}
1301	mtx_unlock(&vm_page_queue_free_mtx);
1302}
1303
1304/*
1305 *	Returns TRUE if a cached page is associated with the given object and
1306 *	offset, and FALSE otherwise.
1307 *
1308 *	The object must be locked.
1309 */
1310boolean_t
1311vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1312{
1313	vm_page_t m;
1314
1315	/*
1316	 * Insertion into an object's collection of cached pages requires the
1317	 * object to be locked.  Therefore, if the object is locked and the
1318	 * object's collection is empty, there is no need to acquire the free
1319	 * page queues lock in order to prove that the specified page doesn't
1320	 * exist.
1321	 */
1322	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1323	if (__predict_true(object->cache == NULL))
1324		return (FALSE);
1325	mtx_lock(&vm_page_queue_free_mtx);
1326	m = vm_page_cache_lookup(object, pindex);
1327	mtx_unlock(&vm_page_queue_free_mtx);
1328	return (m != NULL);
1329}
1330
1331/*
1332 *	vm_page_alloc:
1333 *
1334 *	Allocate and return a page that is associated with the specified
1335 *	object and offset pair.  By default, this page has the flag VPO_BUSY
1336 *	set.
1337 *
1338 *	The caller must always specify an allocation class.
1339 *
1340 *	allocation classes:
1341 *	VM_ALLOC_NORMAL		normal process request
1342 *	VM_ALLOC_SYSTEM		system *really* needs a page
1343 *	VM_ALLOC_INTERRUPT	interrupt time request
1344 *
1345 *	optional allocation flags:
1346 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1347 *				intends to allocate
1348 *	VM_ALLOC_IFCACHED	return page only if it is cached
1349 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1350 *				is cached
1351 *	VM_ALLOC_NOBUSY		do not set the flag VPO_BUSY on the page
1352 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1353 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1354 *				should not have the flag VPO_BUSY set
1355 *	VM_ALLOC_WIRED		wire the allocated page
1356 *	VM_ALLOC_ZERO		prefer a zeroed page
1357 *
1358 *	This routine may not sleep.
1359 */
1360vm_page_t
1361vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1362{
1363	struct vnode *vp = NULL;
1364	vm_object_t m_object;
1365	vm_page_t m;
1366	int flags, req_class;
1367
1368	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0),
1369	    ("vm_page_alloc: inconsistent object/req"));
1370	if (object != NULL)
1371		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1372
1373	req_class = req & VM_ALLOC_CLASS_MASK;
1374
1375	/*
1376	 * The page daemon is allowed to dig deeper into the free page list.
1377	 */
1378	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1379		req_class = VM_ALLOC_SYSTEM;
1380
1381	mtx_lock(&vm_page_queue_free_mtx);
1382	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1383	    (req_class == VM_ALLOC_SYSTEM &&
1384	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1385	    (req_class == VM_ALLOC_INTERRUPT &&
1386	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1387		/*
1388		 * Allocate from the free queue if the number of free pages
1389		 * exceeds the minimum for the request class.
1390		 */
1391		if (object != NULL &&
1392		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1393			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1394				mtx_unlock(&vm_page_queue_free_mtx);
1395				return (NULL);
1396			}
1397			if (vm_phys_unfree_page(m))
1398				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1399#if VM_NRESERVLEVEL > 0
1400			else if (!vm_reserv_reactivate_page(m))
1401#else
1402			else
1403#endif
1404				panic("vm_page_alloc: cache page %p is missing"
1405				    " from the free queue", m);
1406		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1407			mtx_unlock(&vm_page_queue_free_mtx);
1408			return (NULL);
1409#if VM_NRESERVLEVEL > 0
1410		} else if (object == NULL || object->type == OBJT_DEVICE ||
1411		    object->type == OBJT_SG ||
1412		    (object->flags & OBJ_COLORED) == 0 ||
1413		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1414#else
1415		} else {
1416#endif
1417			m = vm_phys_alloc_pages(object != NULL ?
1418			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1419#if VM_NRESERVLEVEL > 0
1420			if (m == NULL && vm_reserv_reclaim_inactive()) {
1421				m = vm_phys_alloc_pages(object != NULL ?
1422				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1423				    0);
1424			}
1425#endif
1426		}
1427	} else {
1428		/*
1429		 * Not allocatable, give up.
1430		 */
1431		mtx_unlock(&vm_page_queue_free_mtx);
1432		atomic_add_int(&vm_pageout_deficit,
1433		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1434		pagedaemon_wakeup();
1435		return (NULL);
1436	}
1437
1438	/*
1439	 *  At this point we had better have found a good page.
1440	 */
1441	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1442	KASSERT(m->queue == PQ_NONE,
1443	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1444	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1445	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1446	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1447	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1448	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1449	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1450	    pmap_page_get_memattr(m)));
1451	if ((m->flags & PG_CACHED) != 0) {
1452		KASSERT((m->flags & PG_ZERO) == 0,
1453		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1454		KASSERT(m->valid != 0,
1455		    ("vm_page_alloc: cached page %p is invalid", m));
1456		if (m->object == object && m->pindex == pindex)
1457	  		cnt.v_reactivated++;
1458		else
1459			m->valid = 0;
1460		m_object = m->object;
1461		vm_page_cache_remove(m);
1462		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1463			vp = m_object->handle;
1464	} else {
1465		KASSERT(VM_PAGE_IS_FREE(m),
1466		    ("vm_page_alloc: page %p is not free", m));
1467		KASSERT(m->valid == 0,
1468		    ("vm_page_alloc: free page %p is valid", m));
1469		cnt.v_free_count--;
1470	}
1471
1472	/*
1473	 * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
1474	 * must be cleared before the free page queues lock is released.
1475	 */
1476	flags = 0;
1477	if (req & VM_ALLOC_NODUMP)
1478		flags |= PG_NODUMP;
1479	if (m->flags & PG_ZERO) {
1480		vm_page_zero_count--;
1481		if (req & VM_ALLOC_ZERO)
1482			flags = PG_ZERO;
1483	}
1484	m->flags = flags;
1485	mtx_unlock(&vm_page_queue_free_mtx);
1486	m->aflags = 0;
1487	if (object == NULL || object->type == OBJT_PHYS)
1488		m->oflags = VPO_UNMANAGED;
1489	else
1490		m->oflags = 0;
1491	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) == 0)
1492		m->oflags |= VPO_BUSY;
1493	if (req & VM_ALLOC_WIRED) {
1494		/*
1495		 * The page lock is not required for wiring a page until that
1496		 * page is inserted into the object.
1497		 */
1498		atomic_add_int(&cnt.v_wire_count, 1);
1499		m->wire_count = 1;
1500	}
1501	m->act_count = 0;
1502
1503	if (object != NULL) {
1504		/* Ignore device objects; the pager sets "memattr" for them. */
1505		if (object->memattr != VM_MEMATTR_DEFAULT &&
1506		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1507			pmap_page_set_memattr(m, object->memattr);
1508		vm_page_insert(m, object, pindex);
1509	} else
1510		m->pindex = pindex;
1511
1512	/*
1513	 * The following call to vdrop() must come after the above call
1514	 * to vm_page_insert() in case both affect the same object and
1515	 * vnode.  Otherwise, the affected vnode's hold count could
1516	 * temporarily become zero.
1517	 */
1518	if (vp != NULL)
1519		vdrop(vp);
1520
1521	/*
1522	 * Don't wakeup too often - wakeup the pageout daemon when
1523	 * we would be nearly out of memory.
1524	 */
1525	if (vm_paging_needed())
1526		pagedaemon_wakeup();
1527
1528	return (m);
1529}
1530
1531/*
1532 *	vm_page_alloc_contig:
1533 *
1534 *	Allocate a contiguous set of physical pages of the given size "npages"
1535 *	from the free lists.  All of the physical pages must be at or above
1536 *	the given physical address "low" and below the given physical address
1537 *	"high".  The given value "alignment" determines the alignment of the
1538 *	first physical page in the set.  If the given value "boundary" is
1539 *	non-zero, then the set of physical pages cannot cross any physical
1540 *	address boundary that is a multiple of that value.  Both "alignment"
1541 *	and "boundary" must be a power of two.
1542 *
1543 *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1544 *	then the memory attribute setting for the physical pages is configured
1545 *	to the object's memory attribute setting.  Otherwise, the memory
1546 *	attribute setting for the physical pages is configured to "memattr",
1547 *	overriding the object's memory attribute setting.  However, if the
1548 *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1549 *	memory attribute setting for the physical pages cannot be configured
1550 *	to VM_MEMATTR_DEFAULT.
1551 *
1552 *	The caller must always specify an allocation class.
1553 *
1554 *	allocation classes:
1555 *	VM_ALLOC_NORMAL		normal process request
1556 *	VM_ALLOC_SYSTEM		system *really* needs a page
1557 *	VM_ALLOC_INTERRUPT	interrupt time request
1558 *
1559 *	optional allocation flags:
1560 *	VM_ALLOC_NOBUSY		do not set the flag VPO_BUSY on the page
1561 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1562 *				should not have the flag VPO_BUSY set
1563 *	VM_ALLOC_WIRED		wire the allocated page
1564 *	VM_ALLOC_ZERO		prefer a zeroed page
1565 *
1566 *	This routine may not sleep.
1567 */
1568vm_page_t
1569vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1570    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1571    vm_paddr_t boundary, vm_memattr_t memattr)
1572{
1573	struct vnode *drop;
1574	vm_page_t deferred_vdrop_list, m, m_ret;
1575	u_int flags, oflags;
1576	int req_class;
1577
1578	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0),
1579	    ("vm_page_alloc_contig: inconsistent object/req"));
1580	if (object != NULL) {
1581		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1582		KASSERT(object->type == OBJT_PHYS,
1583		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1584		    object));
1585	}
1586	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1587	req_class = req & VM_ALLOC_CLASS_MASK;
1588
1589	/*
1590	 * The page daemon is allowed to dig deeper into the free page list.
1591	 */
1592	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1593		req_class = VM_ALLOC_SYSTEM;
1594
1595	deferred_vdrop_list = NULL;
1596	mtx_lock(&vm_page_queue_free_mtx);
1597	if (cnt.v_free_count + cnt.v_cache_count >= npages +
1598	    cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1599	    cnt.v_free_count + cnt.v_cache_count >= npages +
1600	    cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1601	    cnt.v_free_count + cnt.v_cache_count >= npages)) {
1602#if VM_NRESERVLEVEL > 0
1603retry:
1604		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1605		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1606		    low, high, alignment, boundary)) == NULL)
1607#endif
1608			m_ret = vm_phys_alloc_contig(npages, low, high,
1609			    alignment, boundary);
1610	} else {
1611		mtx_unlock(&vm_page_queue_free_mtx);
1612		atomic_add_int(&vm_pageout_deficit, npages);
1613		pagedaemon_wakeup();
1614		return (NULL);
1615	}
1616	if (m_ret != NULL)
1617		for (m = m_ret; m < &m_ret[npages]; m++) {
1618			drop = vm_page_alloc_init(m);
1619			if (drop != NULL) {
1620				/*
1621				 * Enqueue the vnode for deferred vdrop().
1622				 *
1623				 * Once the pages are removed from the free
1624				 * page list, "pageq" can be safely abused to
1625				 * construct a short-lived list of vnodes.
1626				 */
1627				m->pageq.tqe_prev = (void *)drop;
1628				m->pageq.tqe_next = deferred_vdrop_list;
1629				deferred_vdrop_list = m;
1630			}
1631		}
1632	else {
1633#if VM_NRESERVLEVEL > 0
1634		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1635		    boundary))
1636			goto retry;
1637#endif
1638	}
1639	mtx_unlock(&vm_page_queue_free_mtx);
1640	if (m_ret == NULL)
1641		return (NULL);
1642
1643	/*
1644	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1645	 */
1646	flags = 0;
1647	if ((req & VM_ALLOC_ZERO) != 0)
1648		flags = PG_ZERO;
1649	if ((req & VM_ALLOC_NODUMP) != 0)
1650		flags |= PG_NODUMP;
1651	if ((req & VM_ALLOC_WIRED) != 0)
1652		atomic_add_int(&cnt.v_wire_count, npages);
1653	oflags = VPO_UNMANAGED;
1654	if (object != NULL) {
1655		if ((req & VM_ALLOC_NOBUSY) == 0)
1656			oflags |= VPO_BUSY;
1657		if (object->memattr != VM_MEMATTR_DEFAULT &&
1658		    memattr == VM_MEMATTR_DEFAULT)
1659			memattr = object->memattr;
1660	}
1661	for (m = m_ret; m < &m_ret[npages]; m++) {
1662		m->aflags = 0;
1663		m->flags = (m->flags | PG_NODUMP) & flags;
1664		if ((req & VM_ALLOC_WIRED) != 0)
1665			m->wire_count = 1;
1666		/* Unmanaged pages don't use "act_count". */
1667		m->oflags = oflags;
1668		if (memattr != VM_MEMATTR_DEFAULT)
1669			pmap_page_set_memattr(m, memattr);
1670		if (object != NULL)
1671			vm_page_insert(m, object, pindex);
1672		else
1673			m->pindex = pindex;
1674		pindex++;
1675	}
1676	while (deferred_vdrop_list != NULL) {
1677		vdrop((struct vnode *)deferred_vdrop_list->pageq.tqe_prev);
1678		deferred_vdrop_list = deferred_vdrop_list->pageq.tqe_next;
1679	}
1680	if (vm_paging_needed())
1681		pagedaemon_wakeup();
1682	return (m_ret);
1683}
1684
1685/*
1686 * Initialize a page that has been freshly dequeued from a freelist.
1687 * The caller has to drop the vnode returned, if it is not NULL.
1688 *
1689 * This function may only be used to initialize unmanaged pages.
1690 *
1691 * To be called with vm_page_queue_free_mtx held.
1692 */
1693static struct vnode *
1694vm_page_alloc_init(vm_page_t m)
1695{
1696	struct vnode *drop;
1697	vm_object_t m_object;
1698
1699	KASSERT(m->queue == PQ_NONE,
1700	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1701	    m, m->queue));
1702	KASSERT(m->wire_count == 0,
1703	    ("vm_page_alloc_init: page %p is wired", m));
1704	KASSERT(m->hold_count == 0,
1705	    ("vm_page_alloc_init: page %p is held", m));
1706	KASSERT(m->busy == 0,
1707	    ("vm_page_alloc_init: page %p is busy", m));
1708	KASSERT(m->dirty == 0,
1709	    ("vm_page_alloc_init: page %p is dirty", m));
1710	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1711	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1712	    m, pmap_page_get_memattr(m)));
1713	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1714	drop = NULL;
1715	if ((m->flags & PG_CACHED) != 0) {
1716		KASSERT((m->flags & PG_ZERO) == 0,
1717		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1718		m->valid = 0;
1719		m_object = m->object;
1720		vm_page_cache_remove(m);
1721		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1722			drop = m_object->handle;
1723	} else {
1724		KASSERT(VM_PAGE_IS_FREE(m),
1725		    ("vm_page_alloc_init: page %p is not free", m));
1726		KASSERT(m->valid == 0,
1727		    ("vm_page_alloc_init: free page %p is valid", m));
1728		cnt.v_free_count--;
1729		if ((m->flags & PG_ZERO) != 0)
1730			vm_page_zero_count--;
1731	}
1732	/* Don't clear the PG_ZERO flag; we'll need it later. */
1733	m->flags &= PG_ZERO;
1734	return (drop);
1735}
1736
1737/*
1738 * 	vm_page_alloc_freelist:
1739 *
1740 *	Allocate a physical page from the specified free page list.
1741 *
1742 *	The caller must always specify an allocation class.
1743 *
1744 *	allocation classes:
1745 *	VM_ALLOC_NORMAL		normal process request
1746 *	VM_ALLOC_SYSTEM		system *really* needs a page
1747 *	VM_ALLOC_INTERRUPT	interrupt time request
1748 *
1749 *	optional allocation flags:
1750 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1751 *				intends to allocate
1752 *	VM_ALLOC_WIRED		wire the allocated page
1753 *	VM_ALLOC_ZERO		prefer a zeroed page
1754 *
1755 *	This routine may not sleep.
1756 */
1757vm_page_t
1758vm_page_alloc_freelist(int flind, int req)
1759{
1760	struct vnode *drop;
1761	vm_page_t m;
1762	u_int flags;
1763	int req_class;
1764
1765	req_class = req & VM_ALLOC_CLASS_MASK;
1766
1767	/*
1768	 * The page daemon is allowed to dig deeper into the free page list.
1769	 */
1770	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1771		req_class = VM_ALLOC_SYSTEM;
1772
1773	/*
1774	 * Do not allocate reserved pages unless the req has asked for it.
1775	 */
1776	mtx_lock(&vm_page_queue_free_mtx);
1777	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1778	    (req_class == VM_ALLOC_SYSTEM &&
1779	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1780	    (req_class == VM_ALLOC_INTERRUPT &&
1781	    cnt.v_free_count + cnt.v_cache_count > 0))
1782		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1783	else {
1784		mtx_unlock(&vm_page_queue_free_mtx);
1785		atomic_add_int(&vm_pageout_deficit,
1786		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1787		pagedaemon_wakeup();
1788		return (NULL);
1789	}
1790	if (m == NULL) {
1791		mtx_unlock(&vm_page_queue_free_mtx);
1792		return (NULL);
1793	}
1794	drop = vm_page_alloc_init(m);
1795	mtx_unlock(&vm_page_queue_free_mtx);
1796
1797	/*
1798	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1799	 */
1800	m->aflags = 0;
1801	flags = 0;
1802	if ((req & VM_ALLOC_ZERO) != 0)
1803		flags = PG_ZERO;
1804	m->flags &= flags;
1805	if ((req & VM_ALLOC_WIRED) != 0) {
1806		/*
1807		 * The page lock is not required for wiring a page that does
1808		 * not belong to an object.
1809		 */
1810		atomic_add_int(&cnt.v_wire_count, 1);
1811		m->wire_count = 1;
1812	}
1813	/* Unmanaged pages don't use "act_count". */
1814	m->oflags = VPO_UNMANAGED;
1815	if (drop != NULL)
1816		vdrop(drop);
1817	if (vm_paging_needed())
1818		pagedaemon_wakeup();
1819	return (m);
1820}
1821
1822/*
1823 *	vm_wait:	(also see VM_WAIT macro)
1824 *
1825 *	Block until free pages are available for allocation
1826 *	- Called in various places before memory allocations.
1827 */
1828void
1829vm_wait(void)
1830{
1831
1832	mtx_lock(&vm_page_queue_free_mtx);
1833	if (curproc == pageproc) {
1834		vm_pageout_pages_needed = 1;
1835		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1836		    PDROP | PSWP, "VMWait", 0);
1837	} else {
1838		if (!vm_pages_needed) {
1839			vm_pages_needed = 1;
1840			wakeup(&vm_pages_needed);
1841		}
1842		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1843		    "vmwait", 0);
1844	}
1845}
1846
1847/*
1848 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1849 *
1850 *	Block until free pages are available for allocation
1851 *	- Called only in vm_fault so that processes page faulting
1852 *	  can be easily tracked.
1853 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1854 *	  processes will be able to grab memory first.  Do not change
1855 *	  this balance without careful testing first.
1856 */
1857void
1858vm_waitpfault(void)
1859{
1860
1861	mtx_lock(&vm_page_queue_free_mtx);
1862	if (!vm_pages_needed) {
1863		vm_pages_needed = 1;
1864		wakeup(&vm_pages_needed);
1865	}
1866	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1867	    "pfault", 0);
1868}
1869
1870/*
1871 *	vm_page_requeue:
1872 *
1873 *	Move the given page to the tail of its present page queue.
1874 *
1875 *	The page queues must be locked.
1876 */
1877void
1878vm_page_requeue(vm_page_t m)
1879{
1880	struct vpgqueues *vpq;
1881	int queue;
1882
1883	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1884	queue = m->queue;
1885	KASSERT(queue != PQ_NONE,
1886	    ("vm_page_requeue: page %p is not queued", m));
1887	vpq = &vm_page_queues[queue];
1888	TAILQ_REMOVE(&vpq->pl, m, pageq);
1889	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1890}
1891
1892/*
1893 *	vm_page_queue_remove:
1894 *
1895 *	Remove the given page from the specified queue.
1896 *
1897 *	The page and page queues must be locked.
1898 */
1899static __inline void
1900vm_page_queue_remove(int queue, vm_page_t m)
1901{
1902	struct vpgqueues *pq;
1903
1904	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1905	vm_page_lock_assert(m, MA_OWNED);
1906	pq = &vm_page_queues[queue];
1907	TAILQ_REMOVE(&pq->pl, m, pageq);
1908	(*pq->cnt)--;
1909}
1910
1911/*
1912 *	vm_pageq_remove:
1913 *
1914 *	Remove a page from its queue.
1915 *
1916 *	The given page must be locked.
1917 *	This routine may not block.
1918 */
1919void
1920vm_pageq_remove(vm_page_t m)
1921{
1922	int queue;
1923
1924	vm_page_lock_assert(m, MA_OWNED);
1925	if ((queue = m->queue) != PQ_NONE) {
1926		vm_page_lock_queues();
1927		m->queue = PQ_NONE;
1928		vm_page_queue_remove(queue, m);
1929		vm_page_unlock_queues();
1930	}
1931}
1932
1933/*
1934 *	vm_page_enqueue:
1935 *
1936 *	Add the given page to the specified queue.
1937 *
1938 *	The page queues must be locked.
1939 */
1940static void
1941vm_page_enqueue(int queue, vm_page_t m)
1942{
1943	struct vpgqueues *vpq;
1944
1945	vpq = &vm_page_queues[queue];
1946	m->queue = queue;
1947	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1948	++*vpq->cnt;
1949}
1950
1951/*
1952 *	vm_page_activate:
1953 *
1954 *	Put the specified page on the active list (if appropriate).
1955 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1956 *	mess with it.
1957 *
1958 *	The page must be locked.
1959 *	This routine may not block.
1960 */
1961void
1962vm_page_activate(vm_page_t m)
1963{
1964	int queue;
1965
1966	vm_page_lock_assert(m, MA_OWNED);
1967	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1968	if ((queue = m->queue) != PQ_ACTIVE) {
1969		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
1970			if (m->act_count < ACT_INIT)
1971				m->act_count = ACT_INIT;
1972			vm_page_lock_queues();
1973			if (queue != PQ_NONE)
1974				vm_page_queue_remove(queue, m);
1975			vm_page_enqueue(PQ_ACTIVE, m);
1976			vm_page_unlock_queues();
1977		} else
1978			KASSERT(queue == PQ_NONE,
1979			    ("vm_page_activate: wired page %p is queued", m));
1980	} else {
1981		if (m->act_count < ACT_INIT)
1982			m->act_count = ACT_INIT;
1983	}
1984}
1985
1986/*
1987 *	vm_page_free_wakeup:
1988 *
1989 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1990 *	routine is called when a page has been added to the cache or free
1991 *	queues.
1992 *
1993 *	The page queues must be locked.
1994 *	This routine may not block.
1995 */
1996static inline void
1997vm_page_free_wakeup(void)
1998{
1999
2000	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2001	/*
2002	 * if pageout daemon needs pages, then tell it that there are
2003	 * some free.
2004	 */
2005	if (vm_pageout_pages_needed &&
2006	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
2007		wakeup(&vm_pageout_pages_needed);
2008		vm_pageout_pages_needed = 0;
2009	}
2010	/*
2011	 * wakeup processes that are waiting on memory if we hit a
2012	 * high water mark. And wakeup scheduler process if we have
2013	 * lots of memory. this process will swapin processes.
2014	 */
2015	if (vm_pages_needed && !vm_page_count_min()) {
2016		vm_pages_needed = 0;
2017		wakeup(&cnt.v_free_count);
2018	}
2019}
2020
2021/*
2022 *	vm_page_free_toq:
2023 *
2024 *	Returns the given page to the free list,
2025 *	disassociating it with any VM object.
2026 *
2027 *	Object and page must be locked prior to entry.
2028 *	This routine may not block.
2029 */
2030
2031void
2032vm_page_free_toq(vm_page_t m)
2033{
2034
2035	if ((m->oflags & VPO_UNMANAGED) == 0) {
2036		vm_page_lock_assert(m, MA_OWNED);
2037		KASSERT(!pmap_page_is_mapped(m),
2038		    ("vm_page_free_toq: freeing mapped page %p", m));
2039	}
2040	PCPU_INC(cnt.v_tfree);
2041
2042	if (VM_PAGE_IS_FREE(m))
2043		panic("vm_page_free: freeing free page %p", m);
2044	else if (m->busy != 0)
2045		panic("vm_page_free: freeing busy page %p", m);
2046
2047	/*
2048	 * unqueue, then remove page.  Note that we cannot destroy
2049	 * the page here because we do not want to call the pager's
2050	 * callback routine until after we've put the page on the
2051	 * appropriate free queue.
2052	 */
2053	if ((m->oflags & VPO_UNMANAGED) == 0)
2054		vm_pageq_remove(m);
2055	vm_page_remove(m);
2056
2057	/*
2058	 * If fictitious remove object association and
2059	 * return, otherwise delay object association removal.
2060	 */
2061	if ((m->flags & PG_FICTITIOUS) != 0) {
2062		return;
2063	}
2064
2065	m->valid = 0;
2066	vm_page_undirty(m);
2067
2068	if (m->wire_count != 0)
2069		panic("vm_page_free: freeing wired page %p", m);
2070	if (m->hold_count != 0) {
2071		m->flags &= ~PG_ZERO;
2072		vm_page_lock_queues();
2073		vm_page_enqueue(PQ_HOLD, m);
2074		vm_page_unlock_queues();
2075	} else {
2076		/*
2077		 * Restore the default memory attribute to the page.
2078		 */
2079		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2080			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2081
2082		/*
2083		 * Insert the page into the physical memory allocator's
2084		 * cache/free page queues.
2085		 */
2086		mtx_lock(&vm_page_queue_free_mtx);
2087		m->flags |= PG_FREE;
2088		cnt.v_free_count++;
2089#if VM_NRESERVLEVEL > 0
2090		if (!vm_reserv_free_page(m))
2091#else
2092		if (TRUE)
2093#endif
2094			vm_phys_free_pages(m, 0);
2095		if ((m->flags & PG_ZERO) != 0)
2096			++vm_page_zero_count;
2097		else
2098			vm_page_zero_idle_wakeup();
2099		vm_page_free_wakeup();
2100		mtx_unlock(&vm_page_queue_free_mtx);
2101	}
2102}
2103
2104/*
2105 *	vm_page_wire:
2106 *
2107 *	Mark this page as wired down by yet
2108 *	another map, removing it from paging queues
2109 *	as necessary.
2110 *
2111 *	If the page is fictitious, then its wire count must remain one.
2112 *
2113 *	The page must be locked.
2114 *	This routine may not block.
2115 */
2116void
2117vm_page_wire(vm_page_t m)
2118{
2119
2120	/*
2121	 * Only bump the wire statistics if the page is not already wired,
2122	 * and only unqueue the page if it is on some queue (if it is unmanaged
2123	 * it is already off the queues).
2124	 */
2125	vm_page_lock_assert(m, MA_OWNED);
2126	if ((m->flags & PG_FICTITIOUS) != 0) {
2127		KASSERT(m->wire_count == 1,
2128		    ("vm_page_wire: fictitious page %p's wire count isn't one",
2129		    m));
2130		return;
2131	}
2132	if (m->wire_count == 0) {
2133		if ((m->oflags & VPO_UNMANAGED) == 0)
2134			vm_pageq_remove(m);
2135		atomic_add_int(&cnt.v_wire_count, 1);
2136	}
2137	m->wire_count++;
2138	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2139}
2140
2141/*
2142 * vm_page_unwire:
2143 *
2144 * Release one wiring of the specified page, potentially enabling it to be
2145 * paged again.  If paging is enabled, then the value of the parameter
2146 * "activate" determines to which queue the page is added.  If "activate" is
2147 * non-zero, then the page is added to the active queue.  Otherwise, it is
2148 * added to the inactive queue.
2149 *
2150 * However, unless the page belongs to an object, it is not enqueued because
2151 * it cannot be paged out.
2152 *
2153 * If a page is fictitious, then its wire count must alway be one.
2154 *
2155 * A managed page must be locked.
2156 */
2157void
2158vm_page_unwire(vm_page_t m, int activate)
2159{
2160
2161	if ((m->oflags & VPO_UNMANAGED) == 0)
2162		vm_page_lock_assert(m, MA_OWNED);
2163	if ((m->flags & PG_FICTITIOUS) != 0) {
2164		KASSERT(m->wire_count == 1,
2165	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2166		return;
2167	}
2168	if (m->wire_count > 0) {
2169		m->wire_count--;
2170		if (m->wire_count == 0) {
2171			atomic_subtract_int(&cnt.v_wire_count, 1);
2172			if ((m->oflags & VPO_UNMANAGED) != 0 ||
2173			    m->object == NULL)
2174				return;
2175			if (!activate)
2176				m->flags &= ~PG_WINATCFLS;
2177			vm_page_lock_queues();
2178			vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m);
2179			vm_page_unlock_queues();
2180		}
2181	} else
2182		panic("vm_page_unwire: page %p's wire count is zero", m);
2183}
2184
2185/*
2186 * Move the specified page to the inactive queue.
2187 *
2188 * Many pages placed on the inactive queue should actually go
2189 * into the cache, but it is difficult to figure out which.  What
2190 * we do instead, if the inactive target is well met, is to put
2191 * clean pages at the head of the inactive queue instead of the tail.
2192 * This will cause them to be moved to the cache more quickly and
2193 * if not actively re-referenced, reclaimed more quickly.  If we just
2194 * stick these pages at the end of the inactive queue, heavy filesystem
2195 * meta-data accesses can cause an unnecessary paging load on memory bound
2196 * processes.  This optimization causes one-time-use metadata to be
2197 * reused more quickly.
2198 *
2199 * Normally athead is 0 resulting in LRU operation.  athead is set
2200 * to 1 if we want this page to be 'as if it were placed in the cache',
2201 * except without unmapping it from the process address space.
2202 *
2203 * This routine may not block.
2204 */
2205static inline void
2206_vm_page_deactivate(vm_page_t m, int athead)
2207{
2208	int queue;
2209
2210	vm_page_lock_assert(m, MA_OWNED);
2211
2212	/*
2213	 * Ignore if already inactive.
2214	 */
2215	if ((queue = m->queue) == PQ_INACTIVE)
2216		return;
2217	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2218		m->flags &= ~PG_WINATCFLS;
2219		vm_page_lock_queues();
2220		if (queue != PQ_NONE)
2221			vm_page_queue_remove(queue, m);
2222		if (athead)
2223			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
2224			    pageq);
2225		else
2226			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
2227			    pageq);
2228		m->queue = PQ_INACTIVE;
2229		cnt.v_inactive_count++;
2230		vm_page_unlock_queues();
2231	}
2232}
2233
2234/*
2235 * Move the specified page to the inactive queue.
2236 *
2237 * The page must be locked.
2238 */
2239void
2240vm_page_deactivate(vm_page_t m)
2241{
2242
2243	_vm_page_deactivate(m, 0);
2244}
2245
2246/*
2247 * vm_page_try_to_cache:
2248 *
2249 * Returns 0 on failure, 1 on success
2250 */
2251int
2252vm_page_try_to_cache(vm_page_t m)
2253{
2254
2255	vm_page_lock_assert(m, MA_OWNED);
2256	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2257	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2258	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2259		return (0);
2260	pmap_remove_all(m);
2261	if (m->dirty)
2262		return (0);
2263	vm_page_cache(m);
2264	return (1);
2265}
2266
2267/*
2268 * vm_page_try_to_free()
2269 *
2270 *	Attempt to free the page.  If we cannot free it, we do nothing.
2271 *	1 is returned on success, 0 on failure.
2272 */
2273int
2274vm_page_try_to_free(vm_page_t m)
2275{
2276
2277	vm_page_lock_assert(m, MA_OWNED);
2278	if (m->object != NULL)
2279		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2280	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2281	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2282		return (0);
2283	pmap_remove_all(m);
2284	if (m->dirty)
2285		return (0);
2286	vm_page_free(m);
2287	return (1);
2288}
2289
2290/*
2291 * vm_page_cache
2292 *
2293 * Put the specified page onto the page cache queue (if appropriate).
2294 *
2295 * This routine may not block.
2296 */
2297void
2298vm_page_cache(vm_page_t m)
2299{
2300	vm_object_t object;
2301	vm_page_t next, prev, root;
2302
2303	vm_page_lock_assert(m, MA_OWNED);
2304	object = m->object;
2305	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2306	if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) || m->busy ||
2307	    m->hold_count || m->wire_count)
2308		panic("vm_page_cache: attempting to cache busy page");
2309	pmap_remove_all(m);
2310	if (m->dirty != 0)
2311		panic("vm_page_cache: page %p is dirty", m);
2312	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2313	    (object->type == OBJT_SWAP &&
2314	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2315		/*
2316		 * Hypothesis: A cache-elgible page belonging to a
2317		 * default object or swap object but without a backing
2318		 * store must be zero filled.
2319		 */
2320		vm_page_free(m);
2321		return;
2322	}
2323	KASSERT((m->flags & PG_CACHED) == 0,
2324	    ("vm_page_cache: page %p is already cached", m));
2325	PCPU_INC(cnt.v_tcached);
2326
2327	/*
2328	 * Remove the page from the paging queues.
2329	 */
2330	vm_pageq_remove(m);
2331
2332	/*
2333	 * Remove the page from the object's collection of resident
2334	 * pages.
2335	 */
2336	if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) {
2337		/*
2338		 * Since the page's successor in the list is also its parent
2339		 * in the tree, its right subtree must be empty.
2340		 */
2341		next->left = m->left;
2342		KASSERT(m->right == NULL,
2343		    ("vm_page_cache: page %p has right child", m));
2344	} else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
2345	    prev->right == m) {
2346		/*
2347		 * Since the page's predecessor in the list is also its parent
2348		 * in the tree, its left subtree must be empty.
2349		 */
2350		KASSERT(m->left == NULL,
2351		    ("vm_page_cache: page %p has left child", m));
2352		prev->right = m->right;
2353	} else {
2354		if (m != object->root)
2355			vm_page_splay(m->pindex, object->root);
2356		if (m->left == NULL)
2357			root = m->right;
2358		else if (m->right == NULL)
2359			root = m->left;
2360		else {
2361			/*
2362			 * Move the page's successor to the root, because
2363			 * pages are usually removed in ascending order.
2364			 */
2365			if (m->right != next)
2366				vm_page_splay(m->pindex, m->right);
2367			next->left = m->left;
2368			root = next;
2369		}
2370		object->root = root;
2371	}
2372	TAILQ_REMOVE(&object->memq, m, listq);
2373	object->resident_page_count--;
2374
2375	/*
2376	 * Restore the default memory attribute to the page.
2377	 */
2378	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2379		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2380
2381	/*
2382	 * Insert the page into the object's collection of cached pages
2383	 * and the physical memory allocator's cache/free page queues.
2384	 */
2385	m->flags &= ~PG_ZERO;
2386	mtx_lock(&vm_page_queue_free_mtx);
2387	m->flags |= PG_CACHED;
2388	cnt.v_cache_count++;
2389	root = object->cache;
2390	if (root == NULL) {
2391		m->left = NULL;
2392		m->right = NULL;
2393	} else {
2394		root = vm_page_splay(m->pindex, root);
2395		if (m->pindex < root->pindex) {
2396			m->left = root->left;
2397			m->right = root;
2398			root->left = NULL;
2399		} else if (__predict_false(m->pindex == root->pindex))
2400			panic("vm_page_cache: offset already cached");
2401		else {
2402			m->right = root->right;
2403			m->left = root;
2404			root->right = NULL;
2405		}
2406	}
2407	object->cache = m;
2408#if VM_NRESERVLEVEL > 0
2409	if (!vm_reserv_free_page(m)) {
2410#else
2411	if (TRUE) {
2412#endif
2413		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2414		vm_phys_free_pages(m, 0);
2415	}
2416	vm_page_free_wakeup();
2417	mtx_unlock(&vm_page_queue_free_mtx);
2418
2419	/*
2420	 * Increment the vnode's hold count if this is the object's only
2421	 * cached page.  Decrement the vnode's hold count if this was
2422	 * the object's only resident page.
2423	 */
2424	if (object->type == OBJT_VNODE) {
2425		if (root == NULL && object->resident_page_count != 0)
2426			vhold(object->handle);
2427		else if (root != NULL && object->resident_page_count == 0)
2428			vdrop(object->handle);
2429	}
2430}
2431
2432/*
2433 * vm_page_dontneed
2434 *
2435 *	Cache, deactivate, or do nothing as appropriate.  This routine
2436 *	is typically used by madvise() MADV_DONTNEED.
2437 *
2438 *	Generally speaking we want to move the page into the cache so
2439 *	it gets reused quickly.  However, this can result in a silly syndrome
2440 *	due to the page recycling too quickly.  Small objects will not be
2441 *	fully cached.  On the otherhand, if we move the page to the inactive
2442 *	queue we wind up with a problem whereby very large objects
2443 *	unnecessarily blow away our inactive and cache queues.
2444 *
2445 *	The solution is to move the pages based on a fixed weighting.  We
2446 *	either leave them alone, deactivate them, or move them to the cache,
2447 *	where moving them to the cache has the highest weighting.
2448 *	By forcing some pages into other queues we eventually force the
2449 *	system to balance the queues, potentially recovering other unrelated
2450 *	space from active.  The idea is to not force this to happen too
2451 *	often.
2452 */
2453void
2454vm_page_dontneed(vm_page_t m)
2455{
2456	int dnw;
2457	int head;
2458
2459	vm_page_lock_assert(m, MA_OWNED);
2460	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2461	dnw = PCPU_GET(dnweight);
2462	PCPU_INC(dnweight);
2463
2464	/*
2465	 * Occasionally leave the page alone.
2466	 */
2467	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2468		if (m->act_count >= ACT_INIT)
2469			--m->act_count;
2470		return;
2471	}
2472
2473	/*
2474	 * Clear any references to the page.  Otherwise, the page daemon will
2475	 * immediately reactivate the page.
2476	 *
2477	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
2478	 * pmap operation, such as pmap_remove(), could clear a reference in
2479	 * the pmap and set PGA_REFERENCED on the page before the
2480	 * pmap_clear_reference() had completed.  Consequently, the page would
2481	 * appear referenced based upon an old reference that occurred before
2482	 * this function ran.
2483	 */
2484	pmap_clear_reference(m);
2485	vm_page_aflag_clear(m, PGA_REFERENCED);
2486
2487	if (m->dirty == 0 && pmap_is_modified(m))
2488		vm_page_dirty(m);
2489
2490	if (m->dirty || (dnw & 0x0070) == 0) {
2491		/*
2492		 * Deactivate the page 3 times out of 32.
2493		 */
2494		head = 0;
2495	} else {
2496		/*
2497		 * Cache the page 28 times out of every 32.  Note that
2498		 * the page is deactivated instead of cached, but placed
2499		 * at the head of the queue instead of the tail.
2500		 */
2501		head = 1;
2502	}
2503	_vm_page_deactivate(m, head);
2504}
2505
2506/*
2507 * Grab a page, waiting until we are waken up due to the page
2508 * changing state.  We keep on waiting, if the page continues
2509 * to be in the object.  If the page doesn't exist, first allocate it
2510 * and then conditionally zero it.
2511 *
2512 * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
2513 * to facilitate its eventual removal.
2514 *
2515 * This routine may block.
2516 */
2517vm_page_t
2518vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2519{
2520	vm_page_t m;
2521
2522	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2523	KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
2524	    ("vm_page_grab: VM_ALLOC_RETRY is required"));
2525retrylookup:
2526	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2527		if ((m->oflags & VPO_BUSY) != 0 ||
2528		    ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
2529			/*
2530			 * Reference the page before unlocking and
2531			 * sleeping so that the page daemon is less
2532			 * likely to reclaim it.
2533			 */
2534			vm_page_aflag_set(m, PGA_REFERENCED);
2535			vm_page_sleep(m, "pgrbwt");
2536			goto retrylookup;
2537		} else {
2538			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2539				vm_page_lock(m);
2540				vm_page_wire(m);
2541				vm_page_unlock(m);
2542			}
2543			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2544				vm_page_busy(m);
2545			return (m);
2546		}
2547	}
2548	m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
2549	    VM_ALLOC_IGN_SBUSY));
2550	if (m == NULL) {
2551		VM_OBJECT_UNLOCK(object);
2552		VM_WAIT;
2553		VM_OBJECT_LOCK(object);
2554		goto retrylookup;
2555	} else if (m->valid != 0)
2556		return (m);
2557	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2558		pmap_zero_page(m);
2559	return (m);
2560}
2561
2562/*
2563 * Mapping function for valid bits or for dirty bits in
2564 * a page.  May not block.
2565 *
2566 * Inputs are required to range within a page.
2567 */
2568vm_page_bits_t
2569vm_page_bits(int base, int size)
2570{
2571	int first_bit;
2572	int last_bit;
2573
2574	KASSERT(
2575	    base + size <= PAGE_SIZE,
2576	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2577	);
2578
2579	if (size == 0)		/* handle degenerate case */
2580		return (0);
2581
2582	first_bit = base >> DEV_BSHIFT;
2583	last_bit = (base + size - 1) >> DEV_BSHIFT;
2584
2585	return (((vm_page_bits_t)2 << last_bit) -
2586	    ((vm_page_bits_t)1 << first_bit));
2587}
2588
2589/*
2590 *	vm_page_set_valid_range:
2591 *
2592 *	Sets portions of a page valid.  The arguments are expected
2593 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2594 *	of any partial chunks touched by the range.  The invalid portion of
2595 *	such chunks will be zeroed.
2596 *
2597 *	(base + size) must be less then or equal to PAGE_SIZE.
2598 */
2599void
2600vm_page_set_valid_range(vm_page_t m, int base, int size)
2601{
2602	int endoff, frag;
2603
2604	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2605	if (size == 0)	/* handle degenerate case */
2606		return;
2607
2608	/*
2609	 * If the base is not DEV_BSIZE aligned and the valid
2610	 * bit is clear, we have to zero out a portion of the
2611	 * first block.
2612	 */
2613	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2614	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2615		pmap_zero_page_area(m, frag, base - frag);
2616
2617	/*
2618	 * If the ending offset is not DEV_BSIZE aligned and the
2619	 * valid bit is clear, we have to zero out a portion of
2620	 * the last block.
2621	 */
2622	endoff = base + size;
2623	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2624	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2625		pmap_zero_page_area(m, endoff,
2626		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2627
2628	/*
2629	 * Assert that no previously invalid block that is now being validated
2630	 * is already dirty.
2631	 */
2632	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2633	    ("vm_page_set_valid_range: page %p is dirty", m));
2634
2635	/*
2636	 * Set valid bits inclusive of any overlap.
2637	 */
2638	m->valid |= vm_page_bits(base, size);
2639}
2640
2641/*
2642 * Clear the given bits from the specified page's dirty field.
2643 */
2644static __inline void
2645vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2646{
2647	uintptr_t addr;
2648#if PAGE_SIZE < 16384
2649	int shift;
2650#endif
2651
2652	/*
2653	 * If the object is locked and the page is neither VPO_BUSY nor
2654	 * write mapped, then the page's dirty field cannot possibly be
2655	 * set by a concurrent pmap operation.
2656	 */
2657	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2658	if ((m->oflags & VPO_BUSY) == 0 && !pmap_page_is_write_mapped(m))
2659		m->dirty &= ~pagebits;
2660	else {
2661		/*
2662		 * The pmap layer can call vm_page_dirty() without
2663		 * holding a distinguished lock.  The combination of
2664		 * the object's lock and an atomic operation suffice
2665		 * to guarantee consistency of the page dirty field.
2666		 *
2667		 * For PAGE_SIZE == 32768 case, compiler already
2668		 * properly aligns the dirty field, so no forcible
2669		 * alignment is needed. Only require existence of
2670		 * atomic_clear_64 when page size is 32768.
2671		 */
2672		addr = (uintptr_t)&m->dirty;
2673#if PAGE_SIZE == 32768
2674		atomic_clear_64((uint64_t *)addr, pagebits);
2675#elif PAGE_SIZE == 16384
2676		atomic_clear_32((uint32_t *)addr, pagebits);
2677#else		/* PAGE_SIZE <= 8192 */
2678		/*
2679		 * Use a trick to perform a 32-bit atomic on the
2680		 * containing aligned word, to not depend on the existence
2681		 * of atomic_clear_{8, 16}.
2682		 */
2683		shift = addr & (sizeof(uint32_t) - 1);
2684#if BYTE_ORDER == BIG_ENDIAN
2685		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2686#else
2687		shift *= NBBY;
2688#endif
2689		addr &= ~(sizeof(uint32_t) - 1);
2690		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2691#endif		/* PAGE_SIZE */
2692	}
2693}
2694
2695/*
2696 *	vm_page_set_validclean:
2697 *
2698 *	Sets portions of a page valid and clean.  The arguments are expected
2699 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2700 *	of any partial chunks touched by the range.  The invalid portion of
2701 *	such chunks will be zero'd.
2702 *
2703 *	This routine may not block.
2704 *
2705 *	(base + size) must be less then or equal to PAGE_SIZE.
2706 */
2707void
2708vm_page_set_validclean(vm_page_t m, int base, int size)
2709{
2710	vm_page_bits_t oldvalid, pagebits;
2711	int endoff, frag;
2712
2713	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2714	if (size == 0)	/* handle degenerate case */
2715		return;
2716
2717	/*
2718	 * If the base is not DEV_BSIZE aligned and the valid
2719	 * bit is clear, we have to zero out a portion of the
2720	 * first block.
2721	 */
2722	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2723	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2724		pmap_zero_page_area(m, frag, base - frag);
2725
2726	/*
2727	 * If the ending offset is not DEV_BSIZE aligned and the
2728	 * valid bit is clear, we have to zero out a portion of
2729	 * the last block.
2730	 */
2731	endoff = base + size;
2732	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2733	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2734		pmap_zero_page_area(m, endoff,
2735		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2736
2737	/*
2738	 * Set valid, clear dirty bits.  If validating the entire
2739	 * page we can safely clear the pmap modify bit.  We also
2740	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2741	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2742	 * be set again.
2743	 *
2744	 * We set valid bits inclusive of any overlap, but we can only
2745	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2746	 * the range.
2747	 */
2748	oldvalid = m->valid;
2749	pagebits = vm_page_bits(base, size);
2750	m->valid |= pagebits;
2751#if 0	/* NOT YET */
2752	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2753		frag = DEV_BSIZE - frag;
2754		base += frag;
2755		size -= frag;
2756		if (size < 0)
2757			size = 0;
2758	}
2759	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2760#endif
2761	if (base == 0 && size == PAGE_SIZE) {
2762		/*
2763		 * The page can only be modified within the pmap if it is
2764		 * mapped, and it can only be mapped if it was previously
2765		 * fully valid.
2766		 */
2767		if (oldvalid == VM_PAGE_BITS_ALL)
2768			/*
2769			 * Perform the pmap_clear_modify() first.  Otherwise,
2770			 * a concurrent pmap operation, such as
2771			 * pmap_protect(), could clear a modification in the
2772			 * pmap and set the dirty field on the page before
2773			 * pmap_clear_modify() had begun and after the dirty
2774			 * field was cleared here.
2775			 */
2776			pmap_clear_modify(m);
2777		m->dirty = 0;
2778		m->oflags &= ~VPO_NOSYNC;
2779	} else if (oldvalid != VM_PAGE_BITS_ALL)
2780		m->dirty &= ~pagebits;
2781	else
2782		vm_page_clear_dirty_mask(m, pagebits);
2783}
2784
2785void
2786vm_page_clear_dirty(vm_page_t m, int base, int size)
2787{
2788
2789	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2790}
2791
2792/*
2793 *	vm_page_set_invalid:
2794 *
2795 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2796 *	valid and dirty bits for the effected areas are cleared.
2797 *
2798 *	May not block.
2799 */
2800void
2801vm_page_set_invalid(vm_page_t m, int base, int size)
2802{
2803	vm_page_bits_t bits;
2804
2805	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2806	KASSERT((m->oflags & VPO_BUSY) == 0,
2807	    ("vm_page_set_invalid: page %p is busy", m));
2808	bits = vm_page_bits(base, size);
2809	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2810		pmap_remove_all(m);
2811	KASSERT(!pmap_page_is_mapped(m),
2812	    ("vm_page_set_invalid: page %p is mapped", m));
2813	m->valid &= ~bits;
2814	m->dirty &= ~bits;
2815}
2816
2817/*
2818 * vm_page_zero_invalid()
2819 *
2820 *	The kernel assumes that the invalid portions of a page contain
2821 *	garbage, but such pages can be mapped into memory by user code.
2822 *	When this occurs, we must zero out the non-valid portions of the
2823 *	page so user code sees what it expects.
2824 *
2825 *	Pages are most often semi-valid when the end of a file is mapped
2826 *	into memory and the file's size is not page aligned.
2827 */
2828void
2829vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2830{
2831	int b;
2832	int i;
2833
2834	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2835	/*
2836	 * Scan the valid bits looking for invalid sections that
2837	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2838	 * valid bit may be set ) have already been zerod by
2839	 * vm_page_set_validclean().
2840	 */
2841	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2842		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2843		    (m->valid & ((vm_page_bits_t)1 << i))) {
2844			if (i > b) {
2845				pmap_zero_page_area(m,
2846				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2847			}
2848			b = i + 1;
2849		}
2850	}
2851
2852	/*
2853	 * setvalid is TRUE when we can safely set the zero'd areas
2854	 * as being valid.  We can do this if there are no cache consistancy
2855	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2856	 */
2857	if (setvalid)
2858		m->valid = VM_PAGE_BITS_ALL;
2859}
2860
2861/*
2862 *	vm_page_is_valid:
2863 *
2864 *	Is (partial) page valid?  Note that the case where size == 0
2865 *	will return FALSE in the degenerate case where the page is
2866 *	entirely invalid, and TRUE otherwise.
2867 *
2868 *	May not block.
2869 */
2870int
2871vm_page_is_valid(vm_page_t m, int base, int size)
2872{
2873	vm_page_bits_t bits;
2874
2875	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2876	bits = vm_page_bits(base, size);
2877	if (m->valid && ((m->valid & bits) == bits))
2878		return 1;
2879	else
2880		return 0;
2881}
2882
2883/*
2884 * update dirty bits from pmap/mmu.  May not block.
2885 */
2886void
2887vm_page_test_dirty(vm_page_t m)
2888{
2889
2890	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2891	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2892		vm_page_dirty(m);
2893}
2894
2895void
2896vm_page_lock_KBI(vm_page_t m, const char *file, int line)
2897{
2898
2899	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
2900}
2901
2902void
2903vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
2904{
2905
2906	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
2907}
2908
2909int
2910vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
2911{
2912
2913	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
2914}
2915
2916#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
2917void
2918vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
2919{
2920
2921	mtx_assert_(vm_page_lockptr(m), a, file, line);
2922}
2923#endif
2924
2925int so_zerocp_fullpage = 0;
2926
2927/*
2928 *	Replace the given page with a copy.  The copied page assumes
2929 *	the portion of the given page's "wire_count" that is not the
2930 *	responsibility of this copy-on-write mechanism.
2931 *
2932 *	The object containing the given page must have a non-zero
2933 *	paging-in-progress count and be locked.
2934 */
2935void
2936vm_page_cowfault(vm_page_t m)
2937{
2938	vm_page_t mnew;
2939	vm_object_t object;
2940	vm_pindex_t pindex;
2941
2942	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
2943	vm_page_lock_assert(m, MA_OWNED);
2944	object = m->object;
2945	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2946	KASSERT(object->paging_in_progress != 0,
2947	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2948	    object));
2949	pindex = m->pindex;
2950
2951 retry_alloc:
2952	pmap_remove_all(m);
2953	vm_page_remove(m);
2954	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2955	if (mnew == NULL) {
2956		vm_page_insert(m, object, pindex);
2957		vm_page_unlock(m);
2958		VM_OBJECT_UNLOCK(object);
2959		VM_WAIT;
2960		VM_OBJECT_LOCK(object);
2961		if (m == vm_page_lookup(object, pindex)) {
2962			vm_page_lock(m);
2963			goto retry_alloc;
2964		} else {
2965			/*
2966			 * Page disappeared during the wait.
2967			 */
2968			return;
2969		}
2970	}
2971
2972	if (m->cow == 0) {
2973		/*
2974		 * check to see if we raced with an xmit complete when
2975		 * waiting to allocate a page.  If so, put things back
2976		 * the way they were
2977		 */
2978		vm_page_unlock(m);
2979		vm_page_lock(mnew);
2980		vm_page_free(mnew);
2981		vm_page_unlock(mnew);
2982		vm_page_insert(m, object, pindex);
2983	} else { /* clear COW & copy page */
2984		if (!so_zerocp_fullpage)
2985			pmap_copy_page(m, mnew);
2986		mnew->valid = VM_PAGE_BITS_ALL;
2987		vm_page_dirty(mnew);
2988		mnew->wire_count = m->wire_count - m->cow;
2989		m->wire_count = m->cow;
2990		vm_page_unlock(m);
2991	}
2992}
2993
2994void
2995vm_page_cowclear(vm_page_t m)
2996{
2997
2998	vm_page_lock_assert(m, MA_OWNED);
2999	if (m->cow) {
3000		m->cow--;
3001		/*
3002		 * let vm_fault add back write permission  lazily
3003		 */
3004	}
3005	/*
3006	 *  sf_buf_free() will free the page, so we needn't do it here
3007	 */
3008}
3009
3010int
3011vm_page_cowsetup(vm_page_t m)
3012{
3013
3014	vm_page_lock_assert(m, MA_OWNED);
3015	if ((m->flags & PG_FICTITIOUS) != 0 ||
3016	    (m->oflags & VPO_UNMANAGED) != 0 ||
3017	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
3018		return (EBUSY);
3019	m->cow++;
3020	pmap_remove_write(m);
3021	VM_OBJECT_UNLOCK(m->object);
3022	return (0);
3023}
3024
3025#ifdef INVARIANTS
3026void
3027vm_page_object_lock_assert(vm_page_t m)
3028{
3029
3030	/*
3031	 * Certain of the page's fields may only be modified by the
3032	 * holder of the containing object's lock or the setter of the
3033	 * page's VPO_BUSY flag.  Unfortunately, the setter of the
3034	 * VPO_BUSY flag is not recorded, and thus cannot be checked
3035	 * here.
3036	 */
3037	if (m->object != NULL && (m->oflags & VPO_BUSY) == 0)
3038		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3039}
3040#endif
3041
3042#include "opt_ddb.h"
3043#ifdef DDB
3044#include <sys/kernel.h>
3045
3046#include <ddb/ddb.h>
3047
3048DB_SHOW_COMMAND(page, vm_page_print_page_info)
3049{
3050	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
3051	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
3052	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
3053	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
3054	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
3055	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
3056	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
3057	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
3058	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
3059	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
3060}
3061
3062DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3063{
3064
3065	db_printf("PQ_FREE:");
3066	db_printf(" %d", cnt.v_free_count);
3067	db_printf("\n");
3068
3069	db_printf("PQ_CACHE:");
3070	db_printf(" %d", cnt.v_cache_count);
3071	db_printf("\n");
3072
3073	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
3074		*vm_page_queues[PQ_ACTIVE].cnt,
3075		*vm_page_queues[PQ_INACTIVE].cnt);
3076}
3077#endif /* DDB */
3078