vm_page.c revision 227606
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- a pageq mutex is required when adding or removing a page from a
67 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68 *	  busy state of a page.
69 *
70 *	- The object mutex is held when inserting or removing
71 *	  pages from an object (vm_page_insert() or vm_page_remove()).
72 *
73 */
74
75/*
76 *	Resident memory management module.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 227606 2011-11-17 06:54:49Z alc $");
81
82#include "opt_vm.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/lock.h>
87#include <sys/kernel.h>
88#include <sys/limits.h>
89#include <sys/malloc.h>
90#include <sys/msgbuf.h>
91#include <sys/mutex.h>
92#include <sys/proc.h>
93#include <sys/sysctl.h>
94#include <sys/vmmeter.h>
95#include <sys/vnode.h>
96
97#include <vm/vm.h>
98#include <vm/pmap.h>
99#include <vm/vm_param.h>
100#include <vm/vm_kern.h>
101#include <vm/vm_object.h>
102#include <vm/vm_page.h>
103#include <vm/vm_pageout.h>
104#include <vm/vm_pager.h>
105#include <vm/vm_phys.h>
106#include <vm/vm_reserv.h>
107#include <vm/vm_extern.h>
108#include <vm/uma.h>
109#include <vm/uma_int.h>
110
111#include <machine/md_var.h>
112
113/*
114 *	Associated with page of user-allocatable memory is a
115 *	page structure.
116 */
117
118struct vpgqueues vm_page_queues[PQ_COUNT];
119struct vpglocks vm_page_queue_lock;
120struct vpglocks vm_page_queue_free_lock;
121
122struct vpglocks	pa_lock[PA_LOCK_COUNT];
123
124vm_page_t vm_page_array = 0;
125int vm_page_array_size = 0;
126long first_page = 0;
127int vm_page_zero_count = 0;
128
129static int boot_pages = UMA_BOOT_PAGES;
130TUNABLE_INT("vm.boot_pages", &boot_pages);
131SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
132	"number of pages allocated for bootstrapping the VM system");
133
134static int pa_tryrelock_restart;
135SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
136    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
137
138static uma_zone_t fakepg_zone;
139
140static struct vnode *vm_page_alloc_init(vm_page_t m);
141static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
142static void vm_page_queue_remove(int queue, vm_page_t m);
143static void vm_page_enqueue(int queue, vm_page_t m);
144static void vm_page_init_fakepg(void *dummy);
145
146SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
147
148static void
149vm_page_init_fakepg(void *dummy)
150{
151
152	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
153	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
154}
155
156/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
157#if PAGE_SIZE == 32768
158#ifdef CTASSERT
159CTASSERT(sizeof(u_long) >= 8);
160#endif
161#endif
162
163/*
164 * Try to acquire a physical address lock while a pmap is locked.  If we
165 * fail to trylock we unlock and lock the pmap directly and cache the
166 * locked pa in *locked.  The caller should then restart their loop in case
167 * the virtual to physical mapping has changed.
168 */
169int
170vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
171{
172	vm_paddr_t lockpa;
173
174	lockpa = *locked;
175	*locked = pa;
176	if (lockpa) {
177		PA_LOCK_ASSERT(lockpa, MA_OWNED);
178		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
179			return (0);
180		PA_UNLOCK(lockpa);
181	}
182	if (PA_TRYLOCK(pa))
183		return (0);
184	PMAP_UNLOCK(pmap);
185	atomic_add_int(&pa_tryrelock_restart, 1);
186	PA_LOCK(pa);
187	PMAP_LOCK(pmap);
188	return (EAGAIN);
189}
190
191/*
192 *	vm_set_page_size:
193 *
194 *	Sets the page size, perhaps based upon the memory
195 *	size.  Must be called before any use of page-size
196 *	dependent functions.
197 */
198void
199vm_set_page_size(void)
200{
201	if (cnt.v_page_size == 0)
202		cnt.v_page_size = PAGE_SIZE;
203	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
204		panic("vm_set_page_size: page size not a power of two");
205}
206
207/*
208 *	vm_page_blacklist_lookup:
209 *
210 *	See if a physical address in this page has been listed
211 *	in the blacklist tunable.  Entries in the tunable are
212 *	separated by spaces or commas.  If an invalid integer is
213 *	encountered then the rest of the string is skipped.
214 */
215static int
216vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
217{
218	vm_paddr_t bad;
219	char *cp, *pos;
220
221	for (pos = list; *pos != '\0'; pos = cp) {
222		bad = strtoq(pos, &cp, 0);
223		if (*cp != '\0') {
224			if (*cp == ' ' || *cp == ',') {
225				cp++;
226				if (cp == pos)
227					continue;
228			} else
229				break;
230		}
231		if (pa == trunc_page(bad))
232			return (1);
233	}
234	return (0);
235}
236
237/*
238 *	vm_page_startup:
239 *
240 *	Initializes the resident memory module.
241 *
242 *	Allocates memory for the page cells, and
243 *	for the object/offset-to-page hash table headers.
244 *	Each page cell is initialized and placed on the free list.
245 */
246vm_offset_t
247vm_page_startup(vm_offset_t vaddr)
248{
249	vm_offset_t mapped;
250	vm_paddr_t page_range;
251	vm_paddr_t new_end;
252	int i;
253	vm_paddr_t pa;
254	vm_paddr_t last_pa;
255	char *list;
256
257	/* the biggest memory array is the second group of pages */
258	vm_paddr_t end;
259	vm_paddr_t biggestsize;
260	vm_paddr_t low_water, high_water;
261	int biggestone;
262
263	biggestsize = 0;
264	biggestone = 0;
265	vaddr = round_page(vaddr);
266
267	for (i = 0; phys_avail[i + 1]; i += 2) {
268		phys_avail[i] = round_page(phys_avail[i]);
269		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
270	}
271
272	low_water = phys_avail[0];
273	high_water = phys_avail[1];
274
275	for (i = 0; phys_avail[i + 1]; i += 2) {
276		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
277
278		if (size > biggestsize) {
279			biggestone = i;
280			biggestsize = size;
281		}
282		if (phys_avail[i] < low_water)
283			low_water = phys_avail[i];
284		if (phys_avail[i + 1] > high_water)
285			high_water = phys_avail[i + 1];
286	}
287
288#ifdef XEN
289	low_water = 0;
290#endif
291
292	end = phys_avail[biggestone+1];
293
294	/*
295	 * Initialize the locks.
296	 */
297	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
298	    MTX_RECURSE);
299	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
300	    MTX_DEF);
301
302	/* Setup page locks. */
303	for (i = 0; i < PA_LOCK_COUNT; i++)
304		mtx_init(&pa_lock[i].data, "page lock", NULL, MTX_DEF);
305
306	/*
307	 * Initialize the queue headers for the hold queue, the active queue,
308	 * and the inactive queue.
309	 */
310	for (i = 0; i < PQ_COUNT; i++)
311		TAILQ_INIT(&vm_page_queues[i].pl);
312	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
313	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
314	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
315
316	/*
317	 * Allocate memory for use when boot strapping the kernel memory
318	 * allocator.
319	 */
320	new_end = end - (boot_pages * UMA_SLAB_SIZE);
321	new_end = trunc_page(new_end);
322	mapped = pmap_map(&vaddr, new_end, end,
323	    VM_PROT_READ | VM_PROT_WRITE);
324	bzero((void *)mapped, end - new_end);
325	uma_startup((void *)mapped, boot_pages);
326
327#if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
328    defined(__mips__)
329	/*
330	 * Allocate a bitmap to indicate that a random physical page
331	 * needs to be included in a minidump.
332	 *
333	 * The amd64 port needs this to indicate which direct map pages
334	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
335	 *
336	 * However, i386 still needs this workspace internally within the
337	 * minidump code.  In theory, they are not needed on i386, but are
338	 * included should the sf_buf code decide to use them.
339	 */
340	last_pa = 0;
341	for (i = 0; dump_avail[i + 1] != 0; i += 2)
342		if (dump_avail[i + 1] > last_pa)
343			last_pa = dump_avail[i + 1];
344	page_range = last_pa / PAGE_SIZE;
345	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
346	new_end -= vm_page_dump_size;
347	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
348	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
349	bzero((void *)vm_page_dump, vm_page_dump_size);
350#endif
351#ifdef __amd64__
352	/*
353	 * Request that the physical pages underlying the message buffer be
354	 * included in a crash dump.  Since the message buffer is accessed
355	 * through the direct map, they are not automatically included.
356	 */
357	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
358	last_pa = pa + round_page(msgbufsize);
359	while (pa < last_pa) {
360		dump_add_page(pa);
361		pa += PAGE_SIZE;
362	}
363#endif
364	/*
365	 * Compute the number of pages of memory that will be available for
366	 * use (taking into account the overhead of a page structure per
367	 * page).
368	 */
369	first_page = low_water / PAGE_SIZE;
370#ifdef VM_PHYSSEG_SPARSE
371	page_range = 0;
372	for (i = 0; phys_avail[i + 1] != 0; i += 2)
373		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
374#elif defined(VM_PHYSSEG_DENSE)
375	page_range = high_water / PAGE_SIZE - first_page;
376#else
377#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
378#endif
379	end = new_end;
380
381	/*
382	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
383	 */
384	vaddr += PAGE_SIZE;
385
386	/*
387	 * Initialize the mem entry structures now, and put them in the free
388	 * queue.
389	 */
390	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
391	mapped = pmap_map(&vaddr, new_end, end,
392	    VM_PROT_READ | VM_PROT_WRITE);
393	vm_page_array = (vm_page_t) mapped;
394#if VM_NRESERVLEVEL > 0
395	/*
396	 * Allocate memory for the reservation management system's data
397	 * structures.
398	 */
399	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
400#endif
401#if defined(__amd64__) || defined(__mips__)
402	/*
403	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
404	 * like i386, so the pages must be tracked for a crashdump to include
405	 * this data.  This includes the vm_page_array and the early UMA
406	 * bootstrap pages.
407	 */
408	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
409		dump_add_page(pa);
410#endif
411	phys_avail[biggestone + 1] = new_end;
412
413	/*
414	 * Clear all of the page structures
415	 */
416	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
417	for (i = 0; i < page_range; i++)
418		vm_page_array[i].order = VM_NFREEORDER;
419	vm_page_array_size = page_range;
420
421	/*
422	 * Initialize the physical memory allocator.
423	 */
424	vm_phys_init();
425
426	/*
427	 * Add every available physical page that is not blacklisted to
428	 * the free lists.
429	 */
430	cnt.v_page_count = 0;
431	cnt.v_free_count = 0;
432	list = getenv("vm.blacklist");
433	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
434		pa = phys_avail[i];
435		last_pa = phys_avail[i + 1];
436		while (pa < last_pa) {
437			if (list != NULL &&
438			    vm_page_blacklist_lookup(list, pa))
439				printf("Skipping page with pa 0x%jx\n",
440				    (uintmax_t)pa);
441			else
442				vm_phys_add_page(pa);
443			pa += PAGE_SIZE;
444		}
445	}
446	freeenv(list);
447#if VM_NRESERVLEVEL > 0
448	/*
449	 * Initialize the reservation management system.
450	 */
451	vm_reserv_init();
452#endif
453	return (vaddr);
454}
455
456
457CTASSERT(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0);
458
459void
460vm_page_aflag_set(vm_page_t m, uint8_t bits)
461{
462	uint32_t *addr, val;
463
464	/*
465	 * The PGA_WRITEABLE flag can only be set if the page is managed and
466	 * VPO_BUSY.  Currently, this flag is only set by pmap_enter().
467	 */
468	KASSERT((bits & PGA_WRITEABLE) == 0 ||
469	    (m->oflags & (VPO_UNMANAGED | VPO_BUSY)) == VPO_BUSY,
470	    ("PGA_WRITEABLE and !VPO_BUSY"));
471
472	/*
473	 * We want to use atomic updates for m->aflags, which is a
474	 * byte wide.  Not all architectures provide atomic operations
475	 * on the single-byte destination.  Punt and access the whole
476	 * 4-byte word with an atomic update.  Parallel non-atomic
477	 * updates to the fields included in the update by proximity
478	 * are handled properly by atomics.
479	 */
480	addr = (void *)&m->aflags;
481	MPASS(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0);
482	val = bits;
483#if BYTE_ORDER == BIG_ENDIAN
484	val <<= 24;
485#endif
486	atomic_set_32(addr, val);
487}
488
489void
490vm_page_aflag_clear(vm_page_t m, uint8_t bits)
491{
492	uint32_t *addr, val;
493
494	/*
495	 * The PGA_REFERENCED flag can only be cleared if the object
496	 * containing the page is locked.
497	 */
498	KASSERT((bits & PGA_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object),
499	    ("PGA_REFERENCED and !VM_OBJECT_LOCKED"));
500
501	/*
502	 * See the comment in vm_page_aflag_set().
503	 */
504	addr = (void *)&m->aflags;
505	MPASS(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0);
506	val = bits;
507#if BYTE_ORDER == BIG_ENDIAN
508	val <<= 24;
509#endif
510	atomic_clear_32(addr, val);
511}
512
513void
514vm_page_reference(vm_page_t m)
515{
516
517	vm_page_aflag_set(m, PGA_REFERENCED);
518}
519
520void
521vm_page_busy(vm_page_t m)
522{
523
524	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
525	KASSERT((m->oflags & VPO_BUSY) == 0,
526	    ("vm_page_busy: page already busy!!!"));
527	m->oflags |= VPO_BUSY;
528}
529
530/*
531 *      vm_page_flash:
532 *
533 *      wakeup anyone waiting for the page.
534 */
535void
536vm_page_flash(vm_page_t m)
537{
538
539	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
540	if (m->oflags & VPO_WANTED) {
541		m->oflags &= ~VPO_WANTED;
542		wakeup(m);
543	}
544}
545
546/*
547 *      vm_page_wakeup:
548 *
549 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
550 *      page.
551 *
552 */
553void
554vm_page_wakeup(vm_page_t m)
555{
556
557	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
558	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
559	m->oflags &= ~VPO_BUSY;
560	vm_page_flash(m);
561}
562
563void
564vm_page_io_start(vm_page_t m)
565{
566
567	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
568	m->busy++;
569}
570
571void
572vm_page_io_finish(vm_page_t m)
573{
574
575	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
576	KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m));
577	m->busy--;
578	if (m->busy == 0)
579		vm_page_flash(m);
580}
581
582/*
583 * Keep page from being freed by the page daemon
584 * much of the same effect as wiring, except much lower
585 * overhead and should be used only for *very* temporary
586 * holding ("wiring").
587 */
588void
589vm_page_hold(vm_page_t mem)
590{
591
592	vm_page_lock_assert(mem, MA_OWNED);
593        mem->hold_count++;
594}
595
596void
597vm_page_unhold(vm_page_t mem)
598{
599
600	vm_page_lock_assert(mem, MA_OWNED);
601	--mem->hold_count;
602	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
603	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
604		vm_page_free_toq(mem);
605}
606
607/*
608 *	vm_page_unhold_pages:
609 *
610 *	Unhold each of the pages that is referenced by the given array.
611 */
612void
613vm_page_unhold_pages(vm_page_t *ma, int count)
614{
615	struct mtx *mtx, *new_mtx;
616
617	mtx = NULL;
618	for (; count != 0; count--) {
619		/*
620		 * Avoid releasing and reacquiring the same page lock.
621		 */
622		new_mtx = vm_page_lockptr(*ma);
623		if (mtx != new_mtx) {
624			if (mtx != NULL)
625				mtx_unlock(mtx);
626			mtx = new_mtx;
627			mtx_lock(mtx);
628		}
629		vm_page_unhold(*ma);
630		ma++;
631	}
632	if (mtx != NULL)
633		mtx_unlock(mtx);
634}
635
636/*
637 *	vm_page_getfake:
638 *
639 *	Create a fictitious page with the specified physical address and
640 *	memory attribute.  The memory attribute is the only the machine-
641 *	dependent aspect of a fictitious page that must be initialized.
642 */
643vm_page_t
644vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
645{
646	vm_page_t m;
647
648	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
649	m->phys_addr = paddr;
650	m->queue = PQ_NONE;
651	/* Fictitious pages don't use "segind". */
652	m->flags = PG_FICTITIOUS;
653	/* Fictitious pages don't use "order" or "pool". */
654	m->oflags = VPO_BUSY | VPO_UNMANAGED;
655	m->wire_count = 1;
656	pmap_page_set_memattr(m, memattr);
657	return (m);
658}
659
660/*
661 *	vm_page_putfake:
662 *
663 *	Release a fictitious page.
664 */
665void
666vm_page_putfake(vm_page_t m)
667{
668
669	KASSERT((m->flags & PG_FICTITIOUS) != 0,
670	    ("vm_page_putfake: bad page %p", m));
671	uma_zfree(fakepg_zone, m);
672}
673
674/*
675 *	vm_page_updatefake:
676 *
677 *	Update the given fictitious page to the specified physical address and
678 *	memory attribute.
679 */
680void
681vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
682{
683
684	KASSERT((m->flags & PG_FICTITIOUS) != 0,
685	    ("vm_page_updatefake: bad page %p", m));
686	m->phys_addr = paddr;
687	pmap_page_set_memattr(m, memattr);
688}
689
690/*
691 *	vm_page_free:
692 *
693 *	Free a page.
694 */
695void
696vm_page_free(vm_page_t m)
697{
698
699	m->flags &= ~PG_ZERO;
700	vm_page_free_toq(m);
701}
702
703/*
704 *	vm_page_free_zero:
705 *
706 *	Free a page to the zerod-pages queue
707 */
708void
709vm_page_free_zero(vm_page_t m)
710{
711
712	m->flags |= PG_ZERO;
713	vm_page_free_toq(m);
714}
715
716/*
717 *	vm_page_sleep:
718 *
719 *	Sleep and release the page and page queues locks.
720 *
721 *	The object containing the given page must be locked.
722 */
723void
724vm_page_sleep(vm_page_t m, const char *msg)
725{
726
727	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
728	if (mtx_owned(&vm_page_queue_mtx))
729		vm_page_unlock_queues();
730	if (mtx_owned(vm_page_lockptr(m)))
731		vm_page_unlock(m);
732
733	/*
734	 * It's possible that while we sleep, the page will get
735	 * unbusied and freed.  If we are holding the object
736	 * lock, we will assume we hold a reference to the object
737	 * such that even if m->object changes, we can re-lock
738	 * it.
739	 */
740	m->oflags |= VPO_WANTED;
741	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
742}
743
744/*
745 *	vm_page_dirty:
746 *
747 *	Set all bits in the page's dirty field.
748 *
749 *	The object containing the specified page must be locked if the
750 *	call is made from the machine-independent layer.
751 *
752 *	See vm_page_clear_dirty_mask().
753 */
754void
755vm_page_dirty(vm_page_t m)
756{
757
758	KASSERT((m->flags & PG_CACHED) == 0,
759	    ("vm_page_dirty: page in cache!"));
760	KASSERT(!VM_PAGE_IS_FREE(m),
761	    ("vm_page_dirty: page is free!"));
762	KASSERT(m->valid == VM_PAGE_BITS_ALL,
763	    ("vm_page_dirty: page is invalid!"));
764	m->dirty = VM_PAGE_BITS_ALL;
765}
766
767/*
768 *	vm_page_splay:
769 *
770 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
771 *	the vm_page containing the given pindex.  If, however, that
772 *	pindex is not found in the vm_object, returns a vm_page that is
773 *	adjacent to the pindex, coming before or after it.
774 */
775vm_page_t
776vm_page_splay(vm_pindex_t pindex, vm_page_t root)
777{
778	struct vm_page dummy;
779	vm_page_t lefttreemax, righttreemin, y;
780
781	if (root == NULL)
782		return (root);
783	lefttreemax = righttreemin = &dummy;
784	for (;; root = y) {
785		if (pindex < root->pindex) {
786			if ((y = root->left) == NULL)
787				break;
788			if (pindex < y->pindex) {
789				/* Rotate right. */
790				root->left = y->right;
791				y->right = root;
792				root = y;
793				if ((y = root->left) == NULL)
794					break;
795			}
796			/* Link into the new root's right tree. */
797			righttreemin->left = root;
798			righttreemin = root;
799		} else if (pindex > root->pindex) {
800			if ((y = root->right) == NULL)
801				break;
802			if (pindex > y->pindex) {
803				/* Rotate left. */
804				root->right = y->left;
805				y->left = root;
806				root = y;
807				if ((y = root->right) == NULL)
808					break;
809			}
810			/* Link into the new root's left tree. */
811			lefttreemax->right = root;
812			lefttreemax = root;
813		} else
814			break;
815	}
816	/* Assemble the new root. */
817	lefttreemax->right = root->left;
818	righttreemin->left = root->right;
819	root->left = dummy.right;
820	root->right = dummy.left;
821	return (root);
822}
823
824/*
825 *	vm_page_insert:		[ internal use only ]
826 *
827 *	Inserts the given mem entry into the object and object list.
828 *
829 *	The pagetables are not updated but will presumably fault the page
830 *	in if necessary, or if a kernel page the caller will at some point
831 *	enter the page into the kernel's pmap.  We are not allowed to block
832 *	here so we *can't* do this anyway.
833 *
834 *	The object and page must be locked.
835 *	This routine may not block.
836 */
837void
838vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
839{
840	vm_page_t root;
841
842	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
843	if (m->object != NULL)
844		panic("vm_page_insert: page already inserted");
845
846	/*
847	 * Record the object/offset pair in this page
848	 */
849	m->object = object;
850	m->pindex = pindex;
851
852	/*
853	 * Now link into the object's ordered list of backed pages.
854	 */
855	root = object->root;
856	if (root == NULL) {
857		m->left = NULL;
858		m->right = NULL;
859		TAILQ_INSERT_TAIL(&object->memq, m, listq);
860	} else {
861		root = vm_page_splay(pindex, root);
862		if (pindex < root->pindex) {
863			m->left = root->left;
864			m->right = root;
865			root->left = NULL;
866			TAILQ_INSERT_BEFORE(root, m, listq);
867		} else if (pindex == root->pindex)
868			panic("vm_page_insert: offset already allocated");
869		else {
870			m->right = root->right;
871			m->left = root;
872			root->right = NULL;
873			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
874		}
875	}
876	object->root = m;
877
878	/*
879	 * show that the object has one more resident page.
880	 */
881	object->resident_page_count++;
882	/*
883	 * Hold the vnode until the last page is released.
884	 */
885	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
886		vhold((struct vnode *)object->handle);
887
888	/*
889	 * Since we are inserting a new and possibly dirty page,
890	 * update the object's OBJ_MIGHTBEDIRTY flag.
891	 */
892	if (m->aflags & PGA_WRITEABLE)
893		vm_object_set_writeable_dirty(object);
894}
895
896/*
897 *	vm_page_remove:
898 *				NOTE: used by device pager as well -wfj
899 *
900 *	Removes the given mem entry from the object/offset-page
901 *	table and the object page list, but do not invalidate/terminate
902 *	the backing store.
903 *
904 *	The object and page must be locked.
905 *	The underlying pmap entry (if any) is NOT removed here.
906 *	This routine may not block.
907 */
908void
909vm_page_remove(vm_page_t m)
910{
911	vm_object_t object;
912	vm_page_t next, prev, root;
913
914	if ((m->oflags & VPO_UNMANAGED) == 0)
915		vm_page_lock_assert(m, MA_OWNED);
916	if ((object = m->object) == NULL)
917		return;
918	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
919	if (m->oflags & VPO_BUSY) {
920		m->oflags &= ~VPO_BUSY;
921		vm_page_flash(m);
922	}
923
924	/*
925	 * Now remove from the object's list of backed pages.
926	 */
927	if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) {
928		/*
929		 * Since the page's successor in the list is also its parent
930		 * in the tree, its right subtree must be empty.
931		 */
932		next->left = m->left;
933		KASSERT(m->right == NULL,
934		    ("vm_page_remove: page %p has right child", m));
935	} else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
936	    prev->right == m) {
937		/*
938		 * Since the page's predecessor in the list is also its parent
939		 * in the tree, its left subtree must be empty.
940		 */
941		KASSERT(m->left == NULL,
942		    ("vm_page_remove: page %p has left child", m));
943		prev->right = m->right;
944	} else {
945		if (m != object->root)
946			vm_page_splay(m->pindex, object->root);
947		if (m->left == NULL)
948			root = m->right;
949		else if (m->right == NULL)
950			root = m->left;
951		else {
952			/*
953			 * Move the page's successor to the root, because
954			 * pages are usually removed in ascending order.
955			 */
956			if (m->right != next)
957				vm_page_splay(m->pindex, m->right);
958			next->left = m->left;
959			root = next;
960		}
961		object->root = root;
962	}
963	TAILQ_REMOVE(&object->memq, m, listq);
964
965	/*
966	 * And show that the object has one fewer resident page.
967	 */
968	object->resident_page_count--;
969	/*
970	 * The vnode may now be recycled.
971	 */
972	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
973		vdrop((struct vnode *)object->handle);
974
975	m->object = NULL;
976}
977
978/*
979 *	vm_page_lookup:
980 *
981 *	Returns the page associated with the object/offset
982 *	pair specified; if none is found, NULL is returned.
983 *
984 *	The object must be locked.
985 *	This routine may not block.
986 *	This is a critical path routine
987 */
988vm_page_t
989vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
990{
991	vm_page_t m;
992
993	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
994	if ((m = object->root) != NULL && m->pindex != pindex) {
995		m = vm_page_splay(pindex, m);
996		if ((object->root = m)->pindex != pindex)
997			m = NULL;
998	}
999	return (m);
1000}
1001
1002/*
1003 *	vm_page_find_least:
1004 *
1005 *	Returns the page associated with the object with least pindex
1006 *	greater than or equal to the parameter pindex, or NULL.
1007 *
1008 *	The object must be locked.
1009 *	The routine may not block.
1010 */
1011vm_page_t
1012vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1013{
1014	vm_page_t m;
1015
1016	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1017	if ((m = TAILQ_FIRST(&object->memq)) != NULL) {
1018		if (m->pindex < pindex) {
1019			m = vm_page_splay(pindex, object->root);
1020			if ((object->root = m)->pindex < pindex)
1021				m = TAILQ_NEXT(m, listq);
1022		}
1023	}
1024	return (m);
1025}
1026
1027/*
1028 * Returns the given page's successor (by pindex) within the object if it is
1029 * resident; if none is found, NULL is returned.
1030 *
1031 * The object must be locked.
1032 */
1033vm_page_t
1034vm_page_next(vm_page_t m)
1035{
1036	vm_page_t next;
1037
1038	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1039	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1040	    next->pindex != m->pindex + 1)
1041		next = NULL;
1042	return (next);
1043}
1044
1045/*
1046 * Returns the given page's predecessor (by pindex) within the object if it is
1047 * resident; if none is found, NULL is returned.
1048 *
1049 * The object must be locked.
1050 */
1051vm_page_t
1052vm_page_prev(vm_page_t m)
1053{
1054	vm_page_t prev;
1055
1056	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1057	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1058	    prev->pindex != m->pindex - 1)
1059		prev = NULL;
1060	return (prev);
1061}
1062
1063/*
1064 *	vm_page_rename:
1065 *
1066 *	Move the given memory entry from its
1067 *	current object to the specified target object/offset.
1068 *
1069 *	The object must be locked.
1070 *	This routine may not block.
1071 *
1072 *	Note: swap associated with the page must be invalidated by the move.  We
1073 *	      have to do this for several reasons:  (1) we aren't freeing the
1074 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1075 *	      moving the page from object A to B, and will then later move
1076 *	      the backing store from A to B and we can't have a conflict.
1077 *
1078 *	Note: we *always* dirty the page.  It is necessary both for the
1079 *	      fact that we moved it, and because we may be invalidating
1080 *	      swap.  If the page is on the cache, we have to deactivate it
1081 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1082 *	      on the cache.
1083 */
1084void
1085vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1086{
1087
1088	vm_page_remove(m);
1089	vm_page_insert(m, new_object, new_pindex);
1090	vm_page_dirty(m);
1091}
1092
1093/*
1094 *	Convert all of the given object's cached pages that have a
1095 *	pindex within the given range into free pages.  If the value
1096 *	zero is given for "end", then the range's upper bound is
1097 *	infinity.  If the given object is backed by a vnode and it
1098 *	transitions from having one or more cached pages to none, the
1099 *	vnode's hold count is reduced.
1100 */
1101void
1102vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1103{
1104	vm_page_t m, m_next;
1105	boolean_t empty;
1106
1107	mtx_lock(&vm_page_queue_free_mtx);
1108	if (__predict_false(object->cache == NULL)) {
1109		mtx_unlock(&vm_page_queue_free_mtx);
1110		return;
1111	}
1112	m = object->cache = vm_page_splay(start, object->cache);
1113	if (m->pindex < start) {
1114		if (m->right == NULL)
1115			m = NULL;
1116		else {
1117			m_next = vm_page_splay(start, m->right);
1118			m_next->left = m;
1119			m->right = NULL;
1120			m = object->cache = m_next;
1121		}
1122	}
1123
1124	/*
1125	 * At this point, "m" is either (1) a reference to the page
1126	 * with the least pindex that is greater than or equal to
1127	 * "start" or (2) NULL.
1128	 */
1129	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
1130		/*
1131		 * Find "m"'s successor and remove "m" from the
1132		 * object's cache.
1133		 */
1134		if (m->right == NULL) {
1135			object->cache = m->left;
1136			m_next = NULL;
1137		} else {
1138			m_next = vm_page_splay(start, m->right);
1139			m_next->left = m->left;
1140			object->cache = m_next;
1141		}
1142		/* Convert "m" to a free page. */
1143		m->object = NULL;
1144		m->valid = 0;
1145		/* Clear PG_CACHED and set PG_FREE. */
1146		m->flags ^= PG_CACHED | PG_FREE;
1147		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
1148		    ("vm_page_cache_free: page %p has inconsistent flags", m));
1149		cnt.v_cache_count--;
1150		cnt.v_free_count++;
1151	}
1152	empty = object->cache == NULL;
1153	mtx_unlock(&vm_page_queue_free_mtx);
1154	if (object->type == OBJT_VNODE && empty)
1155		vdrop(object->handle);
1156}
1157
1158/*
1159 *	Returns the cached page that is associated with the given
1160 *	object and offset.  If, however, none exists, returns NULL.
1161 *
1162 *	The free page queue must be locked.
1163 */
1164static inline vm_page_t
1165vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1166{
1167	vm_page_t m;
1168
1169	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1170	if ((m = object->cache) != NULL && m->pindex != pindex) {
1171		m = vm_page_splay(pindex, m);
1172		if ((object->cache = m)->pindex != pindex)
1173			m = NULL;
1174	}
1175	return (m);
1176}
1177
1178/*
1179 *	Remove the given cached page from its containing object's
1180 *	collection of cached pages.
1181 *
1182 *	The free page queue must be locked.
1183 */
1184void
1185vm_page_cache_remove(vm_page_t m)
1186{
1187	vm_object_t object;
1188	vm_page_t root;
1189
1190	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1191	KASSERT((m->flags & PG_CACHED) != 0,
1192	    ("vm_page_cache_remove: page %p is not cached", m));
1193	object = m->object;
1194	if (m != object->cache) {
1195		root = vm_page_splay(m->pindex, object->cache);
1196		KASSERT(root == m,
1197		    ("vm_page_cache_remove: page %p is not cached in object %p",
1198		    m, object));
1199	}
1200	if (m->left == NULL)
1201		root = m->right;
1202	else if (m->right == NULL)
1203		root = m->left;
1204	else {
1205		root = vm_page_splay(m->pindex, m->left);
1206		root->right = m->right;
1207	}
1208	object->cache = root;
1209	m->object = NULL;
1210	cnt.v_cache_count--;
1211}
1212
1213/*
1214 *	Transfer all of the cached pages with offset greater than or
1215 *	equal to 'offidxstart' from the original object's cache to the
1216 *	new object's cache.  However, any cached pages with offset
1217 *	greater than or equal to the new object's size are kept in the
1218 *	original object.  Initially, the new object's cache must be
1219 *	empty.  Offset 'offidxstart' in the original object must
1220 *	correspond to offset zero in the new object.
1221 *
1222 *	The new object must be locked.
1223 */
1224void
1225vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1226    vm_object_t new_object)
1227{
1228	vm_page_t m, m_next;
1229
1230	/*
1231	 * Insertion into an object's collection of cached pages
1232	 * requires the object to be locked.  In contrast, removal does
1233	 * not.
1234	 */
1235	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
1236	KASSERT(new_object->cache == NULL,
1237	    ("vm_page_cache_transfer: object %p has cached pages",
1238	    new_object));
1239	mtx_lock(&vm_page_queue_free_mtx);
1240	if ((m = orig_object->cache) != NULL) {
1241		/*
1242		 * Transfer all of the pages with offset greater than or
1243		 * equal to 'offidxstart' from the original object's
1244		 * cache to the new object's cache.
1245		 */
1246		m = vm_page_splay(offidxstart, m);
1247		if (m->pindex < offidxstart) {
1248			orig_object->cache = m;
1249			new_object->cache = m->right;
1250			m->right = NULL;
1251		} else {
1252			orig_object->cache = m->left;
1253			new_object->cache = m;
1254			m->left = NULL;
1255		}
1256		while ((m = new_object->cache) != NULL) {
1257			if ((m->pindex - offidxstart) >= new_object->size) {
1258				/*
1259				 * Return all of the cached pages with
1260				 * offset greater than or equal to the
1261				 * new object's size to the original
1262				 * object's cache.
1263				 */
1264				new_object->cache = m->left;
1265				m->left = orig_object->cache;
1266				orig_object->cache = m;
1267				break;
1268			}
1269			m_next = vm_page_splay(m->pindex, m->right);
1270			/* Update the page's object and offset. */
1271			m->object = new_object;
1272			m->pindex -= offidxstart;
1273			if (m_next == NULL)
1274				break;
1275			m->right = NULL;
1276			m_next->left = m;
1277			new_object->cache = m_next;
1278		}
1279		KASSERT(new_object->cache == NULL ||
1280		    new_object->type == OBJT_SWAP,
1281		    ("vm_page_cache_transfer: object %p's type is incompatible"
1282		    " with cached pages", new_object));
1283	}
1284	mtx_unlock(&vm_page_queue_free_mtx);
1285}
1286
1287/*
1288 *	vm_page_alloc:
1289 *
1290 *	Allocate and return a page that is associated with the specified
1291 *	object and offset pair.  By default, this page has the flag VPO_BUSY
1292 *	set.
1293 *
1294 *	The caller must always specify an allocation class.
1295 *
1296 *	allocation classes:
1297 *	VM_ALLOC_NORMAL		normal process request
1298 *	VM_ALLOC_SYSTEM		system *really* needs a page
1299 *	VM_ALLOC_INTERRUPT	interrupt time request
1300 *
1301 *	optional allocation flags:
1302 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1303 *				intends to allocate
1304 *	VM_ALLOC_IFCACHED	return page only if it is cached
1305 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1306 *				is cached
1307 *	VM_ALLOC_NOBUSY		do not set the flag VPO_BUSY on the page
1308 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1309 *				should not have the flag VPO_BUSY set
1310 *	VM_ALLOC_WIRED		wire the allocated page
1311 *	VM_ALLOC_ZERO		prefer a zeroed page
1312 *
1313 *	This routine may not sleep.
1314 */
1315vm_page_t
1316vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1317{
1318	struct vnode *vp = NULL;
1319	vm_object_t m_object;
1320	vm_page_t m;
1321	int flags, req_class;
1322
1323	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0),
1324	    ("vm_page_alloc: inconsistent object/req"));
1325	if (object != NULL)
1326		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1327
1328	req_class = req & VM_ALLOC_CLASS_MASK;
1329
1330	/*
1331	 * The page daemon is allowed to dig deeper into the free page list.
1332	 */
1333	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1334		req_class = VM_ALLOC_SYSTEM;
1335
1336	mtx_lock(&vm_page_queue_free_mtx);
1337	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1338	    (req_class == VM_ALLOC_SYSTEM &&
1339	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1340	    (req_class == VM_ALLOC_INTERRUPT &&
1341	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1342		/*
1343		 * Allocate from the free queue if the number of free pages
1344		 * exceeds the minimum for the request class.
1345		 */
1346		if (object != NULL &&
1347		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1348			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1349				mtx_unlock(&vm_page_queue_free_mtx);
1350				return (NULL);
1351			}
1352			if (vm_phys_unfree_page(m))
1353				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1354#if VM_NRESERVLEVEL > 0
1355			else if (!vm_reserv_reactivate_page(m))
1356#else
1357			else
1358#endif
1359				panic("vm_page_alloc: cache page %p is missing"
1360				    " from the free queue", m);
1361		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1362			mtx_unlock(&vm_page_queue_free_mtx);
1363			return (NULL);
1364#if VM_NRESERVLEVEL > 0
1365		} else if (object == NULL || object->type == OBJT_DEVICE ||
1366		    object->type == OBJT_SG ||
1367		    (object->flags & OBJ_COLORED) == 0 ||
1368		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1369#else
1370		} else {
1371#endif
1372			m = vm_phys_alloc_pages(object != NULL ?
1373			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1374#if VM_NRESERVLEVEL > 0
1375			if (m == NULL && vm_reserv_reclaim_inactive()) {
1376				m = vm_phys_alloc_pages(object != NULL ?
1377				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1378				    0);
1379			}
1380#endif
1381		}
1382	} else {
1383		/*
1384		 * Not allocatable, give up.
1385		 */
1386		mtx_unlock(&vm_page_queue_free_mtx);
1387		atomic_add_int(&vm_pageout_deficit,
1388		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1389		pagedaemon_wakeup();
1390		return (NULL);
1391	}
1392
1393	/*
1394	 *  At this point we had better have found a good page.
1395	 */
1396	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1397	KASSERT(m->queue == PQ_NONE,
1398	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1399	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1400	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1401	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1402	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1403	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1404	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1405	    pmap_page_get_memattr(m)));
1406	if ((m->flags & PG_CACHED) != 0) {
1407		KASSERT((m->flags & PG_ZERO) == 0,
1408		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1409		KASSERT(m->valid != 0,
1410		    ("vm_page_alloc: cached page %p is invalid", m));
1411		if (m->object == object && m->pindex == pindex)
1412	  		cnt.v_reactivated++;
1413		else
1414			m->valid = 0;
1415		m_object = m->object;
1416		vm_page_cache_remove(m);
1417		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1418			vp = m_object->handle;
1419	} else {
1420		KASSERT(VM_PAGE_IS_FREE(m),
1421		    ("vm_page_alloc: page %p is not free", m));
1422		KASSERT(m->valid == 0,
1423		    ("vm_page_alloc: free page %p is valid", m));
1424		cnt.v_free_count--;
1425	}
1426
1427	/*
1428	 * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
1429	 * must be cleared before the free page queues lock is released.
1430	 */
1431	flags = 0;
1432	if (m->flags & PG_ZERO) {
1433		vm_page_zero_count--;
1434		if (req & VM_ALLOC_ZERO)
1435			flags = PG_ZERO;
1436	}
1437	m->flags = flags;
1438	mtx_unlock(&vm_page_queue_free_mtx);
1439	m->aflags = 0;
1440	if (object == NULL || object->type == OBJT_PHYS)
1441		m->oflags = VPO_UNMANAGED;
1442	else
1443		m->oflags = 0;
1444	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) == 0)
1445		m->oflags |= VPO_BUSY;
1446	if (req & VM_ALLOC_WIRED) {
1447		/*
1448		 * The page lock is not required for wiring a page until that
1449		 * page is inserted into the object.
1450		 */
1451		atomic_add_int(&cnt.v_wire_count, 1);
1452		m->wire_count = 1;
1453	}
1454	m->act_count = 0;
1455
1456	if (object != NULL) {
1457		/* Ignore device objects; the pager sets "memattr" for them. */
1458		if (object->memattr != VM_MEMATTR_DEFAULT &&
1459		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1460			pmap_page_set_memattr(m, object->memattr);
1461		vm_page_insert(m, object, pindex);
1462	} else
1463		m->pindex = pindex;
1464
1465	/*
1466	 * The following call to vdrop() must come after the above call
1467	 * to vm_page_insert() in case both affect the same object and
1468	 * vnode.  Otherwise, the affected vnode's hold count could
1469	 * temporarily become zero.
1470	 */
1471	if (vp != NULL)
1472		vdrop(vp);
1473
1474	/*
1475	 * Don't wakeup too often - wakeup the pageout daemon when
1476	 * we would be nearly out of memory.
1477	 */
1478	if (vm_paging_needed())
1479		pagedaemon_wakeup();
1480
1481	return (m);
1482}
1483
1484/*
1485 *	vm_page_alloc_contig:
1486 *
1487 *	Allocate a contiguous set of physical pages of the given size "npages"
1488 *	from the free lists.  All of the physical pages must be at or above
1489 *	the given physical address "low" and below the given physical address
1490 *	"high".  The given value "alignment" determines the alignment of the
1491 *	first physical page in the set.  If the given value "boundary" is
1492 *	non-zero, then the set of physical pages cannot cross any physical
1493 *	address boundary that is a multiple of that value.  Both "alignment"
1494 *	and "boundary" must be a power of two.
1495 *
1496 *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1497 *	then the memory attribute setting for the physical pages is configured
1498 *	to the object's memory attribute setting.  Otherwise, the memory
1499 *	attribute setting for the physical pages is configured to "memattr",
1500 *	overriding the object's memory attribute setting.  However, if the
1501 *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1502 *	memory attribute setting for the physical pages cannot be configured
1503 *	to VM_MEMATTR_DEFAULT.
1504 *
1505 *	The caller must always specify an allocation class.
1506 *
1507 *	allocation classes:
1508 *	VM_ALLOC_NORMAL		normal process request
1509 *	VM_ALLOC_SYSTEM		system *really* needs a page
1510 *	VM_ALLOC_INTERRUPT	interrupt time request
1511 *
1512 *	optional allocation flags:
1513 *	VM_ALLOC_NOBUSY		do not set the flag VPO_BUSY on the page
1514 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1515 *				should not have the flag VPO_BUSY set
1516 *	VM_ALLOC_WIRED		wire the allocated page
1517 *	VM_ALLOC_ZERO		prefer a zeroed page
1518 *
1519 *	This routine may not sleep.
1520 */
1521vm_page_t
1522vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1523    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1524    vm_paddr_t boundary, vm_memattr_t memattr)
1525{
1526	struct vnode *drop;
1527	vm_page_t deferred_vdrop_list, m, m_ret;
1528	u_int flags, oflags;
1529	int req_class;
1530
1531	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0),
1532	    ("vm_page_alloc_contig: inconsistent object/req"));
1533	if (object != NULL) {
1534		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1535		KASSERT(object->type == OBJT_PHYS,
1536		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1537		    object));
1538	}
1539	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1540	req_class = req & VM_ALLOC_CLASS_MASK;
1541
1542	/*
1543	 * The page daemon is allowed to dig deeper into the free page list.
1544	 */
1545	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1546		req_class = VM_ALLOC_SYSTEM;
1547
1548	deferred_vdrop_list = NULL;
1549	mtx_lock(&vm_page_queue_free_mtx);
1550	if (cnt.v_free_count + cnt.v_cache_count >= npages +
1551	    cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1552	    cnt.v_free_count + cnt.v_cache_count >= npages +
1553	    cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1554	    cnt.v_free_count + cnt.v_cache_count >= npages)) {
1555#if VM_NRESERVLEVEL > 0
1556retry:
1557#endif
1558		m_ret = vm_phys_alloc_contig(npages, low, high, alignment,
1559		    boundary);
1560	} else {
1561		mtx_unlock(&vm_page_queue_free_mtx);
1562		atomic_add_int(&vm_pageout_deficit, npages);
1563		pagedaemon_wakeup();
1564		return (NULL);
1565	}
1566	if (m_ret != NULL)
1567		for (m = m_ret; m < &m_ret[npages]; m++) {
1568			drop = vm_page_alloc_init(m);
1569			if (drop != NULL) {
1570				/*
1571				 * Enqueue the vnode for deferred vdrop().
1572				 *
1573				 * Once the pages are removed from the free
1574				 * page list, "pageq" can be safely abused to
1575				 * construct a short-lived list of vnodes.
1576				 */
1577				m->pageq.tqe_prev = (void *)drop;
1578				m->pageq.tqe_next = deferred_vdrop_list;
1579				deferred_vdrop_list = m;
1580			}
1581		}
1582	else {
1583#if VM_NRESERVLEVEL > 0
1584		if (vm_reserv_reclaim_contig(npages << PAGE_SHIFT, low, high,
1585		    alignment, boundary))
1586			goto retry;
1587#endif
1588	}
1589	mtx_unlock(&vm_page_queue_free_mtx);
1590	if (m_ret == NULL)
1591		return (NULL);
1592
1593	/*
1594	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1595	 */
1596	flags = 0;
1597	if ((req & VM_ALLOC_ZERO) != 0)
1598		flags = PG_ZERO;
1599	if ((req & VM_ALLOC_WIRED) != 0)
1600		atomic_add_int(&cnt.v_wire_count, npages);
1601	oflags = VPO_UNMANAGED;
1602	if (object != NULL) {
1603		if ((req & VM_ALLOC_NOBUSY) == 0)
1604			oflags |= VPO_BUSY;
1605		if (object->memattr != VM_MEMATTR_DEFAULT &&
1606		    memattr == VM_MEMATTR_DEFAULT)
1607			memattr = object->memattr;
1608	}
1609	for (m = m_ret; m < &m_ret[npages]; m++) {
1610		m->aflags = 0;
1611		m->flags &= flags;
1612		if ((req & VM_ALLOC_WIRED) != 0)
1613			m->wire_count = 1;
1614		/* Unmanaged pages don't use "act_count". */
1615		m->oflags = oflags;
1616		if (memattr != VM_MEMATTR_DEFAULT)
1617			pmap_page_set_memattr(m, memattr);
1618		if (object != NULL)
1619			vm_page_insert(m, object, pindex);
1620		else
1621			m->pindex = pindex;
1622		pindex++;
1623	}
1624	while (deferred_vdrop_list != NULL) {
1625		vdrop((struct vnode *)deferred_vdrop_list->pageq.tqe_prev);
1626		deferred_vdrop_list = deferred_vdrop_list->pageq.tqe_next;
1627	}
1628	if (vm_paging_needed())
1629		pagedaemon_wakeup();
1630	return (m_ret);
1631}
1632
1633/*
1634 * Initialize a page that has been freshly dequeued from a freelist.
1635 * The caller has to drop the vnode returned, if it is not NULL.
1636 *
1637 * This function may only be used to initialize unmanaged pages.
1638 *
1639 * To be called with vm_page_queue_free_mtx held.
1640 */
1641static struct vnode *
1642vm_page_alloc_init(vm_page_t m)
1643{
1644	struct vnode *drop;
1645	vm_object_t m_object;
1646
1647	KASSERT(m->queue == PQ_NONE,
1648	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1649	    m, m->queue));
1650	KASSERT(m->wire_count == 0,
1651	    ("vm_page_alloc_init: page %p is wired", m));
1652	KASSERT(m->hold_count == 0,
1653	    ("vm_page_alloc_init: page %p is held", m));
1654	KASSERT(m->busy == 0,
1655	    ("vm_page_alloc_init: page %p is busy", m));
1656	KASSERT(m->dirty == 0,
1657	    ("vm_page_alloc_init: page %p is dirty", m));
1658	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1659	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1660	    m, pmap_page_get_memattr(m)));
1661	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1662	drop = NULL;
1663	if ((m->flags & PG_CACHED) != 0) {
1664		KASSERT((m->flags & PG_ZERO) == 0,
1665		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1666		m->valid = 0;
1667		m_object = m->object;
1668		vm_page_cache_remove(m);
1669		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1670			drop = m_object->handle;
1671	} else {
1672		KASSERT(VM_PAGE_IS_FREE(m),
1673		    ("vm_page_alloc_init: page %p is not free", m));
1674		KASSERT(m->valid == 0,
1675		    ("vm_page_alloc_init: free page %p is valid", m));
1676		cnt.v_free_count--;
1677		if ((m->flags & PG_ZERO) != 0)
1678			vm_page_zero_count--;
1679	}
1680	/* Don't clear the PG_ZERO flag; we'll need it later. */
1681	m->flags &= PG_ZERO;
1682	return (drop);
1683}
1684
1685/*
1686 * 	vm_page_alloc_freelist:
1687 *
1688 *	Allocate a physical page from the specified free page list.
1689 *
1690 *	The caller must always specify an allocation class.
1691 *
1692 *	allocation classes:
1693 *	VM_ALLOC_NORMAL		normal process request
1694 *	VM_ALLOC_SYSTEM		system *really* needs a page
1695 *	VM_ALLOC_INTERRUPT	interrupt time request
1696 *
1697 *	optional allocation flags:
1698 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1699 *				intends to allocate
1700 *	VM_ALLOC_WIRED		wire the allocated page
1701 *	VM_ALLOC_ZERO		prefer a zeroed page
1702 *
1703 *	This routine may not sleep.
1704 */
1705vm_page_t
1706vm_page_alloc_freelist(int flind, int req)
1707{
1708	struct vnode *drop;
1709	vm_page_t m;
1710	u_int flags;
1711	int req_class;
1712
1713	req_class = req & VM_ALLOC_CLASS_MASK;
1714
1715	/*
1716	 * The page daemon is allowed to dig deeper into the free page list.
1717	 */
1718	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1719		req_class = VM_ALLOC_SYSTEM;
1720
1721	/*
1722	 * Do not allocate reserved pages unless the req has asked for it.
1723	 */
1724	mtx_lock(&vm_page_queue_free_mtx);
1725	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1726	    (req_class == VM_ALLOC_SYSTEM &&
1727	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1728	    (req_class == VM_ALLOC_INTERRUPT &&
1729	    cnt.v_free_count + cnt.v_cache_count > 0))
1730		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1731	else {
1732		mtx_unlock(&vm_page_queue_free_mtx);
1733		atomic_add_int(&vm_pageout_deficit,
1734		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1735		pagedaemon_wakeup();
1736		return (NULL);
1737	}
1738	if (m == NULL) {
1739		mtx_unlock(&vm_page_queue_free_mtx);
1740		return (NULL);
1741	}
1742	drop = vm_page_alloc_init(m);
1743	mtx_unlock(&vm_page_queue_free_mtx);
1744
1745	/*
1746	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1747	 */
1748	m->aflags = 0;
1749	flags = 0;
1750	if ((req & VM_ALLOC_ZERO) != 0)
1751		flags = PG_ZERO;
1752	m->flags &= flags;
1753	if ((req & VM_ALLOC_WIRED) != 0) {
1754		/*
1755		 * The page lock is not required for wiring a page that does
1756		 * not belong to an object.
1757		 */
1758		atomic_add_int(&cnt.v_wire_count, 1);
1759		m->wire_count = 1;
1760	}
1761	/* Unmanaged pages don't use "act_count". */
1762	m->oflags = VPO_UNMANAGED;
1763	if (drop != NULL)
1764		vdrop(drop);
1765	if (vm_paging_needed())
1766		pagedaemon_wakeup();
1767	return (m);
1768}
1769
1770/*
1771 *	vm_wait:	(also see VM_WAIT macro)
1772 *
1773 *	Block until free pages are available for allocation
1774 *	- Called in various places before memory allocations.
1775 */
1776void
1777vm_wait(void)
1778{
1779
1780	mtx_lock(&vm_page_queue_free_mtx);
1781	if (curproc == pageproc) {
1782		vm_pageout_pages_needed = 1;
1783		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1784		    PDROP | PSWP, "VMWait", 0);
1785	} else {
1786		if (!vm_pages_needed) {
1787			vm_pages_needed = 1;
1788			wakeup(&vm_pages_needed);
1789		}
1790		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1791		    "vmwait", 0);
1792	}
1793}
1794
1795/*
1796 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1797 *
1798 *	Block until free pages are available for allocation
1799 *	- Called only in vm_fault so that processes page faulting
1800 *	  can be easily tracked.
1801 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1802 *	  processes will be able to grab memory first.  Do not change
1803 *	  this balance without careful testing first.
1804 */
1805void
1806vm_waitpfault(void)
1807{
1808
1809	mtx_lock(&vm_page_queue_free_mtx);
1810	if (!vm_pages_needed) {
1811		vm_pages_needed = 1;
1812		wakeup(&vm_pages_needed);
1813	}
1814	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1815	    "pfault", 0);
1816}
1817
1818/*
1819 *	vm_page_requeue:
1820 *
1821 *	Move the given page to the tail of its present page queue.
1822 *
1823 *	The page queues must be locked.
1824 */
1825void
1826vm_page_requeue(vm_page_t m)
1827{
1828	struct vpgqueues *vpq;
1829	int queue;
1830
1831	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1832	queue = m->queue;
1833	KASSERT(queue != PQ_NONE,
1834	    ("vm_page_requeue: page %p is not queued", m));
1835	vpq = &vm_page_queues[queue];
1836	TAILQ_REMOVE(&vpq->pl, m, pageq);
1837	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1838}
1839
1840/*
1841 *	vm_page_queue_remove:
1842 *
1843 *	Remove the given page from the specified queue.
1844 *
1845 *	The page and page queues must be locked.
1846 */
1847static __inline void
1848vm_page_queue_remove(int queue, vm_page_t m)
1849{
1850	struct vpgqueues *pq;
1851
1852	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1853	vm_page_lock_assert(m, MA_OWNED);
1854	pq = &vm_page_queues[queue];
1855	TAILQ_REMOVE(&pq->pl, m, pageq);
1856	(*pq->cnt)--;
1857}
1858
1859/*
1860 *	vm_pageq_remove:
1861 *
1862 *	Remove a page from its queue.
1863 *
1864 *	The given page must be locked.
1865 *	This routine may not block.
1866 */
1867void
1868vm_pageq_remove(vm_page_t m)
1869{
1870	int queue;
1871
1872	vm_page_lock_assert(m, MA_OWNED);
1873	if ((queue = m->queue) != PQ_NONE) {
1874		vm_page_lock_queues();
1875		m->queue = PQ_NONE;
1876		vm_page_queue_remove(queue, m);
1877		vm_page_unlock_queues();
1878	}
1879}
1880
1881/*
1882 *	vm_page_enqueue:
1883 *
1884 *	Add the given page to the specified queue.
1885 *
1886 *	The page queues must be locked.
1887 */
1888static void
1889vm_page_enqueue(int queue, vm_page_t m)
1890{
1891	struct vpgqueues *vpq;
1892
1893	vpq = &vm_page_queues[queue];
1894	m->queue = queue;
1895	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1896	++*vpq->cnt;
1897}
1898
1899/*
1900 *	vm_page_activate:
1901 *
1902 *	Put the specified page on the active list (if appropriate).
1903 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1904 *	mess with it.
1905 *
1906 *	The page must be locked.
1907 *	This routine may not block.
1908 */
1909void
1910vm_page_activate(vm_page_t m)
1911{
1912	int queue;
1913
1914	vm_page_lock_assert(m, MA_OWNED);
1915	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1916	if ((queue = m->queue) != PQ_ACTIVE) {
1917		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
1918			if (m->act_count < ACT_INIT)
1919				m->act_count = ACT_INIT;
1920			vm_page_lock_queues();
1921			if (queue != PQ_NONE)
1922				vm_page_queue_remove(queue, m);
1923			vm_page_enqueue(PQ_ACTIVE, m);
1924			vm_page_unlock_queues();
1925		} else
1926			KASSERT(queue == PQ_NONE,
1927			    ("vm_page_activate: wired page %p is queued", m));
1928	} else {
1929		if (m->act_count < ACT_INIT)
1930			m->act_count = ACT_INIT;
1931	}
1932}
1933
1934/*
1935 *	vm_page_free_wakeup:
1936 *
1937 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1938 *	routine is called when a page has been added to the cache or free
1939 *	queues.
1940 *
1941 *	The page queues must be locked.
1942 *	This routine may not block.
1943 */
1944static inline void
1945vm_page_free_wakeup(void)
1946{
1947
1948	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1949	/*
1950	 * if pageout daemon needs pages, then tell it that there are
1951	 * some free.
1952	 */
1953	if (vm_pageout_pages_needed &&
1954	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1955		wakeup(&vm_pageout_pages_needed);
1956		vm_pageout_pages_needed = 0;
1957	}
1958	/*
1959	 * wakeup processes that are waiting on memory if we hit a
1960	 * high water mark. And wakeup scheduler process if we have
1961	 * lots of memory. this process will swapin processes.
1962	 */
1963	if (vm_pages_needed && !vm_page_count_min()) {
1964		vm_pages_needed = 0;
1965		wakeup(&cnt.v_free_count);
1966	}
1967}
1968
1969/*
1970 *	vm_page_free_toq:
1971 *
1972 *	Returns the given page to the free list,
1973 *	disassociating it with any VM object.
1974 *
1975 *	Object and page must be locked prior to entry.
1976 *	This routine may not block.
1977 */
1978
1979void
1980vm_page_free_toq(vm_page_t m)
1981{
1982
1983	if ((m->oflags & VPO_UNMANAGED) == 0) {
1984		vm_page_lock_assert(m, MA_OWNED);
1985		KASSERT(!pmap_page_is_mapped(m),
1986		    ("vm_page_free_toq: freeing mapped page %p", m));
1987	}
1988	PCPU_INC(cnt.v_tfree);
1989
1990	if (VM_PAGE_IS_FREE(m))
1991		panic("vm_page_free: freeing free page %p", m);
1992	else if (m->busy != 0)
1993		panic("vm_page_free: freeing busy page %p", m);
1994
1995	/*
1996	 * unqueue, then remove page.  Note that we cannot destroy
1997	 * the page here because we do not want to call the pager's
1998	 * callback routine until after we've put the page on the
1999	 * appropriate free queue.
2000	 */
2001	if ((m->oflags & VPO_UNMANAGED) == 0)
2002		vm_pageq_remove(m);
2003	vm_page_remove(m);
2004
2005	/*
2006	 * If fictitious remove object association and
2007	 * return, otherwise delay object association removal.
2008	 */
2009	if ((m->flags & PG_FICTITIOUS) != 0) {
2010		return;
2011	}
2012
2013	m->valid = 0;
2014	vm_page_undirty(m);
2015
2016	if (m->wire_count != 0)
2017		panic("vm_page_free: freeing wired page %p", m);
2018	if (m->hold_count != 0) {
2019		m->flags &= ~PG_ZERO;
2020		vm_page_lock_queues();
2021		vm_page_enqueue(PQ_HOLD, m);
2022		vm_page_unlock_queues();
2023	} else {
2024		/*
2025		 * Restore the default memory attribute to the page.
2026		 */
2027		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2028			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2029
2030		/*
2031		 * Insert the page into the physical memory allocator's
2032		 * cache/free page queues.
2033		 */
2034		mtx_lock(&vm_page_queue_free_mtx);
2035		m->flags |= PG_FREE;
2036		cnt.v_free_count++;
2037#if VM_NRESERVLEVEL > 0
2038		if (!vm_reserv_free_page(m))
2039#else
2040		if (TRUE)
2041#endif
2042			vm_phys_free_pages(m, 0);
2043		if ((m->flags & PG_ZERO) != 0)
2044			++vm_page_zero_count;
2045		else
2046			vm_page_zero_idle_wakeup();
2047		vm_page_free_wakeup();
2048		mtx_unlock(&vm_page_queue_free_mtx);
2049	}
2050}
2051
2052/*
2053 *	vm_page_wire:
2054 *
2055 *	Mark this page as wired down by yet
2056 *	another map, removing it from paging queues
2057 *	as necessary.
2058 *
2059 *	If the page is fictitious, then its wire count must remain one.
2060 *
2061 *	The page must be locked.
2062 *	This routine may not block.
2063 */
2064void
2065vm_page_wire(vm_page_t m)
2066{
2067
2068	/*
2069	 * Only bump the wire statistics if the page is not already wired,
2070	 * and only unqueue the page if it is on some queue (if it is unmanaged
2071	 * it is already off the queues).
2072	 */
2073	vm_page_lock_assert(m, MA_OWNED);
2074	if ((m->flags & PG_FICTITIOUS) != 0) {
2075		KASSERT(m->wire_count == 1,
2076		    ("vm_page_wire: fictitious page %p's wire count isn't one",
2077		    m));
2078		return;
2079	}
2080	if (m->wire_count == 0) {
2081		if ((m->oflags & VPO_UNMANAGED) == 0)
2082			vm_pageq_remove(m);
2083		atomic_add_int(&cnt.v_wire_count, 1);
2084	}
2085	m->wire_count++;
2086	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2087}
2088
2089/*
2090 * vm_page_unwire:
2091 *
2092 * Release one wiring of the specified page, potentially enabling it to be
2093 * paged again.  If paging is enabled, then the value of the parameter
2094 * "activate" determines to which queue the page is added.  If "activate" is
2095 * non-zero, then the page is added to the active queue.  Otherwise, it is
2096 * added to the inactive queue.
2097 *
2098 * However, unless the page belongs to an object, it is not enqueued because
2099 * it cannot be paged out.
2100 *
2101 * If a page is fictitious, then its wire count must alway be one.
2102 *
2103 * A managed page must be locked.
2104 */
2105void
2106vm_page_unwire(vm_page_t m, int activate)
2107{
2108
2109	if ((m->oflags & VPO_UNMANAGED) == 0)
2110		vm_page_lock_assert(m, MA_OWNED);
2111	if ((m->flags & PG_FICTITIOUS) != 0) {
2112		KASSERT(m->wire_count == 1,
2113	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2114		return;
2115	}
2116	if (m->wire_count > 0) {
2117		m->wire_count--;
2118		if (m->wire_count == 0) {
2119			atomic_subtract_int(&cnt.v_wire_count, 1);
2120			if ((m->oflags & VPO_UNMANAGED) != 0 ||
2121			    m->object == NULL)
2122				return;
2123			vm_page_lock_queues();
2124			if (activate)
2125				vm_page_enqueue(PQ_ACTIVE, m);
2126			else {
2127				m->flags &= ~PG_WINATCFLS;
2128				vm_page_enqueue(PQ_INACTIVE, m);
2129			}
2130			vm_page_unlock_queues();
2131		}
2132	} else
2133		panic("vm_page_unwire: page %p's wire count is zero", m);
2134}
2135
2136/*
2137 * Move the specified page to the inactive queue.
2138 *
2139 * Many pages placed on the inactive queue should actually go
2140 * into the cache, but it is difficult to figure out which.  What
2141 * we do instead, if the inactive target is well met, is to put
2142 * clean pages at the head of the inactive queue instead of the tail.
2143 * This will cause them to be moved to the cache more quickly and
2144 * if not actively re-referenced, reclaimed more quickly.  If we just
2145 * stick these pages at the end of the inactive queue, heavy filesystem
2146 * meta-data accesses can cause an unnecessary paging load on memory bound
2147 * processes.  This optimization causes one-time-use metadata to be
2148 * reused more quickly.
2149 *
2150 * Normally athead is 0 resulting in LRU operation.  athead is set
2151 * to 1 if we want this page to be 'as if it were placed in the cache',
2152 * except without unmapping it from the process address space.
2153 *
2154 * This routine may not block.
2155 */
2156static inline void
2157_vm_page_deactivate(vm_page_t m, int athead)
2158{
2159	int queue;
2160
2161	vm_page_lock_assert(m, MA_OWNED);
2162
2163	/*
2164	 * Ignore if already inactive.
2165	 */
2166	if ((queue = m->queue) == PQ_INACTIVE)
2167		return;
2168	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2169		vm_page_lock_queues();
2170		m->flags &= ~PG_WINATCFLS;
2171		if (queue != PQ_NONE)
2172			vm_page_queue_remove(queue, m);
2173		if (athead)
2174			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
2175			    pageq);
2176		else
2177			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
2178			    pageq);
2179		m->queue = PQ_INACTIVE;
2180		cnt.v_inactive_count++;
2181		vm_page_unlock_queues();
2182	}
2183}
2184
2185/*
2186 * Move the specified page to the inactive queue.
2187 *
2188 * The page must be locked.
2189 */
2190void
2191vm_page_deactivate(vm_page_t m)
2192{
2193
2194	_vm_page_deactivate(m, 0);
2195}
2196
2197/*
2198 * vm_page_try_to_cache:
2199 *
2200 * Returns 0 on failure, 1 on success
2201 */
2202int
2203vm_page_try_to_cache(vm_page_t m)
2204{
2205
2206	vm_page_lock_assert(m, MA_OWNED);
2207	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2208	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2209	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2210		return (0);
2211	pmap_remove_all(m);
2212	if (m->dirty)
2213		return (0);
2214	vm_page_cache(m);
2215	return (1);
2216}
2217
2218/*
2219 * vm_page_try_to_free()
2220 *
2221 *	Attempt to free the page.  If we cannot free it, we do nothing.
2222 *	1 is returned on success, 0 on failure.
2223 */
2224int
2225vm_page_try_to_free(vm_page_t m)
2226{
2227
2228	vm_page_lock_assert(m, MA_OWNED);
2229	if (m->object != NULL)
2230		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2231	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2232	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2233		return (0);
2234	pmap_remove_all(m);
2235	if (m->dirty)
2236		return (0);
2237	vm_page_free(m);
2238	return (1);
2239}
2240
2241/*
2242 * vm_page_cache
2243 *
2244 * Put the specified page onto the page cache queue (if appropriate).
2245 *
2246 * This routine may not block.
2247 */
2248void
2249vm_page_cache(vm_page_t m)
2250{
2251	vm_object_t object;
2252	vm_page_t next, prev, root;
2253
2254	vm_page_lock_assert(m, MA_OWNED);
2255	object = m->object;
2256	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2257	if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) || m->busy ||
2258	    m->hold_count || m->wire_count)
2259		panic("vm_page_cache: attempting to cache busy page");
2260	pmap_remove_all(m);
2261	if (m->dirty != 0)
2262		panic("vm_page_cache: page %p is dirty", m);
2263	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2264	    (object->type == OBJT_SWAP &&
2265	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2266		/*
2267		 * Hypothesis: A cache-elgible page belonging to a
2268		 * default object or swap object but without a backing
2269		 * store must be zero filled.
2270		 */
2271		vm_page_free(m);
2272		return;
2273	}
2274	KASSERT((m->flags & PG_CACHED) == 0,
2275	    ("vm_page_cache: page %p is already cached", m));
2276	PCPU_INC(cnt.v_tcached);
2277
2278	/*
2279	 * Remove the page from the paging queues.
2280	 */
2281	vm_pageq_remove(m);
2282
2283	/*
2284	 * Remove the page from the object's collection of resident
2285	 * pages.
2286	 */
2287	if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) {
2288		/*
2289		 * Since the page's successor in the list is also its parent
2290		 * in the tree, its right subtree must be empty.
2291		 */
2292		next->left = m->left;
2293		KASSERT(m->right == NULL,
2294		    ("vm_page_cache: page %p has right child", m));
2295	} else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
2296	    prev->right == m) {
2297		/*
2298		 * Since the page's predecessor in the list is also its parent
2299		 * in the tree, its left subtree must be empty.
2300		 */
2301		KASSERT(m->left == NULL,
2302		    ("vm_page_cache: page %p has left child", m));
2303		prev->right = m->right;
2304	} else {
2305		if (m != object->root)
2306			vm_page_splay(m->pindex, object->root);
2307		if (m->left == NULL)
2308			root = m->right;
2309		else if (m->right == NULL)
2310			root = m->left;
2311		else {
2312			/*
2313			 * Move the page's successor to the root, because
2314			 * pages are usually removed in ascending order.
2315			 */
2316			if (m->right != next)
2317				vm_page_splay(m->pindex, m->right);
2318			next->left = m->left;
2319			root = next;
2320		}
2321		object->root = root;
2322	}
2323	TAILQ_REMOVE(&object->memq, m, listq);
2324	object->resident_page_count--;
2325
2326	/*
2327	 * Restore the default memory attribute to the page.
2328	 */
2329	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2330		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2331
2332	/*
2333	 * Insert the page into the object's collection of cached pages
2334	 * and the physical memory allocator's cache/free page queues.
2335	 */
2336	m->flags &= ~PG_ZERO;
2337	mtx_lock(&vm_page_queue_free_mtx);
2338	m->flags |= PG_CACHED;
2339	cnt.v_cache_count++;
2340	root = object->cache;
2341	if (root == NULL) {
2342		m->left = NULL;
2343		m->right = NULL;
2344	} else {
2345		root = vm_page_splay(m->pindex, root);
2346		if (m->pindex < root->pindex) {
2347			m->left = root->left;
2348			m->right = root;
2349			root->left = NULL;
2350		} else if (__predict_false(m->pindex == root->pindex))
2351			panic("vm_page_cache: offset already cached");
2352		else {
2353			m->right = root->right;
2354			m->left = root;
2355			root->right = NULL;
2356		}
2357	}
2358	object->cache = m;
2359#if VM_NRESERVLEVEL > 0
2360	if (!vm_reserv_free_page(m)) {
2361#else
2362	if (TRUE) {
2363#endif
2364		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2365		vm_phys_free_pages(m, 0);
2366	}
2367	vm_page_free_wakeup();
2368	mtx_unlock(&vm_page_queue_free_mtx);
2369
2370	/*
2371	 * Increment the vnode's hold count if this is the object's only
2372	 * cached page.  Decrement the vnode's hold count if this was
2373	 * the object's only resident page.
2374	 */
2375	if (object->type == OBJT_VNODE) {
2376		if (root == NULL && object->resident_page_count != 0)
2377			vhold(object->handle);
2378		else if (root != NULL && object->resident_page_count == 0)
2379			vdrop(object->handle);
2380	}
2381}
2382
2383/*
2384 * vm_page_dontneed
2385 *
2386 *	Cache, deactivate, or do nothing as appropriate.  This routine
2387 *	is typically used by madvise() MADV_DONTNEED.
2388 *
2389 *	Generally speaking we want to move the page into the cache so
2390 *	it gets reused quickly.  However, this can result in a silly syndrome
2391 *	due to the page recycling too quickly.  Small objects will not be
2392 *	fully cached.  On the otherhand, if we move the page to the inactive
2393 *	queue we wind up with a problem whereby very large objects
2394 *	unnecessarily blow away our inactive and cache queues.
2395 *
2396 *	The solution is to move the pages based on a fixed weighting.  We
2397 *	either leave them alone, deactivate them, or move them to the cache,
2398 *	where moving them to the cache has the highest weighting.
2399 *	By forcing some pages into other queues we eventually force the
2400 *	system to balance the queues, potentially recovering other unrelated
2401 *	space from active.  The idea is to not force this to happen too
2402 *	often.
2403 */
2404void
2405vm_page_dontneed(vm_page_t m)
2406{
2407	int dnw;
2408	int head;
2409
2410	vm_page_lock_assert(m, MA_OWNED);
2411	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2412	dnw = PCPU_GET(dnweight);
2413	PCPU_INC(dnweight);
2414
2415	/*
2416	 * Occasionally leave the page alone.
2417	 */
2418	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2419		if (m->act_count >= ACT_INIT)
2420			--m->act_count;
2421		return;
2422	}
2423
2424	/*
2425	 * Clear any references to the page.  Otherwise, the page daemon will
2426	 * immediately reactivate the page.
2427	 *
2428	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
2429	 * pmap operation, such as pmap_remove(), could clear a reference in
2430	 * the pmap and set PGA_REFERENCED on the page before the
2431	 * pmap_clear_reference() had completed.  Consequently, the page would
2432	 * appear referenced based upon an old reference that occurred before
2433	 * this function ran.
2434	 */
2435	pmap_clear_reference(m);
2436	vm_page_aflag_clear(m, PGA_REFERENCED);
2437
2438	if (m->dirty == 0 && pmap_is_modified(m))
2439		vm_page_dirty(m);
2440
2441	if (m->dirty || (dnw & 0x0070) == 0) {
2442		/*
2443		 * Deactivate the page 3 times out of 32.
2444		 */
2445		head = 0;
2446	} else {
2447		/*
2448		 * Cache the page 28 times out of every 32.  Note that
2449		 * the page is deactivated instead of cached, but placed
2450		 * at the head of the queue instead of the tail.
2451		 */
2452		head = 1;
2453	}
2454	_vm_page_deactivate(m, head);
2455}
2456
2457/*
2458 * Grab a page, waiting until we are waken up due to the page
2459 * changing state.  We keep on waiting, if the page continues
2460 * to be in the object.  If the page doesn't exist, first allocate it
2461 * and then conditionally zero it.
2462 *
2463 * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
2464 * to facilitate its eventual removal.
2465 *
2466 * This routine may block.
2467 */
2468vm_page_t
2469vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2470{
2471	vm_page_t m;
2472
2473	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2474	KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
2475	    ("vm_page_grab: VM_ALLOC_RETRY is required"));
2476retrylookup:
2477	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2478		if ((m->oflags & VPO_BUSY) != 0 ||
2479		    ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
2480			/*
2481			 * Reference the page before unlocking and
2482			 * sleeping so that the page daemon is less
2483			 * likely to reclaim it.
2484			 */
2485			vm_page_aflag_set(m, PGA_REFERENCED);
2486			vm_page_sleep(m, "pgrbwt");
2487			goto retrylookup;
2488		} else {
2489			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2490				vm_page_lock(m);
2491				vm_page_wire(m);
2492				vm_page_unlock(m);
2493			}
2494			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2495				vm_page_busy(m);
2496			return (m);
2497		}
2498	}
2499	m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
2500	    VM_ALLOC_IGN_SBUSY));
2501	if (m == NULL) {
2502		VM_OBJECT_UNLOCK(object);
2503		VM_WAIT;
2504		VM_OBJECT_LOCK(object);
2505		goto retrylookup;
2506	} else if (m->valid != 0)
2507		return (m);
2508	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2509		pmap_zero_page(m);
2510	return (m);
2511}
2512
2513/*
2514 * Mapping function for valid bits or for dirty bits in
2515 * a page.  May not block.
2516 *
2517 * Inputs are required to range within a page.
2518 */
2519vm_page_bits_t
2520vm_page_bits(int base, int size)
2521{
2522	int first_bit;
2523	int last_bit;
2524
2525	KASSERT(
2526	    base + size <= PAGE_SIZE,
2527	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2528	);
2529
2530	if (size == 0)		/* handle degenerate case */
2531		return (0);
2532
2533	first_bit = base >> DEV_BSHIFT;
2534	last_bit = (base + size - 1) >> DEV_BSHIFT;
2535
2536	return (((vm_page_bits_t)2 << last_bit) -
2537	    ((vm_page_bits_t)1 << first_bit));
2538}
2539
2540/*
2541 *	vm_page_set_valid:
2542 *
2543 *	Sets portions of a page valid.  The arguments are expected
2544 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2545 *	of any partial chunks touched by the range.  The invalid portion of
2546 *	such chunks will be zeroed.
2547 *
2548 *	(base + size) must be less then or equal to PAGE_SIZE.
2549 */
2550void
2551vm_page_set_valid(vm_page_t m, int base, int size)
2552{
2553	int endoff, frag;
2554
2555	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2556	if (size == 0)	/* handle degenerate case */
2557		return;
2558
2559	/*
2560	 * If the base is not DEV_BSIZE aligned and the valid
2561	 * bit is clear, we have to zero out a portion of the
2562	 * first block.
2563	 */
2564	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2565	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2566		pmap_zero_page_area(m, frag, base - frag);
2567
2568	/*
2569	 * If the ending offset is not DEV_BSIZE aligned and the
2570	 * valid bit is clear, we have to zero out a portion of
2571	 * the last block.
2572	 */
2573	endoff = base + size;
2574	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2575	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2576		pmap_zero_page_area(m, endoff,
2577		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2578
2579	/*
2580	 * Assert that no previously invalid block that is now being validated
2581	 * is already dirty.
2582	 */
2583	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2584	    ("vm_page_set_valid: page %p is dirty", m));
2585
2586	/*
2587	 * Set valid bits inclusive of any overlap.
2588	 */
2589	m->valid |= vm_page_bits(base, size);
2590}
2591
2592/*
2593 * Clear the given bits from the specified page's dirty field.
2594 */
2595static __inline void
2596vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2597{
2598	uintptr_t addr;
2599#if PAGE_SIZE < 16384
2600	int shift;
2601#endif
2602
2603	/*
2604	 * If the object is locked and the page is neither VPO_BUSY nor
2605	 * PGA_WRITEABLE, then the page's dirty field cannot possibly be
2606	 * set by a concurrent pmap operation.
2607	 */
2608	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2609	if ((m->oflags & VPO_BUSY) == 0 && (m->aflags & PGA_WRITEABLE) == 0)
2610		m->dirty &= ~pagebits;
2611	else {
2612		/*
2613		 * The pmap layer can call vm_page_dirty() without
2614		 * holding a distinguished lock.  The combination of
2615		 * the object's lock and an atomic operation suffice
2616		 * to guarantee consistency of the page dirty field.
2617		 *
2618		 * For PAGE_SIZE == 32768 case, compiler already
2619		 * properly aligns the dirty field, so no forcible
2620		 * alignment is needed. Only require existence of
2621		 * atomic_clear_64 when page size is 32768.
2622		 */
2623		addr = (uintptr_t)&m->dirty;
2624#if PAGE_SIZE == 32768
2625		atomic_clear_64((uint64_t *)addr, pagebits);
2626#elif PAGE_SIZE == 16384
2627		atomic_clear_32((uint32_t *)addr, pagebits);
2628#else		/* PAGE_SIZE <= 8192 */
2629		/*
2630		 * Use a trick to perform a 32-bit atomic on the
2631		 * containing aligned word, to not depend on the existence
2632		 * of atomic_clear_{8, 16}.
2633		 */
2634		shift = addr & (sizeof(uint32_t) - 1);
2635#if BYTE_ORDER == BIG_ENDIAN
2636		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2637#else
2638		shift *= NBBY;
2639#endif
2640		addr &= ~(sizeof(uint32_t) - 1);
2641		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2642#endif		/* PAGE_SIZE */
2643	}
2644}
2645
2646/*
2647 *	vm_page_set_validclean:
2648 *
2649 *	Sets portions of a page valid and clean.  The arguments are expected
2650 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2651 *	of any partial chunks touched by the range.  The invalid portion of
2652 *	such chunks will be zero'd.
2653 *
2654 *	This routine may not block.
2655 *
2656 *	(base + size) must be less then or equal to PAGE_SIZE.
2657 */
2658void
2659vm_page_set_validclean(vm_page_t m, int base, int size)
2660{
2661	vm_page_bits_t oldvalid, pagebits;
2662	int endoff, frag;
2663
2664	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2665	if (size == 0)	/* handle degenerate case */
2666		return;
2667
2668	/*
2669	 * If the base is not DEV_BSIZE aligned and the valid
2670	 * bit is clear, we have to zero out a portion of the
2671	 * first block.
2672	 */
2673	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2674	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2675		pmap_zero_page_area(m, frag, base - frag);
2676
2677	/*
2678	 * If the ending offset is not DEV_BSIZE aligned and the
2679	 * valid bit is clear, we have to zero out a portion of
2680	 * the last block.
2681	 */
2682	endoff = base + size;
2683	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2684	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2685		pmap_zero_page_area(m, endoff,
2686		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2687
2688	/*
2689	 * Set valid, clear dirty bits.  If validating the entire
2690	 * page we can safely clear the pmap modify bit.  We also
2691	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2692	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2693	 * be set again.
2694	 *
2695	 * We set valid bits inclusive of any overlap, but we can only
2696	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2697	 * the range.
2698	 */
2699	oldvalid = m->valid;
2700	pagebits = vm_page_bits(base, size);
2701	m->valid |= pagebits;
2702#if 0	/* NOT YET */
2703	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2704		frag = DEV_BSIZE - frag;
2705		base += frag;
2706		size -= frag;
2707		if (size < 0)
2708			size = 0;
2709	}
2710	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2711#endif
2712	if (base == 0 && size == PAGE_SIZE) {
2713		/*
2714		 * The page can only be modified within the pmap if it is
2715		 * mapped, and it can only be mapped if it was previously
2716		 * fully valid.
2717		 */
2718		if (oldvalid == VM_PAGE_BITS_ALL)
2719			/*
2720			 * Perform the pmap_clear_modify() first.  Otherwise,
2721			 * a concurrent pmap operation, such as
2722			 * pmap_protect(), could clear a modification in the
2723			 * pmap and set the dirty field on the page before
2724			 * pmap_clear_modify() had begun and after the dirty
2725			 * field was cleared here.
2726			 */
2727			pmap_clear_modify(m);
2728		m->dirty = 0;
2729		m->oflags &= ~VPO_NOSYNC;
2730	} else if (oldvalid != VM_PAGE_BITS_ALL)
2731		m->dirty &= ~pagebits;
2732	else
2733		vm_page_clear_dirty_mask(m, pagebits);
2734}
2735
2736void
2737vm_page_clear_dirty(vm_page_t m, int base, int size)
2738{
2739
2740	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2741}
2742
2743/*
2744 *	vm_page_set_invalid:
2745 *
2746 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2747 *	valid and dirty bits for the effected areas are cleared.
2748 *
2749 *	May not block.
2750 */
2751void
2752vm_page_set_invalid(vm_page_t m, int base, int size)
2753{
2754	vm_page_bits_t bits;
2755
2756	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2757	KASSERT((m->oflags & VPO_BUSY) == 0,
2758	    ("vm_page_set_invalid: page %p is busy", m));
2759	bits = vm_page_bits(base, size);
2760	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2761		pmap_remove_all(m);
2762	KASSERT(!pmap_page_is_mapped(m),
2763	    ("vm_page_set_invalid: page %p is mapped", m));
2764	m->valid &= ~bits;
2765	m->dirty &= ~bits;
2766}
2767
2768/*
2769 * vm_page_zero_invalid()
2770 *
2771 *	The kernel assumes that the invalid portions of a page contain
2772 *	garbage, but such pages can be mapped into memory by user code.
2773 *	When this occurs, we must zero out the non-valid portions of the
2774 *	page so user code sees what it expects.
2775 *
2776 *	Pages are most often semi-valid when the end of a file is mapped
2777 *	into memory and the file's size is not page aligned.
2778 */
2779void
2780vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2781{
2782	int b;
2783	int i;
2784
2785	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2786	/*
2787	 * Scan the valid bits looking for invalid sections that
2788	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2789	 * valid bit may be set ) have already been zerod by
2790	 * vm_page_set_validclean().
2791	 */
2792	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2793		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2794		    (m->valid & ((vm_page_bits_t)1 << i))) {
2795			if (i > b) {
2796				pmap_zero_page_area(m,
2797				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2798			}
2799			b = i + 1;
2800		}
2801	}
2802
2803	/*
2804	 * setvalid is TRUE when we can safely set the zero'd areas
2805	 * as being valid.  We can do this if there are no cache consistancy
2806	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2807	 */
2808	if (setvalid)
2809		m->valid = VM_PAGE_BITS_ALL;
2810}
2811
2812/*
2813 *	vm_page_is_valid:
2814 *
2815 *	Is (partial) page valid?  Note that the case where size == 0
2816 *	will return FALSE in the degenerate case where the page is
2817 *	entirely invalid, and TRUE otherwise.
2818 *
2819 *	May not block.
2820 */
2821int
2822vm_page_is_valid(vm_page_t m, int base, int size)
2823{
2824	vm_page_bits_t bits;
2825
2826	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2827	bits = vm_page_bits(base, size);
2828	if (m->valid && ((m->valid & bits) == bits))
2829		return 1;
2830	else
2831		return 0;
2832}
2833
2834/*
2835 * update dirty bits from pmap/mmu.  May not block.
2836 */
2837void
2838vm_page_test_dirty(vm_page_t m)
2839{
2840
2841	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2842	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2843		vm_page_dirty(m);
2844}
2845
2846int so_zerocp_fullpage = 0;
2847
2848/*
2849 *	Replace the given page with a copy.  The copied page assumes
2850 *	the portion of the given page's "wire_count" that is not the
2851 *	responsibility of this copy-on-write mechanism.
2852 *
2853 *	The object containing the given page must have a non-zero
2854 *	paging-in-progress count and be locked.
2855 */
2856void
2857vm_page_cowfault(vm_page_t m)
2858{
2859	vm_page_t mnew;
2860	vm_object_t object;
2861	vm_pindex_t pindex;
2862
2863	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
2864	vm_page_lock_assert(m, MA_OWNED);
2865	object = m->object;
2866	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2867	KASSERT(object->paging_in_progress != 0,
2868	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2869	    object));
2870	pindex = m->pindex;
2871
2872 retry_alloc:
2873	pmap_remove_all(m);
2874	vm_page_remove(m);
2875	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2876	if (mnew == NULL) {
2877		vm_page_insert(m, object, pindex);
2878		vm_page_unlock(m);
2879		VM_OBJECT_UNLOCK(object);
2880		VM_WAIT;
2881		VM_OBJECT_LOCK(object);
2882		if (m == vm_page_lookup(object, pindex)) {
2883			vm_page_lock(m);
2884			goto retry_alloc;
2885		} else {
2886			/*
2887			 * Page disappeared during the wait.
2888			 */
2889			return;
2890		}
2891	}
2892
2893	if (m->cow == 0) {
2894		/*
2895		 * check to see if we raced with an xmit complete when
2896		 * waiting to allocate a page.  If so, put things back
2897		 * the way they were
2898		 */
2899		vm_page_unlock(m);
2900		vm_page_lock(mnew);
2901		vm_page_free(mnew);
2902		vm_page_unlock(mnew);
2903		vm_page_insert(m, object, pindex);
2904	} else { /* clear COW & copy page */
2905		if (!so_zerocp_fullpage)
2906			pmap_copy_page(m, mnew);
2907		mnew->valid = VM_PAGE_BITS_ALL;
2908		vm_page_dirty(mnew);
2909		mnew->wire_count = m->wire_count - m->cow;
2910		m->wire_count = m->cow;
2911		vm_page_unlock(m);
2912	}
2913}
2914
2915void
2916vm_page_cowclear(vm_page_t m)
2917{
2918
2919	vm_page_lock_assert(m, MA_OWNED);
2920	if (m->cow) {
2921		m->cow--;
2922		/*
2923		 * let vm_fault add back write permission  lazily
2924		 */
2925	}
2926	/*
2927	 *  sf_buf_free() will free the page, so we needn't do it here
2928	 */
2929}
2930
2931int
2932vm_page_cowsetup(vm_page_t m)
2933{
2934
2935	vm_page_lock_assert(m, MA_OWNED);
2936	if ((m->flags & PG_FICTITIOUS) != 0 ||
2937	    (m->oflags & VPO_UNMANAGED) != 0 ||
2938	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
2939		return (EBUSY);
2940	m->cow++;
2941	pmap_remove_write(m);
2942	VM_OBJECT_UNLOCK(m->object);
2943	return (0);
2944}
2945
2946#ifdef INVARIANTS
2947void
2948vm_page_object_lock_assert(vm_page_t m)
2949{
2950
2951	/*
2952	 * Certain of the page's fields may only be modified by the
2953	 * holder of the containing object's lock or the setter of the
2954	 * page's VPO_BUSY flag.  Unfortunately, the setter of the
2955	 * VPO_BUSY flag is not recorded, and thus cannot be checked
2956	 * here.
2957	 */
2958	if (m->object != NULL && (m->oflags & VPO_BUSY) == 0)
2959		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2960}
2961#endif
2962
2963#include "opt_ddb.h"
2964#ifdef DDB
2965#include <sys/kernel.h>
2966
2967#include <ddb/ddb.h>
2968
2969DB_SHOW_COMMAND(page, vm_page_print_page_info)
2970{
2971	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2972	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2973	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2974	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2975	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2976	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2977	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2978	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2979	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2980	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2981}
2982
2983DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2984{
2985
2986	db_printf("PQ_FREE:");
2987	db_printf(" %d", cnt.v_free_count);
2988	db_printf("\n");
2989
2990	db_printf("PQ_CACHE:");
2991	db_printf(" %d", cnt.v_cache_count);
2992	db_printf("\n");
2993
2994	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2995		*vm_page_queues[PQ_ACTIVE].cnt,
2996		*vm_page_queues[PQ_INACTIVE].cnt);
2997}
2998#endif /* DDB */
2999