vm_page.c revision 224746
138514Sdfr/*-
259603Sdfr * Copyright (c) 1991 Regents of the University of California.
338514Sdfr * All rights reserved.
438514Sdfr * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
538514Sdfr *
638514Sdfr * This code is derived from software contributed to Berkeley by
738514Sdfr * The Mach Operating System project at Carnegie-Mellon University.
838514Sdfr *
938514Sdfr * Redistribution and use in source and binary forms, with or without
1038514Sdfr * modification, are permitted provided that the following conditions
1138514Sdfr * are met:
1238514Sdfr * 1. Redistributions of source code must retain the above copyright
1338514Sdfr *    notice, this list of conditions and the following disclaimer.
1438514Sdfr * 2. Redistributions in binary form must reproduce the above copyright
1538514Sdfr *    notice, this list of conditions and the following disclaimer in the
1638514Sdfr *    documentation and/or other materials provided with the distribution.
1738514Sdfr * 4. Neither the name of the University nor the names of its contributors
1838514Sdfr *    may be used to endorse or promote products derived from this software
1938514Sdfr *    without specific prior written permission.
2038514Sdfr *
2138514Sdfr * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
2238514Sdfr * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
2338514Sdfr * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2438514Sdfr * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
2538514Sdfr * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
2650477Speter * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
2738514Sdfr * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
2838514Sdfr * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
2959603Sdfr * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3059603Sdfr * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3138514Sdfr * SUCH DAMAGE.
3276166Smarkm *
3338514Sdfr *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
3476166Smarkm */
3538514Sdfr
3677642Sdd/*-
3738514Sdfr * Copyright (c) 1987, 1990 Carnegie-Mellon University.
3838514Sdfr * All rights reserved.
3938514Sdfr *
4038514Sdfr * Authors: Avadis Tevanian, Jr., Michael Wayne Young
4138514Sdfr *
4276166Smarkm * Permission to use, copy, modify and distribute this software and
4338514Sdfr * its documentation is hereby granted, provided that both the copyright
4485735Sgreen * notice and this permission notice appear in all copies of the
4585735Sgreen * software, derivative works or modified versions, and any portions
4685735Sgreen * thereof, and that both notices appear in supporting documentation.
4738514Sdfr *
4839071Sdfr * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
4939071Sdfr * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
5052128Speter * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
5139071Sdfr *
5239071Sdfr * Carnegie Mellon requests users of this software to return to
5339071Sdfr *
5452128Speter *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
5539071Sdfr *  School of Computer Science
5639071Sdfr *  Carnegie Mellon University
5776166Smarkm *  Pittsburgh PA 15213-3890
58102288Speter *
5939071Sdfr * any improvements or extensions that they make and grant Carnegie the
6059603Sdfr * rights to redistribute these changes.
6138514Sdfr */
6238514Sdfr
6359603Sdfr/*
6459603Sdfr *			GENERAL RULES ON VM_PAGE MANIPULATION
6539071Sdfr *
6639071Sdfr *	- a pageq mutex is required when adding or removing a page from a
6739071Sdfr *	  page queue (vm_page_queue[]), regardless of other mutexes or the
6839071Sdfr *	  busy state of a page.
6959603Sdfr *
7080700Sjake *	- a hash chain mutex is required when associating or disassociating
7180700Sjake *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
7280700Sjake *	  regardless of other mutexes or the busy state of a page.
7380700Sjake *
7438514Sdfr *	- either a hash chain mutex OR a busied page is required in order
7538514Sdfr *	  to modify the page flags.  A hash chain mutex must be obtained in
7640254Speter *	  order to busy a page.  A page's flags cannot be modified by a
7739071Sdfr *	  hash chain mutex if the page is marked busy.
7839071Sdfr *
7939071Sdfr *	- The object memq mutex is held when inserting or removing
8039071Sdfr *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
8139071Sdfr *	  is different from the object's main mutex.
8239071Sdfr *
8339071Sdfr *	Generally speaking, you have to be aware of side effects when running
8439071Sdfr *	vm_page ops.  A vm_page_lookup() will return with the hash chain
8539071Sdfr *	locked, whether it was able to lookup the page or not.  vm_page_free(),
8639071Sdfr *	vm_page_cache(), vm_page_activate(), and a number of other routines
8740254Speter *	will release the hash chain mutex for you.  Intermediate manipulation
8840254Speter *	routines such as vm_page_flag_set() expect the hash chain to be held
8940254Speter *	on entry and the hash chain will remain held on return.
9040254Speter *
9140254Speter *	pageq scanning can only occur with the pageq in question locked.
9240292Speter *	We have a known bottleneck with the active queue, but the cache
9340292Speter *	and free queues are actually arrays already.
9459603Sdfr */
9559603Sdfr
9659603Sdfr/*
9738514Sdfr *	Resident memory management module.
9838514Sdfr */
9959751Speter
10059751Speter#include <sys/cdefs.h>
10159751Speter__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 224746 2011-08-09 21:01:36Z kib $");
10259751Speter
10359603Sdfr#include "opt_vm.h"
10459603Sdfr
10559603Sdfr#include <sys/param.h>
10659603Sdfr#include <sys/systm.h>
10759603Sdfr#include <sys/lock.h>
10838514Sdfr#include <sys/kernel.h>
10959603Sdfr#include <sys/limits.h>
11059751Speter#include <sys/malloc.h>
11178161Speter#include <sys/msgbuf.h>
11278161Speter#include <sys/mutex.h>
11385736Sgreen#include <sys/proc.h>
11485736Sgreen#include <sys/sysctl.h>
11585736Sgreen#include <sys/vmmeter.h>
11659603Sdfr#include <sys/vnode.h>
11759603Sdfr
11859603Sdfr#include <vm/vm.h>
11959603Sdfr#include <vm/pmap.h>
12059603Sdfr#include <vm/vm_param.h>
12159603Sdfr#include <vm/vm_kern.h>
12259751Speter#include <vm/vm_object.h>
12359751Speter#include <vm/vm_page.h>
12459751Speter#include <vm/vm_pageout.h>
12578161Speter#include <vm/vm_pager.h>
12685736Sgreen#include <vm/vm_phys.h>
12759603Sdfr#include <vm/vm_reserv.h>
12859603Sdfr#include <vm/vm_extern.h>
12959603Sdfr#include <vm/uma.h>
13059603Sdfr#include <vm/uma_int.h>
13159603Sdfr
13259603Sdfr#include <machine/md_var.h>
13359603Sdfr
13459603Sdfr/*
13559603Sdfr *	Associated with page of user-allocatable memory is a
13659603Sdfr *	page structure.
13759603Sdfr */
13859603Sdfr
13959603Sdfrstruct vpgqueues vm_page_queues[PQ_COUNT];
14059603Sdfrstruct vpglocks vm_page_queue_lock;
14159751Speterstruct vpglocks vm_page_queue_free_lock;
14259603Sdfr
14359603Sdfrstruct vpglocks	pa_lock[PA_LOCK_COUNT];
14466719Sjhb
14566719Sjhbvm_page_t vm_page_array = 0;
14659603Sdfrint vm_page_array_size = 0;
14738514Sdfrlong first_page = 0;
14859603Sdfrint vm_page_zero_count = 0;
14959603Sdfr
15059603Sdfrstatic int boot_pages = UMA_BOOT_PAGES;
15159603SdfrTUNABLE_INT("vm.boot_pages", &boot_pages);
15266719SjhbSYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
15359603Sdfr	"number of pages allocated for bootstrapping the VM system");
15459603Sdfr
15559603Sdfrstatic int pa_tryrelock_restart;
15659603SdfrSYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
157104094Sphk    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
15866719Sjhb
15966719Sjhbstatic uma_zone_t fakepg_zone;
16059603Sdfr
16159603Sdfrstatic void vm_page_clear_dirty_mask(vm_page_t m, int pagebits);
16259603Sdfrstatic void vm_page_queue_remove(int queue, vm_page_t m);
16359603Sdfrstatic void vm_page_enqueue(int queue, vm_page_t m);
16459603Sdfrstatic void vm_page_init_fakepg(void *dummy);
16595228Smarcel
16695228SmarcelSYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
16795228Smarcel
16895228Smarcelstatic void
16959603Sdfrvm_page_init_fakepg(void *dummy)
17038514Sdfr{
17138514Sdfr
17238514Sdfr	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
17338514Sdfr	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
17438514Sdfr}
17538514Sdfr
17638514Sdfr/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
17740156Speter#if PAGE_SIZE == 32768
17840156Speter#ifdef CTASSERT
17940156SpeterCTASSERT(sizeof(u_long) >= 8);
18040156Speter#endif
18181500Swpaul#endif
18281500Swpaul
18340156Speter/*
18438514Sdfr * Try to acquire a physical address lock while a pmap is locked.  If we
18559603Sdfr * fail to trylock we unlock and lock the pmap directly and cache the
18638514Sdfr * locked pa in *locked.  The caller should then restart their loop in case
18740156Speter * the virtual to physical mapping has changed.
18882848Speter */
18982848Speterint
19082848Spetervm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
19182848Speter{
19282848Speter	vm_paddr_t lockpa;
19382848Speter
19482848Speter	lockpa = *locked;
19582848Speter	*locked = pa;
19682848Speter	if (lockpa) {
19782848Speter		PA_LOCK_ASSERT(lockpa, MA_OWNED);
19882848Speter		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
19982848Speter			return (0);
20082848Speter		PA_UNLOCK(lockpa);
20159603Sdfr	}
20282848Speter	if (PA_TRYLOCK(pa))
20359603Sdfr		return (0);
20482848Speter	PMAP_UNLOCK(pmap);
20559603Sdfr	atomic_add_int(&pa_tryrelock_restart, 1);
20682848Speter	PA_LOCK(pa);
20782848Speter	PMAP_LOCK(pmap);
20882848Speter	return (EAGAIN);
20982848Speter}
21040156Speter
21182848Speter/*
21282848Speter *	vm_set_page_size:
21382848Speter *
21482848Speter *	Sets the page size, perhaps based upon the memory
21582848Speter *	size.  Must be called before any use of page-size
21682848Speter *	dependent functions.
21782848Speter */
21882848Spetervoid
21982848Spetervm_set_page_size(void)
22082848Speter{
22159603Sdfr	if (cnt.v_page_size == 0)
22259603Sdfr		cnt.v_page_size = PAGE_SIZE;
22382848Speter	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
22482848Speter		panic("vm_set_page_size: page size not a power of two");
22582848Speter}
22682848Speter
22782848Speter/*
22882848Speter *	vm_page_blacklist_lookup:
22982848Speter *
23059603Sdfr *	See if a physical address in this page has been listed
23182848Speter *	in the blacklist tunable.  Entries in the tunable are
23282848Speter *	separated by spaces or commas.  If an invalid integer is
23382848Speter *	encountered then the rest of the string is skipped.
23459603Sdfr */
23582848Speterstatic int
23659603Sdfrvm_page_blacklist_lookup(char *list, vm_paddr_t pa)
23738514Sdfr{
23838514Sdfr	vm_paddr_t bad;
23940156Speter	char *cp, *pos;
24038514Sdfr
24138514Sdfr	for (pos = list; *pos != '\0'; pos = cp) {
24259751Speter		bad = strtoq(pos, &cp, 0);
24340254Speter		if (*cp != '\0') {
24440254Speter			if (*cp == ' ' || *cp == ',') {
24540254Speter				cp++;
24640254Speter				if (cp == pos)
24740254Speter					continue;
24840254Speter			} else
24940254Speter				break;
25040254Speter		}
25140292Speter		if (pa == trunc_page(bad))
25240292Speter			return (1);
25340254Speter	}
25440254Speter	return (0);
25540254Speter}
25640254Speter
25740254Speter/*
25840254Speter *	vm_page_startup:
25940254Speter *
26040254Speter *	Initializes the resident memory module.
26140254Speter *
26240254Speter *	Allocates memory for the page cells, and
26340254Speter *	for the object/offset-to-page hash table headers.
26440254Speter *	Each page cell is initialized and placed on the free list.
26540254Speter */
26640254Spetervm_offset_t
26740254Spetervm_page_startup(vm_offset_t vaddr)
26840254Speter{
26940254Speter	vm_offset_t mapped;
27040254Speter	vm_paddr_t page_range;
27140254Speter	vm_paddr_t new_end;
27240254Speter	int i;
27340254Speter	vm_paddr_t pa;
27440254Speter	vm_paddr_t last_pa;
27540254Speter	char *list;
27640254Speter
27740254Speter	/* the biggest memory array is the second group of pages */
27840254Speter	vm_paddr_t end;
27940254Speter	vm_paddr_t biggestsize;
28040254Speter	vm_paddr_t low_water, high_water;
28140254Speter	int biggestone;
28240254Speter
28340254Speter	biggestsize = 0;
28440254Speter	biggestone = 0;
28540254Speter	vaddr = round_page(vaddr);
28640254Speter
28740254Speter	for (i = 0; phys_avail[i + 1]; i += 2) {
28840254Speter		phys_avail[i] = round_page(phys_avail[i]);
28940254Speter		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
29040254Speter	}
29140254Speter
29240254Speter	low_water = phys_avail[0];
29359603Sdfr	high_water = phys_avail[1];
29438514Sdfr
29559603Sdfr	for (i = 0; phys_avail[i + 1]; i += 2) {
29639071Sdfr		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
29738514Sdfr
29838514Sdfr		if (size > biggestsize) {
29938514Sdfr			biggestone = i;
30038514Sdfr			biggestsize = size;
30138514Sdfr		}
30238514Sdfr		if (phys_avail[i] < low_water)
30380700Sjake			low_water = phys_avail[i];
30438514Sdfr		if (phys_avail[i + 1] > high_water)
30538514Sdfr			high_water = phys_avail[i + 1];
30638514Sdfr	}
30738514Sdfr
30838514Sdfr#ifdef XEN
30938514Sdfr	low_water = 0;
31038514Sdfr#endif
31138514Sdfr
31239071Sdfr	end = phys_avail[biggestone+1];
31338514Sdfr
31440254Speter	/*
31540254Speter	 * Initialize the locks.
31640254Speter	 */
31738514Sdfr	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
31839071Sdfr	    MTX_RECURSE);
31938514Sdfr	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
32038514Sdfr	    MTX_DEF);
32138514Sdfr
32238514Sdfr	/* Setup page locks. */
32339071Sdfr	for (i = 0; i < PA_LOCK_COUNT; i++)
32439071Sdfr		mtx_init(&pa_lock[i].data, "page lock", NULL, MTX_DEF);
32539071Sdfr
32639071Sdfr	/*
32739071Sdfr	 * Initialize the queue headers for the hold queue, the active queue,
32839071Sdfr	 * and the inactive queue.
32939071Sdfr	 */
33039071Sdfr	for (i = 0; i < PQ_COUNT; i++)
33139071Sdfr		TAILQ_INIT(&vm_page_queues[i].pl);
33239071Sdfr	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
33339071Sdfr	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
33439071Sdfr	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
33539071Sdfr
33639071Sdfr	/*
33739071Sdfr	 * Allocate memory for use when boot strapping the kernel memory
33839071Sdfr	 * allocator.
33939071Sdfr	 */
34039071Sdfr	new_end = end - (boot_pages * UMA_SLAB_SIZE);
34139071Sdfr	new_end = trunc_page(new_end);
34239071Sdfr	mapped = pmap_map(&vaddr, new_end, end,
34339071Sdfr	    VM_PROT_READ | VM_PROT_WRITE);
34439071Sdfr	bzero((void *)mapped, end - new_end);
34539071Sdfr	uma_startup((void *)mapped, boot_pages);
34639071Sdfr
34739071Sdfr#if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
34839071Sdfr    defined(__mips__)
34939071Sdfr	/*
35039071Sdfr	 * Allocate a bitmap to indicate that a random physical page
35139071Sdfr	 * needs to be included in a minidump.
35239071Sdfr	 *
35339071Sdfr	 * The amd64 port needs this to indicate which direct map pages
35439071Sdfr	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
35539071Sdfr	 *
35639071Sdfr	 * However, i386 still needs this workspace internally within the
35739071Sdfr	 * minidump code.  In theory, they are not needed on i386, but are
35859603Sdfr	 * included should the sf_buf code decide to use them.
35959603Sdfr	 */
36059603Sdfr	last_pa = 0;
36159603Sdfr	for (i = 0; dump_avail[i + 1] != 0; i += 2)
36259603Sdfr		if (dump_avail[i + 1] > last_pa)
36338514Sdfr			last_pa = dump_avail[i + 1];
36438514Sdfr	page_range = last_pa / PAGE_SIZE;
36539071Sdfr	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
36639071Sdfr	new_end -= vm_page_dump_size;
36739071Sdfr	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
36839071Sdfr	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
36939071Sdfr	bzero((void *)vm_page_dump, vm_page_dump_size);
37039071Sdfr#endif
37139071Sdfr#ifdef __amd64__
37239071Sdfr	/*
37340254Speter	 * Request that the physical pages underlying the message buffer be
37440254Speter	 * included in a crash dump.  Since the message buffer is accessed
37540254Speter	 * through the direct map, they are not automatically included.
37640254Speter	 */
37740254Speter	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
37838514Sdfr	last_pa = pa + round_page(msgbufsize);
37938514Sdfr	while (pa < last_pa) {
38038514Sdfr		dump_add_page(pa);
38139071Sdfr		pa += PAGE_SIZE;
38239071Sdfr	}
38339071Sdfr#endif
38439071Sdfr	/*
38539071Sdfr	 * Compute the number of pages of memory that will be available for
38639071Sdfr	 * use (taking into account the overhead of a page structure per
38759603Sdfr	 * page).
38859603Sdfr	 */
38959603Sdfr	first_page = low_water / PAGE_SIZE;
39059603Sdfr#ifdef VM_PHYSSEG_SPARSE
39159603Sdfr	page_range = 0;
39259603Sdfr	for (i = 0; phys_avail[i + 1] != 0; i += 2)
39359603Sdfr		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
39459603Sdfr#elif defined(VM_PHYSSEG_DENSE)
39559603Sdfr	page_range = high_water / PAGE_SIZE - first_page;
39659603Sdfr#else
39759603Sdfr#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
39859603Sdfr#endif
39959603Sdfr	end = new_end;
40059603Sdfr
40159603Sdfr	/*
40259603Sdfr	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
40359603Sdfr	 */
40459603Sdfr	vaddr += PAGE_SIZE;
40559603Sdfr
40659603Sdfr	/*
40759603Sdfr	 * Initialize the mem entry structures now, and put them in the free
40859603Sdfr	 * queue.
40959603Sdfr	 */
41059603Sdfr	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
41159603Sdfr	mapped = pmap_map(&vaddr, new_end, end,
41259603Sdfr	    VM_PROT_READ | VM_PROT_WRITE);
41359603Sdfr	vm_page_array = (vm_page_t) mapped;
41459603Sdfr#if VM_NRESERVLEVEL > 0
41559603Sdfr	/*
41659603Sdfr	 * Allocate memory for the reservation management system's data
41759603Sdfr	 * structures.
41859603Sdfr	 */
41959603Sdfr	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
42059603Sdfr#endif
42138514Sdfr#if defined(__amd64__) || defined(__mips__)
42259751Speter	/*
42359751Speter	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
42440156Speter	 * like i386, so the pages must be tracked for a crashdump to include
42540156Speter	 * this data.  This includes the vm_page_array and the early UMA
42640156Speter	 * bootstrap pages.
42740156Speter	 */
42840156Speter	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
42940156Speter		dump_add_page(pa);
43040156Speter#endif
43140156Speter	phys_avail[biggestone + 1] = new_end;
43259751Speter
43340156Speter	/*
43440156Speter	 * Clear all of the page structures
43559751Speter	 */
43640156Speter	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
43740156Speter	for (i = 0; i < page_range; i++)
43840156Speter		vm_page_array[i].order = VM_NFREEORDER;
43940156Speter	vm_page_array_size = page_range;
44040156Speter
44140156Speter	/*
44240156Speter	 * Initialize the physical memory allocator.
44340156Speter	 */
44440156Speter	vm_phys_init();
44540156Speter
44659603Sdfr	/*
44759603Sdfr	 * Add every available physical page that is not blacklisted to
44859603Sdfr	 * the free lists.
44959603Sdfr	 */
45059603Sdfr	cnt.v_page_count = 0;
45159603Sdfr	cnt.v_free_count = 0;
45259603Sdfr	list = getenv("vm.blacklist");
45340292Speter	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
45440156Speter		pa = phys_avail[i];
45540156Speter		last_pa = phys_avail[i + 1];
45640156Speter		while (pa < last_pa) {
45740156Speter			if (list != NULL &&
45840156Speter			    vm_page_blacklist_lookup(list, pa))
45940156Speter				printf("Skipping page with pa 0x%jx\n",
46040156Speter				    (uintmax_t)pa);
46140156Speter			else
46240156Speter				vm_phys_add_page(pa);
46359603Sdfr			pa += PAGE_SIZE;
46440156Speter		}
46540156Speter	}
46640156Speter	freeenv(list);
46740156Speter#if VM_NRESERVLEVEL > 0
46859751Speter	/*
46959751Speter	 * Initialize the reservation management system.
47059751Speter	 */
47159751Speter	vm_reserv_init();
47259751Speter#endif
47359751Speter	return (vaddr);
47459751Speter}
47559751Speter
47659751Spetervoid
47781500Swpaulvm_page_flag_set(vm_page_t m, unsigned short bits)
47881500Swpaul{
47981500Swpaul
48059751Speter	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
48159751Speter	/*
48259751Speter	 * The PG_WRITEABLE flag can only be set if the page is managed and
48359751Speter	 * VPO_BUSY.  Currently, this flag is only set by pmap_enter().
48459751Speter	 */
48559751Speter	KASSERT((bits & PG_WRITEABLE) == 0 ||
48659751Speter	    (m->oflags & (VPO_UNMANAGED | VPO_BUSY)) == VPO_BUSY,
48759751Speter	    ("PG_WRITEABLE and !VPO_BUSY"));
48859751Speter	m->flags |= bits;
48959751Speter}
49040156Speter
49159751Spetervoid
49259603Sdfrvm_page_flag_clear(vm_page_t m, unsigned short bits)
49359751Speter{
49440156Speter
49559751Speter	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
49659603Sdfr	/*
49759603Sdfr	 * The PG_REFERENCED flag can only be cleared if the object
49859603Sdfr	 * containing the page is locked.
49959603Sdfr	 */
50081500Swpaul	KASSERT((bits & PG_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object),
50181500Swpaul	    ("PG_REFERENCED and !VM_OBJECT_LOCKED"));
50281500Swpaul	m->flags &= ~bits;
50359603Sdfr}
50459603Sdfr
50559603Sdfrvoid
50659603Sdfrvm_page_busy(vm_page_t m)
50759603Sdfr{
50840156Speter
50940156Speter	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
51040156Speter	KASSERT((m->oflags & VPO_BUSY) == 0,
51140156Speter	    ("vm_page_busy: page already busy!!!"));
51259751Speter	m->oflags |= VPO_BUSY;
51338514Sdfr}
51438514Sdfr
51583366Sjulian/*
51640962Speter *      vm_page_flash:
51740962Speter *
51839071Sdfr *      wakeup anyone waiting for the page.
51939071Sdfr */
52039071Sdfrvoid
52139071Sdfrvm_page_flash(vm_page_t m)
52239071Sdfr{
52339071Sdfr
52439071Sdfr	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
52539071Sdfr	if (m->oflags & VPO_WANTED) {
52639071Sdfr		m->oflags &= ~VPO_WANTED;
52739071Sdfr		wakeup(m);
52839071Sdfr	}
52939071Sdfr}
53038514Sdfr
53162550Smckusick/*
53238514Sdfr *      vm_page_wakeup:
53338514Sdfr *
53440292Speter *      clear the VPO_BUSY flag and wakeup anyone waiting for the
53540292Speter *      page.
53640292Speter *
53740292Speter */
53840292Spetervoid
53981500Swpaulvm_page_wakeup(vm_page_t m)
54081201Sgreen{
54181500Swpaul
54238514Sdfr	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
54379224Sdillon	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
54479224Sdillon	m->oflags &= ~VPO_BUSY;
54540292Speter	vm_page_flash(m);
54640292Speter}
54740292Speter
54883366Sjulianvoid
54962550Smckusickvm_page_io_start(vm_page_t m)
55062550Smckusick{
55138514Sdfr
55238514Sdfr	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
55354655Seivind	m->busy++;
55438514Sdfr}
55538514Sdfr
55639071Sdfrvoid
55738514Sdfrvm_page_io_finish(vm_page_t m)
55840962Speter{
55940962Speter
56040962Speter	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
56140962Speter	KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m));
56240962Speter	m->busy--;
56340962Speter	if (m->busy == 0)
56440962Speter		vm_page_flash(m);
565101941Srwatson}
566101941Srwatson
56740962Speter/*
56838514Sdfr * Keep page from being freed by the page daemon
56938514Sdfr * much of the same effect as wiring, except much lower
57038514Sdfr * overhead and should be used only for *very* temporary
57140962Speter * holding ("wiring").
57239071Sdfr */
57338514Sdfrvoid
57439071Sdfrvm_page_hold(vm_page_t mem)
57538514Sdfr{
57640962Speter
57740962Speter	vm_page_lock_assert(mem, MA_OWNED);
57839071Sdfr        mem->hold_count++;
57939071Sdfr}
58039071Sdfr
58139071Sdfrvoid
58240962Spetervm_page_unhold(vm_page_t mem)
58340962Speter{
58439071Sdfr
58539071Sdfr	vm_page_lock_assert(mem, MA_OWNED);
58639071Sdfr	--mem->hold_count;
58739071Sdfr	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
58840962Speter	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
58939071Sdfr		vm_page_free_toq(mem);
59039071Sdfr}
59139071Sdfr
59239071Sdfr/*
59340962Speter *	vm_page_unhold_pages:
59439071Sdfr *
59539071Sdfr *	Unhold each of the pages that is referenced by the given array.
59639071Sdfr */
59739071Sdfrvoid
59839071Sdfrvm_page_unhold_pages(vm_page_t *ma, int count)
59938514Sdfr{
60039071Sdfr	struct mtx *mtx, *new_mtx;
60139071Sdfr
60239071Sdfr	mtx = NULL;
60338514Sdfr	for (; count != 0; count--) {
60440962Speter		/*
60540962Speter		 * Avoid releasing and reacquiring the same page lock.
60640962Speter		 */
60739071Sdfr		new_mtx = vm_page_lockptr(*ma);
60839071Sdfr		if (mtx != new_mtx) {
60938514Sdfr			if (mtx != NULL)
61039071Sdfr				mtx_unlock(mtx);
61139071Sdfr			mtx = new_mtx;
61239071Sdfr			mtx_lock(mtx);
61339071Sdfr		}
61438514Sdfr		vm_page_unhold(*ma);
61540962Speter		ma++;
61640962Speter	}
61739071Sdfr	if (mtx != NULL)
61839071Sdfr		mtx_unlock(mtx);
61939071Sdfr}
62039071Sdfr
62139071Sdfr/*
62239071Sdfr *	vm_page_getfake:
62339071Sdfr *
62439071Sdfr *	Create a fictitious page with the specified physical address and
62539071Sdfr *	memory attribute.  The memory attribute is the only the machine-
62639071Sdfr *	dependent aspect of a fictitious page that must be initialized.
62739071Sdfr */
62839071Sdfrvm_page_t
62939071Sdfrvm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
63039071Sdfr{
63139071Sdfr	vm_page_t m;
63239071Sdfr
63339071Sdfr	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
63439071Sdfr	m->phys_addr = paddr;
63539071Sdfr	m->queue = PQ_NONE;
63639071Sdfr	/* Fictitious pages don't use "segind". */
63739071Sdfr	m->flags = PG_FICTITIOUS;
63839071Sdfr	/* Fictitious pages don't use "order" or "pool". */
63939071Sdfr	m->oflags = VPO_BUSY | VPO_UNMANAGED;
64065503Sbp	m->wire_count = 1;
64165503Sbp	pmap_page_set_memattr(m, memattr);
64265503Sbp	return (m);
64365503Sbp}
64465503Sbp
64539071Sdfr/*
64639071Sdfr *	vm_page_putfake:
64739071Sdfr *
64839071Sdfr *	Release a fictitious page.
64939071Sdfr */
65039071Sdfrvoid
65139071Sdfrvm_page_putfake(vm_page_t m)
65238514Sdfr{
65339071Sdfr
65438514Sdfr	KASSERT((m->flags & PG_FICTITIOUS) != 0,
65538514Sdfr	    ("vm_page_putfake: bad page %p", m));
65639071Sdfr	uma_zfree(fakepg_zone, m);
65739071Sdfr}
65838514Sdfr
65939071Sdfr/*
66039071Sdfr *	vm_page_updatefake:
66139071Sdfr *
66239071Sdfr *	Update the given fictitious page to the specified physical address and
66339071Sdfr *	memory attribute.
66459603Sdfr */
66559603Sdfrvoid
66659603Sdfrvm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
66759603Sdfr{
66859603Sdfr
66959603Sdfr	KASSERT((m->flags & PG_FICTITIOUS) != 0,
67059603Sdfr	    ("vm_page_updatefake: bad page %p", m));
67139071Sdfr	m->phys_addr = paddr;
67239071Sdfr	pmap_page_set_memattr(m, memattr);
67339071Sdfr}
67438514Sdfr
67539071Sdfr/*
67638514Sdfr *	vm_page_free:
67738514Sdfr *
67839071Sdfr *	Free a page.
67939071Sdfr */
68039071Sdfrvoid
68139071Sdfrvm_page_free(vm_page_t m)
68239071Sdfr{
68339071Sdfr
68439071Sdfr	m->flags &= ~PG_ZERO;
68539071Sdfr	vm_page_free_toq(m);
68659603Sdfr}
68739071Sdfr
68839071Sdfr/*
68939071Sdfr *	vm_page_free_zero:
69039071Sdfr *
69159603Sdfr *	Free a page to the zerod-pages queue
69259603Sdfr */
69359603Sdfrvoid
69459603Sdfrvm_page_free_zero(vm_page_t m)
69539071Sdfr{
69639071Sdfr
69738514Sdfr	m->flags |= PG_ZERO;
69839071Sdfr	vm_page_free_toq(m);
69939071Sdfr}
70039071Sdfr
70139071Sdfr/*
70239071Sdfr *	vm_page_sleep:
70339071Sdfr *
70439071Sdfr *	Sleep and release the page and page queues locks.
705101941Srwatson *
706101941Srwatson *	The object containing the given page must be locked.
70739071Sdfr */
70839071Sdfrvoid
70939071Sdfrvm_page_sleep(vm_page_t m, const char *msg)
71039071Sdfr{
71139071Sdfr
71239071Sdfr	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
71339071Sdfr	if (mtx_owned(&vm_page_queue_mtx))
71439071Sdfr		vm_page_unlock_queues();
71539071Sdfr	if (mtx_owned(vm_page_lockptr(m)))
71639071Sdfr		vm_page_unlock(m);
717102547Sjake
718102547Sjake	/*
719102547Sjake	 * It's possible that while we sleep, the page will get
720102547Sjake	 * unbusied and freed.  If we are holding the object
72139071Sdfr	 * lock, we will assume we hold a reference to the object
72239071Sdfr	 * such that even if m->object changes, we can re-lock
72339071Sdfr	 * it.
72485734Sgreen	 */
72585734Sgreen	m->oflags |= VPO_WANTED;
72685734Sgreen	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
72785734Sgreen}
72885734Sgreen
72985734Sgreen/*
73059603Sdfr *	vm_page_dirty:
73139071Sdfr *
73238514Sdfr *	Set all bits in the page's dirty field.
73339071Sdfr *
73438514Sdfr *	The object containing the specified page must be locked if the call is
73559603Sdfr *	made from the machine-independent layer.  If, however, the call is
73640292Speter *	made from the pmap layer, then the page queues lock may be required.
73738514Sdfr *	See vm_page_clear_dirty_mask().
73886469Siedowse */
73940292Spetervoid
74040156Spetervm_page_dirty(vm_page_t m)
74159751Speter{
74259751Speter
74359751Speter	KASSERT((m->flags & PG_CACHED) == 0,
74459751Speter	    ("vm_page_dirty: page in cache!"));
74559751Speter	KASSERT(!VM_PAGE_IS_FREE(m),
74659751Speter	    ("vm_page_dirty: page is free!"));
74759751Speter	KASSERT(m->valid == VM_PAGE_BITS_ALL,
74859751Speter	    ("vm_page_dirty: page is invalid!"));
74959751Speter	m->dirty = VM_PAGE_BITS_ALL;
75059751Speter}
75159603Sdfr
75240292Speter/*
75340156Speter *	vm_page_splay:
75440292Speter *
75540292Speter *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
75640962Speter *	the vm_page containing the given pindex.  If, however, that
75740962Speter *	pindex is not found in the vm_object, returns a vm_page that is
75840292Speter *	adjacent to the pindex, coming before or after it.
75969781Sdwmalone */
76040292Spetervm_page_t
76140292Spetervm_page_splay(vm_pindex_t pindex, vm_page_t root)
76240292Speter{
76340156Speter	struct vm_page dummy;
76440292Speter	vm_page_t lefttreemax, righttreemin, y;
76540962Speter
766101941Srwatson	if (root == NULL)
767101941Srwatson		return (root);
76840292Speter	lefttreemax = righttreemin = &dummy;
76940292Speter	for (;; root = y) {
77040292Speter		if (pindex < root->pindex) {
77140292Speter			if ((y = root->left) == NULL)
77240962Speter				break;
77340292Speter			if (pindex < y->pindex) {
77440292Speter				/* Rotate right. */
77540292Speter				root->left = y->right;
77640292Speter				y->right = root;
77740292Speter				root = y;
77840292Speter				if ((y = root->left) == NULL)
77940292Speter					break;
78040156Speter			}
78140292Speter			/* Link into the new root's right tree. */
78240292Speter			righttreemin->left = root;
78340292Speter			righttreemin = root;
78440292Speter		} else if (pindex > root->pindex) {
78540292Speter			if ((y = root->right) == NULL)
78640292Speter				break;
78740292Speter			if (pindex > y->pindex) {
78840292Speter				/* Rotate left. */
78940292Speter				root->right = y->left;
79040292Speter				y->left = root;
79140292Speter				root = y;
792101941Srwatson				if ((y = root->right) == NULL)
793101941Srwatson					break;
79440292Speter			}
79540292Speter			/* Link into the new root's left tree. */
79640292Speter			lefttreemax->right = root;
79740292Speter			lefttreemax = root;
798101941Srwatson		} else
799101941Srwatson			break;
80040292Speter	}
80140292Speter	/* Assemble the new root. */
80240292Speter	lefttreemax->right = root->left;
80340292Speter	righttreemin->left = root->right;
80440292Speter	root->left = dummy.right;
80540292Speter	root->right = dummy.left;
80640292Speter	return (root);
80740292Speter}
80859603Sdfr
80959603Sdfr/*
81059603Sdfr *	vm_page_insert:		[ internal use only ]
81181201Sgreen *
81281201Sgreen *	Inserts the given mem entry into the object and object list.
81381201Sgreen *
81459603Sdfr *	The pagetables are not updated but will presumably fault the page
81559603Sdfr *	in if necessary, or if a kernel page the caller will at some point
81659603Sdfr *	enter the page into the kernel's pmap.  We are not allowed to block
81759603Sdfr *	here so we *can't* do this anyway.
81859603Sdfr *
81940292Speter *	The object and page must be locked.
82040292Speter *	This routine may not block.
82138514Sdfr */
82238514Sdfrvoid
82338514Sdfrvm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
82440292Speter{
82540292Speter	vm_page_t root;
82640292Speter
82740292Speter	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
82840962Speter	if (m->object != NULL)
82940962Speter		panic("vm_page_insert: page already inserted");
83083366Sjulian
83191406Sjhb	/*
83238514Sdfr	 * Record the object/offset pair in this page
83338514Sdfr	 */
83438514Sdfr	m->object = object;
83538514Sdfr	m->pindex = pindex;
83638514Sdfr
83740156Speter	/*
83838514Sdfr	 * Now link into the object's ordered list of backed pages.
83959603Sdfr	 */
84038514Sdfr	root = object->root;
84159603Sdfr	if (root == NULL) {
84259603Sdfr		m->left = NULL;
84359603Sdfr		m->right = NULL;
84483282Speter		TAILQ_INSERT_TAIL(&object->memq, m, listq);
84559603Sdfr	} else {
84659603Sdfr		root = vm_page_splay(pindex, root);
84759603Sdfr		if (pindex < root->pindex) {
84859603Sdfr			m->left = root->left;
84959603Sdfr			m->right = root;
85059603Sdfr			root->left = NULL;
85159751Speter			TAILQ_INSERT_BEFORE(root, m, listq);
85259603Sdfr		} else if (pindex == root->pindex)
85359603Sdfr			panic("vm_page_insert: offset already allocated");
85439071Sdfr		else {
85559603Sdfr			m->right = root->right;
85659603Sdfr			m->left = root;
85759603Sdfr			root->right = NULL;
85859603Sdfr			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
85959603Sdfr		}
86059603Sdfr	}
86139071Sdfr	object->root = m;
86259603Sdfr
86359603Sdfr	/*
86439071Sdfr	 * show that the object has one more resident page.
86559603Sdfr	 */
86659603Sdfr	object->resident_page_count++;
86759603Sdfr	/*
86859603Sdfr	 * Hold the vnode until the last page is released.
86938514Sdfr	 */
87038514Sdfr	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
87140156Speter		vhold((struct vnode *)object->handle);
87259751Speter
87340156Speter	/*
87440156Speter	 * Since we are inserting a new and possibly dirty page,
87540156Speter	 * update the object's OBJ_MIGHTBEDIRTY flag.
87640156Speter	 */
87740156Speter	if (m->flags & PG_WRITEABLE)
87839071Sdfr		vm_object_set_writeable_dirty(object);
87940435Speter}
88038514Sdfr
88139071Sdfr/*
88238514Sdfr *	vm_page_remove:
88340435Speter *				NOTE: used by device pager as well -wfj
88440435Speter *
88540397Speter *	Removes the given mem entry from the object/offset-page
88639071Sdfr *	table and the object page list, but do not invalidate/terminate
88739071Sdfr *	the backing store.
88838514Sdfr *
88938514Sdfr *	The object and page must be locked.
89038514Sdfr *	The underlying pmap entry (if any) is NOT removed here.
89159603Sdfr *	This routine may not block.
89238514Sdfr */
89339071Sdfrvoid
89439071Sdfrvm_page_remove(vm_page_t m)
89539071Sdfr{
89639071Sdfr	vm_object_t object;
89740435Speter	vm_page_t root;
89838514Sdfr
89939071Sdfr	if ((m->oflags & VPO_UNMANAGED) == 0)
90040435Speter		vm_page_lock_assert(m, MA_OWNED);
90140435Speter	if ((object = m->object) == NULL)
90243388Sbde		return;
90340435Speter	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
90495410Smarcel	if (m->oflags & VPO_BUSY) {
90595410Smarcel		m->oflags &= ~VPO_BUSY;
90659744Speter		vm_page_flash(m);
90740435Speter	}
90842200Speter
90940435Speter	/*
91040435Speter	 * Now remove from the object's list of backed pages.
91139071Sdfr	 */
91238514Sdfr	if (m != object->root)
91339071Sdfr		vm_page_splay(m->pindex, object->root);
91440435Speter	if (m->left == NULL)
91540435Speter		root = m->right;
91643388Sbde	else {
91740435Speter		root = vm_page_splay(m->pindex, m->left);
91895410Smarcel		root->right = m->right;
91995410Smarcel	}
92059744Speter	object->root = root;
92140435Speter	TAILQ_REMOVE(&object->memq, m, listq);
92242200Speter
92340435Speter	/*
92440435Speter	 * And show that the object has one fewer resident page.
92539071Sdfr	 */
92638514Sdfr	object->resident_page_count--;
92739071Sdfr	/*
92840435Speter	 * The vnode may now be recycled.
92940435Speter	 */
93043388Sbde	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
93140435Speter		vdrop((struct vnode *)object->handle);
93295410Smarcel
93395410Smarcel	m->object = NULL;
93459744Speter}
93540435Speter
93642200Speter/*
93740435Speter *	vm_page_lookup:
93840435Speter *
93939071Sdfr *	Returns the page associated with the object/offset
94038514Sdfr *	pair specified; if none is found, NULL is returned.
94139071Sdfr *
94240435Speter *	The object must be locked.
94340435Speter *	This routine may not block.
94443388Sbde *	This is a critical path routine
94540435Speter */
94695410Smarcelvm_page_t
94795410Smarcelvm_page_lookup(vm_object_t object, vm_pindex_t pindex)
94859744Speter{
94940435Speter	vm_page_t m;
95042200Speter
95140435Speter	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
95240435Speter	if ((m = object->root) != NULL && m->pindex != pindex) {
95338514Sdfr		m = vm_page_splay(pindex, m);
95438514Sdfr		if ((object->root = m)->pindex != pindex)
95538514Sdfr			m = NULL;
95638514Sdfr	}
95738514Sdfr	return (m);
95839071Sdfr}
95939071Sdfr
96039071Sdfr/*
96139071Sdfr *	vm_page_find_least:
96239071Sdfr *
96339071Sdfr *	Returns the page associated with the object with least pindex
96438514Sdfr *	greater than or equal to the parameter pindex, or NULL.
96539071Sdfr *
96639071Sdfr *	The object must be locked.
96739071Sdfr *	The routine may not block.
96838514Sdfr */
96939071Sdfrvm_page_t
97039071Sdfrvm_page_find_least(vm_object_t object, vm_pindex_t pindex)
97139071Sdfr{
97239071Sdfr	vm_page_t m;
97339071Sdfr
97439071Sdfr	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
97539071Sdfr	if ((m = TAILQ_FIRST(&object->memq)) != NULL) {
97638514Sdfr		if (m->pindex < pindex) {
97738514Sdfr			m = vm_page_splay(pindex, object->root);
978104094Sphk			if ((object->root = m)->pindex < pindex)
97943301Sdillon				m = TAILQ_NEXT(m, listq);
98038514Sdfr		}
98159603Sdfr	}
98239071Sdfr	return (m);
98340254Speter}
98440254Speter
98539071Sdfr/*
98639071Sdfr * Returns the given page's successor (by pindex) within the object if it is
98738514Sdfr * resident; if none is found, NULL is returned.
98840254Speter *
98939071Sdfr * The object must be locked.
99039071Sdfr */
99139071Sdfrvm_page_t
99239071Sdfrvm_page_next(vm_page_t m)
99339071Sdfr{
99439071Sdfr	vm_page_t next;
99539071Sdfr
99638514Sdfr	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
99738514Sdfr	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
99839071Sdfr	    next->pindex != m->pindex + 1)
99939071Sdfr		next = NULL;
100039071Sdfr	return (next);
100139071Sdfr}
100239071Sdfr
100339071Sdfr/*
100439071Sdfr * Returns the given page's predecessor (by pindex) within the object if it is
100539071Sdfr * resident; if none is found, NULL is returned.
100639071Sdfr *
100739071Sdfr * The object must be locked.
100839071Sdfr */
100939071Sdfrvm_page_t
101043301Sdillonvm_page_prev(vm_page_t m)
101139071Sdfr{
101239071Sdfr	vm_page_t prev;
101339071Sdfr
101439071Sdfr	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
101539071Sdfr	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
101639071Sdfr	    prev->pindex != m->pindex - 1)
101739071Sdfr		prev = NULL;
101839071Sdfr	return (prev);
101940254Speter}
102040254Speter
102140254Speter/*
102240254Speter *	vm_page_rename:
102340254Speter *
102440254Speter *	Move the given memory entry from its
102540254Speter *	current object to the specified target object/offset.
102640254Speter *
102740254Speter *	The object must be locked.
102840254Speter *	This routine may not block.
102940254Speter *
103043301Sdillon *	Note: swap associated with the page must be invalidated by the move.  We
103140254Speter *	      have to do this for several reasons:  (1) we aren't freeing the
103240254Speter *	      page, (2) we are dirtying the page, (3) the VM system is probably
103340254Speter *	      moving the page from object A to B, and will then later move
103440254Speter *	      the backing store from A to B and we can't have a conflict.
103540254Speter *
103640254Speter *	Note: we *always* dirty the page.  It is necessary both for the
103739071Sdfr *	      fact that we moved it, and because we may be invalidating
103838514Sdfr *	      swap.  If the page is on the cache, we have to deactivate it
103938514Sdfr *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
104040156Speter *	      on the cache.
104143309Sdillon */
104238514Sdfrvoid
104359603Sdfrvm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
104443311Sdillon{
104538514Sdfr
1046102348Smarcel	vm_page_remove(m);
104740254Speter	vm_page_insert(m, new_object, new_pindex);
104840254Speter	vm_page_dirty(m);
104940254Speter}
105040254Speter
105140254Speter/*
105240254Speter *	Convert all of the given object's cached pages that have a
105340254Speter *	pindex within the given range into free pages.  If the value
1054102348Smarcel *	zero is given for "end", then the range's upper bound is
105540254Speter *	infinity.  If the given object is backed by a vnode and it
105640254Speter *	transitions from having one or more cached pages to none, the
105740254Speter *	vnode's hold count is reduced.
105840254Speter */
105940254Spetervoid
106040254Spetervm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
106138514Sdfr{
106238514Sdfr	vm_page_t m, m_next;
106338514Sdfr	boolean_t empty;
106438514Sdfr
106543301Sdillon	mtx_lock(&vm_page_queue_free_mtx);
106638514Sdfr	if (__predict_false(object->cache == NULL)) {
106759603Sdfr		mtx_unlock(&vm_page_queue_free_mtx);
106855090Sbde		return;
106938514Sdfr	}
107055090Sbde	m = object->cache = vm_page_splay(start, object->cache);
107139071Sdfr	if (m->pindex < start) {
107239071Sdfr		if (m->right == NULL)
107338514Sdfr			m = NULL;
107438514Sdfr		else {
107540254Speter			m_next = vm_page_splay(start, m->right);
107638514Sdfr			m_next->left = m;
107738514Sdfr			m->right = NULL;
107855090Sbde			m = object->cache = m_next;
107953820Speter		}
108053820Speter	}
108153820Speter
108238514Sdfr	/*
108338514Sdfr	 * At this point, "m" is either (1) a reference to the page
108438514Sdfr	 * with the least pindex that is greater than or equal to
108553820Speter	 * "start" or (2) NULL.
108638514Sdfr	 */
108738514Sdfr	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
108838514Sdfr		/*
108938514Sdfr		 * Find "m"'s successor and remove "m" from the
109038514Sdfr		 * object's cache.
109138514Sdfr		 */
109238514Sdfr		if (m->right == NULL) {
109338514Sdfr			object->cache = m->left;
109443301Sdillon			m_next = NULL;
109538514Sdfr		} else {
109638514Sdfr			m_next = vm_page_splay(start, m->right);
109738514Sdfr			m_next->left = m->left;
109878161Speter			object->cache = m_next;
109978161Speter		}
110078161Speter		/* Convert "m" to a free page. */
110178161Speter		m->object = NULL;
110278161Speter		m->valid = 0;
110378161Speter		/* Clear PG_CACHED and set PG_FREE. */
110478161Speter		m->flags ^= PG_CACHED | PG_FREE;
110578161Speter		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
110678161Speter		    ("vm_page_cache_free: page %p has inconsistent flags", m));
110778161Speter		cnt.v_cache_count--;
110878161Speter		cnt.v_free_count++;
110978161Speter	}
111078161Speter	empty = object->cache == NULL;
111178161Speter	mtx_unlock(&vm_page_queue_free_mtx);
111278161Speter	if (object->type == OBJT_VNODE && empty)
111378161Speter		vdrop(object->handle);
111478161Speter}
111578161Speter
111678161Speter/*
111778161Speter *	Returns the cached page that is associated with the given
111878161Speter *	object and offset.  If, however, none exists, returns NULL.
111978161Speter *
112078161Speter *	The free page queue must be locked.
112178161Speter */
112278161Speterstatic inline vm_page_t
112378161Spetervm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
112478161Speter{
112578161Speter	vm_page_t m;
112678161Speter
112778161Speter	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
112878161Speter	if ((m = object->cache) != NULL && m->pindex != pindex) {
112978161Speter		m = vm_page_splay(pindex, m);
113078161Speter		if ((object->cache = m)->pindex != pindex)
113178161Speter			m = NULL;
113278161Speter	}
113378161Speter	return (m);
113478161Speter}
113578161Speter
113678161Speter/*
113778161Speter *	Remove the given cached page from its containing object's
113878161Speter *	collection of cached pages.
113978161Speter *
114078161Speter *	The free page queue must be locked.
114178161Speter */
114278161Spetervoid
114378161Spetervm_page_cache_remove(vm_page_t m)
114478161Speter{
114578161Speter	vm_object_t object;
114678161Speter	vm_page_t root;
114778161Speter
114878161Speter	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
114978161Speter	KASSERT((m->flags & PG_CACHED) != 0,
115078161Speter	    ("vm_page_cache_remove: page %p is not cached", m));
115178161Speter	object = m->object;
115278161Speter	if (m != object->cache) {
115378161Speter		root = vm_page_splay(m->pindex, object->cache);
115478161Speter		KASSERT(root == m,
115578161Speter		    ("vm_page_cache_remove: page %p is not cached in object %p",
115685736Sgreen		    m, object));
115785736Sgreen	}
115885736Sgreen	if (m->left == NULL)
115985736Sgreen		root = m->right;
116085736Sgreen	else if (m->right == NULL)
116185736Sgreen		root = m->left;
116285736Sgreen	else {
116385736Sgreen		root = vm_page_splay(m->pindex, m->left);
116485736Sgreen		root->right = m->right;
116585736Sgreen	}
116685736Sgreen	object->cache = root;
116785736Sgreen	m->object = NULL;
116885736Sgreen	cnt.v_cache_count--;
116985736Sgreen}
117085736Sgreen
117185736Sgreen/*
117285736Sgreen *	Transfer all of the cached pages with offset greater than or
117385736Sgreen *	equal to 'offidxstart' from the original object's cache to the
117485736Sgreen *	new object's cache.  However, any cached pages with offset
117595228Smarcel *	greater than or equal to the new object's size are kept in the
117695228Smarcel *	original object.  Initially, the new object's cache must be
117795228Smarcel *	empty.  Offset 'offidxstart' in the original object must
117895228Smarcel *	correspond to offset zero in the new object.
117995228Smarcel *
118095228Smarcel *	The new object must be locked.
118195228Smarcel */
118295228Smarcelvoid
118395228Smarcelvm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
118495228Smarcel    vm_object_t new_object)
118595228Smarcel{
118695228Smarcel	vm_page_t m, m_next;
118795228Smarcel
118895228Smarcel	/*
118995228Smarcel	 * Insertion into an object's collection of cached pages
119095410Smarcel	 * requires the object to be locked.  In contrast, removal does
1191104072Sjake	 * not.
1192104072Sjake	 */
1193104072Sjake	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
1194104072Sjake	KASSERT(new_object->cache == NULL,
1195104072Sjake	    ("vm_page_cache_transfer: object %p has cached pages",
1196104072Sjake	    new_object));
1197104072Sjake	mtx_lock(&vm_page_queue_free_mtx);
1198104072Sjake	if ((m = orig_object->cache) != NULL) {
1199104072Sjake		/*
1200104072Sjake		 * Transfer all of the pages with offset greater than or
1201105147Smarcel		 * equal to 'offidxstart' from the original object's
1202105147Smarcel		 * cache to the new object's cache.
1203105147Smarcel		 */
1204105147Smarcel		m = vm_page_splay(offidxstart, m);
1205105147Smarcel		if (m->pindex < offidxstart) {
1206105147Smarcel			orig_object->cache = m;
1207105147Smarcel			new_object->cache = m->right;
1208105147Smarcel			m->right = NULL;
1209105147Smarcel		} else {
1210105147Smarcel			orig_object->cache = m->left;
1211105147Smarcel			new_object->cache = m;
1212105147Smarcel			m->left = NULL;
121395410Smarcel		}
121495410Smarcel		while ((m = new_object->cache) != NULL) {
121595410Smarcel			if ((m->pindex - offidxstart) >= new_object->size) {
121695410Smarcel				/*
121795410Smarcel				 * Return all of the cached pages with
121895410Smarcel				 * offset greater than or equal to the
121995410Smarcel				 * new object's size to the original
122095410Smarcel				 * object's cache.
122195410Smarcel				 */
122295410Smarcel				new_object->cache = m->left;
122395410Smarcel				m->left = orig_object->cache;
122495410Smarcel				orig_object->cache = m;
122595410Smarcel				break;
122695410Smarcel			}
122795410Smarcel			m_next = vm_page_splay(m->pindex, m->right);
122895410Smarcel			/* Update the page's object and offset. */
122995410Smarcel			m->object = new_object;
123095410Smarcel			m->pindex -= offidxstart;
123195410Smarcel			if (m_next == NULL)
123295410Smarcel				break;
123395410Smarcel			m->right = NULL;
123495410Smarcel			m_next->left = m;
123595410Smarcel			new_object->cache = m_next;
123695410Smarcel		}
123795410Smarcel		KASSERT(new_object->cache == NULL ||
123895410Smarcel		    new_object->type == OBJT_SWAP,
123995410Smarcel		    ("vm_page_cache_transfer: object %p's type is incompatible"
124095410Smarcel		    " with cached pages", new_object));
124195410Smarcel	}
124295410Smarcel	mtx_unlock(&vm_page_queue_free_mtx);
124395410Smarcel}
124495410Smarcel
124595410Smarcel/*
124695410Smarcel *	vm_page_alloc:
124795410Smarcel *
124895410Smarcel *	Allocate and return a memory cell associated
124995410Smarcel *	with this VM object/offset pair.
125095410Smarcel *
125195410Smarcel *	The caller must always specify an allocation class.
125295410Smarcel *
125395410Smarcel *	allocation classes:
125495410Smarcel *	VM_ALLOC_NORMAL		normal process request
125595410Smarcel *	VM_ALLOC_SYSTEM		system *really* needs a page
125695410Smarcel *	VM_ALLOC_INTERRUPT	interrupt time request
125795410Smarcel *
125895410Smarcel *	optional allocation flags:
1259 *	VM_ALLOC_ZERO		prefer a zeroed page
1260 *	VM_ALLOC_WIRED		wire the allocated page
1261 *	VM_ALLOC_NOOBJ		page is not associated with a vm object
1262 *	VM_ALLOC_NOBUSY		do not set the page busy
1263 *	VM_ALLOC_IFCACHED	return page only if it is cached
1264 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1265 *				is cached
1266 *
1267 *	This routine may not sleep.
1268 */
1269vm_page_t
1270vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1271{
1272	struct vnode *vp = NULL;
1273	vm_object_t m_object;
1274	vm_page_t m;
1275	int flags, page_req;
1276
1277	if ((req & VM_ALLOC_NOOBJ) == 0) {
1278		KASSERT(object != NULL,
1279		    ("vm_page_alloc: NULL object."));
1280		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1281	}
1282
1283	page_req = req & VM_ALLOC_CLASS_MASK;
1284
1285	/*
1286	 * The pager is allowed to eat deeper into the free page list.
1287	 */
1288	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT))
1289		page_req = VM_ALLOC_SYSTEM;
1290
1291	mtx_lock(&vm_page_queue_free_mtx);
1292	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1293	    (page_req == VM_ALLOC_SYSTEM &&
1294	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1295	    (page_req == VM_ALLOC_INTERRUPT &&
1296	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1297		/*
1298		 * Allocate from the free queue if the number of free pages
1299		 * exceeds the minimum for the request class.
1300		 */
1301		if (object != NULL &&
1302		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1303			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1304				mtx_unlock(&vm_page_queue_free_mtx);
1305				return (NULL);
1306			}
1307			if (vm_phys_unfree_page(m))
1308				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1309#if VM_NRESERVLEVEL > 0
1310			else if (!vm_reserv_reactivate_page(m))
1311#else
1312			else
1313#endif
1314				panic("vm_page_alloc: cache page %p is missing"
1315				    " from the free queue", m);
1316		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1317			mtx_unlock(&vm_page_queue_free_mtx);
1318			return (NULL);
1319#if VM_NRESERVLEVEL > 0
1320		} else if (object == NULL || object->type == OBJT_DEVICE ||
1321		    object->type == OBJT_SG ||
1322		    (object->flags & OBJ_COLORED) == 0 ||
1323		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1324#else
1325		} else {
1326#endif
1327			m = vm_phys_alloc_pages(object != NULL ?
1328			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1329#if VM_NRESERVLEVEL > 0
1330			if (m == NULL && vm_reserv_reclaim_inactive()) {
1331				m = vm_phys_alloc_pages(object != NULL ?
1332				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1333				    0);
1334			}
1335#endif
1336		}
1337	} else {
1338		/*
1339		 * Not allocatable, give up.
1340		 */
1341		mtx_unlock(&vm_page_queue_free_mtx);
1342		atomic_add_int(&vm_pageout_deficit,
1343		    MAX((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1344		pagedaemon_wakeup();
1345		return (NULL);
1346	}
1347
1348	/*
1349	 *  At this point we had better have found a good page.
1350	 */
1351
1352	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1353	KASSERT(m->queue == PQ_NONE,
1354	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1355	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1356	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1357	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1358	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1359	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1360	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1361	    pmap_page_get_memattr(m)));
1362	if ((m->flags & PG_CACHED) != 0) {
1363		KASSERT(m->valid != 0,
1364		    ("vm_page_alloc: cached page %p is invalid", m));
1365		if (m->object == object && m->pindex == pindex)
1366	  		cnt.v_reactivated++;
1367		else
1368			m->valid = 0;
1369		m_object = m->object;
1370		vm_page_cache_remove(m);
1371		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1372			vp = m_object->handle;
1373	} else {
1374		KASSERT(VM_PAGE_IS_FREE(m),
1375		    ("vm_page_alloc: page %p is not free", m));
1376		KASSERT(m->valid == 0,
1377		    ("vm_page_alloc: free page %p is valid", m));
1378		cnt.v_free_count--;
1379	}
1380
1381	/*
1382	 * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
1383	 * must be cleared before the free page queues lock is released.
1384	 */
1385	flags = 0;
1386	if (m->flags & PG_ZERO) {
1387		vm_page_zero_count--;
1388		if (req & VM_ALLOC_ZERO)
1389			flags = PG_ZERO;
1390	}
1391	m->flags = flags;
1392	mtx_unlock(&vm_page_queue_free_mtx);
1393	if (object == NULL || object->type == OBJT_PHYS)
1394		m->oflags = VPO_UNMANAGED;
1395	else
1396		m->oflags = 0;
1397	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) == 0)
1398		m->oflags |= VPO_BUSY;
1399	if (req & VM_ALLOC_WIRED) {
1400		/*
1401		 * The page lock is not required for wiring a page until that
1402		 * page is inserted into the object.
1403		 */
1404		atomic_add_int(&cnt.v_wire_count, 1);
1405		m->wire_count = 1;
1406	}
1407	m->act_count = 0;
1408
1409	if (object != NULL) {
1410		/* Ignore device objects; the pager sets "memattr" for them. */
1411		if (object->memattr != VM_MEMATTR_DEFAULT &&
1412		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1413			pmap_page_set_memattr(m, object->memattr);
1414		vm_page_insert(m, object, pindex);
1415	} else
1416		m->pindex = pindex;
1417
1418	/*
1419	 * The following call to vdrop() must come after the above call
1420	 * to vm_page_insert() in case both affect the same object and
1421	 * vnode.  Otherwise, the affected vnode's hold count could
1422	 * temporarily become zero.
1423	 */
1424	if (vp != NULL)
1425		vdrop(vp);
1426
1427	/*
1428	 * Don't wakeup too often - wakeup the pageout daemon when
1429	 * we would be nearly out of memory.
1430	 */
1431	if (vm_paging_needed())
1432		pagedaemon_wakeup();
1433
1434	return (m);
1435}
1436
1437/*
1438 * Initialize a page that has been freshly dequeued from a freelist.
1439 * The caller has to drop the vnode returned, if it is not NULL.
1440 *
1441 * To be called with vm_page_queue_free_mtx held.
1442 */
1443struct vnode *
1444vm_page_alloc_init(vm_page_t m)
1445{
1446	struct vnode *drop;
1447	vm_object_t m_object;
1448
1449	KASSERT(m->queue == PQ_NONE,
1450	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1451	    m, m->queue));
1452	KASSERT(m->wire_count == 0,
1453	    ("vm_page_alloc_init: page %p is wired", m));
1454	KASSERT(m->hold_count == 0,
1455	    ("vm_page_alloc_init: page %p is held", m));
1456	KASSERT(m->busy == 0,
1457	    ("vm_page_alloc_init: page %p is busy", m));
1458	KASSERT(m->dirty == 0,
1459	    ("vm_page_alloc_init: page %p is dirty", m));
1460	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1461	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1462	    m, pmap_page_get_memattr(m)));
1463	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1464	drop = NULL;
1465	if ((m->flags & PG_CACHED) != 0) {
1466		m->valid = 0;
1467		m_object = m->object;
1468		vm_page_cache_remove(m);
1469		if (m_object->type == OBJT_VNODE &&
1470		    m_object->cache == NULL)
1471			drop = m_object->handle;
1472	} else {
1473		KASSERT(VM_PAGE_IS_FREE(m),
1474		    ("vm_page_alloc_init: page %p is not free", m));
1475		KASSERT(m->valid == 0,
1476		    ("vm_page_alloc_init: free page %p is valid", m));
1477		cnt.v_free_count--;
1478	}
1479	if (m->flags & PG_ZERO)
1480		vm_page_zero_count--;
1481	/* Don't clear the PG_ZERO flag; we'll need it later. */
1482	m->flags &= PG_ZERO;
1483	m->oflags = VPO_UNMANAGED;
1484	/* Unmanaged pages don't use "act_count". */
1485	return (drop);
1486}
1487
1488/*
1489 * 	vm_page_alloc_freelist:
1490 *
1491 *	Allocate a page from the specified freelist.
1492 *	Only the ALLOC_CLASS values in req are honored, other request flags
1493 *	are ignored.
1494 */
1495vm_page_t
1496vm_page_alloc_freelist(int flind, int req)
1497{
1498	struct vnode *drop;
1499	vm_page_t m;
1500	int page_req;
1501
1502	m = NULL;
1503	page_req = req & VM_ALLOC_CLASS_MASK;
1504	mtx_lock(&vm_page_queue_free_mtx);
1505	/*
1506	 * Do not allocate reserved pages unless the req has asked for it.
1507	 */
1508	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1509	    (page_req == VM_ALLOC_SYSTEM &&
1510	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1511	    (page_req == VM_ALLOC_INTERRUPT &&
1512	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1513		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1514	}
1515	if (m == NULL) {
1516		mtx_unlock(&vm_page_queue_free_mtx);
1517		return (NULL);
1518	}
1519	drop = vm_page_alloc_init(m);
1520	mtx_unlock(&vm_page_queue_free_mtx);
1521	if (drop)
1522		vdrop(drop);
1523	return (m);
1524}
1525
1526/*
1527 *	vm_wait:	(also see VM_WAIT macro)
1528 *
1529 *	Block until free pages are available for allocation
1530 *	- Called in various places before memory allocations.
1531 */
1532void
1533vm_wait(void)
1534{
1535
1536	mtx_lock(&vm_page_queue_free_mtx);
1537	if (curproc == pageproc) {
1538		vm_pageout_pages_needed = 1;
1539		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1540		    PDROP | PSWP, "VMWait", 0);
1541	} else {
1542		if (!vm_pages_needed) {
1543			vm_pages_needed = 1;
1544			wakeup(&vm_pages_needed);
1545		}
1546		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1547		    "vmwait", 0);
1548	}
1549}
1550
1551/*
1552 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1553 *
1554 *	Block until free pages are available for allocation
1555 *	- Called only in vm_fault so that processes page faulting
1556 *	  can be easily tracked.
1557 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1558 *	  processes will be able to grab memory first.  Do not change
1559 *	  this balance without careful testing first.
1560 */
1561void
1562vm_waitpfault(void)
1563{
1564
1565	mtx_lock(&vm_page_queue_free_mtx);
1566	if (!vm_pages_needed) {
1567		vm_pages_needed = 1;
1568		wakeup(&vm_pages_needed);
1569	}
1570	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1571	    "pfault", 0);
1572}
1573
1574/*
1575 *	vm_page_requeue:
1576 *
1577 *	Move the given page to the tail of its present page queue.
1578 *
1579 *	The page queues must be locked.
1580 */
1581void
1582vm_page_requeue(vm_page_t m)
1583{
1584	struct vpgqueues *vpq;
1585	int queue;
1586
1587	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1588	queue = m->queue;
1589	KASSERT(queue != PQ_NONE,
1590	    ("vm_page_requeue: page %p is not queued", m));
1591	vpq = &vm_page_queues[queue];
1592	TAILQ_REMOVE(&vpq->pl, m, pageq);
1593	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1594}
1595
1596/*
1597 *	vm_page_queue_remove:
1598 *
1599 *	Remove the given page from the specified queue.
1600 *
1601 *	The page and page queues must be locked.
1602 */
1603static __inline void
1604vm_page_queue_remove(int queue, vm_page_t m)
1605{
1606	struct vpgqueues *pq;
1607
1608	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1609	vm_page_lock_assert(m, MA_OWNED);
1610	pq = &vm_page_queues[queue];
1611	TAILQ_REMOVE(&pq->pl, m, pageq);
1612	(*pq->cnt)--;
1613}
1614
1615/*
1616 *	vm_pageq_remove:
1617 *
1618 *	Remove a page from its queue.
1619 *
1620 *	The given page must be locked.
1621 *	This routine may not block.
1622 */
1623void
1624vm_pageq_remove(vm_page_t m)
1625{
1626	int queue;
1627
1628	vm_page_lock_assert(m, MA_OWNED);
1629	if ((queue = m->queue) != PQ_NONE) {
1630		vm_page_lock_queues();
1631		m->queue = PQ_NONE;
1632		vm_page_queue_remove(queue, m);
1633		vm_page_unlock_queues();
1634	}
1635}
1636
1637/*
1638 *	vm_page_enqueue:
1639 *
1640 *	Add the given page to the specified queue.
1641 *
1642 *	The page queues must be locked.
1643 */
1644static void
1645vm_page_enqueue(int queue, vm_page_t m)
1646{
1647	struct vpgqueues *vpq;
1648
1649	vpq = &vm_page_queues[queue];
1650	m->queue = queue;
1651	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1652	++*vpq->cnt;
1653}
1654
1655/*
1656 *	vm_page_activate:
1657 *
1658 *	Put the specified page on the active list (if appropriate).
1659 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1660 *	mess with it.
1661 *
1662 *	The page must be locked.
1663 *	This routine may not block.
1664 */
1665void
1666vm_page_activate(vm_page_t m)
1667{
1668	int queue;
1669
1670	vm_page_lock_assert(m, MA_OWNED);
1671	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1672	if ((queue = m->queue) != PQ_ACTIVE) {
1673		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
1674			if (m->act_count < ACT_INIT)
1675				m->act_count = ACT_INIT;
1676			vm_page_lock_queues();
1677			if (queue != PQ_NONE)
1678				vm_page_queue_remove(queue, m);
1679			vm_page_enqueue(PQ_ACTIVE, m);
1680			vm_page_unlock_queues();
1681		} else
1682			KASSERT(queue == PQ_NONE,
1683			    ("vm_page_activate: wired page %p is queued", m));
1684	} else {
1685		if (m->act_count < ACT_INIT)
1686			m->act_count = ACT_INIT;
1687	}
1688}
1689
1690/*
1691 *	vm_page_free_wakeup:
1692 *
1693 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1694 *	routine is called when a page has been added to the cache or free
1695 *	queues.
1696 *
1697 *	The page queues must be locked.
1698 *	This routine may not block.
1699 */
1700static inline void
1701vm_page_free_wakeup(void)
1702{
1703
1704	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1705	/*
1706	 * if pageout daemon needs pages, then tell it that there are
1707	 * some free.
1708	 */
1709	if (vm_pageout_pages_needed &&
1710	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1711		wakeup(&vm_pageout_pages_needed);
1712		vm_pageout_pages_needed = 0;
1713	}
1714	/*
1715	 * wakeup processes that are waiting on memory if we hit a
1716	 * high water mark. And wakeup scheduler process if we have
1717	 * lots of memory. this process will swapin processes.
1718	 */
1719	if (vm_pages_needed && !vm_page_count_min()) {
1720		vm_pages_needed = 0;
1721		wakeup(&cnt.v_free_count);
1722	}
1723}
1724
1725/*
1726 *	vm_page_free_toq:
1727 *
1728 *	Returns the given page to the free list,
1729 *	disassociating it with any VM object.
1730 *
1731 *	Object and page must be locked prior to entry.
1732 *	This routine may not block.
1733 */
1734
1735void
1736vm_page_free_toq(vm_page_t m)
1737{
1738
1739	if ((m->oflags & VPO_UNMANAGED) == 0) {
1740		vm_page_lock_assert(m, MA_OWNED);
1741		KASSERT(!pmap_page_is_mapped(m),
1742		    ("vm_page_free_toq: freeing mapped page %p", m));
1743	}
1744	PCPU_INC(cnt.v_tfree);
1745
1746	if (VM_PAGE_IS_FREE(m))
1747		panic("vm_page_free: freeing free page %p", m);
1748	else if (m->busy != 0)
1749		panic("vm_page_free: freeing busy page %p", m);
1750
1751	/*
1752	 * unqueue, then remove page.  Note that we cannot destroy
1753	 * the page here because we do not want to call the pager's
1754	 * callback routine until after we've put the page on the
1755	 * appropriate free queue.
1756	 */
1757	if ((m->oflags & VPO_UNMANAGED) == 0)
1758		vm_pageq_remove(m);
1759	vm_page_remove(m);
1760
1761	/*
1762	 * If fictitious remove object association and
1763	 * return, otherwise delay object association removal.
1764	 */
1765	if ((m->flags & PG_FICTITIOUS) != 0) {
1766		return;
1767	}
1768
1769	m->valid = 0;
1770	vm_page_undirty(m);
1771
1772	if (m->wire_count != 0)
1773		panic("vm_page_free: freeing wired page %p", m);
1774	if (m->hold_count != 0) {
1775		m->flags &= ~PG_ZERO;
1776		vm_page_lock_queues();
1777		vm_page_enqueue(PQ_HOLD, m);
1778		vm_page_unlock_queues();
1779	} else {
1780		/*
1781		 * Restore the default memory attribute to the page.
1782		 */
1783		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1784			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1785
1786		/*
1787		 * Insert the page into the physical memory allocator's
1788		 * cache/free page queues.
1789		 */
1790		mtx_lock(&vm_page_queue_free_mtx);
1791		m->flags |= PG_FREE;
1792		cnt.v_free_count++;
1793#if VM_NRESERVLEVEL > 0
1794		if (!vm_reserv_free_page(m))
1795#else
1796		if (TRUE)
1797#endif
1798			vm_phys_free_pages(m, 0);
1799		if ((m->flags & PG_ZERO) != 0)
1800			++vm_page_zero_count;
1801		else
1802			vm_page_zero_idle_wakeup();
1803		vm_page_free_wakeup();
1804		mtx_unlock(&vm_page_queue_free_mtx);
1805	}
1806}
1807
1808/*
1809 *	vm_page_wire:
1810 *
1811 *	Mark this page as wired down by yet
1812 *	another map, removing it from paging queues
1813 *	as necessary.
1814 *
1815 *	If the page is fictitious, then its wire count must remain one.
1816 *
1817 *	The page must be locked.
1818 *	This routine may not block.
1819 */
1820void
1821vm_page_wire(vm_page_t m)
1822{
1823
1824	/*
1825	 * Only bump the wire statistics if the page is not already wired,
1826	 * and only unqueue the page if it is on some queue (if it is unmanaged
1827	 * it is already off the queues).
1828	 */
1829	vm_page_lock_assert(m, MA_OWNED);
1830	if ((m->flags & PG_FICTITIOUS) != 0) {
1831		KASSERT(m->wire_count == 1,
1832		    ("vm_page_wire: fictitious page %p's wire count isn't one",
1833		    m));
1834		return;
1835	}
1836	if (m->wire_count == 0) {
1837		if ((m->oflags & VPO_UNMANAGED) == 0)
1838			vm_pageq_remove(m);
1839		atomic_add_int(&cnt.v_wire_count, 1);
1840	}
1841	m->wire_count++;
1842	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1843}
1844
1845/*
1846 * vm_page_unwire:
1847 *
1848 * Release one wiring of the specified page, potentially enabling it to be
1849 * paged again.  If paging is enabled, then the value of the parameter
1850 * "activate" determines to which queue the page is added.  If "activate" is
1851 * non-zero, then the page is added to the active queue.  Otherwise, it is
1852 * added to the inactive queue.
1853 *
1854 * However, unless the page belongs to an object, it is not enqueued because
1855 * it cannot be paged out.
1856 *
1857 * If a page is fictitious, then its wire count must alway be one.
1858 *
1859 * A managed page must be locked.
1860 */
1861void
1862vm_page_unwire(vm_page_t m, int activate)
1863{
1864
1865	if ((m->oflags & VPO_UNMANAGED) == 0)
1866		vm_page_lock_assert(m, MA_OWNED);
1867	if ((m->flags & PG_FICTITIOUS) != 0) {
1868		KASSERT(m->wire_count == 1,
1869	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
1870		return;
1871	}
1872	if (m->wire_count > 0) {
1873		m->wire_count--;
1874		if (m->wire_count == 0) {
1875			atomic_subtract_int(&cnt.v_wire_count, 1);
1876			if ((m->oflags & VPO_UNMANAGED) != 0 ||
1877			    m->object == NULL)
1878				return;
1879			vm_page_lock_queues();
1880			if (activate)
1881				vm_page_enqueue(PQ_ACTIVE, m);
1882			else {
1883				vm_page_flag_clear(m, PG_WINATCFLS);
1884				vm_page_enqueue(PQ_INACTIVE, m);
1885			}
1886			vm_page_unlock_queues();
1887		}
1888	} else
1889		panic("vm_page_unwire: page %p's wire count is zero", m);
1890}
1891
1892/*
1893 * Move the specified page to the inactive queue.
1894 *
1895 * Many pages placed on the inactive queue should actually go
1896 * into the cache, but it is difficult to figure out which.  What
1897 * we do instead, if the inactive target is well met, is to put
1898 * clean pages at the head of the inactive queue instead of the tail.
1899 * This will cause them to be moved to the cache more quickly and
1900 * if not actively re-referenced, reclaimed more quickly.  If we just
1901 * stick these pages at the end of the inactive queue, heavy filesystem
1902 * meta-data accesses can cause an unnecessary paging load on memory bound
1903 * processes.  This optimization causes one-time-use metadata to be
1904 * reused more quickly.
1905 *
1906 * Normally athead is 0 resulting in LRU operation.  athead is set
1907 * to 1 if we want this page to be 'as if it were placed in the cache',
1908 * except without unmapping it from the process address space.
1909 *
1910 * This routine may not block.
1911 */
1912static inline void
1913_vm_page_deactivate(vm_page_t m, int athead)
1914{
1915	int queue;
1916
1917	vm_page_lock_assert(m, MA_OWNED);
1918
1919	/*
1920	 * Ignore if already inactive.
1921	 */
1922	if ((queue = m->queue) == PQ_INACTIVE)
1923		return;
1924	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
1925		vm_page_lock_queues();
1926		vm_page_flag_clear(m, PG_WINATCFLS);
1927		if (queue != PQ_NONE)
1928			vm_page_queue_remove(queue, m);
1929		if (athead)
1930			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
1931			    pageq);
1932		else
1933			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
1934			    pageq);
1935		m->queue = PQ_INACTIVE;
1936		cnt.v_inactive_count++;
1937		vm_page_unlock_queues();
1938	}
1939}
1940
1941/*
1942 * Move the specified page to the inactive queue.
1943 *
1944 * The page must be locked.
1945 */
1946void
1947vm_page_deactivate(vm_page_t m)
1948{
1949
1950	_vm_page_deactivate(m, 0);
1951}
1952
1953/*
1954 * vm_page_try_to_cache:
1955 *
1956 * Returns 0 on failure, 1 on success
1957 */
1958int
1959vm_page_try_to_cache(vm_page_t m)
1960{
1961
1962	vm_page_lock_assert(m, MA_OWNED);
1963	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1964	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1965	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
1966		return (0);
1967	pmap_remove_all(m);
1968	if (m->dirty)
1969		return (0);
1970	vm_page_cache(m);
1971	return (1);
1972}
1973
1974/*
1975 * vm_page_try_to_free()
1976 *
1977 *	Attempt to free the page.  If we cannot free it, we do nothing.
1978 *	1 is returned on success, 0 on failure.
1979 */
1980int
1981vm_page_try_to_free(vm_page_t m)
1982{
1983
1984	vm_page_lock_assert(m, MA_OWNED);
1985	if (m->object != NULL)
1986		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1987	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1988	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
1989		return (0);
1990	pmap_remove_all(m);
1991	if (m->dirty)
1992		return (0);
1993	vm_page_free(m);
1994	return (1);
1995}
1996
1997/*
1998 * vm_page_cache
1999 *
2000 * Put the specified page onto the page cache queue (if appropriate).
2001 *
2002 * This routine may not block.
2003 */
2004void
2005vm_page_cache(vm_page_t m)
2006{
2007	vm_object_t object;
2008	vm_page_t root;
2009
2010	vm_page_lock_assert(m, MA_OWNED);
2011	object = m->object;
2012	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2013	if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) || m->busy ||
2014	    m->hold_count || m->wire_count)
2015		panic("vm_page_cache: attempting to cache busy page");
2016	pmap_remove_all(m);
2017	if (m->dirty != 0)
2018		panic("vm_page_cache: page %p is dirty", m);
2019	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2020	    (object->type == OBJT_SWAP &&
2021	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2022		/*
2023		 * Hypothesis: A cache-elgible page belonging to a
2024		 * default object or swap object but without a backing
2025		 * store must be zero filled.
2026		 */
2027		vm_page_free(m);
2028		return;
2029	}
2030	KASSERT((m->flags & PG_CACHED) == 0,
2031	    ("vm_page_cache: page %p is already cached", m));
2032	PCPU_INC(cnt.v_tcached);
2033
2034	/*
2035	 * Remove the page from the paging queues.
2036	 */
2037	vm_pageq_remove(m);
2038
2039	/*
2040	 * Remove the page from the object's collection of resident
2041	 * pages.
2042	 */
2043	if (m != object->root)
2044		vm_page_splay(m->pindex, object->root);
2045	if (m->left == NULL)
2046		root = m->right;
2047	else {
2048		root = vm_page_splay(m->pindex, m->left);
2049		root->right = m->right;
2050	}
2051	object->root = root;
2052	TAILQ_REMOVE(&object->memq, m, listq);
2053	object->resident_page_count--;
2054
2055	/*
2056	 * Restore the default memory attribute to the page.
2057	 */
2058	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2059		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2060
2061	/*
2062	 * Insert the page into the object's collection of cached pages
2063	 * and the physical memory allocator's cache/free page queues.
2064	 */
2065	m->flags &= ~PG_ZERO;
2066	mtx_lock(&vm_page_queue_free_mtx);
2067	m->flags |= PG_CACHED;
2068	cnt.v_cache_count++;
2069	root = object->cache;
2070	if (root == NULL) {
2071		m->left = NULL;
2072		m->right = NULL;
2073	} else {
2074		root = vm_page_splay(m->pindex, root);
2075		if (m->pindex < root->pindex) {
2076			m->left = root->left;
2077			m->right = root;
2078			root->left = NULL;
2079		} else if (__predict_false(m->pindex == root->pindex))
2080			panic("vm_page_cache: offset already cached");
2081		else {
2082			m->right = root->right;
2083			m->left = root;
2084			root->right = NULL;
2085		}
2086	}
2087	object->cache = m;
2088#if VM_NRESERVLEVEL > 0
2089	if (!vm_reserv_free_page(m)) {
2090#else
2091	if (TRUE) {
2092#endif
2093		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2094		vm_phys_free_pages(m, 0);
2095	}
2096	vm_page_free_wakeup();
2097	mtx_unlock(&vm_page_queue_free_mtx);
2098
2099	/*
2100	 * Increment the vnode's hold count if this is the object's only
2101	 * cached page.  Decrement the vnode's hold count if this was
2102	 * the object's only resident page.
2103	 */
2104	if (object->type == OBJT_VNODE) {
2105		if (root == NULL && object->resident_page_count != 0)
2106			vhold(object->handle);
2107		else if (root != NULL && object->resident_page_count == 0)
2108			vdrop(object->handle);
2109	}
2110}
2111
2112/*
2113 * vm_page_dontneed
2114 *
2115 *	Cache, deactivate, or do nothing as appropriate.  This routine
2116 *	is typically used by madvise() MADV_DONTNEED.
2117 *
2118 *	Generally speaking we want to move the page into the cache so
2119 *	it gets reused quickly.  However, this can result in a silly syndrome
2120 *	due to the page recycling too quickly.  Small objects will not be
2121 *	fully cached.  On the otherhand, if we move the page to the inactive
2122 *	queue we wind up with a problem whereby very large objects
2123 *	unnecessarily blow away our inactive and cache queues.
2124 *
2125 *	The solution is to move the pages based on a fixed weighting.  We
2126 *	either leave them alone, deactivate them, or move them to the cache,
2127 *	where moving them to the cache has the highest weighting.
2128 *	By forcing some pages into other queues we eventually force the
2129 *	system to balance the queues, potentially recovering other unrelated
2130 *	space from active.  The idea is to not force this to happen too
2131 *	often.
2132 */
2133void
2134vm_page_dontneed(vm_page_t m)
2135{
2136	int dnw;
2137	int head;
2138
2139	vm_page_lock_assert(m, MA_OWNED);
2140	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2141	dnw = PCPU_GET(dnweight);
2142	PCPU_INC(dnweight);
2143
2144	/*
2145	 * Occasionally leave the page alone.
2146	 */
2147	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2148		if (m->act_count >= ACT_INIT)
2149			--m->act_count;
2150		return;
2151	}
2152
2153	/*
2154	 * Clear any references to the page.  Otherwise, the page daemon will
2155	 * immediately reactivate the page.
2156	 *
2157	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
2158	 * pmap operation, such as pmap_remove(), could clear a reference in
2159	 * the pmap and set PG_REFERENCED on the page before the
2160	 * pmap_clear_reference() had completed.  Consequently, the page would
2161	 * appear referenced based upon an old reference that occurred before
2162	 * this function ran.
2163	 */
2164	pmap_clear_reference(m);
2165	vm_page_lock_queues();
2166	vm_page_flag_clear(m, PG_REFERENCED);
2167	vm_page_unlock_queues();
2168
2169	if (m->dirty == 0 && pmap_is_modified(m))
2170		vm_page_dirty(m);
2171
2172	if (m->dirty || (dnw & 0x0070) == 0) {
2173		/*
2174		 * Deactivate the page 3 times out of 32.
2175		 */
2176		head = 0;
2177	} else {
2178		/*
2179		 * Cache the page 28 times out of every 32.  Note that
2180		 * the page is deactivated instead of cached, but placed
2181		 * at the head of the queue instead of the tail.
2182		 */
2183		head = 1;
2184	}
2185	_vm_page_deactivate(m, head);
2186}
2187
2188/*
2189 * Grab a page, waiting until we are waken up due to the page
2190 * changing state.  We keep on waiting, if the page continues
2191 * to be in the object.  If the page doesn't exist, first allocate it
2192 * and then conditionally zero it.
2193 *
2194 * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
2195 * to facilitate its eventual removal.
2196 *
2197 * This routine may block.
2198 */
2199vm_page_t
2200vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2201{
2202	vm_page_t m;
2203
2204	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2205	KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
2206	    ("vm_page_grab: VM_ALLOC_RETRY is required"));
2207retrylookup:
2208	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2209		if ((m->oflags & VPO_BUSY) != 0 ||
2210		    ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
2211			/*
2212			 * Reference the page before unlocking and
2213			 * sleeping so that the page daemon is less
2214			 * likely to reclaim it.
2215			 */
2216			vm_page_lock_queues();
2217			vm_page_flag_set(m, PG_REFERENCED);
2218			vm_page_sleep(m, "pgrbwt");
2219			goto retrylookup;
2220		} else {
2221			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2222				vm_page_lock(m);
2223				vm_page_wire(m);
2224				vm_page_unlock(m);
2225			}
2226			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2227				vm_page_busy(m);
2228			return (m);
2229		}
2230	}
2231	m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
2232	    VM_ALLOC_IGN_SBUSY));
2233	if (m == NULL) {
2234		VM_OBJECT_UNLOCK(object);
2235		VM_WAIT;
2236		VM_OBJECT_LOCK(object);
2237		goto retrylookup;
2238	} else if (m->valid != 0)
2239		return (m);
2240	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2241		pmap_zero_page(m);
2242	return (m);
2243}
2244
2245/*
2246 * Mapping function for valid bits or for dirty bits in
2247 * a page.  May not block.
2248 *
2249 * Inputs are required to range within a page.
2250 */
2251int
2252vm_page_bits(int base, int size)
2253{
2254	int first_bit;
2255	int last_bit;
2256
2257	KASSERT(
2258	    base + size <= PAGE_SIZE,
2259	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2260	);
2261
2262	if (size == 0)		/* handle degenerate case */
2263		return (0);
2264
2265	first_bit = base >> DEV_BSHIFT;
2266	last_bit = (base + size - 1) >> DEV_BSHIFT;
2267
2268	return ((2 << last_bit) - (1 << first_bit));
2269}
2270
2271/*
2272 *	vm_page_set_valid:
2273 *
2274 *	Sets portions of a page valid.  The arguments are expected
2275 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2276 *	of any partial chunks touched by the range.  The invalid portion of
2277 *	such chunks will be zeroed.
2278 *
2279 *	(base + size) must be less then or equal to PAGE_SIZE.
2280 */
2281void
2282vm_page_set_valid(vm_page_t m, int base, int size)
2283{
2284	int endoff, frag;
2285
2286	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2287	if (size == 0)	/* handle degenerate case */
2288		return;
2289
2290	/*
2291	 * If the base is not DEV_BSIZE aligned and the valid
2292	 * bit is clear, we have to zero out a portion of the
2293	 * first block.
2294	 */
2295	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2296	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2297		pmap_zero_page_area(m, frag, base - frag);
2298
2299	/*
2300	 * If the ending offset is not DEV_BSIZE aligned and the
2301	 * valid bit is clear, we have to zero out a portion of
2302	 * the last block.
2303	 */
2304	endoff = base + size;
2305	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2306	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2307		pmap_zero_page_area(m, endoff,
2308		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2309
2310	/*
2311	 * Assert that no previously invalid block that is now being validated
2312	 * is already dirty.
2313	 */
2314	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2315	    ("vm_page_set_valid: page %p is dirty", m));
2316
2317	/*
2318	 * Set valid bits inclusive of any overlap.
2319	 */
2320	m->valid |= vm_page_bits(base, size);
2321}
2322
2323/*
2324 * Clear the given bits from the specified page's dirty field.
2325 */
2326static __inline void
2327vm_page_clear_dirty_mask(vm_page_t m, int pagebits)
2328{
2329
2330	/*
2331	 * If the object is locked and the page is neither VPO_BUSY nor
2332	 * PG_WRITEABLE, then the page's dirty field cannot possibly be
2333	 * set by a concurrent pmap operation.
2334	 */
2335	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2336	if ((m->oflags & VPO_BUSY) == 0 && (m->flags & PG_WRITEABLE) == 0)
2337		m->dirty &= ~pagebits;
2338	else {
2339#if defined(__amd64__) || defined(__i386__) || defined(__ia64__)
2340		/*
2341		 * On the aforementioned architectures, the page queues lock
2342		 * is not required by the following read-modify-write
2343		 * operation.  The combination of the object's lock and an
2344		 * atomic operation suffice.  Moreover, the pmap layer on
2345		 * these architectures can call vm_page_dirty() without
2346		 * holding the page queues lock.
2347		 */
2348#if PAGE_SIZE == 4096
2349		atomic_clear_char(&m->dirty, pagebits);
2350#elif PAGE_SIZE == 8192
2351		atomic_clear_short(&m->dirty, pagebits);
2352#elif PAGE_SIZE == 16384
2353		atomic_clear_int(&m->dirty, pagebits);
2354#else
2355#error "PAGE_SIZE is not supported."
2356#endif
2357#else
2358		/*
2359		 * Otherwise, the page queues lock is required to ensure that
2360		 * a concurrent pmap operation does not set the page's dirty
2361		 * field during the following read-modify-write operation.
2362		 */
2363		vm_page_lock_queues();
2364		m->dirty &= ~pagebits;
2365		vm_page_unlock_queues();
2366#endif
2367	}
2368}
2369
2370/*
2371 *	vm_page_set_validclean:
2372 *
2373 *	Sets portions of a page valid and clean.  The arguments are expected
2374 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2375 *	of any partial chunks touched by the range.  The invalid portion of
2376 *	such chunks will be zero'd.
2377 *
2378 *	This routine may not block.
2379 *
2380 *	(base + size) must be less then or equal to PAGE_SIZE.
2381 */
2382void
2383vm_page_set_validclean(vm_page_t m, int base, int size)
2384{
2385	u_long oldvalid;
2386	int endoff, frag, pagebits;
2387
2388	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2389	if (size == 0)	/* handle degenerate case */
2390		return;
2391
2392	/*
2393	 * If the base is not DEV_BSIZE aligned and the valid
2394	 * bit is clear, we have to zero out a portion of the
2395	 * first block.
2396	 */
2397	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2398	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2399		pmap_zero_page_area(m, frag, base - frag);
2400
2401	/*
2402	 * If the ending offset is not DEV_BSIZE aligned and the
2403	 * valid bit is clear, we have to zero out a portion of
2404	 * the last block.
2405	 */
2406	endoff = base + size;
2407	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2408	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2409		pmap_zero_page_area(m, endoff,
2410		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2411
2412	/*
2413	 * Set valid, clear dirty bits.  If validating the entire
2414	 * page we can safely clear the pmap modify bit.  We also
2415	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2416	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2417	 * be set again.
2418	 *
2419	 * We set valid bits inclusive of any overlap, but we can only
2420	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2421	 * the range.
2422	 */
2423	oldvalid = m->valid;
2424	pagebits = vm_page_bits(base, size);
2425	m->valid |= pagebits;
2426#if 0	/* NOT YET */
2427	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2428		frag = DEV_BSIZE - frag;
2429		base += frag;
2430		size -= frag;
2431		if (size < 0)
2432			size = 0;
2433	}
2434	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2435#endif
2436	if (base == 0 && size == PAGE_SIZE) {
2437		/*
2438		 * The page can only be modified within the pmap if it is
2439		 * mapped, and it can only be mapped if it was previously
2440		 * fully valid.
2441		 */
2442		if (oldvalid == VM_PAGE_BITS_ALL)
2443			/*
2444			 * Perform the pmap_clear_modify() first.  Otherwise,
2445			 * a concurrent pmap operation, such as
2446			 * pmap_protect(), could clear a modification in the
2447			 * pmap and set the dirty field on the page before
2448			 * pmap_clear_modify() had begun and after the dirty
2449			 * field was cleared here.
2450			 */
2451			pmap_clear_modify(m);
2452		m->dirty = 0;
2453		m->oflags &= ~VPO_NOSYNC;
2454	} else if (oldvalid != VM_PAGE_BITS_ALL)
2455		m->dirty &= ~pagebits;
2456	else
2457		vm_page_clear_dirty_mask(m, pagebits);
2458}
2459
2460void
2461vm_page_clear_dirty(vm_page_t m, int base, int size)
2462{
2463
2464	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2465}
2466
2467/*
2468 *	vm_page_set_invalid:
2469 *
2470 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2471 *	valid and dirty bits for the effected areas are cleared.
2472 *
2473 *	May not block.
2474 */
2475void
2476vm_page_set_invalid(vm_page_t m, int base, int size)
2477{
2478	int bits;
2479
2480	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2481	KASSERT((m->oflags & VPO_BUSY) == 0,
2482	    ("vm_page_set_invalid: page %p is busy", m));
2483	bits = vm_page_bits(base, size);
2484	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2485		pmap_remove_all(m);
2486	KASSERT(!pmap_page_is_mapped(m),
2487	    ("vm_page_set_invalid: page %p is mapped", m));
2488	m->valid &= ~bits;
2489	m->dirty &= ~bits;
2490}
2491
2492/*
2493 * vm_page_zero_invalid()
2494 *
2495 *	The kernel assumes that the invalid portions of a page contain
2496 *	garbage, but such pages can be mapped into memory by user code.
2497 *	When this occurs, we must zero out the non-valid portions of the
2498 *	page so user code sees what it expects.
2499 *
2500 *	Pages are most often semi-valid when the end of a file is mapped
2501 *	into memory and the file's size is not page aligned.
2502 */
2503void
2504vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2505{
2506	int b;
2507	int i;
2508
2509	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2510	/*
2511	 * Scan the valid bits looking for invalid sections that
2512	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2513	 * valid bit may be set ) have already been zerod by
2514	 * vm_page_set_validclean().
2515	 */
2516	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2517		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2518		    (m->valid & (1 << i))
2519		) {
2520			if (i > b) {
2521				pmap_zero_page_area(m,
2522				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2523			}
2524			b = i + 1;
2525		}
2526	}
2527
2528	/*
2529	 * setvalid is TRUE when we can safely set the zero'd areas
2530	 * as being valid.  We can do this if there are no cache consistancy
2531	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2532	 */
2533	if (setvalid)
2534		m->valid = VM_PAGE_BITS_ALL;
2535}
2536
2537/*
2538 *	vm_page_is_valid:
2539 *
2540 *	Is (partial) page valid?  Note that the case where size == 0
2541 *	will return FALSE in the degenerate case where the page is
2542 *	entirely invalid, and TRUE otherwise.
2543 *
2544 *	May not block.
2545 */
2546int
2547vm_page_is_valid(vm_page_t m, int base, int size)
2548{
2549	int bits = vm_page_bits(base, size);
2550
2551	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2552	if (m->valid && ((m->valid & bits) == bits))
2553		return 1;
2554	else
2555		return 0;
2556}
2557
2558/*
2559 * update dirty bits from pmap/mmu.  May not block.
2560 */
2561void
2562vm_page_test_dirty(vm_page_t m)
2563{
2564
2565	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2566	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2567		vm_page_dirty(m);
2568}
2569
2570int so_zerocp_fullpage = 0;
2571
2572/*
2573 *	Replace the given page with a copy.  The copied page assumes
2574 *	the portion of the given page's "wire_count" that is not the
2575 *	responsibility of this copy-on-write mechanism.
2576 *
2577 *	The object containing the given page must have a non-zero
2578 *	paging-in-progress count and be locked.
2579 */
2580void
2581vm_page_cowfault(vm_page_t m)
2582{
2583	vm_page_t mnew;
2584	vm_object_t object;
2585	vm_pindex_t pindex;
2586
2587	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
2588	vm_page_lock_assert(m, MA_OWNED);
2589	object = m->object;
2590	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2591	KASSERT(object->paging_in_progress != 0,
2592	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2593	    object));
2594	pindex = m->pindex;
2595
2596 retry_alloc:
2597	pmap_remove_all(m);
2598	vm_page_remove(m);
2599	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2600	if (mnew == NULL) {
2601		vm_page_insert(m, object, pindex);
2602		vm_page_unlock(m);
2603		VM_OBJECT_UNLOCK(object);
2604		VM_WAIT;
2605		VM_OBJECT_LOCK(object);
2606		if (m == vm_page_lookup(object, pindex)) {
2607			vm_page_lock(m);
2608			goto retry_alloc;
2609		} else {
2610			/*
2611			 * Page disappeared during the wait.
2612			 */
2613			return;
2614		}
2615	}
2616
2617	if (m->cow == 0) {
2618		/*
2619		 * check to see if we raced with an xmit complete when
2620		 * waiting to allocate a page.  If so, put things back
2621		 * the way they were
2622		 */
2623		vm_page_unlock(m);
2624		vm_page_lock(mnew);
2625		vm_page_free(mnew);
2626		vm_page_unlock(mnew);
2627		vm_page_insert(m, object, pindex);
2628	} else { /* clear COW & copy page */
2629		if (!so_zerocp_fullpage)
2630			pmap_copy_page(m, mnew);
2631		mnew->valid = VM_PAGE_BITS_ALL;
2632		vm_page_dirty(mnew);
2633		mnew->wire_count = m->wire_count - m->cow;
2634		m->wire_count = m->cow;
2635		vm_page_unlock(m);
2636	}
2637}
2638
2639void
2640vm_page_cowclear(vm_page_t m)
2641{
2642
2643	vm_page_lock_assert(m, MA_OWNED);
2644	if (m->cow) {
2645		m->cow--;
2646		/*
2647		 * let vm_fault add back write permission  lazily
2648		 */
2649	}
2650	/*
2651	 *  sf_buf_free() will free the page, so we needn't do it here
2652	 */
2653}
2654
2655int
2656vm_page_cowsetup(vm_page_t m)
2657{
2658
2659	vm_page_lock_assert(m, MA_OWNED);
2660	if ((m->flags & PG_FICTITIOUS) != 0 ||
2661	    (m->oflags & VPO_UNMANAGED) != 0 ||
2662	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
2663		return (EBUSY);
2664	m->cow++;
2665	pmap_remove_write(m);
2666	VM_OBJECT_UNLOCK(m->object);
2667	return (0);
2668}
2669
2670#ifdef INVARIANTS
2671void
2672vm_page_object_lock_assert(vm_page_t m)
2673{
2674
2675	/*
2676	 * Certain of the page's fields may only be modified by the
2677	 * holder of the containing object's lock or the setter of the
2678	 * page's VPO_BUSY flag.  Unfortunately, the setter of the
2679	 * VPO_BUSY flag is not recorded, and thus cannot be checked
2680	 * here.
2681	 */
2682	if (m->object != NULL && (m->oflags & VPO_BUSY) == 0)
2683		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2684}
2685#endif
2686
2687#include "opt_ddb.h"
2688#ifdef DDB
2689#include <sys/kernel.h>
2690
2691#include <ddb/ddb.h>
2692
2693DB_SHOW_COMMAND(page, vm_page_print_page_info)
2694{
2695	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2696	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2697	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2698	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2699	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2700	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2701	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2702	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2703	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2704	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2705}
2706
2707DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2708{
2709
2710	db_printf("PQ_FREE:");
2711	db_printf(" %d", cnt.v_free_count);
2712	db_printf("\n");
2713
2714	db_printf("PQ_CACHE:");
2715	db_printf(" %d", cnt.v_cache_count);
2716	db_printf("\n");
2717
2718	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2719		*vm_page_queues[PQ_ACTIVE].cnt,
2720		*vm_page_queues[PQ_INACTIVE].cnt);
2721}
2722#endif /* DDB */
2723