vm_page.c revision 217477
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- a pageq mutex is required when adding or removing a page from a
67 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68 *	  busy state of a page.
69 *
70 *	- a hash chain mutex is required when associating or disassociating
71 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
72 *	  regardless of other mutexes or the busy state of a page.
73 *
74 *	- either a hash chain mutex OR a busied page is required in order
75 *	  to modify the page flags.  A hash chain mutex must be obtained in
76 *	  order to busy a page.  A page's flags cannot be modified by a
77 *	  hash chain mutex if the page is marked busy.
78 *
79 *	- The object memq mutex is held when inserting or removing
80 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
81 *	  is different from the object's main mutex.
82 *
83 *	Generally speaking, you have to be aware of side effects when running
84 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
85 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
86 *	vm_page_cache(), vm_page_activate(), and a number of other routines
87 *	will release the hash chain mutex for you.  Intermediate manipulation
88 *	routines such as vm_page_flag_set() expect the hash chain to be held
89 *	on entry and the hash chain will remain held on return.
90 *
91 *	pageq scanning can only occur with the pageq in question locked.
92 *	We have a known bottleneck with the active queue, but the cache
93 *	and free queues are actually arrays already.
94 */
95
96/*
97 *	Resident memory management module.
98 */
99
100#include <sys/cdefs.h>
101__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 217477 2011-01-16 17:33:34Z alc $");
102
103#include "opt_msgbuf.h"
104#include "opt_vm.h"
105
106#include <sys/param.h>
107#include <sys/systm.h>
108#include <sys/lock.h>
109#include <sys/kernel.h>
110#include <sys/limits.h>
111#include <sys/malloc.h>
112#include <sys/msgbuf.h>
113#include <sys/mutex.h>
114#include <sys/proc.h>
115#include <sys/sysctl.h>
116#include <sys/vmmeter.h>
117#include <sys/vnode.h>
118
119#include <vm/vm.h>
120#include <vm/pmap.h>
121#include <vm/vm_param.h>
122#include <vm/vm_kern.h>
123#include <vm/vm_object.h>
124#include <vm/vm_page.h>
125#include <vm/vm_pageout.h>
126#include <vm/vm_pager.h>
127#include <vm/vm_phys.h>
128#include <vm/vm_reserv.h>
129#include <vm/vm_extern.h>
130#include <vm/uma.h>
131#include <vm/uma_int.h>
132
133#include <machine/md_var.h>
134
135/*
136 *	Associated with page of user-allocatable memory is a
137 *	page structure.
138 */
139
140struct vpgqueues vm_page_queues[PQ_COUNT];
141struct vpglocks vm_page_queue_lock;
142struct vpglocks vm_page_queue_free_lock;
143
144struct vpglocks	pa_lock[PA_LOCK_COUNT];
145
146vm_page_t vm_page_array = 0;
147int vm_page_array_size = 0;
148long first_page = 0;
149int vm_page_zero_count = 0;
150
151static int boot_pages = UMA_BOOT_PAGES;
152TUNABLE_INT("vm.boot_pages", &boot_pages);
153SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
154	"number of pages allocated for bootstrapping the VM system");
155
156static int pa_tryrelock_race;
157SYSCTL_INT(_vm, OID_AUTO, tryrelock_race, CTLFLAG_RD,
158    &pa_tryrelock_race, 0, "Number of tryrelock race cases");
159
160static int pa_tryrelock_restart;
161SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
162    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
163
164static void vm_page_clear_dirty_mask(vm_page_t m, int pagebits);
165static void vm_page_queue_remove(int queue, vm_page_t m);
166static void vm_page_enqueue(int queue, vm_page_t m);
167
168/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
169#if PAGE_SIZE == 32768
170#ifdef CTASSERT
171CTASSERT(sizeof(u_long) >= 8);
172#endif
173#endif
174
175/*
176 * Try to acquire a physical address lock while a pmap is locked.  If we
177 * fail to trylock we unlock and lock the pmap directly and cache the
178 * locked pa in *locked.  The caller should then restart their loop in case
179 * the virtual to physical mapping has changed.
180 */
181int
182vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
183{
184	vm_paddr_t lockpa;
185	uint32_t gen_count;
186
187	gen_count = pmap->pm_gen_count;
188	lockpa = *locked;
189	*locked = pa;
190	if (lockpa) {
191		PA_LOCK_ASSERT(lockpa, MA_OWNED);
192		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
193			return (0);
194		PA_UNLOCK(lockpa);
195	}
196	if (PA_TRYLOCK(pa))
197		return (0);
198	PMAP_UNLOCK(pmap);
199	atomic_add_int(&pa_tryrelock_restart, 1);
200	PA_LOCK(pa);
201	PMAP_LOCK(pmap);
202
203	if (pmap->pm_gen_count != gen_count + 1) {
204		pmap->pm_retries++;
205		atomic_add_int(&pa_tryrelock_race, 1);
206		return (EAGAIN);
207	}
208	return (0);
209}
210
211/*
212 *	vm_set_page_size:
213 *
214 *	Sets the page size, perhaps based upon the memory
215 *	size.  Must be called before any use of page-size
216 *	dependent functions.
217 */
218void
219vm_set_page_size(void)
220{
221	if (cnt.v_page_size == 0)
222		cnt.v_page_size = PAGE_SIZE;
223	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
224		panic("vm_set_page_size: page size not a power of two");
225}
226
227/*
228 *	vm_page_blacklist_lookup:
229 *
230 *	See if a physical address in this page has been listed
231 *	in the blacklist tunable.  Entries in the tunable are
232 *	separated by spaces or commas.  If an invalid integer is
233 *	encountered then the rest of the string is skipped.
234 */
235static int
236vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
237{
238	vm_paddr_t bad;
239	char *cp, *pos;
240
241	for (pos = list; *pos != '\0'; pos = cp) {
242		bad = strtoq(pos, &cp, 0);
243		if (*cp != '\0') {
244			if (*cp == ' ' || *cp == ',') {
245				cp++;
246				if (cp == pos)
247					continue;
248			} else
249				break;
250		}
251		if (pa == trunc_page(bad))
252			return (1);
253	}
254	return (0);
255}
256
257/*
258 *	vm_page_startup:
259 *
260 *	Initializes the resident memory module.
261 *
262 *	Allocates memory for the page cells, and
263 *	for the object/offset-to-page hash table headers.
264 *	Each page cell is initialized and placed on the free list.
265 */
266vm_offset_t
267vm_page_startup(vm_offset_t vaddr)
268{
269	vm_offset_t mapped;
270	vm_paddr_t page_range;
271	vm_paddr_t new_end;
272	int i;
273	vm_paddr_t pa;
274	vm_paddr_t last_pa;
275	char *list;
276
277	/* the biggest memory array is the second group of pages */
278	vm_paddr_t end;
279	vm_paddr_t biggestsize;
280	vm_paddr_t low_water, high_water;
281	int biggestone;
282
283	biggestsize = 0;
284	biggestone = 0;
285	vaddr = round_page(vaddr);
286
287	for (i = 0; phys_avail[i + 1]; i += 2) {
288		phys_avail[i] = round_page(phys_avail[i]);
289		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
290	}
291
292	low_water = phys_avail[0];
293	high_water = phys_avail[1];
294
295	for (i = 0; phys_avail[i + 1]; i += 2) {
296		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
297
298		if (size > biggestsize) {
299			biggestone = i;
300			biggestsize = size;
301		}
302		if (phys_avail[i] < low_water)
303			low_water = phys_avail[i];
304		if (phys_avail[i + 1] > high_water)
305			high_water = phys_avail[i + 1];
306	}
307
308#ifdef XEN
309	low_water = 0;
310#endif
311
312	end = phys_avail[biggestone+1];
313
314	/*
315	 * Initialize the locks.
316	 */
317	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
318	    MTX_RECURSE);
319	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
320	    MTX_DEF);
321
322	/* Setup page locks. */
323	for (i = 0; i < PA_LOCK_COUNT; i++)
324		mtx_init(&pa_lock[i].data, "page lock", NULL, MTX_DEF);
325
326	/*
327	 * Initialize the queue headers for the hold queue, the active queue,
328	 * and the inactive queue.
329	 */
330	for (i = 0; i < PQ_COUNT; i++)
331		TAILQ_INIT(&vm_page_queues[i].pl);
332	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
333	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
334	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
335
336	/*
337	 * Allocate memory for use when boot strapping the kernel memory
338	 * allocator.
339	 */
340	new_end = end - (boot_pages * UMA_SLAB_SIZE);
341	new_end = trunc_page(new_end);
342	mapped = pmap_map(&vaddr, new_end, end,
343	    VM_PROT_READ | VM_PROT_WRITE);
344	bzero((void *)mapped, end - new_end);
345	uma_startup((void *)mapped, boot_pages);
346
347#if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
348    defined(__mips__)
349	/*
350	 * Allocate a bitmap to indicate that a random physical page
351	 * needs to be included in a minidump.
352	 *
353	 * The amd64 port needs this to indicate which direct map pages
354	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
355	 *
356	 * However, i386 still needs this workspace internally within the
357	 * minidump code.  In theory, they are not needed on i386, but are
358	 * included should the sf_buf code decide to use them.
359	 */
360	last_pa = 0;
361	for (i = 0; dump_avail[i + 1] != 0; i += 2)
362		if (dump_avail[i + 1] > last_pa)
363			last_pa = dump_avail[i + 1];
364	page_range = last_pa / PAGE_SIZE;
365	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
366	new_end -= vm_page_dump_size;
367	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
368	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
369	bzero((void *)vm_page_dump, vm_page_dump_size);
370#endif
371#ifdef __amd64__
372	/*
373	 * Request that the physical pages underlying the message buffer be
374	 * included in a crash dump.  Since the message buffer is accessed
375	 * through the direct map, they are not automatically included.
376	 */
377	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
378	last_pa = pa + round_page(MSGBUF_SIZE);
379	while (pa < last_pa) {
380		dump_add_page(pa);
381		pa += PAGE_SIZE;
382	}
383#endif
384	/*
385	 * Compute the number of pages of memory that will be available for
386	 * use (taking into account the overhead of a page structure per
387	 * page).
388	 */
389	first_page = low_water / PAGE_SIZE;
390#ifdef VM_PHYSSEG_SPARSE
391	page_range = 0;
392	for (i = 0; phys_avail[i + 1] != 0; i += 2)
393		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
394#elif defined(VM_PHYSSEG_DENSE)
395	page_range = high_water / PAGE_SIZE - first_page;
396#else
397#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
398#endif
399	end = new_end;
400
401	/*
402	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
403	 */
404	vaddr += PAGE_SIZE;
405
406	/*
407	 * Initialize the mem entry structures now, and put them in the free
408	 * queue.
409	 */
410	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
411	mapped = pmap_map(&vaddr, new_end, end,
412	    VM_PROT_READ | VM_PROT_WRITE);
413	vm_page_array = (vm_page_t) mapped;
414#if VM_NRESERVLEVEL > 0
415	/*
416	 * Allocate memory for the reservation management system's data
417	 * structures.
418	 */
419	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
420#endif
421#if defined(__amd64__) || defined(__mips__)
422	/*
423	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
424	 * like i386, so the pages must be tracked for a crashdump to include
425	 * this data.  This includes the vm_page_array and the early UMA
426	 * bootstrap pages.
427	 */
428	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
429		dump_add_page(pa);
430#endif
431	phys_avail[biggestone + 1] = new_end;
432
433	/*
434	 * Clear all of the page structures
435	 */
436	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
437	for (i = 0; i < page_range; i++)
438		vm_page_array[i].order = VM_NFREEORDER;
439	vm_page_array_size = page_range;
440
441	/*
442	 * Initialize the physical memory allocator.
443	 */
444	vm_phys_init();
445
446	/*
447	 * Add every available physical page that is not blacklisted to
448	 * the free lists.
449	 */
450	cnt.v_page_count = 0;
451	cnt.v_free_count = 0;
452	list = getenv("vm.blacklist");
453	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
454		pa = phys_avail[i];
455		last_pa = phys_avail[i + 1];
456		while (pa < last_pa) {
457			if (list != NULL &&
458			    vm_page_blacklist_lookup(list, pa))
459				printf("Skipping page with pa 0x%jx\n",
460				    (uintmax_t)pa);
461			else
462				vm_phys_add_page(pa);
463			pa += PAGE_SIZE;
464		}
465	}
466	freeenv(list);
467#if VM_NRESERVLEVEL > 0
468	/*
469	 * Initialize the reservation management system.
470	 */
471	vm_reserv_init();
472#endif
473	return (vaddr);
474}
475
476void
477vm_page_flag_set(vm_page_t m, unsigned short bits)
478{
479
480	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
481	/*
482	 * The PG_WRITEABLE flag can only be set if the page is managed and
483	 * VPO_BUSY.  Currently, this flag is only set by pmap_enter().
484	 */
485	KASSERT((bits & PG_WRITEABLE) == 0 ||
486	    ((m->flags & (PG_UNMANAGED | PG_FICTITIOUS)) == 0 &&
487	    (m->oflags & VPO_BUSY) != 0), ("PG_WRITEABLE and !VPO_BUSY"));
488	m->flags |= bits;
489}
490
491void
492vm_page_flag_clear(vm_page_t m, unsigned short bits)
493{
494
495	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
496	/*
497	 * The PG_REFERENCED flag can only be cleared if the object
498	 * containing the page is locked.
499	 */
500	KASSERT((bits & PG_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object),
501	    ("PG_REFERENCED and !VM_OBJECT_LOCKED"));
502	m->flags &= ~bits;
503}
504
505void
506vm_page_busy(vm_page_t m)
507{
508
509	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
510	KASSERT((m->oflags & VPO_BUSY) == 0,
511	    ("vm_page_busy: page already busy!!!"));
512	m->oflags |= VPO_BUSY;
513}
514
515/*
516 *      vm_page_flash:
517 *
518 *      wakeup anyone waiting for the page.
519 */
520void
521vm_page_flash(vm_page_t m)
522{
523
524	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
525	if (m->oflags & VPO_WANTED) {
526		m->oflags &= ~VPO_WANTED;
527		wakeup(m);
528	}
529}
530
531/*
532 *      vm_page_wakeup:
533 *
534 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
535 *      page.
536 *
537 */
538void
539vm_page_wakeup(vm_page_t m)
540{
541
542	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
543	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
544	m->oflags &= ~VPO_BUSY;
545	vm_page_flash(m);
546}
547
548void
549vm_page_io_start(vm_page_t m)
550{
551
552	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
553	m->busy++;
554}
555
556void
557vm_page_io_finish(vm_page_t m)
558{
559
560	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
561	m->busy--;
562	if (m->busy == 0)
563		vm_page_flash(m);
564}
565
566/*
567 * Keep page from being freed by the page daemon
568 * much of the same effect as wiring, except much lower
569 * overhead and should be used only for *very* temporary
570 * holding ("wiring").
571 */
572void
573vm_page_hold(vm_page_t mem)
574{
575
576	vm_page_lock_assert(mem, MA_OWNED);
577        mem->hold_count++;
578}
579
580void
581vm_page_unhold(vm_page_t mem)
582{
583
584	vm_page_lock_assert(mem, MA_OWNED);
585	--mem->hold_count;
586	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
587	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
588		vm_page_free_toq(mem);
589}
590
591/*
592 *	vm_page_unhold_pages:
593 *
594 *	Unhold each of the pages that is referenced by the given array.
595 */
596void
597vm_page_unhold_pages(vm_page_t *ma, int count)
598{
599	struct mtx *mtx, *new_mtx;
600
601	mtx = NULL;
602	for (; count != 0; count--) {
603		/*
604		 * Avoid releasing and reacquiring the same page lock.
605		 */
606		new_mtx = vm_page_lockptr(*ma);
607		if (mtx != new_mtx) {
608			if (mtx != NULL)
609				mtx_unlock(mtx);
610			mtx = new_mtx;
611			mtx_lock(mtx);
612		}
613		vm_page_unhold(*ma);
614		ma++;
615	}
616	if (mtx != NULL)
617		mtx_unlock(mtx);
618}
619
620/*
621 *	vm_page_free:
622 *
623 *	Free a page.
624 */
625void
626vm_page_free(vm_page_t m)
627{
628
629	m->flags &= ~PG_ZERO;
630	vm_page_free_toq(m);
631}
632
633/*
634 *	vm_page_free_zero:
635 *
636 *	Free a page to the zerod-pages queue
637 */
638void
639vm_page_free_zero(vm_page_t m)
640{
641
642	m->flags |= PG_ZERO;
643	vm_page_free_toq(m);
644}
645
646/*
647 *	vm_page_sleep:
648 *
649 *	Sleep and release the page and page queues locks.
650 *
651 *	The object containing the given page must be locked.
652 */
653void
654vm_page_sleep(vm_page_t m, const char *msg)
655{
656
657	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
658	if (mtx_owned(&vm_page_queue_mtx))
659		vm_page_unlock_queues();
660	if (mtx_owned(vm_page_lockptr(m)))
661		vm_page_unlock(m);
662
663	/*
664	 * It's possible that while we sleep, the page will get
665	 * unbusied and freed.  If we are holding the object
666	 * lock, we will assume we hold a reference to the object
667	 * such that even if m->object changes, we can re-lock
668	 * it.
669	 */
670	m->oflags |= VPO_WANTED;
671	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
672}
673
674/*
675 *	vm_page_dirty:
676 *
677 *	make page all dirty
678 */
679void
680vm_page_dirty(vm_page_t m)
681{
682
683	KASSERT((m->flags & PG_CACHED) == 0,
684	    ("vm_page_dirty: page in cache!"));
685	KASSERT(!VM_PAGE_IS_FREE(m),
686	    ("vm_page_dirty: page is free!"));
687	KASSERT(m->valid == VM_PAGE_BITS_ALL,
688	    ("vm_page_dirty: page is invalid!"));
689	m->dirty = VM_PAGE_BITS_ALL;
690}
691
692/*
693 *	vm_page_splay:
694 *
695 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
696 *	the vm_page containing the given pindex.  If, however, that
697 *	pindex is not found in the vm_object, returns a vm_page that is
698 *	adjacent to the pindex, coming before or after it.
699 */
700vm_page_t
701vm_page_splay(vm_pindex_t pindex, vm_page_t root)
702{
703	struct vm_page dummy;
704	vm_page_t lefttreemax, righttreemin, y;
705
706	if (root == NULL)
707		return (root);
708	lefttreemax = righttreemin = &dummy;
709	for (;; root = y) {
710		if (pindex < root->pindex) {
711			if ((y = root->left) == NULL)
712				break;
713			if (pindex < y->pindex) {
714				/* Rotate right. */
715				root->left = y->right;
716				y->right = root;
717				root = y;
718				if ((y = root->left) == NULL)
719					break;
720			}
721			/* Link into the new root's right tree. */
722			righttreemin->left = root;
723			righttreemin = root;
724		} else if (pindex > root->pindex) {
725			if ((y = root->right) == NULL)
726				break;
727			if (pindex > y->pindex) {
728				/* Rotate left. */
729				root->right = y->left;
730				y->left = root;
731				root = y;
732				if ((y = root->right) == NULL)
733					break;
734			}
735			/* Link into the new root's left tree. */
736			lefttreemax->right = root;
737			lefttreemax = root;
738		} else
739			break;
740	}
741	/* Assemble the new root. */
742	lefttreemax->right = root->left;
743	righttreemin->left = root->right;
744	root->left = dummy.right;
745	root->right = dummy.left;
746	return (root);
747}
748
749/*
750 *	vm_page_insert:		[ internal use only ]
751 *
752 *	Inserts the given mem entry into the object and object list.
753 *
754 *	The pagetables are not updated but will presumably fault the page
755 *	in if necessary, or if a kernel page the caller will at some point
756 *	enter the page into the kernel's pmap.  We are not allowed to block
757 *	here so we *can't* do this anyway.
758 *
759 *	The object and page must be locked.
760 *	This routine may not block.
761 */
762void
763vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
764{
765	vm_page_t root;
766
767	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
768	if (m->object != NULL)
769		panic("vm_page_insert: page already inserted");
770
771	/*
772	 * Record the object/offset pair in this page
773	 */
774	m->object = object;
775	m->pindex = pindex;
776
777	/*
778	 * Now link into the object's ordered list of backed pages.
779	 */
780	root = object->root;
781	if (root == NULL) {
782		m->left = NULL;
783		m->right = NULL;
784		TAILQ_INSERT_TAIL(&object->memq, m, listq);
785	} else {
786		root = vm_page_splay(pindex, root);
787		if (pindex < root->pindex) {
788			m->left = root->left;
789			m->right = root;
790			root->left = NULL;
791			TAILQ_INSERT_BEFORE(root, m, listq);
792		} else if (pindex == root->pindex)
793			panic("vm_page_insert: offset already allocated");
794		else {
795			m->right = root->right;
796			m->left = root;
797			root->right = NULL;
798			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
799		}
800	}
801	object->root = m;
802
803	/*
804	 * show that the object has one more resident page.
805	 */
806	object->resident_page_count++;
807	/*
808	 * Hold the vnode until the last page is released.
809	 */
810	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
811		vhold((struct vnode *)object->handle);
812
813	/*
814	 * Since we are inserting a new and possibly dirty page,
815	 * update the object's OBJ_MIGHTBEDIRTY flag.
816	 */
817	if (m->flags & PG_WRITEABLE)
818		vm_object_set_writeable_dirty(object);
819}
820
821/*
822 *	vm_page_remove:
823 *				NOTE: used by device pager as well -wfj
824 *
825 *	Removes the given mem entry from the object/offset-page
826 *	table and the object page list, but do not invalidate/terminate
827 *	the backing store.
828 *
829 *	The object and page must be locked.
830 *	The underlying pmap entry (if any) is NOT removed here.
831 *	This routine may not block.
832 */
833void
834vm_page_remove(vm_page_t m)
835{
836	vm_object_t object;
837	vm_page_t root;
838
839	if ((m->flags & PG_UNMANAGED) == 0)
840		vm_page_lock_assert(m, MA_OWNED);
841	if ((object = m->object) == NULL)
842		return;
843	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
844	if (m->oflags & VPO_BUSY) {
845		m->oflags &= ~VPO_BUSY;
846		vm_page_flash(m);
847	}
848
849	/*
850	 * Now remove from the object's list of backed pages.
851	 */
852	if (m != object->root)
853		vm_page_splay(m->pindex, object->root);
854	if (m->left == NULL)
855		root = m->right;
856	else {
857		root = vm_page_splay(m->pindex, m->left);
858		root->right = m->right;
859	}
860	object->root = root;
861	TAILQ_REMOVE(&object->memq, m, listq);
862
863	/*
864	 * And show that the object has one fewer resident page.
865	 */
866	object->resident_page_count--;
867	/*
868	 * The vnode may now be recycled.
869	 */
870	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
871		vdrop((struct vnode *)object->handle);
872
873	m->object = NULL;
874}
875
876/*
877 *	vm_page_lookup:
878 *
879 *	Returns the page associated with the object/offset
880 *	pair specified; if none is found, NULL is returned.
881 *
882 *	The object must be locked.
883 *	This routine may not block.
884 *	This is a critical path routine
885 */
886vm_page_t
887vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
888{
889	vm_page_t m;
890
891	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
892	if ((m = object->root) != NULL && m->pindex != pindex) {
893		m = vm_page_splay(pindex, m);
894		if ((object->root = m)->pindex != pindex)
895			m = NULL;
896	}
897	return (m);
898}
899
900/*
901 *	vm_page_find_least:
902 *
903 *	Returns the page associated with the object with least pindex
904 *	greater than or equal to the parameter pindex, or NULL.
905 *
906 *	The object must be locked.
907 *	The routine may not block.
908 */
909vm_page_t
910vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
911{
912	vm_page_t m;
913
914	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
915	if ((m = TAILQ_FIRST(&object->memq)) != NULL) {
916		if (m->pindex < pindex) {
917			m = vm_page_splay(pindex, object->root);
918			if ((object->root = m)->pindex < pindex)
919				m = TAILQ_NEXT(m, listq);
920		}
921	}
922	return (m);
923}
924
925/*
926 * Returns the given page's successor (by pindex) within the object if it is
927 * resident; if none is found, NULL is returned.
928 *
929 * The object must be locked.
930 */
931vm_page_t
932vm_page_next(vm_page_t m)
933{
934	vm_page_t next;
935
936	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
937	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
938	    next->pindex != m->pindex + 1)
939		next = NULL;
940	return (next);
941}
942
943/*
944 * Returns the given page's predecessor (by pindex) within the object if it is
945 * resident; if none is found, NULL is returned.
946 *
947 * The object must be locked.
948 */
949vm_page_t
950vm_page_prev(vm_page_t m)
951{
952	vm_page_t prev;
953
954	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
955	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
956	    prev->pindex != m->pindex - 1)
957		prev = NULL;
958	return (prev);
959}
960
961/*
962 *	vm_page_rename:
963 *
964 *	Move the given memory entry from its
965 *	current object to the specified target object/offset.
966 *
967 *	The object must be locked.
968 *	This routine may not block.
969 *
970 *	Note: swap associated with the page must be invalidated by the move.  We
971 *	      have to do this for several reasons:  (1) we aren't freeing the
972 *	      page, (2) we are dirtying the page, (3) the VM system is probably
973 *	      moving the page from object A to B, and will then later move
974 *	      the backing store from A to B and we can't have a conflict.
975 *
976 *	Note: we *always* dirty the page.  It is necessary both for the
977 *	      fact that we moved it, and because we may be invalidating
978 *	      swap.  If the page is on the cache, we have to deactivate it
979 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
980 *	      on the cache.
981 */
982void
983vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
984{
985
986	vm_page_remove(m);
987	vm_page_insert(m, new_object, new_pindex);
988	vm_page_dirty(m);
989}
990
991/*
992 *	Convert all of the given object's cached pages that have a
993 *	pindex within the given range into free pages.  If the value
994 *	zero is given for "end", then the range's upper bound is
995 *	infinity.  If the given object is backed by a vnode and it
996 *	transitions from having one or more cached pages to none, the
997 *	vnode's hold count is reduced.
998 */
999void
1000vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1001{
1002	vm_page_t m, m_next;
1003	boolean_t empty;
1004
1005	mtx_lock(&vm_page_queue_free_mtx);
1006	if (__predict_false(object->cache == NULL)) {
1007		mtx_unlock(&vm_page_queue_free_mtx);
1008		return;
1009	}
1010	m = object->cache = vm_page_splay(start, object->cache);
1011	if (m->pindex < start) {
1012		if (m->right == NULL)
1013			m = NULL;
1014		else {
1015			m_next = vm_page_splay(start, m->right);
1016			m_next->left = m;
1017			m->right = NULL;
1018			m = object->cache = m_next;
1019		}
1020	}
1021
1022	/*
1023	 * At this point, "m" is either (1) a reference to the page
1024	 * with the least pindex that is greater than or equal to
1025	 * "start" or (2) NULL.
1026	 */
1027	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
1028		/*
1029		 * Find "m"'s successor and remove "m" from the
1030		 * object's cache.
1031		 */
1032		if (m->right == NULL) {
1033			object->cache = m->left;
1034			m_next = NULL;
1035		} else {
1036			m_next = vm_page_splay(start, m->right);
1037			m_next->left = m->left;
1038			object->cache = m_next;
1039		}
1040		/* Convert "m" to a free page. */
1041		m->object = NULL;
1042		m->valid = 0;
1043		/* Clear PG_CACHED and set PG_FREE. */
1044		m->flags ^= PG_CACHED | PG_FREE;
1045		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
1046		    ("vm_page_cache_free: page %p has inconsistent flags", m));
1047		cnt.v_cache_count--;
1048		cnt.v_free_count++;
1049	}
1050	empty = object->cache == NULL;
1051	mtx_unlock(&vm_page_queue_free_mtx);
1052	if (object->type == OBJT_VNODE && empty)
1053		vdrop(object->handle);
1054}
1055
1056/*
1057 *	Returns the cached page that is associated with the given
1058 *	object and offset.  If, however, none exists, returns NULL.
1059 *
1060 *	The free page queue must be locked.
1061 */
1062static inline vm_page_t
1063vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1064{
1065	vm_page_t m;
1066
1067	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1068	if ((m = object->cache) != NULL && m->pindex != pindex) {
1069		m = vm_page_splay(pindex, m);
1070		if ((object->cache = m)->pindex != pindex)
1071			m = NULL;
1072	}
1073	return (m);
1074}
1075
1076/*
1077 *	Remove the given cached page from its containing object's
1078 *	collection of cached pages.
1079 *
1080 *	The free page queue must be locked.
1081 */
1082void
1083vm_page_cache_remove(vm_page_t m)
1084{
1085	vm_object_t object;
1086	vm_page_t root;
1087
1088	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1089	KASSERT((m->flags & PG_CACHED) != 0,
1090	    ("vm_page_cache_remove: page %p is not cached", m));
1091	object = m->object;
1092	if (m != object->cache) {
1093		root = vm_page_splay(m->pindex, object->cache);
1094		KASSERT(root == m,
1095		    ("vm_page_cache_remove: page %p is not cached in object %p",
1096		    m, object));
1097	}
1098	if (m->left == NULL)
1099		root = m->right;
1100	else if (m->right == NULL)
1101		root = m->left;
1102	else {
1103		root = vm_page_splay(m->pindex, m->left);
1104		root->right = m->right;
1105	}
1106	object->cache = root;
1107	m->object = NULL;
1108	cnt.v_cache_count--;
1109}
1110
1111/*
1112 *	Transfer all of the cached pages with offset greater than or
1113 *	equal to 'offidxstart' from the original object's cache to the
1114 *	new object's cache.  However, any cached pages with offset
1115 *	greater than or equal to the new object's size are kept in the
1116 *	original object.  Initially, the new object's cache must be
1117 *	empty.  Offset 'offidxstart' in the original object must
1118 *	correspond to offset zero in the new object.
1119 *
1120 *	The new object must be locked.
1121 */
1122void
1123vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1124    vm_object_t new_object)
1125{
1126	vm_page_t m, m_next;
1127
1128	/*
1129	 * Insertion into an object's collection of cached pages
1130	 * requires the object to be locked.  In contrast, removal does
1131	 * not.
1132	 */
1133	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
1134	KASSERT(new_object->cache == NULL,
1135	    ("vm_page_cache_transfer: object %p has cached pages",
1136	    new_object));
1137	mtx_lock(&vm_page_queue_free_mtx);
1138	if ((m = orig_object->cache) != NULL) {
1139		/*
1140		 * Transfer all of the pages with offset greater than or
1141		 * equal to 'offidxstart' from the original object's
1142		 * cache to the new object's cache.
1143		 */
1144		m = vm_page_splay(offidxstart, m);
1145		if (m->pindex < offidxstart) {
1146			orig_object->cache = m;
1147			new_object->cache = m->right;
1148			m->right = NULL;
1149		} else {
1150			orig_object->cache = m->left;
1151			new_object->cache = m;
1152			m->left = NULL;
1153		}
1154		while ((m = new_object->cache) != NULL) {
1155			if ((m->pindex - offidxstart) >= new_object->size) {
1156				/*
1157				 * Return all of the cached pages with
1158				 * offset greater than or equal to the
1159				 * new object's size to the original
1160				 * object's cache.
1161				 */
1162				new_object->cache = m->left;
1163				m->left = orig_object->cache;
1164				orig_object->cache = m;
1165				break;
1166			}
1167			m_next = vm_page_splay(m->pindex, m->right);
1168			/* Update the page's object and offset. */
1169			m->object = new_object;
1170			m->pindex -= offidxstart;
1171			if (m_next == NULL)
1172				break;
1173			m->right = NULL;
1174			m_next->left = m;
1175			new_object->cache = m_next;
1176		}
1177		KASSERT(new_object->cache == NULL ||
1178		    new_object->type == OBJT_SWAP,
1179		    ("vm_page_cache_transfer: object %p's type is incompatible"
1180		    " with cached pages", new_object));
1181	}
1182	mtx_unlock(&vm_page_queue_free_mtx);
1183}
1184
1185/*
1186 *	vm_page_alloc:
1187 *
1188 *	Allocate and return a memory cell associated
1189 *	with this VM object/offset pair.
1190 *
1191 *	The caller must always specify an allocation class.
1192 *
1193 *	allocation classes:
1194 *	VM_ALLOC_NORMAL		normal process request
1195 *	VM_ALLOC_SYSTEM		system *really* needs a page
1196 *	VM_ALLOC_INTERRUPT	interrupt time request
1197 *
1198 *	optional allocation flags:
1199 *	VM_ALLOC_ZERO		prefer a zeroed page
1200 *	VM_ALLOC_WIRED		wire the allocated page
1201 *	VM_ALLOC_NOOBJ		page is not associated with a vm object
1202 *	VM_ALLOC_NOBUSY		do not set the page busy
1203 *	VM_ALLOC_IFCACHED	return page only if it is cached
1204 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1205 *				is cached
1206 *
1207 *	This routine may not sleep.
1208 */
1209vm_page_t
1210vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1211{
1212	struct vnode *vp = NULL;
1213	vm_object_t m_object;
1214	vm_page_t m;
1215	int flags, page_req;
1216
1217	if ((req & VM_ALLOC_NOOBJ) == 0) {
1218		KASSERT(object != NULL,
1219		    ("vm_page_alloc: NULL object."));
1220		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1221	}
1222
1223	page_req = req & VM_ALLOC_CLASS_MASK;
1224
1225	/*
1226	 * The pager is allowed to eat deeper into the free page list.
1227	 */
1228	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT))
1229		page_req = VM_ALLOC_SYSTEM;
1230
1231	mtx_lock(&vm_page_queue_free_mtx);
1232	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1233	    (page_req == VM_ALLOC_SYSTEM &&
1234	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1235	    (page_req == VM_ALLOC_INTERRUPT &&
1236	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1237		/*
1238		 * Allocate from the free queue if the number of free pages
1239		 * exceeds the minimum for the request class.
1240		 */
1241		if (object != NULL &&
1242		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1243			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1244				mtx_unlock(&vm_page_queue_free_mtx);
1245				return (NULL);
1246			}
1247			if (vm_phys_unfree_page(m))
1248				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1249#if VM_NRESERVLEVEL > 0
1250			else if (!vm_reserv_reactivate_page(m))
1251#else
1252			else
1253#endif
1254				panic("vm_page_alloc: cache page %p is missing"
1255				    " from the free queue", m);
1256		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1257			mtx_unlock(&vm_page_queue_free_mtx);
1258			return (NULL);
1259#if VM_NRESERVLEVEL > 0
1260		} else if (object == NULL || object->type == OBJT_DEVICE ||
1261		    object->type == OBJT_SG ||
1262		    (object->flags & OBJ_COLORED) == 0 ||
1263		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1264#else
1265		} else {
1266#endif
1267			m = vm_phys_alloc_pages(object != NULL ?
1268			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1269#if VM_NRESERVLEVEL > 0
1270			if (m == NULL && vm_reserv_reclaim_inactive()) {
1271				m = vm_phys_alloc_pages(object != NULL ?
1272				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1273				    0);
1274			}
1275#endif
1276		}
1277	} else {
1278		/*
1279		 * Not allocatable, give up.
1280		 */
1281		mtx_unlock(&vm_page_queue_free_mtx);
1282		atomic_add_int(&vm_pageout_deficit,
1283		    MAX((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1284		pagedaemon_wakeup();
1285		return (NULL);
1286	}
1287
1288	/*
1289	 *  At this point we had better have found a good page.
1290	 */
1291
1292	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1293	KASSERT(m->queue == PQ_NONE,
1294	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1295	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1296	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1297	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1298	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1299	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1300	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1301	    pmap_page_get_memattr(m)));
1302	if ((m->flags & PG_CACHED) != 0) {
1303		KASSERT(m->valid != 0,
1304		    ("vm_page_alloc: cached page %p is invalid", m));
1305		if (m->object == object && m->pindex == pindex)
1306	  		cnt.v_reactivated++;
1307		else
1308			m->valid = 0;
1309		m_object = m->object;
1310		vm_page_cache_remove(m);
1311		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1312			vp = m_object->handle;
1313	} else {
1314		KASSERT(VM_PAGE_IS_FREE(m),
1315		    ("vm_page_alloc: page %p is not free", m));
1316		KASSERT(m->valid == 0,
1317		    ("vm_page_alloc: free page %p is valid", m));
1318		cnt.v_free_count--;
1319	}
1320
1321	/*
1322	 * Initialize structure.  Only the PG_ZERO flag is inherited.
1323	 */
1324	flags = 0;
1325	if (m->flags & PG_ZERO) {
1326		vm_page_zero_count--;
1327		if (req & VM_ALLOC_ZERO)
1328			flags = PG_ZERO;
1329	}
1330	if (object == NULL || object->type == OBJT_PHYS)
1331		flags |= PG_UNMANAGED;
1332	m->flags = flags;
1333	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
1334		m->oflags = 0;
1335	else
1336		m->oflags = VPO_BUSY;
1337	if (req & VM_ALLOC_WIRED) {
1338		atomic_add_int(&cnt.v_wire_count, 1);
1339		m->wire_count = 1;
1340	}
1341	m->act_count = 0;
1342	mtx_unlock(&vm_page_queue_free_mtx);
1343
1344	if (object != NULL) {
1345		/* Ignore device objects; the pager sets "memattr" for them. */
1346		if (object->memattr != VM_MEMATTR_DEFAULT &&
1347		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1348			pmap_page_set_memattr(m, object->memattr);
1349		vm_page_insert(m, object, pindex);
1350	} else
1351		m->pindex = pindex;
1352
1353	/*
1354	 * The following call to vdrop() must come after the above call
1355	 * to vm_page_insert() in case both affect the same object and
1356	 * vnode.  Otherwise, the affected vnode's hold count could
1357	 * temporarily become zero.
1358	 */
1359	if (vp != NULL)
1360		vdrop(vp);
1361
1362	/*
1363	 * Don't wakeup too often - wakeup the pageout daemon when
1364	 * we would be nearly out of memory.
1365	 */
1366	if (vm_paging_needed())
1367		pagedaemon_wakeup();
1368
1369	return (m);
1370}
1371
1372/*
1373 * Initialize a page that has been freshly dequeued from a freelist.
1374 * The caller has to drop the vnode returned, if it is not NULL.
1375 *
1376 * To be called with vm_page_queue_free_mtx held.
1377 */
1378struct vnode *
1379vm_page_alloc_init(vm_page_t m)
1380{
1381	struct vnode *drop;
1382	vm_object_t m_object;
1383
1384	KASSERT(m->queue == PQ_NONE,
1385	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1386	    m, m->queue));
1387	KASSERT(m->wire_count == 0,
1388	    ("vm_page_alloc_init: page %p is wired", m));
1389	KASSERT(m->hold_count == 0,
1390	    ("vm_page_alloc_init: page %p is held", m));
1391	KASSERT(m->busy == 0,
1392	    ("vm_page_alloc_init: page %p is busy", m));
1393	KASSERT(m->dirty == 0,
1394	    ("vm_page_alloc_init: page %p is dirty", m));
1395	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1396	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1397	    m, pmap_page_get_memattr(m)));
1398	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1399	drop = NULL;
1400	if ((m->flags & PG_CACHED) != 0) {
1401		m->valid = 0;
1402		m_object = m->object;
1403		vm_page_cache_remove(m);
1404		if (m_object->type == OBJT_VNODE &&
1405		    m_object->cache == NULL)
1406			drop = m_object->handle;
1407	} else {
1408		KASSERT(VM_PAGE_IS_FREE(m),
1409		    ("vm_page_alloc_init: page %p is not free", m));
1410		KASSERT(m->valid == 0,
1411		    ("vm_page_alloc_init: free page %p is valid", m));
1412		cnt.v_free_count--;
1413	}
1414	if (m->flags & PG_ZERO)
1415		vm_page_zero_count--;
1416	/* Don't clear the PG_ZERO flag; we'll need it later. */
1417	m->flags = PG_UNMANAGED | (m->flags & PG_ZERO);
1418	m->oflags = 0;
1419	/* Unmanaged pages don't use "act_count". */
1420	return (drop);
1421}
1422
1423/*
1424 * 	vm_page_alloc_freelist:
1425 *
1426 *	Allocate a page from the specified freelist.
1427 *	Only the ALLOC_CLASS values in req are honored, other request flags
1428 *	are ignored.
1429 */
1430vm_page_t
1431vm_page_alloc_freelist(int flind, int req)
1432{
1433	struct vnode *drop;
1434	vm_page_t m;
1435	int page_req;
1436
1437	m = NULL;
1438	page_req = req & VM_ALLOC_CLASS_MASK;
1439	mtx_lock(&vm_page_queue_free_mtx);
1440	/*
1441	 * Do not allocate reserved pages unless the req has asked for it.
1442	 */
1443	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1444	    (page_req == VM_ALLOC_SYSTEM &&
1445	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1446	    (page_req == VM_ALLOC_INTERRUPT &&
1447	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1448		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1449	}
1450	if (m == NULL) {
1451		mtx_unlock(&vm_page_queue_free_mtx);
1452		return (NULL);
1453	}
1454	drop = vm_page_alloc_init(m);
1455	mtx_unlock(&vm_page_queue_free_mtx);
1456	if (drop)
1457		vdrop(drop);
1458	return (m);
1459}
1460
1461/*
1462 *	vm_wait:	(also see VM_WAIT macro)
1463 *
1464 *	Block until free pages are available for allocation
1465 *	- Called in various places before memory allocations.
1466 */
1467void
1468vm_wait(void)
1469{
1470
1471	mtx_lock(&vm_page_queue_free_mtx);
1472	if (curproc == pageproc) {
1473		vm_pageout_pages_needed = 1;
1474		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1475		    PDROP | PSWP, "VMWait", 0);
1476	} else {
1477		if (!vm_pages_needed) {
1478			vm_pages_needed = 1;
1479			wakeup(&vm_pages_needed);
1480		}
1481		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1482		    "vmwait", 0);
1483	}
1484}
1485
1486/*
1487 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1488 *
1489 *	Block until free pages are available for allocation
1490 *	- Called only in vm_fault so that processes page faulting
1491 *	  can be easily tracked.
1492 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1493 *	  processes will be able to grab memory first.  Do not change
1494 *	  this balance without careful testing first.
1495 */
1496void
1497vm_waitpfault(void)
1498{
1499
1500	mtx_lock(&vm_page_queue_free_mtx);
1501	if (!vm_pages_needed) {
1502		vm_pages_needed = 1;
1503		wakeup(&vm_pages_needed);
1504	}
1505	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1506	    "pfault", 0);
1507}
1508
1509/*
1510 *	vm_page_requeue:
1511 *
1512 *	Move the given page to the tail of its present page queue.
1513 *
1514 *	The page queues must be locked.
1515 */
1516void
1517vm_page_requeue(vm_page_t m)
1518{
1519	struct vpgqueues *vpq;
1520	int queue;
1521
1522	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1523	queue = m->queue;
1524	KASSERT(queue != PQ_NONE,
1525	    ("vm_page_requeue: page %p is not queued", m));
1526	vpq = &vm_page_queues[queue];
1527	TAILQ_REMOVE(&vpq->pl, m, pageq);
1528	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1529}
1530
1531/*
1532 *	vm_page_queue_remove:
1533 *
1534 *	Remove the given page from the specified queue.
1535 *
1536 *	The page and page queues must be locked.
1537 */
1538static __inline void
1539vm_page_queue_remove(int queue, vm_page_t m)
1540{
1541	struct vpgqueues *pq;
1542
1543	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1544	vm_page_lock_assert(m, MA_OWNED);
1545	pq = &vm_page_queues[queue];
1546	TAILQ_REMOVE(&pq->pl, m, pageq);
1547	(*pq->cnt)--;
1548}
1549
1550/*
1551 *	vm_pageq_remove:
1552 *
1553 *	Remove a page from its queue.
1554 *
1555 *	The given page must be locked.
1556 *	This routine may not block.
1557 */
1558void
1559vm_pageq_remove(vm_page_t m)
1560{
1561	int queue;
1562
1563	vm_page_lock_assert(m, MA_OWNED);
1564	if ((queue = m->queue) != PQ_NONE) {
1565		vm_page_lock_queues();
1566		m->queue = PQ_NONE;
1567		vm_page_queue_remove(queue, m);
1568		vm_page_unlock_queues();
1569	}
1570}
1571
1572/*
1573 *	vm_page_enqueue:
1574 *
1575 *	Add the given page to the specified queue.
1576 *
1577 *	The page queues must be locked.
1578 */
1579static void
1580vm_page_enqueue(int queue, vm_page_t m)
1581{
1582	struct vpgqueues *vpq;
1583
1584	vpq = &vm_page_queues[queue];
1585	m->queue = queue;
1586	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1587	++*vpq->cnt;
1588}
1589
1590/*
1591 *	vm_page_activate:
1592 *
1593 *	Put the specified page on the active list (if appropriate).
1594 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1595 *	mess with it.
1596 *
1597 *	The page must be locked.
1598 *	This routine may not block.
1599 */
1600void
1601vm_page_activate(vm_page_t m)
1602{
1603	int queue;
1604
1605	vm_page_lock_assert(m, MA_OWNED);
1606	if ((queue = m->queue) != PQ_ACTIVE) {
1607		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1608			if (m->act_count < ACT_INIT)
1609				m->act_count = ACT_INIT;
1610			vm_page_lock_queues();
1611			if (queue != PQ_NONE)
1612				vm_page_queue_remove(queue, m);
1613			vm_page_enqueue(PQ_ACTIVE, m);
1614			vm_page_unlock_queues();
1615		} else
1616			KASSERT(queue == PQ_NONE,
1617			    ("vm_page_activate: wired page %p is queued", m));
1618	} else {
1619		if (m->act_count < ACT_INIT)
1620			m->act_count = ACT_INIT;
1621	}
1622}
1623
1624/*
1625 *	vm_page_free_wakeup:
1626 *
1627 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1628 *	routine is called when a page has been added to the cache or free
1629 *	queues.
1630 *
1631 *	The page queues must be locked.
1632 *	This routine may not block.
1633 */
1634static inline void
1635vm_page_free_wakeup(void)
1636{
1637
1638	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1639	/*
1640	 * if pageout daemon needs pages, then tell it that there are
1641	 * some free.
1642	 */
1643	if (vm_pageout_pages_needed &&
1644	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1645		wakeup(&vm_pageout_pages_needed);
1646		vm_pageout_pages_needed = 0;
1647	}
1648	/*
1649	 * wakeup processes that are waiting on memory if we hit a
1650	 * high water mark. And wakeup scheduler process if we have
1651	 * lots of memory. this process will swapin processes.
1652	 */
1653	if (vm_pages_needed && !vm_page_count_min()) {
1654		vm_pages_needed = 0;
1655		wakeup(&cnt.v_free_count);
1656	}
1657}
1658
1659/*
1660 *	vm_page_free_toq:
1661 *
1662 *	Returns the given page to the free list,
1663 *	disassociating it with any VM object.
1664 *
1665 *	Object and page must be locked prior to entry.
1666 *	This routine may not block.
1667 */
1668
1669void
1670vm_page_free_toq(vm_page_t m)
1671{
1672
1673	if ((m->flags & PG_UNMANAGED) == 0) {
1674		vm_page_lock_assert(m, MA_OWNED);
1675		KASSERT(!pmap_page_is_mapped(m),
1676		    ("vm_page_free_toq: freeing mapped page %p", m));
1677	}
1678	PCPU_INC(cnt.v_tfree);
1679
1680	if (VM_PAGE_IS_FREE(m))
1681		panic("vm_page_free: freeing free page %p", m);
1682	else if (m->busy != 0)
1683		panic("vm_page_free: freeing busy page %p", m);
1684
1685	/*
1686	 * unqueue, then remove page.  Note that we cannot destroy
1687	 * the page here because we do not want to call the pager's
1688	 * callback routine until after we've put the page on the
1689	 * appropriate free queue.
1690	 */
1691	if ((m->flags & PG_UNMANAGED) == 0)
1692		vm_pageq_remove(m);
1693	vm_page_remove(m);
1694
1695	/*
1696	 * If fictitious remove object association and
1697	 * return, otherwise delay object association removal.
1698	 */
1699	if ((m->flags & PG_FICTITIOUS) != 0) {
1700		return;
1701	}
1702
1703	m->valid = 0;
1704	vm_page_undirty(m);
1705
1706	if (m->wire_count != 0)
1707		panic("vm_page_free: freeing wired page %p", m);
1708	if (m->hold_count != 0) {
1709		m->flags &= ~PG_ZERO;
1710		vm_page_lock_queues();
1711		vm_page_enqueue(PQ_HOLD, m);
1712		vm_page_unlock_queues();
1713	} else {
1714		/*
1715		 * Restore the default memory attribute to the page.
1716		 */
1717		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1718			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1719
1720		/*
1721		 * Insert the page into the physical memory allocator's
1722		 * cache/free page queues.
1723		 */
1724		mtx_lock(&vm_page_queue_free_mtx);
1725		m->flags |= PG_FREE;
1726		cnt.v_free_count++;
1727#if VM_NRESERVLEVEL > 0
1728		if (!vm_reserv_free_page(m))
1729#else
1730		if (TRUE)
1731#endif
1732			vm_phys_free_pages(m, 0);
1733		if ((m->flags & PG_ZERO) != 0)
1734			++vm_page_zero_count;
1735		else
1736			vm_page_zero_idle_wakeup();
1737		vm_page_free_wakeup();
1738		mtx_unlock(&vm_page_queue_free_mtx);
1739	}
1740}
1741
1742/*
1743 *	vm_page_wire:
1744 *
1745 *	Mark this page as wired down by yet
1746 *	another map, removing it from paging queues
1747 *	as necessary.
1748 *
1749 *	If the page is fictitious, then its wire count must remain one.
1750 *
1751 *	The page must be locked.
1752 *	This routine may not block.
1753 */
1754void
1755vm_page_wire(vm_page_t m)
1756{
1757
1758	/*
1759	 * Only bump the wire statistics if the page is not already wired,
1760	 * and only unqueue the page if it is on some queue (if it is unmanaged
1761	 * it is already off the queues).
1762	 */
1763	vm_page_lock_assert(m, MA_OWNED);
1764	if ((m->flags & PG_FICTITIOUS) != 0) {
1765		KASSERT(m->wire_count == 1,
1766		    ("vm_page_wire: fictitious page %p's wire count isn't one",
1767		    m));
1768		return;
1769	}
1770	if (m->wire_count == 0) {
1771		if ((m->flags & PG_UNMANAGED) == 0)
1772			vm_pageq_remove(m);
1773		atomic_add_int(&cnt.v_wire_count, 1);
1774	}
1775	m->wire_count++;
1776	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1777}
1778
1779/*
1780 * vm_page_unwire:
1781 *
1782 * Release one wiring of the specified page, potentially enabling it to be
1783 * paged again.  If paging is enabled, then the value of the parameter
1784 * "activate" determines to which queue the page is added.  If "activate" is
1785 * non-zero, then the page is added to the active queue.  Otherwise, it is
1786 * added to the inactive queue.
1787 *
1788 * However, unless the page belongs to an object, it is not enqueued because
1789 * it cannot be paged out.
1790 *
1791 * If a page is fictitious, then its wire count must alway be one.
1792 *
1793 * A managed page must be locked.
1794 */
1795void
1796vm_page_unwire(vm_page_t m, int activate)
1797{
1798
1799	if ((m->flags & PG_UNMANAGED) == 0)
1800		vm_page_lock_assert(m, MA_OWNED);
1801	if ((m->flags & PG_FICTITIOUS) != 0) {
1802		KASSERT(m->wire_count == 1,
1803	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
1804		return;
1805	}
1806	if (m->wire_count > 0) {
1807		m->wire_count--;
1808		if (m->wire_count == 0) {
1809			atomic_subtract_int(&cnt.v_wire_count, 1);
1810			if ((m->flags & PG_UNMANAGED) != 0 ||
1811			    m->object == NULL)
1812				return;
1813			vm_page_lock_queues();
1814			if (activate)
1815				vm_page_enqueue(PQ_ACTIVE, m);
1816			else {
1817				vm_page_flag_clear(m, PG_WINATCFLS);
1818				vm_page_enqueue(PQ_INACTIVE, m);
1819			}
1820			vm_page_unlock_queues();
1821		}
1822	} else
1823		panic("vm_page_unwire: page %p's wire count is zero", m);
1824}
1825
1826/*
1827 * Move the specified page to the inactive queue.
1828 *
1829 * Many pages placed on the inactive queue should actually go
1830 * into the cache, but it is difficult to figure out which.  What
1831 * we do instead, if the inactive target is well met, is to put
1832 * clean pages at the head of the inactive queue instead of the tail.
1833 * This will cause them to be moved to the cache more quickly and
1834 * if not actively re-referenced, reclaimed more quickly.  If we just
1835 * stick these pages at the end of the inactive queue, heavy filesystem
1836 * meta-data accesses can cause an unnecessary paging load on memory bound
1837 * processes.  This optimization causes one-time-use metadata to be
1838 * reused more quickly.
1839 *
1840 * Normally athead is 0 resulting in LRU operation.  athead is set
1841 * to 1 if we want this page to be 'as if it were placed in the cache',
1842 * except without unmapping it from the process address space.
1843 *
1844 * This routine may not block.
1845 */
1846static inline void
1847_vm_page_deactivate(vm_page_t m, int athead)
1848{
1849	int queue;
1850
1851	vm_page_lock_assert(m, MA_OWNED);
1852
1853	/*
1854	 * Ignore if already inactive.
1855	 */
1856	if ((queue = m->queue) == PQ_INACTIVE)
1857		return;
1858	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1859		vm_page_lock_queues();
1860		vm_page_flag_clear(m, PG_WINATCFLS);
1861		if (queue != PQ_NONE)
1862			vm_page_queue_remove(queue, m);
1863		if (athead)
1864			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
1865			    pageq);
1866		else
1867			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
1868			    pageq);
1869		m->queue = PQ_INACTIVE;
1870		cnt.v_inactive_count++;
1871		vm_page_unlock_queues();
1872	}
1873}
1874
1875/*
1876 * Move the specified page to the inactive queue.
1877 *
1878 * The page must be locked.
1879 */
1880void
1881vm_page_deactivate(vm_page_t m)
1882{
1883
1884	_vm_page_deactivate(m, 0);
1885}
1886
1887/*
1888 * vm_page_try_to_cache:
1889 *
1890 * Returns 0 on failure, 1 on success
1891 */
1892int
1893vm_page_try_to_cache(vm_page_t m)
1894{
1895
1896	vm_page_lock_assert(m, MA_OWNED);
1897	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1898	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1899	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1900		return (0);
1901	pmap_remove_all(m);
1902	if (m->dirty)
1903		return (0);
1904	vm_page_cache(m);
1905	return (1);
1906}
1907
1908/*
1909 * vm_page_try_to_free()
1910 *
1911 *	Attempt to free the page.  If we cannot free it, we do nothing.
1912 *	1 is returned on success, 0 on failure.
1913 */
1914int
1915vm_page_try_to_free(vm_page_t m)
1916{
1917
1918	vm_page_lock_assert(m, MA_OWNED);
1919	if (m->object != NULL)
1920		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1921	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1922	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1923		return (0);
1924	pmap_remove_all(m);
1925	if (m->dirty)
1926		return (0);
1927	vm_page_free(m);
1928	return (1);
1929}
1930
1931/*
1932 * vm_page_cache
1933 *
1934 * Put the specified page onto the page cache queue (if appropriate).
1935 *
1936 * This routine may not block.
1937 */
1938void
1939vm_page_cache(vm_page_t m)
1940{
1941	vm_object_t object;
1942	vm_page_t root;
1943
1944	vm_page_lock_assert(m, MA_OWNED);
1945	object = m->object;
1946	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1947	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1948	    m->hold_count || m->wire_count)
1949		panic("vm_page_cache: attempting to cache busy page");
1950	pmap_remove_all(m);
1951	if (m->dirty != 0)
1952		panic("vm_page_cache: page %p is dirty", m);
1953	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
1954	    (object->type == OBJT_SWAP &&
1955	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
1956		/*
1957		 * Hypothesis: A cache-elgible page belonging to a
1958		 * default object or swap object but without a backing
1959		 * store must be zero filled.
1960		 */
1961		vm_page_free(m);
1962		return;
1963	}
1964	KASSERT((m->flags & PG_CACHED) == 0,
1965	    ("vm_page_cache: page %p is already cached", m));
1966	PCPU_INC(cnt.v_tcached);
1967
1968	/*
1969	 * Remove the page from the paging queues.
1970	 */
1971	vm_pageq_remove(m);
1972
1973	/*
1974	 * Remove the page from the object's collection of resident
1975	 * pages.
1976	 */
1977	if (m != object->root)
1978		vm_page_splay(m->pindex, object->root);
1979	if (m->left == NULL)
1980		root = m->right;
1981	else {
1982		root = vm_page_splay(m->pindex, m->left);
1983		root->right = m->right;
1984	}
1985	object->root = root;
1986	TAILQ_REMOVE(&object->memq, m, listq);
1987	object->resident_page_count--;
1988
1989	/*
1990	 * Restore the default memory attribute to the page.
1991	 */
1992	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1993		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1994
1995	/*
1996	 * Insert the page into the object's collection of cached pages
1997	 * and the physical memory allocator's cache/free page queues.
1998	 */
1999	m->flags &= ~PG_ZERO;
2000	mtx_lock(&vm_page_queue_free_mtx);
2001	m->flags |= PG_CACHED;
2002	cnt.v_cache_count++;
2003	root = object->cache;
2004	if (root == NULL) {
2005		m->left = NULL;
2006		m->right = NULL;
2007	} else {
2008		root = vm_page_splay(m->pindex, root);
2009		if (m->pindex < root->pindex) {
2010			m->left = root->left;
2011			m->right = root;
2012			root->left = NULL;
2013		} else if (__predict_false(m->pindex == root->pindex))
2014			panic("vm_page_cache: offset already cached");
2015		else {
2016			m->right = root->right;
2017			m->left = root;
2018			root->right = NULL;
2019		}
2020	}
2021	object->cache = m;
2022#if VM_NRESERVLEVEL > 0
2023	if (!vm_reserv_free_page(m)) {
2024#else
2025	if (TRUE) {
2026#endif
2027		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2028		vm_phys_free_pages(m, 0);
2029	}
2030	vm_page_free_wakeup();
2031	mtx_unlock(&vm_page_queue_free_mtx);
2032
2033	/*
2034	 * Increment the vnode's hold count if this is the object's only
2035	 * cached page.  Decrement the vnode's hold count if this was
2036	 * the object's only resident page.
2037	 */
2038	if (object->type == OBJT_VNODE) {
2039		if (root == NULL && object->resident_page_count != 0)
2040			vhold(object->handle);
2041		else if (root != NULL && object->resident_page_count == 0)
2042			vdrop(object->handle);
2043	}
2044}
2045
2046/*
2047 * vm_page_dontneed
2048 *
2049 *	Cache, deactivate, or do nothing as appropriate.  This routine
2050 *	is typically used by madvise() MADV_DONTNEED.
2051 *
2052 *	Generally speaking we want to move the page into the cache so
2053 *	it gets reused quickly.  However, this can result in a silly syndrome
2054 *	due to the page recycling too quickly.  Small objects will not be
2055 *	fully cached.  On the otherhand, if we move the page to the inactive
2056 *	queue we wind up with a problem whereby very large objects
2057 *	unnecessarily blow away our inactive and cache queues.
2058 *
2059 *	The solution is to move the pages based on a fixed weighting.  We
2060 *	either leave them alone, deactivate them, or move them to the cache,
2061 *	where moving them to the cache has the highest weighting.
2062 *	By forcing some pages into other queues we eventually force the
2063 *	system to balance the queues, potentially recovering other unrelated
2064 *	space from active.  The idea is to not force this to happen too
2065 *	often.
2066 */
2067void
2068vm_page_dontneed(vm_page_t m)
2069{
2070	int dnw;
2071	int head;
2072
2073	vm_page_lock_assert(m, MA_OWNED);
2074	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2075	dnw = PCPU_GET(dnweight);
2076	PCPU_INC(dnweight);
2077
2078	/*
2079	 * Occasionally leave the page alone.
2080	 */
2081	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2082		if (m->act_count >= ACT_INIT)
2083			--m->act_count;
2084		return;
2085	}
2086
2087	/*
2088	 * Clear any references to the page.  Otherwise, the page daemon will
2089	 * immediately reactivate the page.
2090	 *
2091	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
2092	 * pmap operation, such as pmap_remove(), could clear a reference in
2093	 * the pmap and set PG_REFERENCED on the page before the
2094	 * pmap_clear_reference() had completed.  Consequently, the page would
2095	 * appear referenced based upon an old reference that occurred before
2096	 * this function ran.
2097	 */
2098	pmap_clear_reference(m);
2099	vm_page_lock_queues();
2100	vm_page_flag_clear(m, PG_REFERENCED);
2101	vm_page_unlock_queues();
2102
2103	if (m->dirty == 0 && pmap_is_modified(m))
2104		vm_page_dirty(m);
2105
2106	if (m->dirty || (dnw & 0x0070) == 0) {
2107		/*
2108		 * Deactivate the page 3 times out of 32.
2109		 */
2110		head = 0;
2111	} else {
2112		/*
2113		 * Cache the page 28 times out of every 32.  Note that
2114		 * the page is deactivated instead of cached, but placed
2115		 * at the head of the queue instead of the tail.
2116		 */
2117		head = 1;
2118	}
2119	_vm_page_deactivate(m, head);
2120}
2121
2122/*
2123 * Grab a page, waiting until we are waken up due to the page
2124 * changing state.  We keep on waiting, if the page continues
2125 * to be in the object.  If the page doesn't exist, first allocate it
2126 * and then conditionally zero it.
2127 *
2128 * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
2129 * to facilitate its eventual removal.
2130 *
2131 * This routine may block.
2132 */
2133vm_page_t
2134vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2135{
2136	vm_page_t m;
2137
2138	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2139	KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
2140	    ("vm_page_grab: VM_ALLOC_RETRY is required"));
2141retrylookup:
2142	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2143		if ((m->oflags & VPO_BUSY) != 0 ||
2144		    ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
2145			/*
2146			 * Reference the page before unlocking and
2147			 * sleeping so that the page daemon is less
2148			 * likely to reclaim it.
2149			 */
2150			vm_page_lock_queues();
2151			vm_page_flag_set(m, PG_REFERENCED);
2152			vm_page_sleep(m, "pgrbwt");
2153			goto retrylookup;
2154		} else {
2155			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2156				vm_page_lock(m);
2157				vm_page_wire(m);
2158				vm_page_unlock(m);
2159			}
2160			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2161				vm_page_busy(m);
2162			return (m);
2163		}
2164	}
2165	m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
2166	    VM_ALLOC_IGN_SBUSY));
2167	if (m == NULL) {
2168		VM_OBJECT_UNLOCK(object);
2169		VM_WAIT;
2170		VM_OBJECT_LOCK(object);
2171		goto retrylookup;
2172	} else if (m->valid != 0)
2173		return (m);
2174	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2175		pmap_zero_page(m);
2176	return (m);
2177}
2178
2179/*
2180 * Mapping function for valid bits or for dirty bits in
2181 * a page.  May not block.
2182 *
2183 * Inputs are required to range within a page.
2184 */
2185int
2186vm_page_bits(int base, int size)
2187{
2188	int first_bit;
2189	int last_bit;
2190
2191	KASSERT(
2192	    base + size <= PAGE_SIZE,
2193	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2194	);
2195
2196	if (size == 0)		/* handle degenerate case */
2197		return (0);
2198
2199	first_bit = base >> DEV_BSHIFT;
2200	last_bit = (base + size - 1) >> DEV_BSHIFT;
2201
2202	return ((2 << last_bit) - (1 << first_bit));
2203}
2204
2205/*
2206 *	vm_page_set_valid:
2207 *
2208 *	Sets portions of a page valid.  The arguments are expected
2209 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2210 *	of any partial chunks touched by the range.  The invalid portion of
2211 *	such chunks will be zeroed.
2212 *
2213 *	(base + size) must be less then or equal to PAGE_SIZE.
2214 */
2215void
2216vm_page_set_valid(vm_page_t m, int base, int size)
2217{
2218	int endoff, frag;
2219
2220	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2221	if (size == 0)	/* handle degenerate case */
2222		return;
2223
2224	/*
2225	 * If the base is not DEV_BSIZE aligned and the valid
2226	 * bit is clear, we have to zero out a portion of the
2227	 * first block.
2228	 */
2229	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2230	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2231		pmap_zero_page_area(m, frag, base - frag);
2232
2233	/*
2234	 * If the ending offset is not DEV_BSIZE aligned and the
2235	 * valid bit is clear, we have to zero out a portion of
2236	 * the last block.
2237	 */
2238	endoff = base + size;
2239	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2240	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2241		pmap_zero_page_area(m, endoff,
2242		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2243
2244	/*
2245	 * Assert that no previously invalid block that is now being validated
2246	 * is already dirty.
2247	 */
2248	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2249	    ("vm_page_set_valid: page %p is dirty", m));
2250
2251	/*
2252	 * Set valid bits inclusive of any overlap.
2253	 */
2254	m->valid |= vm_page_bits(base, size);
2255}
2256
2257/*
2258 * Clear the given bits from the specified page's dirty field.
2259 */
2260static __inline void
2261vm_page_clear_dirty_mask(vm_page_t m, int pagebits)
2262{
2263
2264	/*
2265	 * If the object is locked and the page is neither VPO_BUSY nor
2266	 * PG_WRITEABLE, then the page's dirty field cannot possibly be
2267	 * modified by a concurrent pmap operation.
2268	 */
2269	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2270	if ((m->oflags & VPO_BUSY) == 0 && (m->flags & PG_WRITEABLE) == 0)
2271		m->dirty &= ~pagebits;
2272	else {
2273		vm_page_lock_queues();
2274		m->dirty &= ~pagebits;
2275		vm_page_unlock_queues();
2276	}
2277}
2278
2279/*
2280 *	vm_page_set_validclean:
2281 *
2282 *	Sets portions of a page valid and clean.  The arguments are expected
2283 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2284 *	of any partial chunks touched by the range.  The invalid portion of
2285 *	such chunks will be zero'd.
2286 *
2287 *	This routine may not block.
2288 *
2289 *	(base + size) must be less then or equal to PAGE_SIZE.
2290 */
2291void
2292vm_page_set_validclean(vm_page_t m, int base, int size)
2293{
2294	u_long oldvalid;
2295	int endoff, frag, pagebits;
2296
2297	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2298	if (size == 0)	/* handle degenerate case */
2299		return;
2300
2301	/*
2302	 * If the base is not DEV_BSIZE aligned and the valid
2303	 * bit is clear, we have to zero out a portion of the
2304	 * first block.
2305	 */
2306	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2307	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2308		pmap_zero_page_area(m, frag, base - frag);
2309
2310	/*
2311	 * If the ending offset is not DEV_BSIZE aligned and the
2312	 * valid bit is clear, we have to zero out a portion of
2313	 * the last block.
2314	 */
2315	endoff = base + size;
2316	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2317	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2318		pmap_zero_page_area(m, endoff,
2319		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2320
2321	/*
2322	 * Set valid, clear dirty bits.  If validating the entire
2323	 * page we can safely clear the pmap modify bit.  We also
2324	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2325	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2326	 * be set again.
2327	 *
2328	 * We set valid bits inclusive of any overlap, but we can only
2329	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2330	 * the range.
2331	 */
2332	oldvalid = m->valid;
2333	pagebits = vm_page_bits(base, size);
2334	m->valid |= pagebits;
2335#if 0	/* NOT YET */
2336	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2337		frag = DEV_BSIZE - frag;
2338		base += frag;
2339		size -= frag;
2340		if (size < 0)
2341			size = 0;
2342	}
2343	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2344#endif
2345	if (base == 0 && size == PAGE_SIZE) {
2346		/*
2347		 * The page can only be modified within the pmap if it is
2348		 * mapped, and it can only be mapped if it was previously
2349		 * fully valid.
2350		 */
2351		if (oldvalid == VM_PAGE_BITS_ALL)
2352			/*
2353			 * Perform the pmap_clear_modify() first.  Otherwise,
2354			 * a concurrent pmap operation, such as
2355			 * pmap_protect(), could clear a modification in the
2356			 * pmap and set the dirty field on the page before
2357			 * pmap_clear_modify() had begun and after the dirty
2358			 * field was cleared here.
2359			 */
2360			pmap_clear_modify(m);
2361		m->dirty = 0;
2362		m->oflags &= ~VPO_NOSYNC;
2363	} else if (oldvalid != VM_PAGE_BITS_ALL)
2364		m->dirty &= ~pagebits;
2365	else
2366		vm_page_clear_dirty_mask(m, pagebits);
2367}
2368
2369void
2370vm_page_clear_dirty(vm_page_t m, int base, int size)
2371{
2372
2373	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2374}
2375
2376/*
2377 *	vm_page_set_invalid:
2378 *
2379 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2380 *	valid and dirty bits for the effected areas are cleared.
2381 *
2382 *	May not block.
2383 */
2384void
2385vm_page_set_invalid(vm_page_t m, int base, int size)
2386{
2387	int bits;
2388
2389	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2390	KASSERT((m->oflags & VPO_BUSY) == 0,
2391	    ("vm_page_set_invalid: page %p is busy", m));
2392	bits = vm_page_bits(base, size);
2393	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2394		pmap_remove_all(m);
2395	KASSERT(!pmap_page_is_mapped(m),
2396	    ("vm_page_set_invalid: page %p is mapped", m));
2397	m->valid &= ~bits;
2398	m->dirty &= ~bits;
2399}
2400
2401/*
2402 * vm_page_zero_invalid()
2403 *
2404 *	The kernel assumes that the invalid portions of a page contain
2405 *	garbage, but such pages can be mapped into memory by user code.
2406 *	When this occurs, we must zero out the non-valid portions of the
2407 *	page so user code sees what it expects.
2408 *
2409 *	Pages are most often semi-valid when the end of a file is mapped
2410 *	into memory and the file's size is not page aligned.
2411 */
2412void
2413vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2414{
2415	int b;
2416	int i;
2417
2418	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2419	/*
2420	 * Scan the valid bits looking for invalid sections that
2421	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2422	 * valid bit may be set ) have already been zerod by
2423	 * vm_page_set_validclean().
2424	 */
2425	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2426		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2427		    (m->valid & (1 << i))
2428		) {
2429			if (i > b) {
2430				pmap_zero_page_area(m,
2431				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2432			}
2433			b = i + 1;
2434		}
2435	}
2436
2437	/*
2438	 * setvalid is TRUE when we can safely set the zero'd areas
2439	 * as being valid.  We can do this if there are no cache consistancy
2440	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2441	 */
2442	if (setvalid)
2443		m->valid = VM_PAGE_BITS_ALL;
2444}
2445
2446/*
2447 *	vm_page_is_valid:
2448 *
2449 *	Is (partial) page valid?  Note that the case where size == 0
2450 *	will return FALSE in the degenerate case where the page is
2451 *	entirely invalid, and TRUE otherwise.
2452 *
2453 *	May not block.
2454 */
2455int
2456vm_page_is_valid(vm_page_t m, int base, int size)
2457{
2458	int bits = vm_page_bits(base, size);
2459
2460	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2461	if (m->valid && ((m->valid & bits) == bits))
2462		return 1;
2463	else
2464		return 0;
2465}
2466
2467/*
2468 * update dirty bits from pmap/mmu.  May not block.
2469 */
2470void
2471vm_page_test_dirty(vm_page_t m)
2472{
2473
2474	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2475	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2476		vm_page_dirty(m);
2477}
2478
2479int so_zerocp_fullpage = 0;
2480
2481/*
2482 *	Replace the given page with a copy.  The copied page assumes
2483 *	the portion of the given page's "wire_count" that is not the
2484 *	responsibility of this copy-on-write mechanism.
2485 *
2486 *	The object containing the given page must have a non-zero
2487 *	paging-in-progress count and be locked.
2488 */
2489void
2490vm_page_cowfault(vm_page_t m)
2491{
2492	vm_page_t mnew;
2493	vm_object_t object;
2494	vm_pindex_t pindex;
2495
2496	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
2497	vm_page_lock_assert(m, MA_OWNED);
2498	object = m->object;
2499	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2500	KASSERT(object->paging_in_progress != 0,
2501	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2502	    object));
2503	pindex = m->pindex;
2504
2505 retry_alloc:
2506	pmap_remove_all(m);
2507	vm_page_remove(m);
2508	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2509	if (mnew == NULL) {
2510		vm_page_insert(m, object, pindex);
2511		vm_page_unlock(m);
2512		VM_OBJECT_UNLOCK(object);
2513		VM_WAIT;
2514		VM_OBJECT_LOCK(object);
2515		if (m == vm_page_lookup(object, pindex)) {
2516			vm_page_lock(m);
2517			goto retry_alloc;
2518		} else {
2519			/*
2520			 * Page disappeared during the wait.
2521			 */
2522			return;
2523		}
2524	}
2525
2526	if (m->cow == 0) {
2527		/*
2528		 * check to see if we raced with an xmit complete when
2529		 * waiting to allocate a page.  If so, put things back
2530		 * the way they were
2531		 */
2532		vm_page_unlock(m);
2533		vm_page_lock(mnew);
2534		vm_page_free(mnew);
2535		vm_page_unlock(mnew);
2536		vm_page_insert(m, object, pindex);
2537	} else { /* clear COW & copy page */
2538		if (!so_zerocp_fullpage)
2539			pmap_copy_page(m, mnew);
2540		mnew->valid = VM_PAGE_BITS_ALL;
2541		vm_page_dirty(mnew);
2542		mnew->wire_count = m->wire_count - m->cow;
2543		m->wire_count = m->cow;
2544		vm_page_unlock(m);
2545	}
2546}
2547
2548void
2549vm_page_cowclear(vm_page_t m)
2550{
2551
2552	vm_page_lock_assert(m, MA_OWNED);
2553	if (m->cow) {
2554		m->cow--;
2555		/*
2556		 * let vm_fault add back write permission  lazily
2557		 */
2558	}
2559	/*
2560	 *  sf_buf_free() will free the page, so we needn't do it here
2561	 */
2562}
2563
2564int
2565vm_page_cowsetup(vm_page_t m)
2566{
2567
2568	vm_page_lock_assert(m, MA_OWNED);
2569	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
2570	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
2571		return (EBUSY);
2572	m->cow++;
2573	pmap_remove_write(m);
2574	VM_OBJECT_UNLOCK(m->object);
2575	return (0);
2576}
2577
2578#include "opt_ddb.h"
2579#ifdef DDB
2580#include <sys/kernel.h>
2581
2582#include <ddb/ddb.h>
2583
2584DB_SHOW_COMMAND(page, vm_page_print_page_info)
2585{
2586	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2587	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2588	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2589	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2590	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2591	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2592	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2593	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2594	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2595	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2596}
2597
2598DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2599{
2600
2601	db_printf("PQ_FREE:");
2602	db_printf(" %d", cnt.v_free_count);
2603	db_printf("\n");
2604
2605	db_printf("PQ_CACHE:");
2606	db_printf(" %d", cnt.v_cache_count);
2607	db_printf("\n");
2608
2609	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2610		*vm_page_queues[PQ_ACTIVE].cnt,
2611		*vm_page_queues[PQ_INACTIVE].cnt);
2612}
2613#endif /* DDB */
2614