vm_page.c revision 217177
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- a pageq mutex is required when adding or removing a page from a
67 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68 *	  busy state of a page.
69 *
70 *	- a hash chain mutex is required when associating or disassociating
71 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
72 *	  regardless of other mutexes or the busy state of a page.
73 *
74 *	- either a hash chain mutex OR a busied page is required in order
75 *	  to modify the page flags.  A hash chain mutex must be obtained in
76 *	  order to busy a page.  A page's flags cannot be modified by a
77 *	  hash chain mutex if the page is marked busy.
78 *
79 *	- The object memq mutex is held when inserting or removing
80 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
81 *	  is different from the object's main mutex.
82 *
83 *	Generally speaking, you have to be aware of side effects when running
84 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
85 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
86 *	vm_page_cache(), vm_page_activate(), and a number of other routines
87 *	will release the hash chain mutex for you.  Intermediate manipulation
88 *	routines such as vm_page_flag_set() expect the hash chain to be held
89 *	on entry and the hash chain will remain held on return.
90 *
91 *	pageq scanning can only occur with the pageq in question locked.
92 *	We have a known bottleneck with the active queue, but the cache
93 *	and free queues are actually arrays already.
94 */
95
96/*
97 *	Resident memory management module.
98 */
99
100#include <sys/cdefs.h>
101__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 217177 2011-01-09 04:34:02Z alc $");
102
103#include "opt_msgbuf.h"
104#include "opt_vm.h"
105
106#include <sys/param.h>
107#include <sys/systm.h>
108#include <sys/lock.h>
109#include <sys/kernel.h>
110#include <sys/limits.h>
111#include <sys/malloc.h>
112#include <sys/msgbuf.h>
113#include <sys/mutex.h>
114#include <sys/proc.h>
115#include <sys/sysctl.h>
116#include <sys/vmmeter.h>
117#include <sys/vnode.h>
118
119#include <vm/vm.h>
120#include <vm/pmap.h>
121#include <vm/vm_param.h>
122#include <vm/vm_kern.h>
123#include <vm/vm_object.h>
124#include <vm/vm_page.h>
125#include <vm/vm_pageout.h>
126#include <vm/vm_pager.h>
127#include <vm/vm_phys.h>
128#include <vm/vm_reserv.h>
129#include <vm/vm_extern.h>
130#include <vm/uma.h>
131#include <vm/uma_int.h>
132
133#include <machine/md_var.h>
134
135/*
136 *	Associated with page of user-allocatable memory is a
137 *	page structure.
138 */
139
140struct vpgqueues vm_page_queues[PQ_COUNT];
141struct vpglocks vm_page_queue_lock;
142struct vpglocks vm_page_queue_free_lock;
143
144struct vpglocks	pa_lock[PA_LOCK_COUNT];
145
146vm_page_t vm_page_array = 0;
147int vm_page_array_size = 0;
148long first_page = 0;
149int vm_page_zero_count = 0;
150
151static int boot_pages = UMA_BOOT_PAGES;
152TUNABLE_INT("vm.boot_pages", &boot_pages);
153SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
154	"number of pages allocated for bootstrapping the VM system");
155
156static int pa_tryrelock_race;
157SYSCTL_INT(_vm, OID_AUTO, tryrelock_race, CTLFLAG_RD,
158    &pa_tryrelock_race, 0, "Number of tryrelock race cases");
159
160static int pa_tryrelock_restart;
161SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
162    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
163
164static void vm_page_clear_dirty_mask(vm_page_t m, int pagebits);
165static void vm_page_queue_remove(int queue, vm_page_t m);
166static void vm_page_enqueue(int queue, vm_page_t m);
167
168/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
169#if PAGE_SIZE == 32768
170#ifdef CTASSERT
171CTASSERT(sizeof(u_long) >= 8);
172#endif
173#endif
174
175/*
176 * Try to acquire a physical address lock while a pmap is locked.  If we
177 * fail to trylock we unlock and lock the pmap directly and cache the
178 * locked pa in *locked.  The caller should then restart their loop in case
179 * the virtual to physical mapping has changed.
180 */
181int
182vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
183{
184	vm_paddr_t lockpa;
185	uint32_t gen_count;
186
187	gen_count = pmap->pm_gen_count;
188	lockpa = *locked;
189	*locked = pa;
190	if (lockpa) {
191		PA_LOCK_ASSERT(lockpa, MA_OWNED);
192		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
193			return (0);
194		PA_UNLOCK(lockpa);
195	}
196	if (PA_TRYLOCK(pa))
197		return (0);
198	PMAP_UNLOCK(pmap);
199	atomic_add_int(&pa_tryrelock_restart, 1);
200	PA_LOCK(pa);
201	PMAP_LOCK(pmap);
202
203	if (pmap->pm_gen_count != gen_count + 1) {
204		pmap->pm_retries++;
205		atomic_add_int(&pa_tryrelock_race, 1);
206		return (EAGAIN);
207	}
208	return (0);
209}
210
211/*
212 *	vm_set_page_size:
213 *
214 *	Sets the page size, perhaps based upon the memory
215 *	size.  Must be called before any use of page-size
216 *	dependent functions.
217 */
218void
219vm_set_page_size(void)
220{
221	if (cnt.v_page_size == 0)
222		cnt.v_page_size = PAGE_SIZE;
223	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
224		panic("vm_set_page_size: page size not a power of two");
225}
226
227/*
228 *	vm_page_blacklist_lookup:
229 *
230 *	See if a physical address in this page has been listed
231 *	in the blacklist tunable.  Entries in the tunable are
232 *	separated by spaces or commas.  If an invalid integer is
233 *	encountered then the rest of the string is skipped.
234 */
235static int
236vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
237{
238	vm_paddr_t bad;
239	char *cp, *pos;
240
241	for (pos = list; *pos != '\0'; pos = cp) {
242		bad = strtoq(pos, &cp, 0);
243		if (*cp != '\0') {
244			if (*cp == ' ' || *cp == ',') {
245				cp++;
246				if (cp == pos)
247					continue;
248			} else
249				break;
250		}
251		if (pa == trunc_page(bad))
252			return (1);
253	}
254	return (0);
255}
256
257/*
258 *	vm_page_startup:
259 *
260 *	Initializes the resident memory module.
261 *
262 *	Allocates memory for the page cells, and
263 *	for the object/offset-to-page hash table headers.
264 *	Each page cell is initialized and placed on the free list.
265 */
266vm_offset_t
267vm_page_startup(vm_offset_t vaddr)
268{
269	vm_offset_t mapped;
270	vm_paddr_t page_range;
271	vm_paddr_t new_end;
272	int i;
273	vm_paddr_t pa;
274	vm_paddr_t last_pa;
275	char *list;
276
277	/* the biggest memory array is the second group of pages */
278	vm_paddr_t end;
279	vm_paddr_t biggestsize;
280	vm_paddr_t low_water, high_water;
281	int biggestone;
282
283	biggestsize = 0;
284	biggestone = 0;
285	vaddr = round_page(vaddr);
286
287	for (i = 0; phys_avail[i + 1]; i += 2) {
288		phys_avail[i] = round_page(phys_avail[i]);
289		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
290	}
291
292	low_water = phys_avail[0];
293	high_water = phys_avail[1];
294
295	for (i = 0; phys_avail[i + 1]; i += 2) {
296		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
297
298		if (size > biggestsize) {
299			biggestone = i;
300			biggestsize = size;
301		}
302		if (phys_avail[i] < low_water)
303			low_water = phys_avail[i];
304		if (phys_avail[i + 1] > high_water)
305			high_water = phys_avail[i + 1];
306	}
307
308#ifdef XEN
309	low_water = 0;
310#endif
311
312	end = phys_avail[biggestone+1];
313
314	/*
315	 * Initialize the locks.
316	 */
317	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
318	    MTX_RECURSE);
319	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
320	    MTX_DEF);
321
322	/* Setup page locks. */
323	for (i = 0; i < PA_LOCK_COUNT; i++)
324		mtx_init(&pa_lock[i].data, "page lock", NULL, MTX_DEF);
325
326	/*
327	 * Initialize the queue headers for the hold queue, the active queue,
328	 * and the inactive queue.
329	 */
330	for (i = 0; i < PQ_COUNT; i++)
331		TAILQ_INIT(&vm_page_queues[i].pl);
332	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
333	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
334	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
335
336	/*
337	 * Allocate memory for use when boot strapping the kernel memory
338	 * allocator.
339	 */
340	new_end = end - (boot_pages * UMA_SLAB_SIZE);
341	new_end = trunc_page(new_end);
342	mapped = pmap_map(&vaddr, new_end, end,
343	    VM_PROT_READ | VM_PROT_WRITE);
344	bzero((void *)mapped, end - new_end);
345	uma_startup((void *)mapped, boot_pages);
346
347#if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
348    defined(__mips__)
349	/*
350	 * Allocate a bitmap to indicate that a random physical page
351	 * needs to be included in a minidump.
352	 *
353	 * The amd64 port needs this to indicate which direct map pages
354	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
355	 *
356	 * However, i386 still needs this workspace internally within the
357	 * minidump code.  In theory, they are not needed on i386, but are
358	 * included should the sf_buf code decide to use them.
359	 */
360	last_pa = 0;
361	for (i = 0; dump_avail[i + 1] != 0; i += 2)
362		if (dump_avail[i + 1] > last_pa)
363			last_pa = dump_avail[i + 1];
364	page_range = last_pa / PAGE_SIZE;
365	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
366	new_end -= vm_page_dump_size;
367	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
368	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
369	bzero((void *)vm_page_dump, vm_page_dump_size);
370#endif
371#ifdef __amd64__
372	/*
373	 * Request that the physical pages underlying the message buffer be
374	 * included in a crash dump.  Since the message buffer is accessed
375	 * through the direct map, they are not automatically included.
376	 */
377	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
378	last_pa = pa + round_page(MSGBUF_SIZE);
379	while (pa < last_pa) {
380		dump_add_page(pa);
381		pa += PAGE_SIZE;
382	}
383#endif
384	/*
385	 * Compute the number of pages of memory that will be available for
386	 * use (taking into account the overhead of a page structure per
387	 * page).
388	 */
389	first_page = low_water / PAGE_SIZE;
390#ifdef VM_PHYSSEG_SPARSE
391	page_range = 0;
392	for (i = 0; phys_avail[i + 1] != 0; i += 2)
393		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
394#elif defined(VM_PHYSSEG_DENSE)
395	page_range = high_water / PAGE_SIZE - first_page;
396#else
397#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
398#endif
399	end = new_end;
400
401	/*
402	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
403	 */
404	vaddr += PAGE_SIZE;
405
406	/*
407	 * Initialize the mem entry structures now, and put them in the free
408	 * queue.
409	 */
410	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
411	mapped = pmap_map(&vaddr, new_end, end,
412	    VM_PROT_READ | VM_PROT_WRITE);
413	vm_page_array = (vm_page_t) mapped;
414#if VM_NRESERVLEVEL > 0
415	/*
416	 * Allocate memory for the reservation management system's data
417	 * structures.
418	 */
419	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
420#endif
421#if defined(__amd64__) || defined(__mips__)
422	/*
423	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
424	 * like i386, so the pages must be tracked for a crashdump to include
425	 * this data.  This includes the vm_page_array and the early UMA
426	 * bootstrap pages.
427	 */
428	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
429		dump_add_page(pa);
430#endif
431	phys_avail[biggestone + 1] = new_end;
432
433	/*
434	 * Clear all of the page structures
435	 */
436	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
437	for (i = 0; i < page_range; i++)
438		vm_page_array[i].order = VM_NFREEORDER;
439	vm_page_array_size = page_range;
440
441	/*
442	 * Initialize the physical memory allocator.
443	 */
444	vm_phys_init();
445
446	/*
447	 * Add every available physical page that is not blacklisted to
448	 * the free lists.
449	 */
450	cnt.v_page_count = 0;
451	cnt.v_free_count = 0;
452	list = getenv("vm.blacklist");
453	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
454		pa = phys_avail[i];
455		last_pa = phys_avail[i + 1];
456		while (pa < last_pa) {
457			if (list != NULL &&
458			    vm_page_blacklist_lookup(list, pa))
459				printf("Skipping page with pa 0x%jx\n",
460				    (uintmax_t)pa);
461			else
462				vm_phys_add_page(pa);
463			pa += PAGE_SIZE;
464		}
465	}
466	freeenv(list);
467#if VM_NRESERVLEVEL > 0
468	/*
469	 * Initialize the reservation management system.
470	 */
471	vm_reserv_init();
472#endif
473	return (vaddr);
474}
475
476void
477vm_page_flag_set(vm_page_t m, unsigned short bits)
478{
479
480	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
481	/*
482	 * The PG_WRITEABLE flag can only be set if the page is managed and
483	 * VPO_BUSY.  Currently, this flag is only set by pmap_enter().
484	 */
485	KASSERT((bits & PG_WRITEABLE) == 0 ||
486	    ((m->flags & (PG_UNMANAGED | PG_FICTITIOUS)) == 0 &&
487	    (m->oflags & VPO_BUSY) != 0), ("PG_WRITEABLE and !VPO_BUSY"));
488	m->flags |= bits;
489}
490
491void
492vm_page_flag_clear(vm_page_t m, unsigned short bits)
493{
494
495	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
496	/*
497	 * The PG_REFERENCED flag can only be cleared if the object
498	 * containing the page is locked.
499	 */
500	KASSERT((bits & PG_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object),
501	    ("PG_REFERENCED and !VM_OBJECT_LOCKED"));
502	m->flags &= ~bits;
503}
504
505void
506vm_page_busy(vm_page_t m)
507{
508
509	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
510	KASSERT((m->oflags & VPO_BUSY) == 0,
511	    ("vm_page_busy: page already busy!!!"));
512	m->oflags |= VPO_BUSY;
513}
514
515/*
516 *      vm_page_flash:
517 *
518 *      wakeup anyone waiting for the page.
519 */
520void
521vm_page_flash(vm_page_t m)
522{
523
524	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
525	if (m->oflags & VPO_WANTED) {
526		m->oflags &= ~VPO_WANTED;
527		wakeup(m);
528	}
529}
530
531/*
532 *      vm_page_wakeup:
533 *
534 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
535 *      page.
536 *
537 */
538void
539vm_page_wakeup(vm_page_t m)
540{
541
542	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
543	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
544	m->oflags &= ~VPO_BUSY;
545	vm_page_flash(m);
546}
547
548void
549vm_page_io_start(vm_page_t m)
550{
551
552	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
553	m->busy++;
554}
555
556void
557vm_page_io_finish(vm_page_t m)
558{
559
560	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
561	m->busy--;
562	if (m->busy == 0)
563		vm_page_flash(m);
564}
565
566/*
567 * Keep page from being freed by the page daemon
568 * much of the same effect as wiring, except much lower
569 * overhead and should be used only for *very* temporary
570 * holding ("wiring").
571 */
572void
573vm_page_hold(vm_page_t mem)
574{
575
576	vm_page_lock_assert(mem, MA_OWNED);
577        mem->hold_count++;
578}
579
580void
581vm_page_unhold(vm_page_t mem)
582{
583
584	vm_page_lock_assert(mem, MA_OWNED);
585	--mem->hold_count;
586	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
587	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
588		vm_page_free_toq(mem);
589}
590
591/*
592 *	vm_page_unhold_pages:
593 *
594 *	Unhold each of the pages that is referenced by the given array.
595 */
596void
597vm_page_unhold_pages(vm_page_t *ma, int count)
598{
599	struct mtx *mtx, *new_mtx;
600
601	mtx = NULL;
602	for (; count != 0; count--) {
603		/*
604		 * Avoid releasing and reacquiring the same page lock.
605		 */
606		new_mtx = vm_page_lockptr(*ma);
607		if (mtx != new_mtx) {
608			if (mtx != NULL)
609				mtx_unlock(mtx);
610			mtx = new_mtx;
611			mtx_lock(mtx);
612		}
613		vm_page_unhold(*ma);
614		ma++;
615	}
616	if (mtx != NULL)
617		mtx_unlock(mtx);
618}
619
620/*
621 *	vm_page_free:
622 *
623 *	Free a page.
624 */
625void
626vm_page_free(vm_page_t m)
627{
628
629	m->flags &= ~PG_ZERO;
630	vm_page_free_toq(m);
631}
632
633/*
634 *	vm_page_free_zero:
635 *
636 *	Free a page to the zerod-pages queue
637 */
638void
639vm_page_free_zero(vm_page_t m)
640{
641
642	m->flags |= PG_ZERO;
643	vm_page_free_toq(m);
644}
645
646/*
647 *	vm_page_sleep:
648 *
649 *	Sleep and release the page and page queues locks.
650 *
651 *	The object containing the given page must be locked.
652 */
653void
654vm_page_sleep(vm_page_t m, const char *msg)
655{
656
657	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
658	if (mtx_owned(&vm_page_queue_mtx))
659		vm_page_unlock_queues();
660	if (mtx_owned(vm_page_lockptr(m)))
661		vm_page_unlock(m);
662
663	/*
664	 * It's possible that while we sleep, the page will get
665	 * unbusied and freed.  If we are holding the object
666	 * lock, we will assume we hold a reference to the object
667	 * such that even if m->object changes, we can re-lock
668	 * it.
669	 */
670	m->oflags |= VPO_WANTED;
671	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
672}
673
674/*
675 *	vm_page_dirty:
676 *
677 *	make page all dirty
678 */
679void
680vm_page_dirty(vm_page_t m)
681{
682
683	KASSERT((m->flags & PG_CACHED) == 0,
684	    ("vm_page_dirty: page in cache!"));
685	KASSERT(!VM_PAGE_IS_FREE(m),
686	    ("vm_page_dirty: page is free!"));
687	KASSERT(m->valid == VM_PAGE_BITS_ALL,
688	    ("vm_page_dirty: page is invalid!"));
689	m->dirty = VM_PAGE_BITS_ALL;
690}
691
692/*
693 *	vm_page_splay:
694 *
695 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
696 *	the vm_page containing the given pindex.  If, however, that
697 *	pindex is not found in the vm_object, returns a vm_page that is
698 *	adjacent to the pindex, coming before or after it.
699 */
700vm_page_t
701vm_page_splay(vm_pindex_t pindex, vm_page_t root)
702{
703	struct vm_page dummy;
704	vm_page_t lefttreemax, righttreemin, y;
705
706	if (root == NULL)
707		return (root);
708	lefttreemax = righttreemin = &dummy;
709	for (;; root = y) {
710		if (pindex < root->pindex) {
711			if ((y = root->left) == NULL)
712				break;
713			if (pindex < y->pindex) {
714				/* Rotate right. */
715				root->left = y->right;
716				y->right = root;
717				root = y;
718				if ((y = root->left) == NULL)
719					break;
720			}
721			/* Link into the new root's right tree. */
722			righttreemin->left = root;
723			righttreemin = root;
724		} else if (pindex > root->pindex) {
725			if ((y = root->right) == NULL)
726				break;
727			if (pindex > y->pindex) {
728				/* Rotate left. */
729				root->right = y->left;
730				y->left = root;
731				root = y;
732				if ((y = root->right) == NULL)
733					break;
734			}
735			/* Link into the new root's left tree. */
736			lefttreemax->right = root;
737			lefttreemax = root;
738		} else
739			break;
740	}
741	/* Assemble the new root. */
742	lefttreemax->right = root->left;
743	righttreemin->left = root->right;
744	root->left = dummy.right;
745	root->right = dummy.left;
746	return (root);
747}
748
749/*
750 *	vm_page_insert:		[ internal use only ]
751 *
752 *	Inserts the given mem entry into the object and object list.
753 *
754 *	The pagetables are not updated but will presumably fault the page
755 *	in if necessary, or if a kernel page the caller will at some point
756 *	enter the page into the kernel's pmap.  We are not allowed to block
757 *	here so we *can't* do this anyway.
758 *
759 *	The object and page must be locked.
760 *	This routine may not block.
761 */
762void
763vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
764{
765	vm_page_t root;
766
767	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
768	if (m->object != NULL)
769		panic("vm_page_insert: page already inserted");
770
771	/*
772	 * Record the object/offset pair in this page
773	 */
774	m->object = object;
775	m->pindex = pindex;
776
777	/*
778	 * Now link into the object's ordered list of backed pages.
779	 */
780	root = object->root;
781	if (root == NULL) {
782		m->left = NULL;
783		m->right = NULL;
784		TAILQ_INSERT_TAIL(&object->memq, m, listq);
785	} else {
786		root = vm_page_splay(pindex, root);
787		if (pindex < root->pindex) {
788			m->left = root->left;
789			m->right = root;
790			root->left = NULL;
791			TAILQ_INSERT_BEFORE(root, m, listq);
792		} else if (pindex == root->pindex)
793			panic("vm_page_insert: offset already allocated");
794		else {
795			m->right = root->right;
796			m->left = root;
797			root->right = NULL;
798			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
799		}
800	}
801	object->root = m;
802
803	/*
804	 * show that the object has one more resident page.
805	 */
806	object->resident_page_count++;
807	/*
808	 * Hold the vnode until the last page is released.
809	 */
810	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
811		vhold((struct vnode *)object->handle);
812
813	/*
814	 * Since we are inserting a new and possibly dirty page,
815	 * update the object's OBJ_MIGHTBEDIRTY flag.
816	 */
817	if (m->flags & PG_WRITEABLE)
818		vm_object_set_writeable_dirty(object);
819}
820
821/*
822 *	vm_page_remove:
823 *				NOTE: used by device pager as well -wfj
824 *
825 *	Removes the given mem entry from the object/offset-page
826 *	table and the object page list, but do not invalidate/terminate
827 *	the backing store.
828 *
829 *	The object and page must be locked.
830 *	The underlying pmap entry (if any) is NOT removed here.
831 *	This routine may not block.
832 */
833void
834vm_page_remove(vm_page_t m)
835{
836	vm_object_t object;
837	vm_page_t root;
838
839	if ((m->flags & PG_UNMANAGED) == 0)
840		vm_page_lock_assert(m, MA_OWNED);
841	if ((object = m->object) == NULL)
842		return;
843	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
844	if (m->oflags & VPO_BUSY) {
845		m->oflags &= ~VPO_BUSY;
846		vm_page_flash(m);
847	}
848
849	/*
850	 * Now remove from the object's list of backed pages.
851	 */
852	if (m != object->root)
853		vm_page_splay(m->pindex, object->root);
854	if (m->left == NULL)
855		root = m->right;
856	else {
857		root = vm_page_splay(m->pindex, m->left);
858		root->right = m->right;
859	}
860	object->root = root;
861	TAILQ_REMOVE(&object->memq, m, listq);
862
863	/*
864	 * And show that the object has one fewer resident page.
865	 */
866	object->resident_page_count--;
867	/*
868	 * The vnode may now be recycled.
869	 */
870	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
871		vdrop((struct vnode *)object->handle);
872
873	m->object = NULL;
874}
875
876/*
877 *	vm_page_lookup:
878 *
879 *	Returns the page associated with the object/offset
880 *	pair specified; if none is found, NULL is returned.
881 *
882 *	The object must be locked.
883 *	This routine may not block.
884 *	This is a critical path routine
885 */
886vm_page_t
887vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
888{
889	vm_page_t m;
890
891	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
892	if ((m = object->root) != NULL && m->pindex != pindex) {
893		m = vm_page_splay(pindex, m);
894		if ((object->root = m)->pindex != pindex)
895			m = NULL;
896	}
897	return (m);
898}
899
900/*
901 *	vm_page_find_least:
902 *
903 *	Returns the page associated with the object with least pindex
904 *	greater than or equal to the parameter pindex, or NULL.
905 *
906 *	The object must be locked.
907 *	The routine may not block.
908 */
909vm_page_t
910vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
911{
912	vm_page_t m;
913
914	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
915	if ((m = TAILQ_FIRST(&object->memq)) != NULL) {
916		if (m->pindex < pindex) {
917			m = vm_page_splay(pindex, object->root);
918			if ((object->root = m)->pindex < pindex)
919				m = TAILQ_NEXT(m, listq);
920		}
921	}
922	return (m);
923}
924
925/*
926 * Returns the given page's successor (by pindex) within the object if it is
927 * resident; if none is found, NULL is returned.
928 *
929 * The object must be locked.
930 */
931vm_page_t
932vm_page_next(vm_page_t m)
933{
934	vm_page_t next;
935
936	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
937	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
938	    next->pindex != m->pindex + 1)
939		next = NULL;
940	return (next);
941}
942
943/*
944 * Returns the given page's predecessor (by pindex) within the object if it is
945 * resident; if none is found, NULL is returned.
946 *
947 * The object must be locked.
948 */
949vm_page_t
950vm_page_prev(vm_page_t m)
951{
952	vm_page_t prev;
953
954	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
955	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
956	    prev->pindex != m->pindex - 1)
957		prev = NULL;
958	return (prev);
959}
960
961/*
962 *	vm_page_rename:
963 *
964 *	Move the given memory entry from its
965 *	current object to the specified target object/offset.
966 *
967 *	The object must be locked.
968 *	This routine may not block.
969 *
970 *	Note: swap associated with the page must be invalidated by the move.  We
971 *	      have to do this for several reasons:  (1) we aren't freeing the
972 *	      page, (2) we are dirtying the page, (3) the VM system is probably
973 *	      moving the page from object A to B, and will then later move
974 *	      the backing store from A to B and we can't have a conflict.
975 *
976 *	Note: we *always* dirty the page.  It is necessary both for the
977 *	      fact that we moved it, and because we may be invalidating
978 *	      swap.  If the page is on the cache, we have to deactivate it
979 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
980 *	      on the cache.
981 */
982void
983vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
984{
985
986	vm_page_remove(m);
987	vm_page_insert(m, new_object, new_pindex);
988	vm_page_dirty(m);
989}
990
991/*
992 *	Convert all of the given object's cached pages that have a
993 *	pindex within the given range into free pages.  If the value
994 *	zero is given for "end", then the range's upper bound is
995 *	infinity.  If the given object is backed by a vnode and it
996 *	transitions from having one or more cached pages to none, the
997 *	vnode's hold count is reduced.
998 */
999void
1000vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1001{
1002	vm_page_t m, m_next;
1003	boolean_t empty;
1004
1005	mtx_lock(&vm_page_queue_free_mtx);
1006	if (__predict_false(object->cache == NULL)) {
1007		mtx_unlock(&vm_page_queue_free_mtx);
1008		return;
1009	}
1010	m = object->cache = vm_page_splay(start, object->cache);
1011	if (m->pindex < start) {
1012		if (m->right == NULL)
1013			m = NULL;
1014		else {
1015			m_next = vm_page_splay(start, m->right);
1016			m_next->left = m;
1017			m->right = NULL;
1018			m = object->cache = m_next;
1019		}
1020	}
1021
1022	/*
1023	 * At this point, "m" is either (1) a reference to the page
1024	 * with the least pindex that is greater than or equal to
1025	 * "start" or (2) NULL.
1026	 */
1027	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
1028		/*
1029		 * Find "m"'s successor and remove "m" from the
1030		 * object's cache.
1031		 */
1032		if (m->right == NULL) {
1033			object->cache = m->left;
1034			m_next = NULL;
1035		} else {
1036			m_next = vm_page_splay(start, m->right);
1037			m_next->left = m->left;
1038			object->cache = m_next;
1039		}
1040		/* Convert "m" to a free page. */
1041		m->object = NULL;
1042		m->valid = 0;
1043		/* Clear PG_CACHED and set PG_FREE. */
1044		m->flags ^= PG_CACHED | PG_FREE;
1045		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
1046		    ("vm_page_cache_free: page %p has inconsistent flags", m));
1047		cnt.v_cache_count--;
1048		cnt.v_free_count++;
1049	}
1050	empty = object->cache == NULL;
1051	mtx_unlock(&vm_page_queue_free_mtx);
1052	if (object->type == OBJT_VNODE && empty)
1053		vdrop(object->handle);
1054}
1055
1056/*
1057 *	Returns the cached page that is associated with the given
1058 *	object and offset.  If, however, none exists, returns NULL.
1059 *
1060 *	The free page queue must be locked.
1061 */
1062static inline vm_page_t
1063vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1064{
1065	vm_page_t m;
1066
1067	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1068	if ((m = object->cache) != NULL && m->pindex != pindex) {
1069		m = vm_page_splay(pindex, m);
1070		if ((object->cache = m)->pindex != pindex)
1071			m = NULL;
1072	}
1073	return (m);
1074}
1075
1076/*
1077 *	Remove the given cached page from its containing object's
1078 *	collection of cached pages.
1079 *
1080 *	The free page queue must be locked.
1081 */
1082void
1083vm_page_cache_remove(vm_page_t m)
1084{
1085	vm_object_t object;
1086	vm_page_t root;
1087
1088	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1089	KASSERT((m->flags & PG_CACHED) != 0,
1090	    ("vm_page_cache_remove: page %p is not cached", m));
1091	object = m->object;
1092	if (m != object->cache) {
1093		root = vm_page_splay(m->pindex, object->cache);
1094		KASSERT(root == m,
1095		    ("vm_page_cache_remove: page %p is not cached in object %p",
1096		    m, object));
1097	}
1098	if (m->left == NULL)
1099		root = m->right;
1100	else if (m->right == NULL)
1101		root = m->left;
1102	else {
1103		root = vm_page_splay(m->pindex, m->left);
1104		root->right = m->right;
1105	}
1106	object->cache = root;
1107	m->object = NULL;
1108	cnt.v_cache_count--;
1109}
1110
1111/*
1112 *	Transfer all of the cached pages with offset greater than or
1113 *	equal to 'offidxstart' from the original object's cache to the
1114 *	new object's cache.  However, any cached pages with offset
1115 *	greater than or equal to the new object's size are kept in the
1116 *	original object.  Initially, the new object's cache must be
1117 *	empty.  Offset 'offidxstart' in the original object must
1118 *	correspond to offset zero in the new object.
1119 *
1120 *	The new object must be locked.
1121 */
1122void
1123vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1124    vm_object_t new_object)
1125{
1126	vm_page_t m, m_next;
1127
1128	/*
1129	 * Insertion into an object's collection of cached pages
1130	 * requires the object to be locked.  In contrast, removal does
1131	 * not.
1132	 */
1133	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
1134	KASSERT(new_object->cache == NULL,
1135	    ("vm_page_cache_transfer: object %p has cached pages",
1136	    new_object));
1137	mtx_lock(&vm_page_queue_free_mtx);
1138	if ((m = orig_object->cache) != NULL) {
1139		/*
1140		 * Transfer all of the pages with offset greater than or
1141		 * equal to 'offidxstart' from the original object's
1142		 * cache to the new object's cache.
1143		 */
1144		m = vm_page_splay(offidxstart, m);
1145		if (m->pindex < offidxstart) {
1146			orig_object->cache = m;
1147			new_object->cache = m->right;
1148			m->right = NULL;
1149		} else {
1150			orig_object->cache = m->left;
1151			new_object->cache = m;
1152			m->left = NULL;
1153		}
1154		while ((m = new_object->cache) != NULL) {
1155			if ((m->pindex - offidxstart) >= new_object->size) {
1156				/*
1157				 * Return all of the cached pages with
1158				 * offset greater than or equal to the
1159				 * new object's size to the original
1160				 * object's cache.
1161				 */
1162				new_object->cache = m->left;
1163				m->left = orig_object->cache;
1164				orig_object->cache = m;
1165				break;
1166			}
1167			m_next = vm_page_splay(m->pindex, m->right);
1168			/* Update the page's object and offset. */
1169			m->object = new_object;
1170			m->pindex -= offidxstart;
1171			if (m_next == NULL)
1172				break;
1173			m->right = NULL;
1174			m_next->left = m;
1175			new_object->cache = m_next;
1176		}
1177		KASSERT(new_object->cache == NULL ||
1178		    new_object->type == OBJT_SWAP,
1179		    ("vm_page_cache_transfer: object %p's type is incompatible"
1180		    " with cached pages", new_object));
1181	}
1182	mtx_unlock(&vm_page_queue_free_mtx);
1183}
1184
1185/*
1186 *	vm_page_alloc:
1187 *
1188 *	Allocate and return a memory cell associated
1189 *	with this VM object/offset pair.
1190 *
1191 *	The caller must always specify an allocation class.
1192 *
1193 *	allocation classes:
1194 *	VM_ALLOC_NORMAL		normal process request
1195 *	VM_ALLOC_SYSTEM		system *really* needs a page
1196 *	VM_ALLOC_INTERRUPT	interrupt time request
1197 *
1198 *	optional allocation flags:
1199 *	VM_ALLOC_ZERO		prefer a zeroed page
1200 *	VM_ALLOC_WIRED		wire the allocated page
1201 *	VM_ALLOC_NOOBJ		page is not associated with a vm object
1202 *	VM_ALLOC_NOBUSY		do not set the page busy
1203 *	VM_ALLOC_IFCACHED	return page only if it is cached
1204 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1205 *				is cached
1206 *
1207 *	This routine may not sleep.
1208 */
1209vm_page_t
1210vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1211{
1212	struct vnode *vp = NULL;
1213	vm_object_t m_object;
1214	vm_page_t m;
1215	int flags, page_req;
1216
1217	page_req = req & VM_ALLOC_CLASS_MASK;
1218	KASSERT(curthread->td_intr_nesting_level == 0 ||
1219	    page_req == VM_ALLOC_INTERRUPT,
1220	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
1221
1222	if ((req & VM_ALLOC_NOOBJ) == 0) {
1223		KASSERT(object != NULL,
1224		    ("vm_page_alloc: NULL object."));
1225		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1226	}
1227
1228	/*
1229	 * The pager is allowed to eat deeper into the free page list.
1230	 */
1231	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
1232		page_req = VM_ALLOC_SYSTEM;
1233	};
1234
1235	mtx_lock(&vm_page_queue_free_mtx);
1236	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1237	    (page_req == VM_ALLOC_SYSTEM &&
1238	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1239	    (page_req == VM_ALLOC_INTERRUPT &&
1240	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1241		/*
1242		 * Allocate from the free queue if the number of free pages
1243		 * exceeds the minimum for the request class.
1244		 */
1245		if (object != NULL &&
1246		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1247			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1248				mtx_unlock(&vm_page_queue_free_mtx);
1249				return (NULL);
1250			}
1251			if (vm_phys_unfree_page(m))
1252				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1253#if VM_NRESERVLEVEL > 0
1254			else if (!vm_reserv_reactivate_page(m))
1255#else
1256			else
1257#endif
1258				panic("vm_page_alloc: cache page %p is missing"
1259				    " from the free queue", m);
1260		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1261			mtx_unlock(&vm_page_queue_free_mtx);
1262			return (NULL);
1263#if VM_NRESERVLEVEL > 0
1264		} else if (object == NULL || object->type == OBJT_DEVICE ||
1265		    object->type == OBJT_SG ||
1266		    (object->flags & OBJ_COLORED) == 0 ||
1267		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1268#else
1269		} else {
1270#endif
1271			m = vm_phys_alloc_pages(object != NULL ?
1272			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1273#if VM_NRESERVLEVEL > 0
1274			if (m == NULL && vm_reserv_reclaim_inactive()) {
1275				m = vm_phys_alloc_pages(object != NULL ?
1276				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1277				    0);
1278			}
1279#endif
1280		}
1281	} else {
1282		/*
1283		 * Not allocatable, give up.
1284		 */
1285		mtx_unlock(&vm_page_queue_free_mtx);
1286		atomic_add_int(&vm_pageout_deficit,
1287		    MAX((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1288		pagedaemon_wakeup();
1289		return (NULL);
1290	}
1291
1292	/*
1293	 *  At this point we had better have found a good page.
1294	 */
1295
1296	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1297	KASSERT(m->queue == PQ_NONE,
1298	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1299	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1300	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1301	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1302	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1303	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1304	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1305	    pmap_page_get_memattr(m)));
1306	if ((m->flags & PG_CACHED) != 0) {
1307		KASSERT(m->valid != 0,
1308		    ("vm_page_alloc: cached page %p is invalid", m));
1309		if (m->object == object && m->pindex == pindex)
1310	  		cnt.v_reactivated++;
1311		else
1312			m->valid = 0;
1313		m_object = m->object;
1314		vm_page_cache_remove(m);
1315		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1316			vp = m_object->handle;
1317	} else {
1318		KASSERT(VM_PAGE_IS_FREE(m),
1319		    ("vm_page_alloc: page %p is not free", m));
1320		KASSERT(m->valid == 0,
1321		    ("vm_page_alloc: free page %p is valid", m));
1322		cnt.v_free_count--;
1323	}
1324
1325	/*
1326	 * Initialize structure.  Only the PG_ZERO flag is inherited.
1327	 */
1328	flags = 0;
1329	if (m->flags & PG_ZERO) {
1330		vm_page_zero_count--;
1331		if (req & VM_ALLOC_ZERO)
1332			flags = PG_ZERO;
1333	}
1334	if (object == NULL || object->type == OBJT_PHYS)
1335		flags |= PG_UNMANAGED;
1336	m->flags = flags;
1337	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
1338		m->oflags = 0;
1339	else
1340		m->oflags = VPO_BUSY;
1341	if (req & VM_ALLOC_WIRED) {
1342		atomic_add_int(&cnt.v_wire_count, 1);
1343		m->wire_count = 1;
1344	}
1345	m->act_count = 0;
1346	mtx_unlock(&vm_page_queue_free_mtx);
1347
1348	if (object != NULL) {
1349		/* Ignore device objects; the pager sets "memattr" for them. */
1350		if (object->memattr != VM_MEMATTR_DEFAULT &&
1351		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1352			pmap_page_set_memattr(m, object->memattr);
1353		vm_page_insert(m, object, pindex);
1354	} else
1355		m->pindex = pindex;
1356
1357	/*
1358	 * The following call to vdrop() must come after the above call
1359	 * to vm_page_insert() in case both affect the same object and
1360	 * vnode.  Otherwise, the affected vnode's hold count could
1361	 * temporarily become zero.
1362	 */
1363	if (vp != NULL)
1364		vdrop(vp);
1365
1366	/*
1367	 * Don't wakeup too often - wakeup the pageout daemon when
1368	 * we would be nearly out of memory.
1369	 */
1370	if (vm_paging_needed())
1371		pagedaemon_wakeup();
1372
1373	return (m);
1374}
1375
1376/*
1377 * Initialize a page that has been freshly dequeued from a freelist.
1378 * The caller has to drop the vnode returned, if it is not NULL.
1379 *
1380 * To be called with vm_page_queue_free_mtx held.
1381 */
1382struct vnode *
1383vm_page_alloc_init(vm_page_t m)
1384{
1385	struct vnode *drop;
1386	vm_object_t m_object;
1387
1388	KASSERT(m->queue == PQ_NONE,
1389	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1390	    m, m->queue));
1391	KASSERT(m->wire_count == 0,
1392	    ("vm_page_alloc_init: page %p is wired", m));
1393	KASSERT(m->hold_count == 0,
1394	    ("vm_page_alloc_init: page %p is held", m));
1395	KASSERT(m->busy == 0,
1396	    ("vm_page_alloc_init: page %p is busy", m));
1397	KASSERT(m->dirty == 0,
1398	    ("vm_page_alloc_init: page %p is dirty", m));
1399	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1400	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1401	    m, pmap_page_get_memattr(m)));
1402	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1403	drop = NULL;
1404	if ((m->flags & PG_CACHED) != 0) {
1405		m->valid = 0;
1406		m_object = m->object;
1407		vm_page_cache_remove(m);
1408		if (m_object->type == OBJT_VNODE &&
1409		    m_object->cache == NULL)
1410			drop = m_object->handle;
1411	} else {
1412		KASSERT(VM_PAGE_IS_FREE(m),
1413		    ("vm_page_alloc_init: page %p is not free", m));
1414		KASSERT(m->valid == 0,
1415		    ("vm_page_alloc_init: free page %p is valid", m));
1416		cnt.v_free_count--;
1417	}
1418	if (m->flags & PG_ZERO)
1419		vm_page_zero_count--;
1420	/* Don't clear the PG_ZERO flag; we'll need it later. */
1421	m->flags = PG_UNMANAGED | (m->flags & PG_ZERO);
1422	m->oflags = 0;
1423	/* Unmanaged pages don't use "act_count". */
1424	return (drop);
1425}
1426
1427/*
1428 * 	vm_page_alloc_freelist:
1429 *
1430 *	Allocate a page from the specified freelist.
1431 *	Only the ALLOC_CLASS values in req are honored, other request flags
1432 *	are ignored.
1433 */
1434vm_page_t
1435vm_page_alloc_freelist(int flind, int req)
1436{
1437	struct vnode *drop;
1438	vm_page_t m;
1439	int page_req;
1440
1441	m = NULL;
1442	page_req = req & VM_ALLOC_CLASS_MASK;
1443	mtx_lock(&vm_page_queue_free_mtx);
1444	/*
1445	 * Do not allocate reserved pages unless the req has asked for it.
1446	 */
1447	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1448	    (page_req == VM_ALLOC_SYSTEM &&
1449	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1450	    (page_req == VM_ALLOC_INTERRUPT &&
1451	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1452		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1453	}
1454	if (m == NULL) {
1455		mtx_unlock(&vm_page_queue_free_mtx);
1456		return (NULL);
1457	}
1458	drop = vm_page_alloc_init(m);
1459	mtx_unlock(&vm_page_queue_free_mtx);
1460	if (drop)
1461		vdrop(drop);
1462	return (m);
1463}
1464
1465/*
1466 *	vm_wait:	(also see VM_WAIT macro)
1467 *
1468 *	Block until free pages are available for allocation
1469 *	- Called in various places before memory allocations.
1470 */
1471void
1472vm_wait(void)
1473{
1474
1475	mtx_lock(&vm_page_queue_free_mtx);
1476	if (curproc == pageproc) {
1477		vm_pageout_pages_needed = 1;
1478		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1479		    PDROP | PSWP, "VMWait", 0);
1480	} else {
1481		if (!vm_pages_needed) {
1482			vm_pages_needed = 1;
1483			wakeup(&vm_pages_needed);
1484		}
1485		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1486		    "vmwait", 0);
1487	}
1488}
1489
1490/*
1491 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1492 *
1493 *	Block until free pages are available for allocation
1494 *	- Called only in vm_fault so that processes page faulting
1495 *	  can be easily tracked.
1496 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1497 *	  processes will be able to grab memory first.  Do not change
1498 *	  this balance without careful testing first.
1499 */
1500void
1501vm_waitpfault(void)
1502{
1503
1504	mtx_lock(&vm_page_queue_free_mtx);
1505	if (!vm_pages_needed) {
1506		vm_pages_needed = 1;
1507		wakeup(&vm_pages_needed);
1508	}
1509	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1510	    "pfault", 0);
1511}
1512
1513/*
1514 *	vm_page_requeue:
1515 *
1516 *	Move the given page to the tail of its present page queue.
1517 *
1518 *	The page queues must be locked.
1519 */
1520void
1521vm_page_requeue(vm_page_t m)
1522{
1523	struct vpgqueues *vpq;
1524	int queue;
1525
1526	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1527	queue = m->queue;
1528	KASSERT(queue != PQ_NONE,
1529	    ("vm_page_requeue: page %p is not queued", m));
1530	vpq = &vm_page_queues[queue];
1531	TAILQ_REMOVE(&vpq->pl, m, pageq);
1532	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1533}
1534
1535/*
1536 *	vm_page_queue_remove:
1537 *
1538 *	Remove the given page from the specified queue.
1539 *
1540 *	The page and page queues must be locked.
1541 */
1542static __inline void
1543vm_page_queue_remove(int queue, vm_page_t m)
1544{
1545	struct vpgqueues *pq;
1546
1547	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1548	vm_page_lock_assert(m, MA_OWNED);
1549	pq = &vm_page_queues[queue];
1550	TAILQ_REMOVE(&pq->pl, m, pageq);
1551	(*pq->cnt)--;
1552}
1553
1554/*
1555 *	vm_pageq_remove:
1556 *
1557 *	Remove a page from its queue.
1558 *
1559 *	The given page must be locked.
1560 *	This routine may not block.
1561 */
1562void
1563vm_pageq_remove(vm_page_t m)
1564{
1565	int queue;
1566
1567	vm_page_lock_assert(m, MA_OWNED);
1568	if ((queue = m->queue) != PQ_NONE) {
1569		vm_page_lock_queues();
1570		m->queue = PQ_NONE;
1571		vm_page_queue_remove(queue, m);
1572		vm_page_unlock_queues();
1573	}
1574}
1575
1576/*
1577 *	vm_page_enqueue:
1578 *
1579 *	Add the given page to the specified queue.
1580 *
1581 *	The page queues must be locked.
1582 */
1583static void
1584vm_page_enqueue(int queue, vm_page_t m)
1585{
1586	struct vpgqueues *vpq;
1587
1588	vpq = &vm_page_queues[queue];
1589	m->queue = queue;
1590	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1591	++*vpq->cnt;
1592}
1593
1594/*
1595 *	vm_page_activate:
1596 *
1597 *	Put the specified page on the active list (if appropriate).
1598 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1599 *	mess with it.
1600 *
1601 *	The page must be locked.
1602 *	This routine may not block.
1603 */
1604void
1605vm_page_activate(vm_page_t m)
1606{
1607	int queue;
1608
1609	vm_page_lock_assert(m, MA_OWNED);
1610	if ((queue = m->queue) != PQ_ACTIVE) {
1611		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1612			if (m->act_count < ACT_INIT)
1613				m->act_count = ACT_INIT;
1614			vm_page_lock_queues();
1615			if (queue != PQ_NONE)
1616				vm_page_queue_remove(queue, m);
1617			vm_page_enqueue(PQ_ACTIVE, m);
1618			vm_page_unlock_queues();
1619		} else
1620			KASSERT(queue == PQ_NONE,
1621			    ("vm_page_activate: wired page %p is queued", m));
1622	} else {
1623		if (m->act_count < ACT_INIT)
1624			m->act_count = ACT_INIT;
1625	}
1626}
1627
1628/*
1629 *	vm_page_free_wakeup:
1630 *
1631 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1632 *	routine is called when a page has been added to the cache or free
1633 *	queues.
1634 *
1635 *	The page queues must be locked.
1636 *	This routine may not block.
1637 */
1638static inline void
1639vm_page_free_wakeup(void)
1640{
1641
1642	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1643	/*
1644	 * if pageout daemon needs pages, then tell it that there are
1645	 * some free.
1646	 */
1647	if (vm_pageout_pages_needed &&
1648	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1649		wakeup(&vm_pageout_pages_needed);
1650		vm_pageout_pages_needed = 0;
1651	}
1652	/*
1653	 * wakeup processes that are waiting on memory if we hit a
1654	 * high water mark. And wakeup scheduler process if we have
1655	 * lots of memory. this process will swapin processes.
1656	 */
1657	if (vm_pages_needed && !vm_page_count_min()) {
1658		vm_pages_needed = 0;
1659		wakeup(&cnt.v_free_count);
1660	}
1661}
1662
1663/*
1664 *	vm_page_free_toq:
1665 *
1666 *	Returns the given page to the free list,
1667 *	disassociating it with any VM object.
1668 *
1669 *	Object and page must be locked prior to entry.
1670 *	This routine may not block.
1671 */
1672
1673void
1674vm_page_free_toq(vm_page_t m)
1675{
1676
1677	if ((m->flags & PG_UNMANAGED) == 0) {
1678		vm_page_lock_assert(m, MA_OWNED);
1679		KASSERT(!pmap_page_is_mapped(m),
1680		    ("vm_page_free_toq: freeing mapped page %p", m));
1681	}
1682	PCPU_INC(cnt.v_tfree);
1683
1684	if (VM_PAGE_IS_FREE(m))
1685		panic("vm_page_free: freeing free page %p", m);
1686	else if (m->busy != 0)
1687		panic("vm_page_free: freeing busy page %p", m);
1688
1689	/*
1690	 * unqueue, then remove page.  Note that we cannot destroy
1691	 * the page here because we do not want to call the pager's
1692	 * callback routine until after we've put the page on the
1693	 * appropriate free queue.
1694	 */
1695	if ((m->flags & PG_UNMANAGED) == 0)
1696		vm_pageq_remove(m);
1697	vm_page_remove(m);
1698
1699	/*
1700	 * If fictitious remove object association and
1701	 * return, otherwise delay object association removal.
1702	 */
1703	if ((m->flags & PG_FICTITIOUS) != 0) {
1704		return;
1705	}
1706
1707	m->valid = 0;
1708	vm_page_undirty(m);
1709
1710	if (m->wire_count != 0)
1711		panic("vm_page_free: freeing wired page %p", m);
1712	if (m->hold_count != 0) {
1713		m->flags &= ~PG_ZERO;
1714		vm_page_lock_queues();
1715		vm_page_enqueue(PQ_HOLD, m);
1716		vm_page_unlock_queues();
1717	} else {
1718		/*
1719		 * Restore the default memory attribute to the page.
1720		 */
1721		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1722			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1723
1724		/*
1725		 * Insert the page into the physical memory allocator's
1726		 * cache/free page queues.
1727		 */
1728		mtx_lock(&vm_page_queue_free_mtx);
1729		m->flags |= PG_FREE;
1730		cnt.v_free_count++;
1731#if VM_NRESERVLEVEL > 0
1732		if (!vm_reserv_free_page(m))
1733#else
1734		if (TRUE)
1735#endif
1736			vm_phys_free_pages(m, 0);
1737		if ((m->flags & PG_ZERO) != 0)
1738			++vm_page_zero_count;
1739		else
1740			vm_page_zero_idle_wakeup();
1741		vm_page_free_wakeup();
1742		mtx_unlock(&vm_page_queue_free_mtx);
1743	}
1744}
1745
1746/*
1747 *	vm_page_wire:
1748 *
1749 *	Mark this page as wired down by yet
1750 *	another map, removing it from paging queues
1751 *	as necessary.
1752 *
1753 *	If the page is fictitious, then its wire count must remain one.
1754 *
1755 *	The page must be locked.
1756 *	This routine may not block.
1757 */
1758void
1759vm_page_wire(vm_page_t m)
1760{
1761
1762	/*
1763	 * Only bump the wire statistics if the page is not already wired,
1764	 * and only unqueue the page if it is on some queue (if it is unmanaged
1765	 * it is already off the queues).
1766	 */
1767	vm_page_lock_assert(m, MA_OWNED);
1768	if ((m->flags & PG_FICTITIOUS) != 0) {
1769		KASSERT(m->wire_count == 1,
1770		    ("vm_page_wire: fictitious page %p's wire count isn't one",
1771		    m));
1772		return;
1773	}
1774	if (m->wire_count == 0) {
1775		if ((m->flags & PG_UNMANAGED) == 0)
1776			vm_pageq_remove(m);
1777		atomic_add_int(&cnt.v_wire_count, 1);
1778	}
1779	m->wire_count++;
1780	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1781}
1782
1783/*
1784 * vm_page_unwire:
1785 *
1786 * Release one wiring of the specified page, potentially enabling it to be
1787 * paged again.  If paging is enabled, then the value of the parameter
1788 * "activate" determines to which queue the page is added.  If "activate" is
1789 * non-zero, then the page is added to the active queue.  Otherwise, it is
1790 * added to the inactive queue.
1791 *
1792 * However, unless the page belongs to an object, it is not enqueued because
1793 * it cannot be paged out.
1794 *
1795 * If a page is fictitious, then its wire count must alway be one.
1796 *
1797 * A managed page must be locked.
1798 */
1799void
1800vm_page_unwire(vm_page_t m, int activate)
1801{
1802
1803	if ((m->flags & PG_UNMANAGED) == 0)
1804		vm_page_lock_assert(m, MA_OWNED);
1805	if ((m->flags & PG_FICTITIOUS) != 0) {
1806		KASSERT(m->wire_count == 1,
1807	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
1808		return;
1809	}
1810	if (m->wire_count > 0) {
1811		m->wire_count--;
1812		if (m->wire_count == 0) {
1813			atomic_subtract_int(&cnt.v_wire_count, 1);
1814			if ((m->flags & PG_UNMANAGED) != 0 ||
1815			    m->object == NULL)
1816				return;
1817			vm_page_lock_queues();
1818			if (activate)
1819				vm_page_enqueue(PQ_ACTIVE, m);
1820			else {
1821				vm_page_flag_clear(m, PG_WINATCFLS);
1822				vm_page_enqueue(PQ_INACTIVE, m);
1823			}
1824			vm_page_unlock_queues();
1825		}
1826	} else
1827		panic("vm_page_unwire: page %p's wire count is zero", m);
1828}
1829
1830/*
1831 * Move the specified page to the inactive queue.
1832 *
1833 * Many pages placed on the inactive queue should actually go
1834 * into the cache, but it is difficult to figure out which.  What
1835 * we do instead, if the inactive target is well met, is to put
1836 * clean pages at the head of the inactive queue instead of the tail.
1837 * This will cause them to be moved to the cache more quickly and
1838 * if not actively re-referenced, reclaimed more quickly.  If we just
1839 * stick these pages at the end of the inactive queue, heavy filesystem
1840 * meta-data accesses can cause an unnecessary paging load on memory bound
1841 * processes.  This optimization causes one-time-use metadata to be
1842 * reused more quickly.
1843 *
1844 * Normally athead is 0 resulting in LRU operation.  athead is set
1845 * to 1 if we want this page to be 'as if it were placed in the cache',
1846 * except without unmapping it from the process address space.
1847 *
1848 * This routine may not block.
1849 */
1850static inline void
1851_vm_page_deactivate(vm_page_t m, int athead)
1852{
1853	int queue;
1854
1855	vm_page_lock_assert(m, MA_OWNED);
1856
1857	/*
1858	 * Ignore if already inactive.
1859	 */
1860	if ((queue = m->queue) == PQ_INACTIVE)
1861		return;
1862	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1863		vm_page_lock_queues();
1864		vm_page_flag_clear(m, PG_WINATCFLS);
1865		if (queue != PQ_NONE)
1866			vm_page_queue_remove(queue, m);
1867		if (athead)
1868			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
1869			    pageq);
1870		else
1871			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
1872			    pageq);
1873		m->queue = PQ_INACTIVE;
1874		cnt.v_inactive_count++;
1875		vm_page_unlock_queues();
1876	}
1877}
1878
1879/*
1880 * Move the specified page to the inactive queue.
1881 *
1882 * The page must be locked.
1883 */
1884void
1885vm_page_deactivate(vm_page_t m)
1886{
1887
1888	_vm_page_deactivate(m, 0);
1889}
1890
1891/*
1892 * vm_page_try_to_cache:
1893 *
1894 * Returns 0 on failure, 1 on success
1895 */
1896int
1897vm_page_try_to_cache(vm_page_t m)
1898{
1899
1900	vm_page_lock_assert(m, MA_OWNED);
1901	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1902	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1903	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1904		return (0);
1905	pmap_remove_all(m);
1906	if (m->dirty)
1907		return (0);
1908	vm_page_cache(m);
1909	return (1);
1910}
1911
1912/*
1913 * vm_page_try_to_free()
1914 *
1915 *	Attempt to free the page.  If we cannot free it, we do nothing.
1916 *	1 is returned on success, 0 on failure.
1917 */
1918int
1919vm_page_try_to_free(vm_page_t m)
1920{
1921
1922	vm_page_lock_assert(m, MA_OWNED);
1923	if (m->object != NULL)
1924		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1925	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1926	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1927		return (0);
1928	pmap_remove_all(m);
1929	if (m->dirty)
1930		return (0);
1931	vm_page_free(m);
1932	return (1);
1933}
1934
1935/*
1936 * vm_page_cache
1937 *
1938 * Put the specified page onto the page cache queue (if appropriate).
1939 *
1940 * This routine may not block.
1941 */
1942void
1943vm_page_cache(vm_page_t m)
1944{
1945	vm_object_t object;
1946	vm_page_t root;
1947
1948	vm_page_lock_assert(m, MA_OWNED);
1949	object = m->object;
1950	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1951	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1952	    m->hold_count || m->wire_count)
1953		panic("vm_page_cache: attempting to cache busy page");
1954	pmap_remove_all(m);
1955	if (m->dirty != 0)
1956		panic("vm_page_cache: page %p is dirty", m);
1957	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
1958	    (object->type == OBJT_SWAP &&
1959	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
1960		/*
1961		 * Hypothesis: A cache-elgible page belonging to a
1962		 * default object or swap object but without a backing
1963		 * store must be zero filled.
1964		 */
1965		vm_page_free(m);
1966		return;
1967	}
1968	KASSERT((m->flags & PG_CACHED) == 0,
1969	    ("vm_page_cache: page %p is already cached", m));
1970	PCPU_INC(cnt.v_tcached);
1971
1972	/*
1973	 * Remove the page from the paging queues.
1974	 */
1975	vm_pageq_remove(m);
1976
1977	/*
1978	 * Remove the page from the object's collection of resident
1979	 * pages.
1980	 */
1981	if (m != object->root)
1982		vm_page_splay(m->pindex, object->root);
1983	if (m->left == NULL)
1984		root = m->right;
1985	else {
1986		root = vm_page_splay(m->pindex, m->left);
1987		root->right = m->right;
1988	}
1989	object->root = root;
1990	TAILQ_REMOVE(&object->memq, m, listq);
1991	object->resident_page_count--;
1992
1993	/*
1994	 * Restore the default memory attribute to the page.
1995	 */
1996	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1997		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1998
1999	/*
2000	 * Insert the page into the object's collection of cached pages
2001	 * and the physical memory allocator's cache/free page queues.
2002	 */
2003	m->flags &= ~PG_ZERO;
2004	mtx_lock(&vm_page_queue_free_mtx);
2005	m->flags |= PG_CACHED;
2006	cnt.v_cache_count++;
2007	root = object->cache;
2008	if (root == NULL) {
2009		m->left = NULL;
2010		m->right = NULL;
2011	} else {
2012		root = vm_page_splay(m->pindex, root);
2013		if (m->pindex < root->pindex) {
2014			m->left = root->left;
2015			m->right = root;
2016			root->left = NULL;
2017		} else if (__predict_false(m->pindex == root->pindex))
2018			panic("vm_page_cache: offset already cached");
2019		else {
2020			m->right = root->right;
2021			m->left = root;
2022			root->right = NULL;
2023		}
2024	}
2025	object->cache = m;
2026#if VM_NRESERVLEVEL > 0
2027	if (!vm_reserv_free_page(m)) {
2028#else
2029	if (TRUE) {
2030#endif
2031		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2032		vm_phys_free_pages(m, 0);
2033	}
2034	vm_page_free_wakeup();
2035	mtx_unlock(&vm_page_queue_free_mtx);
2036
2037	/*
2038	 * Increment the vnode's hold count if this is the object's only
2039	 * cached page.  Decrement the vnode's hold count if this was
2040	 * the object's only resident page.
2041	 */
2042	if (object->type == OBJT_VNODE) {
2043		if (root == NULL && object->resident_page_count != 0)
2044			vhold(object->handle);
2045		else if (root != NULL && object->resident_page_count == 0)
2046			vdrop(object->handle);
2047	}
2048}
2049
2050/*
2051 * vm_page_dontneed
2052 *
2053 *	Cache, deactivate, or do nothing as appropriate.  This routine
2054 *	is typically used by madvise() MADV_DONTNEED.
2055 *
2056 *	Generally speaking we want to move the page into the cache so
2057 *	it gets reused quickly.  However, this can result in a silly syndrome
2058 *	due to the page recycling too quickly.  Small objects will not be
2059 *	fully cached.  On the otherhand, if we move the page to the inactive
2060 *	queue we wind up with a problem whereby very large objects
2061 *	unnecessarily blow away our inactive and cache queues.
2062 *
2063 *	The solution is to move the pages based on a fixed weighting.  We
2064 *	either leave them alone, deactivate them, or move them to the cache,
2065 *	where moving them to the cache has the highest weighting.
2066 *	By forcing some pages into other queues we eventually force the
2067 *	system to balance the queues, potentially recovering other unrelated
2068 *	space from active.  The idea is to not force this to happen too
2069 *	often.
2070 */
2071void
2072vm_page_dontneed(vm_page_t m)
2073{
2074	int dnw;
2075	int head;
2076
2077	vm_page_lock_assert(m, MA_OWNED);
2078	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2079	dnw = PCPU_GET(dnweight);
2080	PCPU_INC(dnweight);
2081
2082	/*
2083	 * Occasionally leave the page alone.
2084	 */
2085	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2086		if (m->act_count >= ACT_INIT)
2087			--m->act_count;
2088		return;
2089	}
2090
2091	/*
2092	 * Clear any references to the page.  Otherwise, the page daemon will
2093	 * immediately reactivate the page.
2094	 *
2095	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
2096	 * pmap operation, such as pmap_remove(), could clear a reference in
2097	 * the pmap and set PG_REFERENCED on the page before the
2098	 * pmap_clear_reference() had completed.  Consequently, the page would
2099	 * appear referenced based upon an old reference that occurred before
2100	 * this function ran.
2101	 */
2102	pmap_clear_reference(m);
2103	vm_page_lock_queues();
2104	vm_page_flag_clear(m, PG_REFERENCED);
2105	vm_page_unlock_queues();
2106
2107	if (m->dirty == 0 && pmap_is_modified(m))
2108		vm_page_dirty(m);
2109
2110	if (m->dirty || (dnw & 0x0070) == 0) {
2111		/*
2112		 * Deactivate the page 3 times out of 32.
2113		 */
2114		head = 0;
2115	} else {
2116		/*
2117		 * Cache the page 28 times out of every 32.  Note that
2118		 * the page is deactivated instead of cached, but placed
2119		 * at the head of the queue instead of the tail.
2120		 */
2121		head = 1;
2122	}
2123	_vm_page_deactivate(m, head);
2124}
2125
2126/*
2127 * Grab a page, waiting until we are waken up due to the page
2128 * changing state.  We keep on waiting, if the page continues
2129 * to be in the object.  If the page doesn't exist, first allocate it
2130 * and then conditionally zero it.
2131 *
2132 * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
2133 * to facilitate its eventual removal.
2134 *
2135 * This routine may block.
2136 */
2137vm_page_t
2138vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2139{
2140	vm_page_t m;
2141
2142	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2143	KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
2144	    ("vm_page_grab: VM_ALLOC_RETRY is required"));
2145retrylookup:
2146	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2147		if ((m->oflags & VPO_BUSY) != 0 ||
2148		    ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
2149			/*
2150			 * Reference the page before unlocking and
2151			 * sleeping so that the page daemon is less
2152			 * likely to reclaim it.
2153			 */
2154			vm_page_lock_queues();
2155			vm_page_flag_set(m, PG_REFERENCED);
2156			vm_page_sleep(m, "pgrbwt");
2157			goto retrylookup;
2158		} else {
2159			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2160				vm_page_lock(m);
2161				vm_page_wire(m);
2162				vm_page_unlock(m);
2163			}
2164			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2165				vm_page_busy(m);
2166			return (m);
2167		}
2168	}
2169	m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
2170	    VM_ALLOC_IGN_SBUSY));
2171	if (m == NULL) {
2172		VM_OBJECT_UNLOCK(object);
2173		VM_WAIT;
2174		VM_OBJECT_LOCK(object);
2175		goto retrylookup;
2176	} else if (m->valid != 0)
2177		return (m);
2178	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2179		pmap_zero_page(m);
2180	return (m);
2181}
2182
2183/*
2184 * Mapping function for valid bits or for dirty bits in
2185 * a page.  May not block.
2186 *
2187 * Inputs are required to range within a page.
2188 */
2189int
2190vm_page_bits(int base, int size)
2191{
2192	int first_bit;
2193	int last_bit;
2194
2195	KASSERT(
2196	    base + size <= PAGE_SIZE,
2197	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2198	);
2199
2200	if (size == 0)		/* handle degenerate case */
2201		return (0);
2202
2203	first_bit = base >> DEV_BSHIFT;
2204	last_bit = (base + size - 1) >> DEV_BSHIFT;
2205
2206	return ((2 << last_bit) - (1 << first_bit));
2207}
2208
2209/*
2210 *	vm_page_set_valid:
2211 *
2212 *	Sets portions of a page valid.  The arguments are expected
2213 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2214 *	of any partial chunks touched by the range.  The invalid portion of
2215 *	such chunks will be zeroed.
2216 *
2217 *	(base + size) must be less then or equal to PAGE_SIZE.
2218 */
2219void
2220vm_page_set_valid(vm_page_t m, int base, int size)
2221{
2222	int endoff, frag;
2223
2224	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2225	if (size == 0)	/* handle degenerate case */
2226		return;
2227
2228	/*
2229	 * If the base is not DEV_BSIZE aligned and the valid
2230	 * bit is clear, we have to zero out a portion of the
2231	 * first block.
2232	 */
2233	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2234	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2235		pmap_zero_page_area(m, frag, base - frag);
2236
2237	/*
2238	 * If the ending offset is not DEV_BSIZE aligned and the
2239	 * valid bit is clear, we have to zero out a portion of
2240	 * the last block.
2241	 */
2242	endoff = base + size;
2243	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2244	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2245		pmap_zero_page_area(m, endoff,
2246		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2247
2248	/*
2249	 * Assert that no previously invalid block that is now being validated
2250	 * is already dirty.
2251	 */
2252	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2253	    ("vm_page_set_valid: page %p is dirty", m));
2254
2255	/*
2256	 * Set valid bits inclusive of any overlap.
2257	 */
2258	m->valid |= vm_page_bits(base, size);
2259}
2260
2261/*
2262 * Clear the given bits from the specified page's dirty field.
2263 */
2264static __inline void
2265vm_page_clear_dirty_mask(vm_page_t m, int pagebits)
2266{
2267
2268	/*
2269	 * If the object is locked and the page is neither VPO_BUSY nor
2270	 * PG_WRITEABLE, then the page's dirty field cannot possibly be
2271	 * modified by a concurrent pmap operation.
2272	 */
2273	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2274	if ((m->oflags & VPO_BUSY) == 0 && (m->flags & PG_WRITEABLE) == 0)
2275		m->dirty &= ~pagebits;
2276	else {
2277		vm_page_lock_queues();
2278		m->dirty &= ~pagebits;
2279		vm_page_unlock_queues();
2280	}
2281}
2282
2283/*
2284 *	vm_page_set_validclean:
2285 *
2286 *	Sets portions of a page valid and clean.  The arguments are expected
2287 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2288 *	of any partial chunks touched by the range.  The invalid portion of
2289 *	such chunks will be zero'd.
2290 *
2291 *	This routine may not block.
2292 *
2293 *	(base + size) must be less then or equal to PAGE_SIZE.
2294 */
2295void
2296vm_page_set_validclean(vm_page_t m, int base, int size)
2297{
2298	u_long oldvalid;
2299	int endoff, frag, pagebits;
2300
2301	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2302	if (size == 0)	/* handle degenerate case */
2303		return;
2304
2305	/*
2306	 * If the base is not DEV_BSIZE aligned and the valid
2307	 * bit is clear, we have to zero out a portion of the
2308	 * first block.
2309	 */
2310	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2311	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2312		pmap_zero_page_area(m, frag, base - frag);
2313
2314	/*
2315	 * If the ending offset is not DEV_BSIZE aligned and the
2316	 * valid bit is clear, we have to zero out a portion of
2317	 * the last block.
2318	 */
2319	endoff = base + size;
2320	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2321	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2322		pmap_zero_page_area(m, endoff,
2323		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2324
2325	/*
2326	 * Set valid, clear dirty bits.  If validating the entire
2327	 * page we can safely clear the pmap modify bit.  We also
2328	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2329	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2330	 * be set again.
2331	 *
2332	 * We set valid bits inclusive of any overlap, but we can only
2333	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2334	 * the range.
2335	 */
2336	oldvalid = m->valid;
2337	pagebits = vm_page_bits(base, size);
2338	m->valid |= pagebits;
2339#if 0	/* NOT YET */
2340	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2341		frag = DEV_BSIZE - frag;
2342		base += frag;
2343		size -= frag;
2344		if (size < 0)
2345			size = 0;
2346	}
2347	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2348#endif
2349	if (base == 0 && size == PAGE_SIZE) {
2350		/*
2351		 * The page can only be modified within the pmap if it is
2352		 * mapped, and it can only be mapped if it was previously
2353		 * fully valid.
2354		 */
2355		if (oldvalid == VM_PAGE_BITS_ALL)
2356			/*
2357			 * Perform the pmap_clear_modify() first.  Otherwise,
2358			 * a concurrent pmap operation, such as
2359			 * pmap_protect(), could clear a modification in the
2360			 * pmap and set the dirty field on the page before
2361			 * pmap_clear_modify() had begun and after the dirty
2362			 * field was cleared here.
2363			 */
2364			pmap_clear_modify(m);
2365		m->dirty = 0;
2366		m->oflags &= ~VPO_NOSYNC;
2367	} else if (oldvalid != VM_PAGE_BITS_ALL)
2368		m->dirty &= ~pagebits;
2369	else
2370		vm_page_clear_dirty_mask(m, pagebits);
2371}
2372
2373void
2374vm_page_clear_dirty(vm_page_t m, int base, int size)
2375{
2376
2377	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2378}
2379
2380/*
2381 *	vm_page_set_invalid:
2382 *
2383 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2384 *	valid and dirty bits for the effected areas are cleared.
2385 *
2386 *	May not block.
2387 */
2388void
2389vm_page_set_invalid(vm_page_t m, int base, int size)
2390{
2391	int bits;
2392
2393	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2394	KASSERT((m->oflags & VPO_BUSY) == 0,
2395	    ("vm_page_set_invalid: page %p is busy", m));
2396	bits = vm_page_bits(base, size);
2397	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2398		pmap_remove_all(m);
2399	KASSERT(!pmap_page_is_mapped(m),
2400	    ("vm_page_set_invalid: page %p is mapped", m));
2401	m->valid &= ~bits;
2402	m->dirty &= ~bits;
2403}
2404
2405/*
2406 * vm_page_zero_invalid()
2407 *
2408 *	The kernel assumes that the invalid portions of a page contain
2409 *	garbage, but such pages can be mapped into memory by user code.
2410 *	When this occurs, we must zero out the non-valid portions of the
2411 *	page so user code sees what it expects.
2412 *
2413 *	Pages are most often semi-valid when the end of a file is mapped
2414 *	into memory and the file's size is not page aligned.
2415 */
2416void
2417vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2418{
2419	int b;
2420	int i;
2421
2422	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2423	/*
2424	 * Scan the valid bits looking for invalid sections that
2425	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2426	 * valid bit may be set ) have already been zerod by
2427	 * vm_page_set_validclean().
2428	 */
2429	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2430		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2431		    (m->valid & (1 << i))
2432		) {
2433			if (i > b) {
2434				pmap_zero_page_area(m,
2435				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2436			}
2437			b = i + 1;
2438		}
2439	}
2440
2441	/*
2442	 * setvalid is TRUE when we can safely set the zero'd areas
2443	 * as being valid.  We can do this if there are no cache consistancy
2444	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2445	 */
2446	if (setvalid)
2447		m->valid = VM_PAGE_BITS_ALL;
2448}
2449
2450/*
2451 *	vm_page_is_valid:
2452 *
2453 *	Is (partial) page valid?  Note that the case where size == 0
2454 *	will return FALSE in the degenerate case where the page is
2455 *	entirely invalid, and TRUE otherwise.
2456 *
2457 *	May not block.
2458 */
2459int
2460vm_page_is_valid(vm_page_t m, int base, int size)
2461{
2462	int bits = vm_page_bits(base, size);
2463
2464	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2465	if (m->valid && ((m->valid & bits) == bits))
2466		return 1;
2467	else
2468		return 0;
2469}
2470
2471/*
2472 * update dirty bits from pmap/mmu.  May not block.
2473 */
2474void
2475vm_page_test_dirty(vm_page_t m)
2476{
2477
2478	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2479	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2480		vm_page_dirty(m);
2481}
2482
2483int so_zerocp_fullpage = 0;
2484
2485/*
2486 *	Replace the given page with a copy.  The copied page assumes
2487 *	the portion of the given page's "wire_count" that is not the
2488 *	responsibility of this copy-on-write mechanism.
2489 *
2490 *	The object containing the given page must have a non-zero
2491 *	paging-in-progress count and be locked.
2492 */
2493void
2494vm_page_cowfault(vm_page_t m)
2495{
2496	vm_page_t mnew;
2497	vm_object_t object;
2498	vm_pindex_t pindex;
2499
2500	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
2501	vm_page_lock_assert(m, MA_OWNED);
2502	object = m->object;
2503	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2504	KASSERT(object->paging_in_progress != 0,
2505	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2506	    object));
2507	pindex = m->pindex;
2508
2509 retry_alloc:
2510	pmap_remove_all(m);
2511	vm_page_remove(m);
2512	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2513	if (mnew == NULL) {
2514		vm_page_insert(m, object, pindex);
2515		vm_page_unlock(m);
2516		VM_OBJECT_UNLOCK(object);
2517		VM_WAIT;
2518		VM_OBJECT_LOCK(object);
2519		if (m == vm_page_lookup(object, pindex)) {
2520			vm_page_lock(m);
2521			goto retry_alloc;
2522		} else {
2523			/*
2524			 * Page disappeared during the wait.
2525			 */
2526			return;
2527		}
2528	}
2529
2530	if (m->cow == 0) {
2531		/*
2532		 * check to see if we raced with an xmit complete when
2533		 * waiting to allocate a page.  If so, put things back
2534		 * the way they were
2535		 */
2536		vm_page_unlock(m);
2537		vm_page_lock(mnew);
2538		vm_page_free(mnew);
2539		vm_page_unlock(mnew);
2540		vm_page_insert(m, object, pindex);
2541	} else { /* clear COW & copy page */
2542		if (!so_zerocp_fullpage)
2543			pmap_copy_page(m, mnew);
2544		mnew->valid = VM_PAGE_BITS_ALL;
2545		vm_page_dirty(mnew);
2546		mnew->wire_count = m->wire_count - m->cow;
2547		m->wire_count = m->cow;
2548		vm_page_unlock(m);
2549	}
2550}
2551
2552void
2553vm_page_cowclear(vm_page_t m)
2554{
2555
2556	vm_page_lock_assert(m, MA_OWNED);
2557	if (m->cow) {
2558		m->cow--;
2559		/*
2560		 * let vm_fault add back write permission  lazily
2561		 */
2562	}
2563	/*
2564	 *  sf_buf_free() will free the page, so we needn't do it here
2565	 */
2566}
2567
2568int
2569vm_page_cowsetup(vm_page_t m)
2570{
2571
2572	vm_page_lock_assert(m, MA_OWNED);
2573	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
2574	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
2575		return (EBUSY);
2576	m->cow++;
2577	pmap_remove_write(m);
2578	VM_OBJECT_UNLOCK(m->object);
2579	return (0);
2580}
2581
2582#include "opt_ddb.h"
2583#ifdef DDB
2584#include <sys/kernel.h>
2585
2586#include <ddb/ddb.h>
2587
2588DB_SHOW_COMMAND(page, vm_page_print_page_info)
2589{
2590	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2591	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2592	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2593	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2594	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2595	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2596	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2597	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2598	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2599	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2600}
2601
2602DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2603{
2604
2605	db_printf("PQ_FREE:");
2606	db_printf(" %d", cnt.v_free_count);
2607	db_printf("\n");
2608
2609	db_printf("PQ_CACHE:");
2610	db_printf(" %d", cnt.v_cache_count);
2611	db_printf("\n");
2612
2613	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2614		*vm_page_queues[PQ_ACTIVE].cnt,
2615		*vm_page_queues[PQ_INACTIVE].cnt);
2616}
2617#endif /* DDB */
2618