vm_page.c revision 209685
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- a pageq mutex is required when adding or removing a page from a
67 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68 *	  busy state of a page.
69 *
70 *	- a hash chain mutex is required when associating or disassociating
71 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
72 *	  regardless of other mutexes or the busy state of a page.
73 *
74 *	- either a hash chain mutex OR a busied page is required in order
75 *	  to modify the page flags.  A hash chain mutex must be obtained in
76 *	  order to busy a page.  A page's flags cannot be modified by a
77 *	  hash chain mutex if the page is marked busy.
78 *
79 *	- The object memq mutex is held when inserting or removing
80 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
81 *	  is different from the object's main mutex.
82 *
83 *	Generally speaking, you have to be aware of side effects when running
84 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
85 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
86 *	vm_page_cache(), vm_page_activate(), and a number of other routines
87 *	will release the hash chain mutex for you.  Intermediate manipulation
88 *	routines such as vm_page_flag_set() expect the hash chain to be held
89 *	on entry and the hash chain will remain held on return.
90 *
91 *	pageq scanning can only occur with the pageq in question locked.
92 *	We have a known bottleneck with the active queue, but the cache
93 *	and free queues are actually arrays already.
94 */
95
96/*
97 *	Resident memory management module.
98 */
99
100#include <sys/cdefs.h>
101__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 209685 2010-07-04 11:13:33Z kib $");
102
103#include "opt_vm.h"
104
105#include <sys/param.h>
106#include <sys/systm.h>
107#include <sys/lock.h>
108#include <sys/kernel.h>
109#include <sys/limits.h>
110#include <sys/malloc.h>
111#include <sys/msgbuf.h>
112#include <sys/mutex.h>
113#include <sys/proc.h>
114#include <sys/sysctl.h>
115#include <sys/vmmeter.h>
116#include <sys/vnode.h>
117
118#include <vm/vm.h>
119#include <vm/pmap.h>
120#include <vm/vm_param.h>
121#include <vm/vm_kern.h>
122#include <vm/vm_object.h>
123#include <vm/vm_page.h>
124#include <vm/vm_pageout.h>
125#include <vm/vm_pager.h>
126#include <vm/vm_phys.h>
127#include <vm/vm_reserv.h>
128#include <vm/vm_extern.h>
129#include <vm/uma.h>
130#include <vm/uma_int.h>
131
132#include <machine/md_var.h>
133
134#if defined(__amd64__) || defined (__i386__)
135extern struct sysctl_oid_list sysctl__vm_pmap_children;
136#else
137SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
138#endif
139
140static uint64_t pmap_tryrelock_calls;
141SYSCTL_QUAD(_vm_pmap, OID_AUTO, tryrelock_calls, CTLFLAG_RD,
142    &pmap_tryrelock_calls, 0, "Number of tryrelock calls");
143
144static int pmap_tryrelock_restart;
145SYSCTL_INT(_vm_pmap, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
146    &pmap_tryrelock_restart, 0, "Number of tryrelock restarts");
147
148static int pmap_tryrelock_race;
149SYSCTL_INT(_vm_pmap, OID_AUTO, tryrelock_race, CTLFLAG_RD,
150    &pmap_tryrelock_race, 0, "Number of tryrelock pmap race cases");
151
152/*
153 *	Associated with page of user-allocatable memory is a
154 *	page structure.
155 */
156
157struct vpgqueues vm_page_queues[PQ_COUNT];
158struct vpglocks vm_page_queue_lock;
159struct vpglocks vm_page_queue_free_lock;
160
161struct vpglocks	pa_lock[PA_LOCK_COUNT] __aligned(CACHE_LINE_SIZE);
162
163vm_page_t vm_page_array = 0;
164int vm_page_array_size = 0;
165long first_page = 0;
166int vm_page_zero_count = 0;
167
168static int boot_pages = UMA_BOOT_PAGES;
169TUNABLE_INT("vm.boot_pages", &boot_pages);
170SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
171	"number of pages allocated for bootstrapping the VM system");
172
173static void vm_page_clear_dirty_mask(vm_page_t m, int pagebits);
174static void vm_page_queue_remove(int queue, vm_page_t m);
175static void vm_page_enqueue(int queue, vm_page_t m);
176
177/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
178#if PAGE_SIZE == 32768
179#ifdef CTASSERT
180CTASSERT(sizeof(u_long) >= 8);
181#endif
182#endif
183
184/*
185 * Try to acquire a physical address lock while a pmap is locked.  If we
186 * fail to trylock we unlock and lock the pmap directly and cache the
187 * locked pa in *locked.  The caller should then restart their loop in case
188 * the virtual to physical mapping has changed.
189 */
190int
191vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
192{
193	vm_paddr_t lockpa;
194	uint32_t gen_count;
195
196	gen_count = pmap->pm_gen_count;
197	atomic_add_long((volatile long *)&pmap_tryrelock_calls, 1);
198	lockpa = *locked;
199	*locked = pa;
200	if (lockpa) {
201		PA_LOCK_ASSERT(lockpa, MA_OWNED);
202		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
203			return (0);
204		PA_UNLOCK(lockpa);
205	}
206	if (PA_TRYLOCK(pa))
207		return (0);
208	PMAP_UNLOCK(pmap);
209	atomic_add_int((volatile int *)&pmap_tryrelock_restart, 1);
210	PA_LOCK(pa);
211	PMAP_LOCK(pmap);
212
213	if (pmap->pm_gen_count != gen_count + 1) {
214		pmap->pm_retries++;
215		atomic_add_int((volatile int *)&pmap_tryrelock_race, 1);
216		return (EAGAIN);
217	}
218	return (0);
219}
220
221/*
222 *	vm_set_page_size:
223 *
224 *	Sets the page size, perhaps based upon the memory
225 *	size.  Must be called before any use of page-size
226 *	dependent functions.
227 */
228void
229vm_set_page_size(void)
230{
231	if (cnt.v_page_size == 0)
232		cnt.v_page_size = PAGE_SIZE;
233	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
234		panic("vm_set_page_size: page size not a power of two");
235}
236
237/*
238 *	vm_page_blacklist_lookup:
239 *
240 *	See if a physical address in this page has been listed
241 *	in the blacklist tunable.  Entries in the tunable are
242 *	separated by spaces or commas.  If an invalid integer is
243 *	encountered then the rest of the string is skipped.
244 */
245static int
246vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
247{
248	vm_paddr_t bad;
249	char *cp, *pos;
250
251	for (pos = list; *pos != '\0'; pos = cp) {
252		bad = strtoq(pos, &cp, 0);
253		if (*cp != '\0') {
254			if (*cp == ' ' || *cp == ',') {
255				cp++;
256				if (cp == pos)
257					continue;
258			} else
259				break;
260		}
261		if (pa == trunc_page(bad))
262			return (1);
263	}
264	return (0);
265}
266
267/*
268 *	vm_page_startup:
269 *
270 *	Initializes the resident memory module.
271 *
272 *	Allocates memory for the page cells, and
273 *	for the object/offset-to-page hash table headers.
274 *	Each page cell is initialized and placed on the free list.
275 */
276vm_offset_t
277vm_page_startup(vm_offset_t vaddr)
278{
279	vm_offset_t mapped;
280	vm_paddr_t page_range;
281	vm_paddr_t new_end;
282	int i;
283	vm_paddr_t pa;
284	int nblocks;
285	vm_paddr_t last_pa;
286	char *list;
287
288	/* the biggest memory array is the second group of pages */
289	vm_paddr_t end;
290	vm_paddr_t biggestsize;
291	vm_paddr_t low_water, high_water;
292	int biggestone;
293
294	biggestsize = 0;
295	biggestone = 0;
296	nblocks = 0;
297	vaddr = round_page(vaddr);
298
299	for (i = 0; phys_avail[i + 1]; i += 2) {
300		phys_avail[i] = round_page(phys_avail[i]);
301		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
302	}
303
304	low_water = phys_avail[0];
305	high_water = phys_avail[1];
306
307	for (i = 0; phys_avail[i + 1]; i += 2) {
308		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
309
310		if (size > biggestsize) {
311			biggestone = i;
312			biggestsize = size;
313		}
314		if (phys_avail[i] < low_water)
315			low_water = phys_avail[i];
316		if (phys_avail[i + 1] > high_water)
317			high_water = phys_avail[i + 1];
318		++nblocks;
319	}
320
321#ifdef XEN
322	low_water = 0;
323#endif
324
325	end = phys_avail[biggestone+1];
326
327	/*
328	 * Initialize the locks.
329	 */
330	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
331	    MTX_RECURSE);
332	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
333	    MTX_DEF);
334
335	/* Setup page locks. */
336	for (i = 0; i < PA_LOCK_COUNT; i++)
337		mtx_init(&pa_lock[i].data, "page lock", NULL,
338		    MTX_DEF | MTX_RECURSE | MTX_DUPOK);
339
340	/*
341	 * Initialize the queue headers for the hold queue, the active queue,
342	 * and the inactive queue.
343	 */
344	for (i = 0; i < PQ_COUNT; i++)
345		TAILQ_INIT(&vm_page_queues[i].pl);
346	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
347	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
348	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
349
350	/*
351	 * Allocate memory for use when boot strapping the kernel memory
352	 * allocator.
353	 */
354	new_end = end - (boot_pages * UMA_SLAB_SIZE);
355	new_end = trunc_page(new_end);
356	mapped = pmap_map(&vaddr, new_end, end,
357	    VM_PROT_READ | VM_PROT_WRITE);
358	bzero((void *)mapped, end - new_end);
359	uma_startup((void *)mapped, boot_pages);
360
361#if defined(__amd64__) || defined(__i386__) || defined(__arm__)
362	/*
363	 * Allocate a bitmap to indicate that a random physical page
364	 * needs to be included in a minidump.
365	 *
366	 * The amd64 port needs this to indicate which direct map pages
367	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
368	 *
369	 * However, i386 still needs this workspace internally within the
370	 * minidump code.  In theory, they are not needed on i386, but are
371	 * included should the sf_buf code decide to use them.
372	 */
373	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
374	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
375	new_end -= vm_page_dump_size;
376	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
377	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
378	bzero((void *)vm_page_dump, vm_page_dump_size);
379#endif
380#ifdef __amd64__
381	/*
382	 * Request that the physical pages underlying the message buffer be
383	 * included in a crash dump.  Since the message buffer is accessed
384	 * through the direct map, they are not automatically included.
385	 */
386	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
387	last_pa = pa + round_page(MSGBUF_SIZE);
388	while (pa < last_pa) {
389		dump_add_page(pa);
390		pa += PAGE_SIZE;
391	}
392#endif
393	/*
394	 * Compute the number of pages of memory that will be available for
395	 * use (taking into account the overhead of a page structure per
396	 * page).
397	 */
398	first_page = low_water / PAGE_SIZE;
399#ifdef VM_PHYSSEG_SPARSE
400	page_range = 0;
401	for (i = 0; phys_avail[i + 1] != 0; i += 2)
402		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
403#elif defined(VM_PHYSSEG_DENSE)
404	page_range = high_water / PAGE_SIZE - first_page;
405#else
406#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
407#endif
408	end = new_end;
409
410	/*
411	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
412	 */
413	vaddr += PAGE_SIZE;
414
415	/*
416	 * Initialize the mem entry structures now, and put them in the free
417	 * queue.
418	 */
419	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
420	mapped = pmap_map(&vaddr, new_end, end,
421	    VM_PROT_READ | VM_PROT_WRITE);
422	vm_page_array = (vm_page_t) mapped;
423#if VM_NRESERVLEVEL > 0
424	/*
425	 * Allocate memory for the reservation management system's data
426	 * structures.
427	 */
428	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
429#endif
430#ifdef __amd64__
431	/*
432	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
433	 * so the pages must be tracked for a crashdump to include this data.
434	 * This includes the vm_page_array and the early UMA bootstrap pages.
435	 */
436	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
437		dump_add_page(pa);
438#endif
439	phys_avail[biggestone + 1] = new_end;
440
441	/*
442	 * Clear all of the page structures
443	 */
444	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
445	for (i = 0; i < page_range; i++)
446		vm_page_array[i].order = VM_NFREEORDER;
447	vm_page_array_size = page_range;
448
449	/*
450	 * Initialize the physical memory allocator.
451	 */
452	vm_phys_init();
453
454	/*
455	 * Add every available physical page that is not blacklisted to
456	 * the free lists.
457	 */
458	cnt.v_page_count = 0;
459	cnt.v_free_count = 0;
460	list = getenv("vm.blacklist");
461	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
462		pa = phys_avail[i];
463		last_pa = phys_avail[i + 1];
464		while (pa < last_pa) {
465			if (list != NULL &&
466			    vm_page_blacklist_lookup(list, pa))
467				printf("Skipping page with pa 0x%jx\n",
468				    (uintmax_t)pa);
469			else
470				vm_phys_add_page(pa);
471			pa += PAGE_SIZE;
472		}
473	}
474	freeenv(list);
475#if VM_NRESERVLEVEL > 0
476	/*
477	 * Initialize the reservation management system.
478	 */
479	vm_reserv_init();
480#endif
481	return (vaddr);
482}
483
484void
485vm_page_flag_set(vm_page_t m, unsigned short bits)
486{
487
488	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
489	/*
490	 * The PG_WRITEABLE flag can only be set if the page is managed and
491	 * VPO_BUSY.  Currently, this flag is only set by pmap_enter().
492	 */
493	KASSERT((bits & PG_WRITEABLE) == 0 ||
494	    ((m->flags & (PG_UNMANAGED | PG_FICTITIOUS)) == 0 &&
495	    (m->oflags & VPO_BUSY) != 0), ("PG_WRITEABLE and !VPO_BUSY"));
496	m->flags |= bits;
497}
498
499void
500vm_page_flag_clear(vm_page_t m, unsigned short bits)
501{
502
503	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
504	/*
505	 * The PG_REFERENCED flag can only be cleared if the object
506	 * containing the page is locked.
507	 */
508	KASSERT((bits & PG_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object),
509	    ("PG_REFERENCED and !VM_OBJECT_LOCKED"));
510	m->flags &= ~bits;
511}
512
513void
514vm_page_busy(vm_page_t m)
515{
516
517	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
518	KASSERT((m->oflags & VPO_BUSY) == 0,
519	    ("vm_page_busy: page already busy!!!"));
520	m->oflags |= VPO_BUSY;
521}
522
523/*
524 *      vm_page_flash:
525 *
526 *      wakeup anyone waiting for the page.
527 */
528void
529vm_page_flash(vm_page_t m)
530{
531
532	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
533	if (m->oflags & VPO_WANTED) {
534		m->oflags &= ~VPO_WANTED;
535		wakeup(m);
536	}
537}
538
539/*
540 *      vm_page_wakeup:
541 *
542 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
543 *      page.
544 *
545 */
546void
547vm_page_wakeup(vm_page_t m)
548{
549
550	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
551	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
552	m->oflags &= ~VPO_BUSY;
553	vm_page_flash(m);
554}
555
556void
557vm_page_io_start(vm_page_t m)
558{
559
560	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
561	m->busy++;
562}
563
564void
565vm_page_io_finish(vm_page_t m)
566{
567
568	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
569	m->busy--;
570	if (m->busy == 0)
571		vm_page_flash(m);
572}
573
574/*
575 * Keep page from being freed by the page daemon
576 * much of the same effect as wiring, except much lower
577 * overhead and should be used only for *very* temporary
578 * holding ("wiring").
579 */
580void
581vm_page_hold(vm_page_t mem)
582{
583
584	vm_page_lock_assert(mem, MA_OWNED);
585        mem->hold_count++;
586}
587
588void
589vm_page_unhold(vm_page_t mem)
590{
591
592	vm_page_lock_assert(mem, MA_OWNED);
593	--mem->hold_count;
594	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
595	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
596		vm_page_free_toq(mem);
597}
598
599/*
600 *	vm_page_free:
601 *
602 *	Free a page.
603 */
604void
605vm_page_free(vm_page_t m)
606{
607
608	m->flags &= ~PG_ZERO;
609	vm_page_free_toq(m);
610}
611
612/*
613 *	vm_page_free_zero:
614 *
615 *	Free a page to the zerod-pages queue
616 */
617void
618vm_page_free_zero(vm_page_t m)
619{
620
621	m->flags |= PG_ZERO;
622	vm_page_free_toq(m);
623}
624
625/*
626 *	vm_page_sleep:
627 *
628 *	Sleep and release the page and page queues locks.
629 *
630 *	The object containing the given page must be locked.
631 */
632void
633vm_page_sleep(vm_page_t m, const char *msg)
634{
635
636	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
637	if (mtx_owned(&vm_page_queue_mtx))
638		vm_page_unlock_queues();
639	if (mtx_owned(vm_page_lockptr(m)))
640		vm_page_unlock(m);
641
642	/*
643	 * It's possible that while we sleep, the page will get
644	 * unbusied and freed.  If we are holding the object
645	 * lock, we will assume we hold a reference to the object
646	 * such that even if m->object changes, we can re-lock
647	 * it.
648	 */
649	m->oflags |= VPO_WANTED;
650	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
651}
652
653/*
654 *	vm_page_dirty:
655 *
656 *	make page all dirty
657 */
658void
659vm_page_dirty(vm_page_t m)
660{
661
662	KASSERT((m->flags & PG_CACHED) == 0,
663	    ("vm_page_dirty: page in cache!"));
664	KASSERT(!VM_PAGE_IS_FREE(m),
665	    ("vm_page_dirty: page is free!"));
666	KASSERT(m->valid == VM_PAGE_BITS_ALL,
667	    ("vm_page_dirty: page is invalid!"));
668	m->dirty = VM_PAGE_BITS_ALL;
669}
670
671/*
672 *	vm_page_splay:
673 *
674 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
675 *	the vm_page containing the given pindex.  If, however, that
676 *	pindex is not found in the vm_object, returns a vm_page that is
677 *	adjacent to the pindex, coming before or after it.
678 */
679vm_page_t
680vm_page_splay(vm_pindex_t pindex, vm_page_t root)
681{
682	struct vm_page dummy;
683	vm_page_t lefttreemax, righttreemin, y;
684
685	if (root == NULL)
686		return (root);
687	lefttreemax = righttreemin = &dummy;
688	for (;; root = y) {
689		if (pindex < root->pindex) {
690			if ((y = root->left) == NULL)
691				break;
692			if (pindex < y->pindex) {
693				/* Rotate right. */
694				root->left = y->right;
695				y->right = root;
696				root = y;
697				if ((y = root->left) == NULL)
698					break;
699			}
700			/* Link into the new root's right tree. */
701			righttreemin->left = root;
702			righttreemin = root;
703		} else if (pindex > root->pindex) {
704			if ((y = root->right) == NULL)
705				break;
706			if (pindex > y->pindex) {
707				/* Rotate left. */
708				root->right = y->left;
709				y->left = root;
710				root = y;
711				if ((y = root->right) == NULL)
712					break;
713			}
714			/* Link into the new root's left tree. */
715			lefttreemax->right = root;
716			lefttreemax = root;
717		} else
718			break;
719	}
720	/* Assemble the new root. */
721	lefttreemax->right = root->left;
722	righttreemin->left = root->right;
723	root->left = dummy.right;
724	root->right = dummy.left;
725	return (root);
726}
727
728/*
729 *	vm_page_insert:		[ internal use only ]
730 *
731 *	Inserts the given mem entry into the object and object list.
732 *
733 *	The pagetables are not updated but will presumably fault the page
734 *	in if necessary, or if a kernel page the caller will at some point
735 *	enter the page into the kernel's pmap.  We are not allowed to block
736 *	here so we *can't* do this anyway.
737 *
738 *	The object and page must be locked.
739 *	This routine may not block.
740 */
741void
742vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
743{
744	vm_page_t root;
745
746	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
747	if (m->object != NULL)
748		panic("vm_page_insert: page already inserted");
749
750	/*
751	 * Record the object/offset pair in this page
752	 */
753	m->object = object;
754	m->pindex = pindex;
755
756	/*
757	 * Now link into the object's ordered list of backed pages.
758	 */
759	root = object->root;
760	if (root == NULL) {
761		m->left = NULL;
762		m->right = NULL;
763		TAILQ_INSERT_TAIL(&object->memq, m, listq);
764	} else {
765		root = vm_page_splay(pindex, root);
766		if (pindex < root->pindex) {
767			m->left = root->left;
768			m->right = root;
769			root->left = NULL;
770			TAILQ_INSERT_BEFORE(root, m, listq);
771		} else if (pindex == root->pindex)
772			panic("vm_page_insert: offset already allocated");
773		else {
774			m->right = root->right;
775			m->left = root;
776			root->right = NULL;
777			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
778		}
779	}
780	object->root = m;
781	object->generation++;
782
783	/*
784	 * show that the object has one more resident page.
785	 */
786	object->resident_page_count++;
787	/*
788	 * Hold the vnode until the last page is released.
789	 */
790	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
791		vhold((struct vnode *)object->handle);
792
793	/*
794	 * Since we are inserting a new and possibly dirty page,
795	 * update the object's OBJ_MIGHTBEDIRTY flag.
796	 */
797	if (m->flags & PG_WRITEABLE)
798		vm_object_set_writeable_dirty(object);
799}
800
801/*
802 *	vm_page_remove:
803 *				NOTE: used by device pager as well -wfj
804 *
805 *	Removes the given mem entry from the object/offset-page
806 *	table and the object page list, but do not invalidate/terminate
807 *	the backing store.
808 *
809 *	The object and page must be locked.
810 *	The underlying pmap entry (if any) is NOT removed here.
811 *	This routine may not block.
812 */
813void
814vm_page_remove(vm_page_t m)
815{
816	vm_object_t object;
817	vm_page_t root;
818
819	if ((m->flags & PG_UNMANAGED) == 0)
820		vm_page_lock_assert(m, MA_OWNED);
821	if ((object = m->object) == NULL)
822		return;
823	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
824	if (m->oflags & VPO_BUSY) {
825		m->oflags &= ~VPO_BUSY;
826		vm_page_flash(m);
827	}
828
829	/*
830	 * Now remove from the object's list of backed pages.
831	 */
832	if (m != object->root)
833		vm_page_splay(m->pindex, object->root);
834	if (m->left == NULL)
835		root = m->right;
836	else {
837		root = vm_page_splay(m->pindex, m->left);
838		root->right = m->right;
839	}
840	object->root = root;
841	TAILQ_REMOVE(&object->memq, m, listq);
842
843	/*
844	 * And show that the object has one fewer resident page.
845	 */
846	object->resident_page_count--;
847	object->generation++;
848	/*
849	 * The vnode may now be recycled.
850	 */
851	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
852		vdrop((struct vnode *)object->handle);
853
854	m->object = NULL;
855}
856
857/*
858 *	vm_page_lookup:
859 *
860 *	Returns the page associated with the object/offset
861 *	pair specified; if none is found, NULL is returned.
862 *
863 *	The object must be locked.
864 *	This routine may not block.
865 *	This is a critical path routine
866 */
867vm_page_t
868vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
869{
870	vm_page_t m;
871
872	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
873	if ((m = object->root) != NULL && m->pindex != pindex) {
874		m = vm_page_splay(pindex, m);
875		if ((object->root = m)->pindex != pindex)
876			m = NULL;
877	}
878	return (m);
879}
880
881/*
882 *	vm_page_find_least:
883 *
884 *	Returns the page associated with the object with least pindex
885 *	greater than or equal to the parameter pindex, or NULL.
886 *
887 *	The object must be locked.
888 *	The routine may not block.
889 */
890vm_page_t
891vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
892{
893	vm_page_t m;
894
895	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
896	if ((m = TAILQ_FIRST(&object->memq)) != NULL) {
897		if (m->pindex < pindex) {
898			m = vm_page_splay(pindex, object->root);
899			if ((object->root = m)->pindex < pindex)
900				m = TAILQ_NEXT(m, listq);
901		}
902	}
903	return (m);
904}
905
906/*
907 * Returns the given page's successor (by pindex) within the object if it is
908 * resident; if none is found, NULL is returned.
909 *
910 * The object must be locked.
911 */
912vm_page_t
913vm_page_next(vm_page_t m)
914{
915	vm_page_t next;
916
917	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
918	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
919	    next->pindex != m->pindex + 1)
920		next = NULL;
921	return (next);
922}
923
924/*
925 * Returns the given page's predecessor (by pindex) within the object if it is
926 * resident; if none is found, NULL is returned.
927 *
928 * The object must be locked.
929 */
930vm_page_t
931vm_page_prev(vm_page_t m)
932{
933	vm_page_t prev;
934
935	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
936	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
937	    prev->pindex != m->pindex - 1)
938		prev = NULL;
939	return (prev);
940}
941
942/*
943 *	vm_page_rename:
944 *
945 *	Move the given memory entry from its
946 *	current object to the specified target object/offset.
947 *
948 *	The object must be locked.
949 *	This routine may not block.
950 *
951 *	Note: swap associated with the page must be invalidated by the move.  We
952 *	      have to do this for several reasons:  (1) we aren't freeing the
953 *	      page, (2) we are dirtying the page, (3) the VM system is probably
954 *	      moving the page from object A to B, and will then later move
955 *	      the backing store from A to B and we can't have a conflict.
956 *
957 *	Note: we *always* dirty the page.  It is necessary both for the
958 *	      fact that we moved it, and because we may be invalidating
959 *	      swap.  If the page is on the cache, we have to deactivate it
960 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
961 *	      on the cache.
962 */
963void
964vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
965{
966
967	vm_page_remove(m);
968	vm_page_insert(m, new_object, new_pindex);
969	vm_page_dirty(m);
970}
971
972/*
973 *	Convert all of the given object's cached pages that have a
974 *	pindex within the given range into free pages.  If the value
975 *	zero is given for "end", then the range's upper bound is
976 *	infinity.  If the given object is backed by a vnode and it
977 *	transitions from having one or more cached pages to none, the
978 *	vnode's hold count is reduced.
979 */
980void
981vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
982{
983	vm_page_t m, m_next;
984	boolean_t empty;
985
986	mtx_lock(&vm_page_queue_free_mtx);
987	if (__predict_false(object->cache == NULL)) {
988		mtx_unlock(&vm_page_queue_free_mtx);
989		return;
990	}
991	m = object->cache = vm_page_splay(start, object->cache);
992	if (m->pindex < start) {
993		if (m->right == NULL)
994			m = NULL;
995		else {
996			m_next = vm_page_splay(start, m->right);
997			m_next->left = m;
998			m->right = NULL;
999			m = object->cache = m_next;
1000		}
1001	}
1002
1003	/*
1004	 * At this point, "m" is either (1) a reference to the page
1005	 * with the least pindex that is greater than or equal to
1006	 * "start" or (2) NULL.
1007	 */
1008	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
1009		/*
1010		 * Find "m"'s successor and remove "m" from the
1011		 * object's cache.
1012		 */
1013		if (m->right == NULL) {
1014			object->cache = m->left;
1015			m_next = NULL;
1016		} else {
1017			m_next = vm_page_splay(start, m->right);
1018			m_next->left = m->left;
1019			object->cache = m_next;
1020		}
1021		/* Convert "m" to a free page. */
1022		m->object = NULL;
1023		m->valid = 0;
1024		/* Clear PG_CACHED and set PG_FREE. */
1025		m->flags ^= PG_CACHED | PG_FREE;
1026		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
1027		    ("vm_page_cache_free: page %p has inconsistent flags", m));
1028		cnt.v_cache_count--;
1029		cnt.v_free_count++;
1030	}
1031	empty = object->cache == NULL;
1032	mtx_unlock(&vm_page_queue_free_mtx);
1033	if (object->type == OBJT_VNODE && empty)
1034		vdrop(object->handle);
1035}
1036
1037/*
1038 *	Returns the cached page that is associated with the given
1039 *	object and offset.  If, however, none exists, returns NULL.
1040 *
1041 *	The free page queue must be locked.
1042 */
1043static inline vm_page_t
1044vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1045{
1046	vm_page_t m;
1047
1048	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1049	if ((m = object->cache) != NULL && m->pindex != pindex) {
1050		m = vm_page_splay(pindex, m);
1051		if ((object->cache = m)->pindex != pindex)
1052			m = NULL;
1053	}
1054	return (m);
1055}
1056
1057/*
1058 *	Remove the given cached page from its containing object's
1059 *	collection of cached pages.
1060 *
1061 *	The free page queue must be locked.
1062 */
1063void
1064vm_page_cache_remove(vm_page_t m)
1065{
1066	vm_object_t object;
1067	vm_page_t root;
1068
1069	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1070	KASSERT((m->flags & PG_CACHED) != 0,
1071	    ("vm_page_cache_remove: page %p is not cached", m));
1072	object = m->object;
1073	if (m != object->cache) {
1074		root = vm_page_splay(m->pindex, object->cache);
1075		KASSERT(root == m,
1076		    ("vm_page_cache_remove: page %p is not cached in object %p",
1077		    m, object));
1078	}
1079	if (m->left == NULL)
1080		root = m->right;
1081	else if (m->right == NULL)
1082		root = m->left;
1083	else {
1084		root = vm_page_splay(m->pindex, m->left);
1085		root->right = m->right;
1086	}
1087	object->cache = root;
1088	m->object = NULL;
1089	cnt.v_cache_count--;
1090}
1091
1092/*
1093 *	Transfer all of the cached pages with offset greater than or
1094 *	equal to 'offidxstart' from the original object's cache to the
1095 *	new object's cache.  However, any cached pages with offset
1096 *	greater than or equal to the new object's size are kept in the
1097 *	original object.  Initially, the new object's cache must be
1098 *	empty.  Offset 'offidxstart' in the original object must
1099 *	correspond to offset zero in the new object.
1100 *
1101 *	The new object must be locked.
1102 */
1103void
1104vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1105    vm_object_t new_object)
1106{
1107	vm_page_t m, m_next;
1108
1109	/*
1110	 * Insertion into an object's collection of cached pages
1111	 * requires the object to be locked.  In contrast, removal does
1112	 * not.
1113	 */
1114	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
1115	KASSERT(new_object->cache == NULL,
1116	    ("vm_page_cache_transfer: object %p has cached pages",
1117	    new_object));
1118	mtx_lock(&vm_page_queue_free_mtx);
1119	if ((m = orig_object->cache) != NULL) {
1120		/*
1121		 * Transfer all of the pages with offset greater than or
1122		 * equal to 'offidxstart' from the original object's
1123		 * cache to the new object's cache.
1124		 */
1125		m = vm_page_splay(offidxstart, m);
1126		if (m->pindex < offidxstart) {
1127			orig_object->cache = m;
1128			new_object->cache = m->right;
1129			m->right = NULL;
1130		} else {
1131			orig_object->cache = m->left;
1132			new_object->cache = m;
1133			m->left = NULL;
1134		}
1135		while ((m = new_object->cache) != NULL) {
1136			if ((m->pindex - offidxstart) >= new_object->size) {
1137				/*
1138				 * Return all of the cached pages with
1139				 * offset greater than or equal to the
1140				 * new object's size to the original
1141				 * object's cache.
1142				 */
1143				new_object->cache = m->left;
1144				m->left = orig_object->cache;
1145				orig_object->cache = m;
1146				break;
1147			}
1148			m_next = vm_page_splay(m->pindex, m->right);
1149			/* Update the page's object and offset. */
1150			m->object = new_object;
1151			m->pindex -= offidxstart;
1152			if (m_next == NULL)
1153				break;
1154			m->right = NULL;
1155			m_next->left = m;
1156			new_object->cache = m_next;
1157		}
1158		KASSERT(new_object->cache == NULL ||
1159		    new_object->type == OBJT_SWAP,
1160		    ("vm_page_cache_transfer: object %p's type is incompatible"
1161		    " with cached pages", new_object));
1162	}
1163	mtx_unlock(&vm_page_queue_free_mtx);
1164}
1165
1166/*
1167 *	vm_page_alloc:
1168 *
1169 *	Allocate and return a memory cell associated
1170 *	with this VM object/offset pair.
1171 *
1172 *	The caller must always specify an allocation class.
1173 *
1174 *	allocation classes:
1175 *	VM_ALLOC_NORMAL		normal process request
1176 *	VM_ALLOC_SYSTEM		system *really* needs a page
1177 *	VM_ALLOC_INTERRUPT	interrupt time request
1178 *
1179 *	optional allocation flags:
1180 *	VM_ALLOC_ZERO		prefer a zeroed page
1181 *	VM_ALLOC_WIRED		wire the allocated page
1182 *	VM_ALLOC_NOOBJ		page is not associated with a vm object
1183 *	VM_ALLOC_NOBUSY		do not set the page busy
1184 *	VM_ALLOC_IFCACHED	return page only if it is cached
1185 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1186 *				is cached
1187 *
1188 *	This routine may not sleep.
1189 */
1190vm_page_t
1191vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1192{
1193	struct vnode *vp = NULL;
1194	vm_object_t m_object;
1195	vm_page_t m;
1196	int flags, page_req;
1197
1198	page_req = req & VM_ALLOC_CLASS_MASK;
1199	KASSERT(curthread->td_intr_nesting_level == 0 ||
1200	    page_req == VM_ALLOC_INTERRUPT,
1201	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
1202
1203	if ((req & VM_ALLOC_NOOBJ) == 0) {
1204		KASSERT(object != NULL,
1205		    ("vm_page_alloc: NULL object."));
1206		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1207	}
1208
1209	/*
1210	 * The pager is allowed to eat deeper into the free page list.
1211	 */
1212	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
1213		page_req = VM_ALLOC_SYSTEM;
1214	};
1215
1216	mtx_lock(&vm_page_queue_free_mtx);
1217	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1218	    (page_req == VM_ALLOC_SYSTEM &&
1219	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1220	    (page_req == VM_ALLOC_INTERRUPT &&
1221	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1222		/*
1223		 * Allocate from the free queue if the number of free pages
1224		 * exceeds the minimum for the request class.
1225		 */
1226		if (object != NULL &&
1227		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1228			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1229				mtx_unlock(&vm_page_queue_free_mtx);
1230				return (NULL);
1231			}
1232			if (vm_phys_unfree_page(m))
1233				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1234#if VM_NRESERVLEVEL > 0
1235			else if (!vm_reserv_reactivate_page(m))
1236#else
1237			else
1238#endif
1239				panic("vm_page_alloc: cache page %p is missing"
1240				    " from the free queue", m);
1241		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1242			mtx_unlock(&vm_page_queue_free_mtx);
1243			return (NULL);
1244#if VM_NRESERVLEVEL > 0
1245		} else if (object == NULL || object->type == OBJT_DEVICE ||
1246		    object->type == OBJT_SG ||
1247		    (object->flags & OBJ_COLORED) == 0 ||
1248		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1249#else
1250		} else {
1251#endif
1252			m = vm_phys_alloc_pages(object != NULL ?
1253			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1254#if VM_NRESERVLEVEL > 0
1255			if (m == NULL && vm_reserv_reclaim_inactive()) {
1256				m = vm_phys_alloc_pages(object != NULL ?
1257				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1258				    0);
1259			}
1260#endif
1261		}
1262	} else {
1263		/*
1264		 * Not allocatable, give up.
1265		 */
1266		mtx_unlock(&vm_page_queue_free_mtx);
1267		atomic_add_int(&vm_pageout_deficit, 1);
1268		pagedaemon_wakeup();
1269		return (NULL);
1270	}
1271
1272	/*
1273	 *  At this point we had better have found a good page.
1274	 */
1275
1276	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1277	KASSERT(m->queue == PQ_NONE,
1278	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1279	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1280	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1281	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1282	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1283	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1284	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1285	    pmap_page_get_memattr(m)));
1286	if ((m->flags & PG_CACHED) != 0) {
1287		KASSERT(m->valid != 0,
1288		    ("vm_page_alloc: cached page %p is invalid", m));
1289		if (m->object == object && m->pindex == pindex)
1290	  		cnt.v_reactivated++;
1291		else
1292			m->valid = 0;
1293		m_object = m->object;
1294		vm_page_cache_remove(m);
1295		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1296			vp = m_object->handle;
1297	} else {
1298		KASSERT(VM_PAGE_IS_FREE(m),
1299		    ("vm_page_alloc: page %p is not free", m));
1300		KASSERT(m->valid == 0,
1301		    ("vm_page_alloc: free page %p is valid", m));
1302		cnt.v_free_count--;
1303	}
1304
1305	/*
1306	 * Initialize structure.  Only the PG_ZERO flag is inherited.
1307	 */
1308	flags = 0;
1309	if (m->flags & PG_ZERO) {
1310		vm_page_zero_count--;
1311		if (req & VM_ALLOC_ZERO)
1312			flags = PG_ZERO;
1313	}
1314	if (object == NULL || object->type == OBJT_PHYS)
1315		flags |= PG_UNMANAGED;
1316	m->flags = flags;
1317	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
1318		m->oflags = 0;
1319	else
1320		m->oflags = VPO_BUSY;
1321	if (req & VM_ALLOC_WIRED) {
1322		atomic_add_int(&cnt.v_wire_count, 1);
1323		m->wire_count = 1;
1324	}
1325	m->act_count = 0;
1326	mtx_unlock(&vm_page_queue_free_mtx);
1327
1328	if (object != NULL) {
1329		/* Ignore device objects; the pager sets "memattr" for them. */
1330		if (object->memattr != VM_MEMATTR_DEFAULT &&
1331		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1332			pmap_page_set_memattr(m, object->memattr);
1333		vm_page_insert(m, object, pindex);
1334	} else
1335		m->pindex = pindex;
1336
1337	/*
1338	 * The following call to vdrop() must come after the above call
1339	 * to vm_page_insert() in case both affect the same object and
1340	 * vnode.  Otherwise, the affected vnode's hold count could
1341	 * temporarily become zero.
1342	 */
1343	if (vp != NULL)
1344		vdrop(vp);
1345
1346	/*
1347	 * Don't wakeup too often - wakeup the pageout daemon when
1348	 * we would be nearly out of memory.
1349	 */
1350	if (vm_paging_needed())
1351		pagedaemon_wakeup();
1352
1353	return (m);
1354}
1355
1356/*
1357 *	vm_wait:	(also see VM_WAIT macro)
1358 *
1359 *	Block until free pages are available for allocation
1360 *	- Called in various places before memory allocations.
1361 */
1362void
1363vm_wait(void)
1364{
1365
1366	mtx_lock(&vm_page_queue_free_mtx);
1367	if (curproc == pageproc) {
1368		vm_pageout_pages_needed = 1;
1369		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1370		    PDROP | PSWP, "VMWait", 0);
1371	} else {
1372		if (!vm_pages_needed) {
1373			vm_pages_needed = 1;
1374			wakeup(&vm_pages_needed);
1375		}
1376		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1377		    "vmwait", 0);
1378	}
1379}
1380
1381/*
1382 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1383 *
1384 *	Block until free pages are available for allocation
1385 *	- Called only in vm_fault so that processes page faulting
1386 *	  can be easily tracked.
1387 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1388 *	  processes will be able to grab memory first.  Do not change
1389 *	  this balance without careful testing first.
1390 */
1391void
1392vm_waitpfault(void)
1393{
1394
1395	mtx_lock(&vm_page_queue_free_mtx);
1396	if (!vm_pages_needed) {
1397		vm_pages_needed = 1;
1398		wakeup(&vm_pages_needed);
1399	}
1400	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1401	    "pfault", 0);
1402}
1403
1404/*
1405 *	vm_page_requeue:
1406 *
1407 *	Move the given page to the tail of its present page queue.
1408 *
1409 *	The page queues must be locked.
1410 */
1411void
1412vm_page_requeue(vm_page_t m)
1413{
1414	struct vpgqueues *vpq;
1415	int queue;
1416
1417	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1418	queue = m->queue;
1419	KASSERT(queue != PQ_NONE,
1420	    ("vm_page_requeue: page %p is not queued", m));
1421	vpq = &vm_page_queues[queue];
1422	TAILQ_REMOVE(&vpq->pl, m, pageq);
1423	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1424}
1425
1426/*
1427 *	vm_page_queue_remove:
1428 *
1429 *	Remove the given page from the specified queue.
1430 *
1431 *	The page and page queues must be locked.
1432 */
1433static __inline void
1434vm_page_queue_remove(int queue, vm_page_t m)
1435{
1436	struct vpgqueues *pq;
1437
1438	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1439	vm_page_lock_assert(m, MA_OWNED);
1440	pq = &vm_page_queues[queue];
1441	TAILQ_REMOVE(&pq->pl, m, pageq);
1442	(*pq->cnt)--;
1443}
1444
1445/*
1446 *	vm_pageq_remove:
1447 *
1448 *	Remove a page from its queue.
1449 *
1450 *	The given page must be locked.
1451 *	This routine may not block.
1452 */
1453void
1454vm_pageq_remove(vm_page_t m)
1455{
1456	int queue;
1457
1458	vm_page_lock_assert(m, MA_OWNED);
1459	if ((queue = m->queue) != PQ_NONE) {
1460		vm_page_lock_queues();
1461		m->queue = PQ_NONE;
1462		vm_page_queue_remove(queue, m);
1463		vm_page_unlock_queues();
1464	}
1465}
1466
1467/*
1468 *	vm_page_enqueue:
1469 *
1470 *	Add the given page to the specified queue.
1471 *
1472 *	The page queues must be locked.
1473 */
1474static void
1475vm_page_enqueue(int queue, vm_page_t m)
1476{
1477	struct vpgqueues *vpq;
1478
1479	vpq = &vm_page_queues[queue];
1480	m->queue = queue;
1481	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1482	++*vpq->cnt;
1483}
1484
1485/*
1486 *	vm_page_activate:
1487 *
1488 *	Put the specified page on the active list (if appropriate).
1489 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1490 *	mess with it.
1491 *
1492 *	The page must be locked.
1493 *	This routine may not block.
1494 */
1495void
1496vm_page_activate(vm_page_t m)
1497{
1498	int queue;
1499
1500	vm_page_lock_assert(m, MA_OWNED);
1501	if ((queue = m->queue) != PQ_ACTIVE) {
1502		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1503			if (m->act_count < ACT_INIT)
1504				m->act_count = ACT_INIT;
1505			vm_page_lock_queues();
1506			if (queue != PQ_NONE)
1507				vm_page_queue_remove(queue, m);
1508			vm_page_enqueue(PQ_ACTIVE, m);
1509			vm_page_unlock_queues();
1510		} else
1511			KASSERT(queue == PQ_NONE,
1512			    ("vm_page_activate: wired page %p is queued", m));
1513	} else {
1514		if (m->act_count < ACT_INIT)
1515			m->act_count = ACT_INIT;
1516	}
1517}
1518
1519/*
1520 *	vm_page_free_wakeup:
1521 *
1522 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1523 *	routine is called when a page has been added to the cache or free
1524 *	queues.
1525 *
1526 *	The page queues must be locked.
1527 *	This routine may not block.
1528 */
1529static inline void
1530vm_page_free_wakeup(void)
1531{
1532
1533	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1534	/*
1535	 * if pageout daemon needs pages, then tell it that there are
1536	 * some free.
1537	 */
1538	if (vm_pageout_pages_needed &&
1539	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1540		wakeup(&vm_pageout_pages_needed);
1541		vm_pageout_pages_needed = 0;
1542	}
1543	/*
1544	 * wakeup processes that are waiting on memory if we hit a
1545	 * high water mark. And wakeup scheduler process if we have
1546	 * lots of memory. this process will swapin processes.
1547	 */
1548	if (vm_pages_needed && !vm_page_count_min()) {
1549		vm_pages_needed = 0;
1550		wakeup(&cnt.v_free_count);
1551	}
1552}
1553
1554/*
1555 *	vm_page_free_toq:
1556 *
1557 *	Returns the given page to the free list,
1558 *	disassociating it with any VM object.
1559 *
1560 *	Object and page must be locked prior to entry.
1561 *	This routine may not block.
1562 */
1563
1564void
1565vm_page_free_toq(vm_page_t m)
1566{
1567
1568	if ((m->flags & PG_UNMANAGED) == 0) {
1569		vm_page_lock_assert(m, MA_OWNED);
1570		KASSERT(!pmap_page_is_mapped(m),
1571		    ("vm_page_free_toq: freeing mapped page %p", m));
1572	}
1573	PCPU_INC(cnt.v_tfree);
1574
1575	if (m->busy || VM_PAGE_IS_FREE(m)) {
1576		printf(
1577		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1578		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1579		    m->hold_count);
1580		if (VM_PAGE_IS_FREE(m))
1581			panic("vm_page_free: freeing free page");
1582		else
1583			panic("vm_page_free: freeing busy page");
1584	}
1585
1586	/*
1587	 * unqueue, then remove page.  Note that we cannot destroy
1588	 * the page here because we do not want to call the pager's
1589	 * callback routine until after we've put the page on the
1590	 * appropriate free queue.
1591	 */
1592	if ((m->flags & PG_UNMANAGED) == 0)
1593		vm_pageq_remove(m);
1594	vm_page_remove(m);
1595
1596	/*
1597	 * If fictitious remove object association and
1598	 * return, otherwise delay object association removal.
1599	 */
1600	if ((m->flags & PG_FICTITIOUS) != 0) {
1601		return;
1602	}
1603
1604	m->valid = 0;
1605	vm_page_undirty(m);
1606
1607	if (m->wire_count != 0) {
1608		if (m->wire_count > 1) {
1609			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1610				m->wire_count, (long)m->pindex);
1611		}
1612		panic("vm_page_free: freeing wired page");
1613	}
1614	if (m->hold_count != 0) {
1615		m->flags &= ~PG_ZERO;
1616		vm_page_lock_queues();
1617		vm_page_enqueue(PQ_HOLD, m);
1618		vm_page_unlock_queues();
1619	} else {
1620		/*
1621		 * Restore the default memory attribute to the page.
1622		 */
1623		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1624			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1625
1626		/*
1627		 * Insert the page into the physical memory allocator's
1628		 * cache/free page queues.
1629		 */
1630		mtx_lock(&vm_page_queue_free_mtx);
1631		m->flags |= PG_FREE;
1632		cnt.v_free_count++;
1633#if VM_NRESERVLEVEL > 0
1634		if (!vm_reserv_free_page(m))
1635#else
1636		if (TRUE)
1637#endif
1638			vm_phys_free_pages(m, 0);
1639		if ((m->flags & PG_ZERO) != 0)
1640			++vm_page_zero_count;
1641		else
1642			vm_page_zero_idle_wakeup();
1643		vm_page_free_wakeup();
1644		mtx_unlock(&vm_page_queue_free_mtx);
1645	}
1646}
1647
1648/*
1649 *	vm_page_wire:
1650 *
1651 *	Mark this page as wired down by yet
1652 *	another map, removing it from paging queues
1653 *	as necessary.
1654 *
1655 *	If the page is fictitious, then its wire count must remain one.
1656 *
1657 *	The page must be locked.
1658 *	This routine may not block.
1659 */
1660void
1661vm_page_wire(vm_page_t m)
1662{
1663
1664	/*
1665	 * Only bump the wire statistics if the page is not already wired,
1666	 * and only unqueue the page if it is on some queue (if it is unmanaged
1667	 * it is already off the queues).
1668	 */
1669	vm_page_lock_assert(m, MA_OWNED);
1670	if ((m->flags & PG_FICTITIOUS) != 0) {
1671		KASSERT(m->wire_count == 1,
1672		    ("vm_page_wire: fictitious page %p's wire count isn't one",
1673		    m));
1674		return;
1675	}
1676	if (m->wire_count == 0) {
1677		if ((m->flags & PG_UNMANAGED) == 0)
1678			vm_pageq_remove(m);
1679		atomic_add_int(&cnt.v_wire_count, 1);
1680	}
1681	m->wire_count++;
1682	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1683}
1684
1685/*
1686 * vm_page_unwire:
1687 *
1688 * Release one wiring of the specified page, potentially enabling it to be
1689 * paged again.  If paging is enabled, then the value of the parameter
1690 * "activate" determines to which queue the page is added.  If "activate" is
1691 * non-zero, then the page is added to the active queue.  Otherwise, it is
1692 * added to the inactive queue.
1693 *
1694 * However, unless the page belongs to an object, it is not enqueued because
1695 * it cannot be paged out.
1696 *
1697 * If a page is fictitious, then its wire count must alway be one.
1698 *
1699 * A managed page must be locked.
1700 */
1701void
1702vm_page_unwire(vm_page_t m, int activate)
1703{
1704
1705	if ((m->flags & PG_UNMANAGED) == 0)
1706		vm_page_lock_assert(m, MA_OWNED);
1707	if ((m->flags & PG_FICTITIOUS) != 0) {
1708		KASSERT(m->wire_count == 1,
1709	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
1710		return;
1711	}
1712	if (m->wire_count > 0) {
1713		m->wire_count--;
1714		if (m->wire_count == 0) {
1715			atomic_subtract_int(&cnt.v_wire_count, 1);
1716			if ((m->flags & PG_UNMANAGED) != 0 ||
1717			    m->object == NULL)
1718				return;
1719			vm_page_lock_queues();
1720			if (activate)
1721				vm_page_enqueue(PQ_ACTIVE, m);
1722			else {
1723				vm_page_flag_clear(m, PG_WINATCFLS);
1724				vm_page_enqueue(PQ_INACTIVE, m);
1725			}
1726			vm_page_unlock_queues();
1727		}
1728	} else
1729		panic("vm_page_unwire: page %p's wire count is zero", m);
1730}
1731
1732/*
1733 * Move the specified page to the inactive queue.
1734 *
1735 * Many pages placed on the inactive queue should actually go
1736 * into the cache, but it is difficult to figure out which.  What
1737 * we do instead, if the inactive target is well met, is to put
1738 * clean pages at the head of the inactive queue instead of the tail.
1739 * This will cause them to be moved to the cache more quickly and
1740 * if not actively re-referenced, reclaimed more quickly.  If we just
1741 * stick these pages at the end of the inactive queue, heavy filesystem
1742 * meta-data accesses can cause an unnecessary paging load on memory bound
1743 * processes.  This optimization causes one-time-use metadata to be
1744 * reused more quickly.
1745 *
1746 * Normally athead is 0 resulting in LRU operation.  athead is set
1747 * to 1 if we want this page to be 'as if it were placed in the cache',
1748 * except without unmapping it from the process address space.
1749 *
1750 * This routine may not block.
1751 */
1752static inline void
1753_vm_page_deactivate(vm_page_t m, int athead)
1754{
1755	int queue;
1756
1757	vm_page_lock_assert(m, MA_OWNED);
1758
1759	/*
1760	 * Ignore if already inactive.
1761	 */
1762	if ((queue = m->queue) == PQ_INACTIVE)
1763		return;
1764	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1765		vm_page_lock_queues();
1766		vm_page_flag_clear(m, PG_WINATCFLS);
1767		if (queue != PQ_NONE)
1768			vm_page_queue_remove(queue, m);
1769		if (athead)
1770			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
1771			    pageq);
1772		else
1773			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
1774			    pageq);
1775		m->queue = PQ_INACTIVE;
1776		cnt.v_inactive_count++;
1777		vm_page_unlock_queues();
1778	}
1779}
1780
1781/*
1782 * Move the specified page to the inactive queue.
1783 *
1784 * The page must be locked.
1785 */
1786void
1787vm_page_deactivate(vm_page_t m)
1788{
1789
1790	_vm_page_deactivate(m, 0);
1791}
1792
1793/*
1794 * vm_page_try_to_cache:
1795 *
1796 * Returns 0 on failure, 1 on success
1797 */
1798int
1799vm_page_try_to_cache(vm_page_t m)
1800{
1801
1802	vm_page_lock_assert(m, MA_OWNED);
1803	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1804	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1805	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1806		return (0);
1807	pmap_remove_all(m);
1808	if (m->dirty)
1809		return (0);
1810	vm_page_cache(m);
1811	return (1);
1812}
1813
1814/*
1815 * vm_page_try_to_free()
1816 *
1817 *	Attempt to free the page.  If we cannot free it, we do nothing.
1818 *	1 is returned on success, 0 on failure.
1819 */
1820int
1821vm_page_try_to_free(vm_page_t m)
1822{
1823
1824	vm_page_lock_assert(m, MA_OWNED);
1825	if (m->object != NULL)
1826		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1827	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1828	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1829		return (0);
1830	pmap_remove_all(m);
1831	if (m->dirty)
1832		return (0);
1833	vm_page_free(m);
1834	return (1);
1835}
1836
1837/*
1838 * vm_page_cache
1839 *
1840 * Put the specified page onto the page cache queue (if appropriate).
1841 *
1842 * This routine may not block.
1843 */
1844void
1845vm_page_cache(vm_page_t m)
1846{
1847	vm_object_t object;
1848	vm_page_t root;
1849
1850	vm_page_lock_assert(m, MA_OWNED);
1851	object = m->object;
1852	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1853	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1854	    m->hold_count || m->wire_count)
1855		panic("vm_page_cache: attempting to cache busy page");
1856	pmap_remove_all(m);
1857	if (m->dirty != 0)
1858		panic("vm_page_cache: page %p is dirty", m);
1859	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
1860	    (object->type == OBJT_SWAP &&
1861	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
1862		/*
1863		 * Hypothesis: A cache-elgible page belonging to a
1864		 * default object or swap object but without a backing
1865		 * store must be zero filled.
1866		 */
1867		vm_page_free(m);
1868		return;
1869	}
1870	KASSERT((m->flags & PG_CACHED) == 0,
1871	    ("vm_page_cache: page %p is already cached", m));
1872	PCPU_INC(cnt.v_tcached);
1873
1874	/*
1875	 * Remove the page from the paging queues.
1876	 */
1877	vm_pageq_remove(m);
1878
1879	/*
1880	 * Remove the page from the object's collection of resident
1881	 * pages.
1882	 */
1883	if (m != object->root)
1884		vm_page_splay(m->pindex, object->root);
1885	if (m->left == NULL)
1886		root = m->right;
1887	else {
1888		root = vm_page_splay(m->pindex, m->left);
1889		root->right = m->right;
1890	}
1891	object->root = root;
1892	TAILQ_REMOVE(&object->memq, m, listq);
1893	object->resident_page_count--;
1894	object->generation++;
1895
1896	/*
1897	 * Restore the default memory attribute to the page.
1898	 */
1899	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1900		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1901
1902	/*
1903	 * Insert the page into the object's collection of cached pages
1904	 * and the physical memory allocator's cache/free page queues.
1905	 */
1906	m->flags &= ~PG_ZERO;
1907	mtx_lock(&vm_page_queue_free_mtx);
1908	m->flags |= PG_CACHED;
1909	cnt.v_cache_count++;
1910	root = object->cache;
1911	if (root == NULL) {
1912		m->left = NULL;
1913		m->right = NULL;
1914	} else {
1915		root = vm_page_splay(m->pindex, root);
1916		if (m->pindex < root->pindex) {
1917			m->left = root->left;
1918			m->right = root;
1919			root->left = NULL;
1920		} else if (__predict_false(m->pindex == root->pindex))
1921			panic("vm_page_cache: offset already cached");
1922		else {
1923			m->right = root->right;
1924			m->left = root;
1925			root->right = NULL;
1926		}
1927	}
1928	object->cache = m;
1929#if VM_NRESERVLEVEL > 0
1930	if (!vm_reserv_free_page(m)) {
1931#else
1932	if (TRUE) {
1933#endif
1934		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
1935		vm_phys_free_pages(m, 0);
1936	}
1937	vm_page_free_wakeup();
1938	mtx_unlock(&vm_page_queue_free_mtx);
1939
1940	/*
1941	 * Increment the vnode's hold count if this is the object's only
1942	 * cached page.  Decrement the vnode's hold count if this was
1943	 * the object's only resident page.
1944	 */
1945	if (object->type == OBJT_VNODE) {
1946		if (root == NULL && object->resident_page_count != 0)
1947			vhold(object->handle);
1948		else if (root != NULL && object->resident_page_count == 0)
1949			vdrop(object->handle);
1950	}
1951}
1952
1953/*
1954 * vm_page_dontneed
1955 *
1956 *	Cache, deactivate, or do nothing as appropriate.  This routine
1957 *	is typically used by madvise() MADV_DONTNEED.
1958 *
1959 *	Generally speaking we want to move the page into the cache so
1960 *	it gets reused quickly.  However, this can result in a silly syndrome
1961 *	due to the page recycling too quickly.  Small objects will not be
1962 *	fully cached.  On the otherhand, if we move the page to the inactive
1963 *	queue we wind up with a problem whereby very large objects
1964 *	unnecessarily blow away our inactive and cache queues.
1965 *
1966 *	The solution is to move the pages based on a fixed weighting.  We
1967 *	either leave them alone, deactivate them, or move them to the cache,
1968 *	where moving them to the cache has the highest weighting.
1969 *	By forcing some pages into other queues we eventually force the
1970 *	system to balance the queues, potentially recovering other unrelated
1971 *	space from active.  The idea is to not force this to happen too
1972 *	often.
1973 */
1974void
1975vm_page_dontneed(vm_page_t m)
1976{
1977	int dnw;
1978	int head;
1979
1980	vm_page_lock_assert(m, MA_OWNED);
1981	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1982	dnw = PCPU_GET(dnweight);
1983	PCPU_INC(dnweight);
1984
1985	/*
1986	 * Occasionally leave the page alone.
1987	 */
1988	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
1989		if (m->act_count >= ACT_INIT)
1990			--m->act_count;
1991		return;
1992	}
1993
1994	/*
1995	 * Clear any references to the page.  Otherwise, the page daemon will
1996	 * immediately reactivate the page.
1997	 *
1998	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
1999	 * pmap operation, such as pmap_remove(), could clear a reference in
2000	 * the pmap and set PG_REFERENCED on the page before the
2001	 * pmap_clear_reference() had completed.  Consequently, the page would
2002	 * appear referenced based upon an old reference that occurred before
2003	 * this function ran.
2004	 */
2005	pmap_clear_reference(m);
2006	vm_page_lock_queues();
2007	vm_page_flag_clear(m, PG_REFERENCED);
2008	vm_page_unlock_queues();
2009
2010	if (m->dirty == 0 && pmap_is_modified(m))
2011		vm_page_dirty(m);
2012
2013	if (m->dirty || (dnw & 0x0070) == 0) {
2014		/*
2015		 * Deactivate the page 3 times out of 32.
2016		 */
2017		head = 0;
2018	} else {
2019		/*
2020		 * Cache the page 28 times out of every 32.  Note that
2021		 * the page is deactivated instead of cached, but placed
2022		 * at the head of the queue instead of the tail.
2023		 */
2024		head = 1;
2025	}
2026	_vm_page_deactivate(m, head);
2027}
2028
2029/*
2030 * Grab a page, waiting until we are waken up due to the page
2031 * changing state.  We keep on waiting, if the page continues
2032 * to be in the object.  If the page doesn't exist, first allocate it
2033 * and then conditionally zero it.
2034 *
2035 * This routine may block.
2036 */
2037vm_page_t
2038vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2039{
2040	vm_page_t m;
2041
2042	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2043retrylookup:
2044	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2045		if ((m->oflags & VPO_BUSY) != 0 || m->busy != 0) {
2046			if ((allocflags & VM_ALLOC_RETRY) != 0) {
2047				/*
2048				 * Reference the page before unlocking and
2049				 * sleeping so that the page daemon is less
2050				 * likely to reclaim it.
2051				 */
2052				vm_page_lock_queues();
2053				vm_page_flag_set(m, PG_REFERENCED);
2054			}
2055			vm_page_sleep(m, "pgrbwt");
2056			if ((allocflags & VM_ALLOC_RETRY) == 0)
2057				return (NULL);
2058			goto retrylookup;
2059		} else {
2060			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2061				vm_page_lock(m);
2062				vm_page_wire(m);
2063				vm_page_unlock(m);
2064			}
2065			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2066				vm_page_busy(m);
2067			return (m);
2068		}
2069	}
2070	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
2071	if (m == NULL) {
2072		VM_OBJECT_UNLOCK(object);
2073		VM_WAIT;
2074		VM_OBJECT_LOCK(object);
2075		if ((allocflags & VM_ALLOC_RETRY) == 0)
2076			return (NULL);
2077		goto retrylookup;
2078	} else if (m->valid != 0)
2079		return (m);
2080	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2081		pmap_zero_page(m);
2082	return (m);
2083}
2084
2085/*
2086 * Mapping function for valid bits or for dirty bits in
2087 * a page.  May not block.
2088 *
2089 * Inputs are required to range within a page.
2090 */
2091int
2092vm_page_bits(int base, int size)
2093{
2094	int first_bit;
2095	int last_bit;
2096
2097	KASSERT(
2098	    base + size <= PAGE_SIZE,
2099	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2100	);
2101
2102	if (size == 0)		/* handle degenerate case */
2103		return (0);
2104
2105	first_bit = base >> DEV_BSHIFT;
2106	last_bit = (base + size - 1) >> DEV_BSHIFT;
2107
2108	return ((2 << last_bit) - (1 << first_bit));
2109}
2110
2111/*
2112 *	vm_page_set_valid:
2113 *
2114 *	Sets portions of a page valid.  The arguments are expected
2115 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2116 *	of any partial chunks touched by the range.  The invalid portion of
2117 *	such chunks will be zeroed.
2118 *
2119 *	(base + size) must be less then or equal to PAGE_SIZE.
2120 */
2121void
2122vm_page_set_valid(vm_page_t m, int base, int size)
2123{
2124	int endoff, frag;
2125
2126	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2127	if (size == 0)	/* handle degenerate case */
2128		return;
2129
2130	/*
2131	 * If the base is not DEV_BSIZE aligned and the valid
2132	 * bit is clear, we have to zero out a portion of the
2133	 * first block.
2134	 */
2135	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2136	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2137		pmap_zero_page_area(m, frag, base - frag);
2138
2139	/*
2140	 * If the ending offset is not DEV_BSIZE aligned and the
2141	 * valid bit is clear, we have to zero out a portion of
2142	 * the last block.
2143	 */
2144	endoff = base + size;
2145	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2146	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2147		pmap_zero_page_area(m, endoff,
2148		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2149
2150	/*
2151	 * Assert that no previously invalid block that is now being validated
2152	 * is already dirty.
2153	 */
2154	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2155	    ("vm_page_set_valid: page %p is dirty", m));
2156
2157	/*
2158	 * Set valid bits inclusive of any overlap.
2159	 */
2160	m->valid |= vm_page_bits(base, size);
2161}
2162
2163/*
2164 * Clear the given bits from the specified page's dirty field.
2165 */
2166static __inline void
2167vm_page_clear_dirty_mask(vm_page_t m, int pagebits)
2168{
2169
2170	/*
2171	 * If the object is locked and the page is neither VPO_BUSY nor
2172	 * PG_WRITEABLE, then the page's dirty field cannot possibly be
2173	 * modified by a concurrent pmap operation.
2174	 */
2175	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2176	if ((m->oflags & VPO_BUSY) == 0 && (m->flags & PG_WRITEABLE) == 0)
2177		m->dirty &= ~pagebits;
2178	else {
2179		vm_page_lock_queues();
2180		m->dirty &= ~pagebits;
2181		vm_page_unlock_queues();
2182	}
2183}
2184
2185/*
2186 *	vm_page_set_validclean:
2187 *
2188 *	Sets portions of a page valid and clean.  The arguments are expected
2189 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2190 *	of any partial chunks touched by the range.  The invalid portion of
2191 *	such chunks will be zero'd.
2192 *
2193 *	This routine may not block.
2194 *
2195 *	(base + size) must be less then or equal to PAGE_SIZE.
2196 */
2197void
2198vm_page_set_validclean(vm_page_t m, int base, int size)
2199{
2200	u_long oldvalid;
2201	int endoff, frag, pagebits;
2202
2203	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2204	if (size == 0)	/* handle degenerate case */
2205		return;
2206
2207	/*
2208	 * If the base is not DEV_BSIZE aligned and the valid
2209	 * bit is clear, we have to zero out a portion of the
2210	 * first block.
2211	 */
2212	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2213	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2214		pmap_zero_page_area(m, frag, base - frag);
2215
2216	/*
2217	 * If the ending offset is not DEV_BSIZE aligned and the
2218	 * valid bit is clear, we have to zero out a portion of
2219	 * the last block.
2220	 */
2221	endoff = base + size;
2222	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2223	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2224		pmap_zero_page_area(m, endoff,
2225		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2226
2227	/*
2228	 * Set valid, clear dirty bits.  If validating the entire
2229	 * page we can safely clear the pmap modify bit.  We also
2230	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2231	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2232	 * be set again.
2233	 *
2234	 * We set valid bits inclusive of any overlap, but we can only
2235	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2236	 * the range.
2237	 */
2238	oldvalid = m->valid;
2239	pagebits = vm_page_bits(base, size);
2240	m->valid |= pagebits;
2241#if 0	/* NOT YET */
2242	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2243		frag = DEV_BSIZE - frag;
2244		base += frag;
2245		size -= frag;
2246		if (size < 0)
2247			size = 0;
2248	}
2249	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2250#endif
2251	if (base == 0 && size == PAGE_SIZE) {
2252		/*
2253		 * The page can only be modified within the pmap if it is
2254		 * mapped, and it can only be mapped if it was previously
2255		 * fully valid.
2256		 */
2257		if (oldvalid == VM_PAGE_BITS_ALL)
2258			/*
2259			 * Perform the pmap_clear_modify() first.  Otherwise,
2260			 * a concurrent pmap operation, such as
2261			 * pmap_protect(), could clear a modification in the
2262			 * pmap and set the dirty field on the page before
2263			 * pmap_clear_modify() had begun and after the dirty
2264			 * field was cleared here.
2265			 */
2266			pmap_clear_modify(m);
2267		m->dirty = 0;
2268		m->oflags &= ~VPO_NOSYNC;
2269	} else if (oldvalid != VM_PAGE_BITS_ALL)
2270		m->dirty &= ~pagebits;
2271	else
2272		vm_page_clear_dirty_mask(m, pagebits);
2273}
2274
2275void
2276vm_page_clear_dirty(vm_page_t m, int base, int size)
2277{
2278
2279	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2280}
2281
2282/*
2283 *	vm_page_set_invalid:
2284 *
2285 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2286 *	valid and dirty bits for the effected areas are cleared.
2287 *
2288 *	May not block.
2289 */
2290void
2291vm_page_set_invalid(vm_page_t m, int base, int size)
2292{
2293	int bits;
2294
2295	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2296	KASSERT((m->oflags & VPO_BUSY) == 0,
2297	    ("vm_page_set_invalid: page %p is busy", m));
2298	bits = vm_page_bits(base, size);
2299	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2300		pmap_remove_all(m);
2301	KASSERT(!pmap_page_is_mapped(m),
2302	    ("vm_page_set_invalid: page %p is mapped", m));
2303	m->valid &= ~bits;
2304	m->dirty &= ~bits;
2305	m->object->generation++;
2306}
2307
2308/*
2309 * vm_page_zero_invalid()
2310 *
2311 *	The kernel assumes that the invalid portions of a page contain
2312 *	garbage, but such pages can be mapped into memory by user code.
2313 *	When this occurs, we must zero out the non-valid portions of the
2314 *	page so user code sees what it expects.
2315 *
2316 *	Pages are most often semi-valid when the end of a file is mapped
2317 *	into memory and the file's size is not page aligned.
2318 */
2319void
2320vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2321{
2322	int b;
2323	int i;
2324
2325	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2326	/*
2327	 * Scan the valid bits looking for invalid sections that
2328	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2329	 * valid bit may be set ) have already been zerod by
2330	 * vm_page_set_validclean().
2331	 */
2332	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2333		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2334		    (m->valid & (1 << i))
2335		) {
2336			if (i > b) {
2337				pmap_zero_page_area(m,
2338				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2339			}
2340			b = i + 1;
2341		}
2342	}
2343
2344	/*
2345	 * setvalid is TRUE when we can safely set the zero'd areas
2346	 * as being valid.  We can do this if there are no cache consistancy
2347	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2348	 */
2349	if (setvalid)
2350		m->valid = VM_PAGE_BITS_ALL;
2351}
2352
2353/*
2354 *	vm_page_is_valid:
2355 *
2356 *	Is (partial) page valid?  Note that the case where size == 0
2357 *	will return FALSE in the degenerate case where the page is
2358 *	entirely invalid, and TRUE otherwise.
2359 *
2360 *	May not block.
2361 */
2362int
2363vm_page_is_valid(vm_page_t m, int base, int size)
2364{
2365	int bits = vm_page_bits(base, size);
2366
2367	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2368	if (m->valid && ((m->valid & bits) == bits))
2369		return 1;
2370	else
2371		return 0;
2372}
2373
2374/*
2375 * update dirty bits from pmap/mmu.  May not block.
2376 */
2377void
2378vm_page_test_dirty(vm_page_t m)
2379{
2380
2381	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2382	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2383		vm_page_dirty(m);
2384}
2385
2386int so_zerocp_fullpage = 0;
2387
2388/*
2389 *	Replace the given page with a copy.  The copied page assumes
2390 *	the portion of the given page's "wire_count" that is not the
2391 *	responsibility of this copy-on-write mechanism.
2392 *
2393 *	The object containing the given page must have a non-zero
2394 *	paging-in-progress count and be locked.
2395 */
2396void
2397vm_page_cowfault(vm_page_t m)
2398{
2399	vm_page_t mnew;
2400	vm_object_t object;
2401	vm_pindex_t pindex;
2402
2403	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
2404	vm_page_lock_assert(m, MA_OWNED);
2405	object = m->object;
2406	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2407	KASSERT(object->paging_in_progress != 0,
2408	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2409	    object));
2410	pindex = m->pindex;
2411
2412 retry_alloc:
2413	pmap_remove_all(m);
2414	vm_page_remove(m);
2415	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2416	if (mnew == NULL) {
2417		vm_page_insert(m, object, pindex);
2418		vm_page_unlock(m);
2419		VM_OBJECT_UNLOCK(object);
2420		VM_WAIT;
2421		VM_OBJECT_LOCK(object);
2422		if (m == vm_page_lookup(object, pindex)) {
2423			vm_page_lock(m);
2424			goto retry_alloc;
2425		} else {
2426			/*
2427			 * Page disappeared during the wait.
2428			 */
2429			return;
2430		}
2431	}
2432
2433	if (m->cow == 0) {
2434		/*
2435		 * check to see if we raced with an xmit complete when
2436		 * waiting to allocate a page.  If so, put things back
2437		 * the way they were
2438		 */
2439		vm_page_unlock(m);
2440		vm_page_lock(mnew);
2441		vm_page_free(mnew);
2442		vm_page_unlock(mnew);
2443		vm_page_insert(m, object, pindex);
2444	} else { /* clear COW & copy page */
2445		if (!so_zerocp_fullpage)
2446			pmap_copy_page(m, mnew);
2447		mnew->valid = VM_PAGE_BITS_ALL;
2448		vm_page_dirty(mnew);
2449		mnew->wire_count = m->wire_count - m->cow;
2450		m->wire_count = m->cow;
2451		vm_page_unlock(m);
2452	}
2453}
2454
2455void
2456vm_page_cowclear(vm_page_t m)
2457{
2458
2459	vm_page_lock_assert(m, MA_OWNED);
2460	if (m->cow) {
2461		m->cow--;
2462		/*
2463		 * let vm_fault add back write permission  lazily
2464		 */
2465	}
2466	/*
2467	 *  sf_buf_free() will free the page, so we needn't do it here
2468	 */
2469}
2470
2471int
2472vm_page_cowsetup(vm_page_t m)
2473{
2474
2475	vm_page_lock_assert(m, MA_OWNED);
2476	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
2477	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
2478		return (EBUSY);
2479	m->cow++;
2480	pmap_remove_write(m);
2481	VM_OBJECT_UNLOCK(m->object);
2482	return (0);
2483}
2484
2485#include "opt_ddb.h"
2486#ifdef DDB
2487#include <sys/kernel.h>
2488
2489#include <ddb/ddb.h>
2490
2491DB_SHOW_COMMAND(page, vm_page_print_page_info)
2492{
2493	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2494	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2495	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2496	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2497	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2498	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2499	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2500	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2501	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2502	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2503}
2504
2505DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2506{
2507
2508	db_printf("PQ_FREE:");
2509	db_printf(" %d", cnt.v_free_count);
2510	db_printf("\n");
2511
2512	db_printf("PQ_CACHE:");
2513	db_printf(" %d", cnt.v_cache_count);
2514	db_printf("\n");
2515
2516	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2517		*vm_page_queues[PQ_ACTIVE].cnt,
2518		*vm_page_queues[PQ_INACTIVE].cnt);
2519}
2520#endif /* DDB */
2521