vm_page.c revision 209173
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- a pageq mutex is required when adding or removing a page from a
67 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68 *	  busy state of a page.
69 *
70 *	- a hash chain mutex is required when associating or disassociating
71 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
72 *	  regardless of other mutexes or the busy state of a page.
73 *
74 *	- either a hash chain mutex OR a busied page is required in order
75 *	  to modify the page flags.  A hash chain mutex must be obtained in
76 *	  order to busy a page.  A page's flags cannot be modified by a
77 *	  hash chain mutex if the page is marked busy.
78 *
79 *	- The object memq mutex is held when inserting or removing
80 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
81 *	  is different from the object's main mutex.
82 *
83 *	Generally speaking, you have to be aware of side effects when running
84 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
85 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
86 *	vm_page_cache(), vm_page_activate(), and a number of other routines
87 *	will release the hash chain mutex for you.  Intermediate manipulation
88 *	routines such as vm_page_flag_set() expect the hash chain to be held
89 *	on entry and the hash chain will remain held on return.
90 *
91 *	pageq scanning can only occur with the pageq in question locked.
92 *	We have a known bottleneck with the active queue, but the cache
93 *	and free queues are actually arrays already.
94 */
95
96/*
97 *	Resident memory management module.
98 */
99
100#include <sys/cdefs.h>
101__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 209173 2010-06-14 19:54:19Z alc $");
102
103#include "opt_vm.h"
104
105#include <sys/param.h>
106#include <sys/systm.h>
107#include <sys/lock.h>
108#include <sys/kernel.h>
109#include <sys/limits.h>
110#include <sys/malloc.h>
111#include <sys/msgbuf.h>
112#include <sys/mutex.h>
113#include <sys/proc.h>
114#include <sys/sysctl.h>
115#include <sys/vmmeter.h>
116#include <sys/vnode.h>
117
118#include <vm/vm.h>
119#include <vm/pmap.h>
120#include <vm/vm_param.h>
121#include <vm/vm_kern.h>
122#include <vm/vm_object.h>
123#include <vm/vm_page.h>
124#include <vm/vm_pageout.h>
125#include <vm/vm_pager.h>
126#include <vm/vm_phys.h>
127#include <vm/vm_reserv.h>
128#include <vm/vm_extern.h>
129#include <vm/uma.h>
130#include <vm/uma_int.h>
131
132#include <machine/md_var.h>
133
134#if defined(__amd64__) || defined (__i386__)
135extern struct sysctl_oid_list sysctl__vm_pmap_children;
136#else
137SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
138#endif
139
140static uint64_t pmap_tryrelock_calls;
141SYSCTL_QUAD(_vm_pmap, OID_AUTO, tryrelock_calls, CTLFLAG_RD,
142    &pmap_tryrelock_calls, 0, "Number of tryrelock calls");
143
144static int pmap_tryrelock_restart;
145SYSCTL_INT(_vm_pmap, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
146    &pmap_tryrelock_restart, 0, "Number of tryrelock restarts");
147
148static int pmap_tryrelock_race;
149SYSCTL_INT(_vm_pmap, OID_AUTO, tryrelock_race, CTLFLAG_RD,
150    &pmap_tryrelock_race, 0, "Number of tryrelock pmap race cases");
151
152/*
153 *	Associated with page of user-allocatable memory is a
154 *	page structure.
155 */
156
157struct vpgqueues vm_page_queues[PQ_COUNT];
158struct vpglocks vm_page_queue_lock;
159struct vpglocks vm_page_queue_free_lock;
160
161struct vpglocks	pa_lock[PA_LOCK_COUNT] __aligned(CACHE_LINE_SIZE);
162
163vm_page_t vm_page_array = 0;
164int vm_page_array_size = 0;
165long first_page = 0;
166int vm_page_zero_count = 0;
167
168static int boot_pages = UMA_BOOT_PAGES;
169TUNABLE_INT("vm.boot_pages", &boot_pages);
170SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
171	"number of pages allocated for bootstrapping the VM system");
172
173static void vm_page_clear_dirty_mask(vm_page_t m, int pagebits);
174static void vm_page_queue_remove(int queue, vm_page_t m);
175static void vm_page_enqueue(int queue, vm_page_t m);
176
177/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
178#if PAGE_SIZE == 32768
179#ifdef CTASSERT
180CTASSERT(sizeof(u_long) >= 8);
181#endif
182#endif
183
184/*
185 * Try to acquire a physical address lock while a pmap is locked.  If we
186 * fail to trylock we unlock and lock the pmap directly and cache the
187 * locked pa in *locked.  The caller should then restart their loop in case
188 * the virtual to physical mapping has changed.
189 */
190int
191vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
192{
193	vm_paddr_t lockpa;
194	uint32_t gen_count;
195
196	gen_count = pmap->pm_gen_count;
197	atomic_add_long((volatile long *)&pmap_tryrelock_calls, 1);
198	lockpa = *locked;
199	*locked = pa;
200	if (lockpa) {
201		PA_LOCK_ASSERT(lockpa, MA_OWNED);
202		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
203			return (0);
204		PA_UNLOCK(lockpa);
205	}
206	if (PA_TRYLOCK(pa))
207		return (0);
208	PMAP_UNLOCK(pmap);
209	atomic_add_int((volatile int *)&pmap_tryrelock_restart, 1);
210	PA_LOCK(pa);
211	PMAP_LOCK(pmap);
212
213	if (pmap->pm_gen_count != gen_count + 1) {
214		pmap->pm_retries++;
215		atomic_add_int((volatile int *)&pmap_tryrelock_race, 1);
216		return (EAGAIN);
217	}
218	return (0);
219}
220
221/*
222 *	vm_set_page_size:
223 *
224 *	Sets the page size, perhaps based upon the memory
225 *	size.  Must be called before any use of page-size
226 *	dependent functions.
227 */
228void
229vm_set_page_size(void)
230{
231	if (cnt.v_page_size == 0)
232		cnt.v_page_size = PAGE_SIZE;
233	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
234		panic("vm_set_page_size: page size not a power of two");
235}
236
237/*
238 *	vm_page_blacklist_lookup:
239 *
240 *	See if a physical address in this page has been listed
241 *	in the blacklist tunable.  Entries in the tunable are
242 *	separated by spaces or commas.  If an invalid integer is
243 *	encountered then the rest of the string is skipped.
244 */
245static int
246vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
247{
248	vm_paddr_t bad;
249	char *cp, *pos;
250
251	for (pos = list; *pos != '\0'; pos = cp) {
252		bad = strtoq(pos, &cp, 0);
253		if (*cp != '\0') {
254			if (*cp == ' ' || *cp == ',') {
255				cp++;
256				if (cp == pos)
257					continue;
258			} else
259				break;
260		}
261		if (pa == trunc_page(bad))
262			return (1);
263	}
264	return (0);
265}
266
267/*
268 *	vm_page_startup:
269 *
270 *	Initializes the resident memory module.
271 *
272 *	Allocates memory for the page cells, and
273 *	for the object/offset-to-page hash table headers.
274 *	Each page cell is initialized and placed on the free list.
275 */
276vm_offset_t
277vm_page_startup(vm_offset_t vaddr)
278{
279	vm_offset_t mapped;
280	vm_paddr_t page_range;
281	vm_paddr_t new_end;
282	int i;
283	vm_paddr_t pa;
284	int nblocks;
285	vm_paddr_t last_pa;
286	char *list;
287
288	/* the biggest memory array is the second group of pages */
289	vm_paddr_t end;
290	vm_paddr_t biggestsize;
291	vm_paddr_t low_water, high_water;
292	int biggestone;
293
294	biggestsize = 0;
295	biggestone = 0;
296	nblocks = 0;
297	vaddr = round_page(vaddr);
298
299	for (i = 0; phys_avail[i + 1]; i += 2) {
300		phys_avail[i] = round_page(phys_avail[i]);
301		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
302	}
303
304	low_water = phys_avail[0];
305	high_water = phys_avail[1];
306
307	for (i = 0; phys_avail[i + 1]; i += 2) {
308		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
309
310		if (size > biggestsize) {
311			biggestone = i;
312			biggestsize = size;
313		}
314		if (phys_avail[i] < low_water)
315			low_water = phys_avail[i];
316		if (phys_avail[i + 1] > high_water)
317			high_water = phys_avail[i + 1];
318		++nblocks;
319	}
320
321#ifdef XEN
322	low_water = 0;
323#endif
324
325	end = phys_avail[biggestone+1];
326
327	/*
328	 * Initialize the locks.
329	 */
330	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
331	    MTX_RECURSE);
332	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
333	    MTX_DEF);
334
335	/* Setup page locks. */
336	for (i = 0; i < PA_LOCK_COUNT; i++)
337		mtx_init(&pa_lock[i].data, "page lock", NULL,
338		    MTX_DEF | MTX_RECURSE | MTX_DUPOK);
339
340	/*
341	 * Initialize the queue headers for the hold queue, the active queue,
342	 * and the inactive queue.
343	 */
344	for (i = 0; i < PQ_COUNT; i++)
345		TAILQ_INIT(&vm_page_queues[i].pl);
346	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
347	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
348	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
349
350	/*
351	 * Allocate memory for use when boot strapping the kernel memory
352	 * allocator.
353	 */
354	new_end = end - (boot_pages * UMA_SLAB_SIZE);
355	new_end = trunc_page(new_end);
356	mapped = pmap_map(&vaddr, new_end, end,
357	    VM_PROT_READ | VM_PROT_WRITE);
358	bzero((void *)mapped, end - new_end);
359	uma_startup((void *)mapped, boot_pages);
360
361#if defined(__amd64__) || defined(__i386__) || defined(__arm__)
362	/*
363	 * Allocate a bitmap to indicate that a random physical page
364	 * needs to be included in a minidump.
365	 *
366	 * The amd64 port needs this to indicate which direct map pages
367	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
368	 *
369	 * However, i386 still needs this workspace internally within the
370	 * minidump code.  In theory, they are not needed on i386, but are
371	 * included should the sf_buf code decide to use them.
372	 */
373	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
374	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
375	new_end -= vm_page_dump_size;
376	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
377	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
378	bzero((void *)vm_page_dump, vm_page_dump_size);
379#endif
380#ifdef __amd64__
381	/*
382	 * Request that the physical pages underlying the message buffer be
383	 * included in a crash dump.  Since the message buffer is accessed
384	 * through the direct map, they are not automatically included.
385	 */
386	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
387	last_pa = pa + round_page(MSGBUF_SIZE);
388	while (pa < last_pa) {
389		dump_add_page(pa);
390		pa += PAGE_SIZE;
391	}
392#endif
393	/*
394	 * Compute the number of pages of memory that will be available for
395	 * use (taking into account the overhead of a page structure per
396	 * page).
397	 */
398	first_page = low_water / PAGE_SIZE;
399#ifdef VM_PHYSSEG_SPARSE
400	page_range = 0;
401	for (i = 0; phys_avail[i + 1] != 0; i += 2)
402		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
403#elif defined(VM_PHYSSEG_DENSE)
404	page_range = high_water / PAGE_SIZE - first_page;
405#else
406#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
407#endif
408	end = new_end;
409
410	/*
411	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
412	 */
413	vaddr += PAGE_SIZE;
414
415	/*
416	 * Initialize the mem entry structures now, and put them in the free
417	 * queue.
418	 */
419	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
420	mapped = pmap_map(&vaddr, new_end, end,
421	    VM_PROT_READ | VM_PROT_WRITE);
422	vm_page_array = (vm_page_t) mapped;
423#if VM_NRESERVLEVEL > 0
424	/*
425	 * Allocate memory for the reservation management system's data
426	 * structures.
427	 */
428	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
429#endif
430#ifdef __amd64__
431	/*
432	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
433	 * so the pages must be tracked for a crashdump to include this data.
434	 * This includes the vm_page_array and the early UMA bootstrap pages.
435	 */
436	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
437		dump_add_page(pa);
438#endif
439	phys_avail[biggestone + 1] = new_end;
440
441	/*
442	 * Clear all of the page structures
443	 */
444	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
445	for (i = 0; i < page_range; i++)
446		vm_page_array[i].order = VM_NFREEORDER;
447	vm_page_array_size = page_range;
448
449	/*
450	 * Initialize the physical memory allocator.
451	 */
452	vm_phys_init();
453
454	/*
455	 * Add every available physical page that is not blacklisted to
456	 * the free lists.
457	 */
458	cnt.v_page_count = 0;
459	cnt.v_free_count = 0;
460	list = getenv("vm.blacklist");
461	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
462		pa = phys_avail[i];
463		last_pa = phys_avail[i + 1];
464		while (pa < last_pa) {
465			if (list != NULL &&
466			    vm_page_blacklist_lookup(list, pa))
467				printf("Skipping page with pa 0x%jx\n",
468				    (uintmax_t)pa);
469			else
470				vm_phys_add_page(pa);
471			pa += PAGE_SIZE;
472		}
473	}
474	freeenv(list);
475#if VM_NRESERVLEVEL > 0
476	/*
477	 * Initialize the reservation management system.
478	 */
479	vm_reserv_init();
480#endif
481	return (vaddr);
482}
483
484void
485vm_page_flag_set(vm_page_t m, unsigned short bits)
486{
487
488	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
489	/*
490	 * The PG_WRITEABLE flag can only be set if the page is managed and
491	 * VPO_BUSY.  Currently, this flag is only set by pmap_enter().
492	 */
493	KASSERT((bits & PG_WRITEABLE) == 0 ||
494	    ((m->flags & (PG_UNMANAGED | PG_FICTITIOUS)) == 0 &&
495	    (m->oflags & VPO_BUSY) != 0), ("PG_WRITEABLE and !VPO_BUSY"));
496	m->flags |= bits;
497}
498
499void
500vm_page_flag_clear(vm_page_t m, unsigned short bits)
501{
502
503	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
504	/*
505	 * The PG_REFERENCED flag can only be cleared if the object
506	 * containing the page is locked.
507	 */
508	KASSERT((bits & PG_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object),
509	    ("PG_REFERENCED and !VM_OBJECT_LOCKED"));
510	m->flags &= ~bits;
511}
512
513void
514vm_page_busy(vm_page_t m)
515{
516
517	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
518	KASSERT((m->oflags & VPO_BUSY) == 0,
519	    ("vm_page_busy: page already busy!!!"));
520	m->oflags |= VPO_BUSY;
521}
522
523/*
524 *      vm_page_flash:
525 *
526 *      wakeup anyone waiting for the page.
527 */
528void
529vm_page_flash(vm_page_t m)
530{
531
532	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
533	if (m->oflags & VPO_WANTED) {
534		m->oflags &= ~VPO_WANTED;
535		wakeup(m);
536	}
537}
538
539/*
540 *      vm_page_wakeup:
541 *
542 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
543 *      page.
544 *
545 */
546void
547vm_page_wakeup(vm_page_t m)
548{
549
550	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
551	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
552	m->oflags &= ~VPO_BUSY;
553	vm_page_flash(m);
554}
555
556void
557vm_page_io_start(vm_page_t m)
558{
559
560	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
561	m->busy++;
562}
563
564void
565vm_page_io_finish(vm_page_t m)
566{
567
568	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
569	m->busy--;
570	if (m->busy == 0)
571		vm_page_flash(m);
572}
573
574/*
575 * Keep page from being freed by the page daemon
576 * much of the same effect as wiring, except much lower
577 * overhead and should be used only for *very* temporary
578 * holding ("wiring").
579 */
580void
581vm_page_hold(vm_page_t mem)
582{
583
584	vm_page_lock_assert(mem, MA_OWNED);
585        mem->hold_count++;
586}
587
588void
589vm_page_unhold(vm_page_t mem)
590{
591
592	vm_page_lock_assert(mem, MA_OWNED);
593	--mem->hold_count;
594	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
595	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
596		vm_page_free_toq(mem);
597}
598
599/*
600 *	vm_page_free:
601 *
602 *	Free a page.
603 */
604void
605vm_page_free(vm_page_t m)
606{
607
608	m->flags &= ~PG_ZERO;
609	vm_page_free_toq(m);
610}
611
612/*
613 *	vm_page_free_zero:
614 *
615 *	Free a page to the zerod-pages queue
616 */
617void
618vm_page_free_zero(vm_page_t m)
619{
620
621	m->flags |= PG_ZERO;
622	vm_page_free_toq(m);
623}
624
625/*
626 *	vm_page_sleep:
627 *
628 *	Sleep and release the page and page queues locks.
629 *
630 *	The object containing the given page must be locked.
631 */
632void
633vm_page_sleep(vm_page_t m, const char *msg)
634{
635
636	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
637	if (mtx_owned(&vm_page_queue_mtx))
638		vm_page_unlock_queues();
639	if (mtx_owned(vm_page_lockptr(m)))
640		vm_page_unlock(m);
641
642	/*
643	 * It's possible that while we sleep, the page will get
644	 * unbusied and freed.  If we are holding the object
645	 * lock, we will assume we hold a reference to the object
646	 * such that even if m->object changes, we can re-lock
647	 * it.
648	 */
649	m->oflags |= VPO_WANTED;
650	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
651}
652
653/*
654 *	vm_page_dirty:
655 *
656 *	make page all dirty
657 */
658void
659vm_page_dirty(vm_page_t m)
660{
661
662	KASSERT((m->flags & PG_CACHED) == 0,
663	    ("vm_page_dirty: page in cache!"));
664	KASSERT(!VM_PAGE_IS_FREE(m),
665	    ("vm_page_dirty: page is free!"));
666	KASSERT(m->valid == VM_PAGE_BITS_ALL,
667	    ("vm_page_dirty: page is invalid!"));
668	m->dirty = VM_PAGE_BITS_ALL;
669}
670
671/*
672 *	vm_page_splay:
673 *
674 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
675 *	the vm_page containing the given pindex.  If, however, that
676 *	pindex is not found in the vm_object, returns a vm_page that is
677 *	adjacent to the pindex, coming before or after it.
678 */
679vm_page_t
680vm_page_splay(vm_pindex_t pindex, vm_page_t root)
681{
682	struct vm_page dummy;
683	vm_page_t lefttreemax, righttreemin, y;
684
685	if (root == NULL)
686		return (root);
687	lefttreemax = righttreemin = &dummy;
688	for (;; root = y) {
689		if (pindex < root->pindex) {
690			if ((y = root->left) == NULL)
691				break;
692			if (pindex < y->pindex) {
693				/* Rotate right. */
694				root->left = y->right;
695				y->right = root;
696				root = y;
697				if ((y = root->left) == NULL)
698					break;
699			}
700			/* Link into the new root's right tree. */
701			righttreemin->left = root;
702			righttreemin = root;
703		} else if (pindex > root->pindex) {
704			if ((y = root->right) == NULL)
705				break;
706			if (pindex > y->pindex) {
707				/* Rotate left. */
708				root->right = y->left;
709				y->left = root;
710				root = y;
711				if ((y = root->right) == NULL)
712					break;
713			}
714			/* Link into the new root's left tree. */
715			lefttreemax->right = root;
716			lefttreemax = root;
717		} else
718			break;
719	}
720	/* Assemble the new root. */
721	lefttreemax->right = root->left;
722	righttreemin->left = root->right;
723	root->left = dummy.right;
724	root->right = dummy.left;
725	return (root);
726}
727
728/*
729 *	vm_page_insert:		[ internal use only ]
730 *
731 *	Inserts the given mem entry into the object and object list.
732 *
733 *	The pagetables are not updated but will presumably fault the page
734 *	in if necessary, or if a kernel page the caller will at some point
735 *	enter the page into the kernel's pmap.  We are not allowed to block
736 *	here so we *can't* do this anyway.
737 *
738 *	The object and page must be locked.
739 *	This routine may not block.
740 */
741void
742vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
743{
744	vm_page_t root;
745
746	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
747	if (m->object != NULL)
748		panic("vm_page_insert: page already inserted");
749
750	/*
751	 * Record the object/offset pair in this page
752	 */
753	m->object = object;
754	m->pindex = pindex;
755
756	/*
757	 * Now link into the object's ordered list of backed pages.
758	 */
759	root = object->root;
760	if (root == NULL) {
761		m->left = NULL;
762		m->right = NULL;
763		TAILQ_INSERT_TAIL(&object->memq, m, listq);
764	} else {
765		root = vm_page_splay(pindex, root);
766		if (pindex < root->pindex) {
767			m->left = root->left;
768			m->right = root;
769			root->left = NULL;
770			TAILQ_INSERT_BEFORE(root, m, listq);
771		} else if (pindex == root->pindex)
772			panic("vm_page_insert: offset already allocated");
773		else {
774			m->right = root->right;
775			m->left = root;
776			root->right = NULL;
777			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
778		}
779	}
780	object->root = m;
781	object->generation++;
782
783	/*
784	 * show that the object has one more resident page.
785	 */
786	object->resident_page_count++;
787	/*
788	 * Hold the vnode until the last page is released.
789	 */
790	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
791		vhold((struct vnode *)object->handle);
792
793	/*
794	 * Since we are inserting a new and possibly dirty page,
795	 * update the object's OBJ_MIGHTBEDIRTY flag.
796	 */
797	if (m->flags & PG_WRITEABLE)
798		vm_object_set_writeable_dirty(object);
799}
800
801/*
802 *	vm_page_remove:
803 *				NOTE: used by device pager as well -wfj
804 *
805 *	Removes the given mem entry from the object/offset-page
806 *	table and the object page list, but do not invalidate/terminate
807 *	the backing store.
808 *
809 *	The object and page must be locked.
810 *	The underlying pmap entry (if any) is NOT removed here.
811 *	This routine may not block.
812 */
813void
814vm_page_remove(vm_page_t m)
815{
816	vm_object_t object;
817	vm_page_t root;
818
819	if ((m->flags & PG_UNMANAGED) == 0)
820		vm_page_lock_assert(m, MA_OWNED);
821	if ((object = m->object) == NULL)
822		return;
823	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
824	if (m->oflags & VPO_BUSY) {
825		m->oflags &= ~VPO_BUSY;
826		vm_page_flash(m);
827	}
828
829	/*
830	 * Now remove from the object's list of backed pages.
831	 */
832	if (m != object->root)
833		vm_page_splay(m->pindex, object->root);
834	if (m->left == NULL)
835		root = m->right;
836	else {
837		root = vm_page_splay(m->pindex, m->left);
838		root->right = m->right;
839	}
840	object->root = root;
841	TAILQ_REMOVE(&object->memq, m, listq);
842
843	/*
844	 * And show that the object has one fewer resident page.
845	 */
846	object->resident_page_count--;
847	object->generation++;
848	/*
849	 * The vnode may now be recycled.
850	 */
851	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
852		vdrop((struct vnode *)object->handle);
853
854	m->object = NULL;
855}
856
857/*
858 *	vm_page_lookup:
859 *
860 *	Returns the page associated with the object/offset
861 *	pair specified; if none is found, NULL is returned.
862 *
863 *	The object must be locked.
864 *	This routine may not block.
865 *	This is a critical path routine
866 */
867vm_page_t
868vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
869{
870	vm_page_t m;
871
872	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
873	if ((m = object->root) != NULL && m->pindex != pindex) {
874		m = vm_page_splay(pindex, m);
875		if ((object->root = m)->pindex != pindex)
876			m = NULL;
877	}
878	return (m);
879}
880
881/*
882 *	vm_page_rename:
883 *
884 *	Move the given memory entry from its
885 *	current object to the specified target object/offset.
886 *
887 *	The object must be locked.
888 *	This routine may not block.
889 *
890 *	Note: swap associated with the page must be invalidated by the move.  We
891 *	      have to do this for several reasons:  (1) we aren't freeing the
892 *	      page, (2) we are dirtying the page, (3) the VM system is probably
893 *	      moving the page from object A to B, and will then later move
894 *	      the backing store from A to B and we can't have a conflict.
895 *
896 *	Note: we *always* dirty the page.  It is necessary both for the
897 *	      fact that we moved it, and because we may be invalidating
898 *	      swap.  If the page is on the cache, we have to deactivate it
899 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
900 *	      on the cache.
901 */
902void
903vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
904{
905
906	vm_page_remove(m);
907	vm_page_insert(m, new_object, new_pindex);
908	vm_page_dirty(m);
909}
910
911/*
912 *	Convert all of the given object's cached pages that have a
913 *	pindex within the given range into free pages.  If the value
914 *	zero is given for "end", then the range's upper bound is
915 *	infinity.  If the given object is backed by a vnode and it
916 *	transitions from having one or more cached pages to none, the
917 *	vnode's hold count is reduced.
918 */
919void
920vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
921{
922	vm_page_t m, m_next;
923	boolean_t empty;
924
925	mtx_lock(&vm_page_queue_free_mtx);
926	if (__predict_false(object->cache == NULL)) {
927		mtx_unlock(&vm_page_queue_free_mtx);
928		return;
929	}
930	m = object->cache = vm_page_splay(start, object->cache);
931	if (m->pindex < start) {
932		if (m->right == NULL)
933			m = NULL;
934		else {
935			m_next = vm_page_splay(start, m->right);
936			m_next->left = m;
937			m->right = NULL;
938			m = object->cache = m_next;
939		}
940	}
941
942	/*
943	 * At this point, "m" is either (1) a reference to the page
944	 * with the least pindex that is greater than or equal to
945	 * "start" or (2) NULL.
946	 */
947	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
948		/*
949		 * Find "m"'s successor and remove "m" from the
950		 * object's cache.
951		 */
952		if (m->right == NULL) {
953			object->cache = m->left;
954			m_next = NULL;
955		} else {
956			m_next = vm_page_splay(start, m->right);
957			m_next->left = m->left;
958			object->cache = m_next;
959		}
960		/* Convert "m" to a free page. */
961		m->object = NULL;
962		m->valid = 0;
963		/* Clear PG_CACHED and set PG_FREE. */
964		m->flags ^= PG_CACHED | PG_FREE;
965		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
966		    ("vm_page_cache_free: page %p has inconsistent flags", m));
967		cnt.v_cache_count--;
968		cnt.v_free_count++;
969	}
970	empty = object->cache == NULL;
971	mtx_unlock(&vm_page_queue_free_mtx);
972	if (object->type == OBJT_VNODE && empty)
973		vdrop(object->handle);
974}
975
976/*
977 *	Returns the cached page that is associated with the given
978 *	object and offset.  If, however, none exists, returns NULL.
979 *
980 *	The free page queue must be locked.
981 */
982static inline vm_page_t
983vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
984{
985	vm_page_t m;
986
987	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
988	if ((m = object->cache) != NULL && m->pindex != pindex) {
989		m = vm_page_splay(pindex, m);
990		if ((object->cache = m)->pindex != pindex)
991			m = NULL;
992	}
993	return (m);
994}
995
996/*
997 *	Remove the given cached page from its containing object's
998 *	collection of cached pages.
999 *
1000 *	The free page queue must be locked.
1001 */
1002void
1003vm_page_cache_remove(vm_page_t m)
1004{
1005	vm_object_t object;
1006	vm_page_t root;
1007
1008	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1009	KASSERT((m->flags & PG_CACHED) != 0,
1010	    ("vm_page_cache_remove: page %p is not cached", m));
1011	object = m->object;
1012	if (m != object->cache) {
1013		root = vm_page_splay(m->pindex, object->cache);
1014		KASSERT(root == m,
1015		    ("vm_page_cache_remove: page %p is not cached in object %p",
1016		    m, object));
1017	}
1018	if (m->left == NULL)
1019		root = m->right;
1020	else if (m->right == NULL)
1021		root = m->left;
1022	else {
1023		root = vm_page_splay(m->pindex, m->left);
1024		root->right = m->right;
1025	}
1026	object->cache = root;
1027	m->object = NULL;
1028	cnt.v_cache_count--;
1029}
1030
1031/*
1032 *	Transfer all of the cached pages with offset greater than or
1033 *	equal to 'offidxstart' from the original object's cache to the
1034 *	new object's cache.  However, any cached pages with offset
1035 *	greater than or equal to the new object's size are kept in the
1036 *	original object.  Initially, the new object's cache must be
1037 *	empty.  Offset 'offidxstart' in the original object must
1038 *	correspond to offset zero in the new object.
1039 *
1040 *	The new object must be locked.
1041 */
1042void
1043vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1044    vm_object_t new_object)
1045{
1046	vm_page_t m, m_next;
1047
1048	/*
1049	 * Insertion into an object's collection of cached pages
1050	 * requires the object to be locked.  In contrast, removal does
1051	 * not.
1052	 */
1053	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
1054	KASSERT(new_object->cache == NULL,
1055	    ("vm_page_cache_transfer: object %p has cached pages",
1056	    new_object));
1057	mtx_lock(&vm_page_queue_free_mtx);
1058	if ((m = orig_object->cache) != NULL) {
1059		/*
1060		 * Transfer all of the pages with offset greater than or
1061		 * equal to 'offidxstart' from the original object's
1062		 * cache to the new object's cache.
1063		 */
1064		m = vm_page_splay(offidxstart, m);
1065		if (m->pindex < offidxstart) {
1066			orig_object->cache = m;
1067			new_object->cache = m->right;
1068			m->right = NULL;
1069		} else {
1070			orig_object->cache = m->left;
1071			new_object->cache = m;
1072			m->left = NULL;
1073		}
1074		while ((m = new_object->cache) != NULL) {
1075			if ((m->pindex - offidxstart) >= new_object->size) {
1076				/*
1077				 * Return all of the cached pages with
1078				 * offset greater than or equal to the
1079				 * new object's size to the original
1080				 * object's cache.
1081				 */
1082				new_object->cache = m->left;
1083				m->left = orig_object->cache;
1084				orig_object->cache = m;
1085				break;
1086			}
1087			m_next = vm_page_splay(m->pindex, m->right);
1088			/* Update the page's object and offset. */
1089			m->object = new_object;
1090			m->pindex -= offidxstart;
1091			if (m_next == NULL)
1092				break;
1093			m->right = NULL;
1094			m_next->left = m;
1095			new_object->cache = m_next;
1096		}
1097		KASSERT(new_object->cache == NULL ||
1098		    new_object->type == OBJT_SWAP,
1099		    ("vm_page_cache_transfer: object %p's type is incompatible"
1100		    " with cached pages", new_object));
1101	}
1102	mtx_unlock(&vm_page_queue_free_mtx);
1103}
1104
1105/*
1106 *	vm_page_alloc:
1107 *
1108 *	Allocate and return a memory cell associated
1109 *	with this VM object/offset pair.
1110 *
1111 *	page_req classes:
1112 *	VM_ALLOC_NORMAL		normal process request
1113 *	VM_ALLOC_SYSTEM		system *really* needs a page
1114 *	VM_ALLOC_INTERRUPT	interrupt time request
1115 *	VM_ALLOC_ZERO		zero page
1116 *	VM_ALLOC_WIRED		wire the allocated page
1117 *	VM_ALLOC_NOOBJ		page is not associated with a vm object
1118 *	VM_ALLOC_NOBUSY		do not set the page busy
1119 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1120 *				is cached
1121 *
1122 *	This routine may not sleep.
1123 */
1124vm_page_t
1125vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1126{
1127	struct vnode *vp = NULL;
1128	vm_object_t m_object;
1129	vm_page_t m;
1130	int flags, page_req;
1131
1132	page_req = req & VM_ALLOC_CLASS_MASK;
1133	KASSERT(curthread->td_intr_nesting_level == 0 ||
1134	    page_req == VM_ALLOC_INTERRUPT,
1135	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
1136
1137	if ((req & VM_ALLOC_NOOBJ) == 0) {
1138		KASSERT(object != NULL,
1139		    ("vm_page_alloc: NULL object."));
1140		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1141	}
1142
1143	/*
1144	 * The pager is allowed to eat deeper into the free page list.
1145	 */
1146	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
1147		page_req = VM_ALLOC_SYSTEM;
1148	};
1149
1150	mtx_lock(&vm_page_queue_free_mtx);
1151	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1152	    (page_req == VM_ALLOC_SYSTEM &&
1153	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1154	    (page_req == VM_ALLOC_INTERRUPT &&
1155	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1156		/*
1157		 * Allocate from the free queue if the number of free pages
1158		 * exceeds the minimum for the request class.
1159		 */
1160		if (object != NULL &&
1161		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1162			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1163				mtx_unlock(&vm_page_queue_free_mtx);
1164				return (NULL);
1165			}
1166			if (vm_phys_unfree_page(m))
1167				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1168#if VM_NRESERVLEVEL > 0
1169			else if (!vm_reserv_reactivate_page(m))
1170#else
1171			else
1172#endif
1173				panic("vm_page_alloc: cache page %p is missing"
1174				    " from the free queue", m);
1175		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1176			mtx_unlock(&vm_page_queue_free_mtx);
1177			return (NULL);
1178#if VM_NRESERVLEVEL > 0
1179		} else if (object == NULL || object->type == OBJT_DEVICE ||
1180		    object->type == OBJT_SG ||
1181		    (object->flags & OBJ_COLORED) == 0 ||
1182		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1183#else
1184		} else {
1185#endif
1186			m = vm_phys_alloc_pages(object != NULL ?
1187			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1188#if VM_NRESERVLEVEL > 0
1189			if (m == NULL && vm_reserv_reclaim_inactive()) {
1190				m = vm_phys_alloc_pages(object != NULL ?
1191				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1192				    0);
1193			}
1194#endif
1195		}
1196	} else {
1197		/*
1198		 * Not allocatable, give up.
1199		 */
1200		mtx_unlock(&vm_page_queue_free_mtx);
1201		atomic_add_int(&vm_pageout_deficit, 1);
1202		pagedaemon_wakeup();
1203		return (NULL);
1204	}
1205
1206	/*
1207	 *  At this point we had better have found a good page.
1208	 */
1209
1210	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1211	KASSERT(m->queue == PQ_NONE,
1212	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1213	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1214	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1215	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1216	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1217	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1218	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1219	    pmap_page_get_memattr(m)));
1220	if ((m->flags & PG_CACHED) != 0) {
1221		KASSERT(m->valid != 0,
1222		    ("vm_page_alloc: cached page %p is invalid", m));
1223		if (m->object == object && m->pindex == pindex)
1224	  		cnt.v_reactivated++;
1225		else
1226			m->valid = 0;
1227		m_object = m->object;
1228		vm_page_cache_remove(m);
1229		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1230			vp = m_object->handle;
1231	} else {
1232		KASSERT(VM_PAGE_IS_FREE(m),
1233		    ("vm_page_alloc: page %p is not free", m));
1234		KASSERT(m->valid == 0,
1235		    ("vm_page_alloc: free page %p is valid", m));
1236		cnt.v_free_count--;
1237	}
1238
1239	/*
1240	 * Initialize structure.  Only the PG_ZERO flag is inherited.
1241	 */
1242	flags = 0;
1243	if (m->flags & PG_ZERO) {
1244		vm_page_zero_count--;
1245		if (req & VM_ALLOC_ZERO)
1246			flags = PG_ZERO;
1247	}
1248	if (object == NULL || object->type == OBJT_PHYS)
1249		flags |= PG_UNMANAGED;
1250	m->flags = flags;
1251	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
1252		m->oflags = 0;
1253	else
1254		m->oflags = VPO_BUSY;
1255	if (req & VM_ALLOC_WIRED) {
1256		atomic_add_int(&cnt.v_wire_count, 1);
1257		m->wire_count = 1;
1258	}
1259	m->act_count = 0;
1260	mtx_unlock(&vm_page_queue_free_mtx);
1261
1262	if (object != NULL) {
1263		/* Ignore device objects; the pager sets "memattr" for them. */
1264		if (object->memattr != VM_MEMATTR_DEFAULT &&
1265		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1266			pmap_page_set_memattr(m, object->memattr);
1267		vm_page_insert(m, object, pindex);
1268	} else
1269		m->pindex = pindex;
1270
1271	/*
1272	 * The following call to vdrop() must come after the above call
1273	 * to vm_page_insert() in case both affect the same object and
1274	 * vnode.  Otherwise, the affected vnode's hold count could
1275	 * temporarily become zero.
1276	 */
1277	if (vp != NULL)
1278		vdrop(vp);
1279
1280	/*
1281	 * Don't wakeup too often - wakeup the pageout daemon when
1282	 * we would be nearly out of memory.
1283	 */
1284	if (vm_paging_needed())
1285		pagedaemon_wakeup();
1286
1287	return (m);
1288}
1289
1290/*
1291 *	vm_wait:	(also see VM_WAIT macro)
1292 *
1293 *	Block until free pages are available for allocation
1294 *	- Called in various places before memory allocations.
1295 */
1296void
1297vm_wait(void)
1298{
1299
1300	mtx_lock(&vm_page_queue_free_mtx);
1301	if (curproc == pageproc) {
1302		vm_pageout_pages_needed = 1;
1303		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1304		    PDROP | PSWP, "VMWait", 0);
1305	} else {
1306		if (!vm_pages_needed) {
1307			vm_pages_needed = 1;
1308			wakeup(&vm_pages_needed);
1309		}
1310		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1311		    "vmwait", 0);
1312	}
1313}
1314
1315/*
1316 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1317 *
1318 *	Block until free pages are available for allocation
1319 *	- Called only in vm_fault so that processes page faulting
1320 *	  can be easily tracked.
1321 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1322 *	  processes will be able to grab memory first.  Do not change
1323 *	  this balance without careful testing first.
1324 */
1325void
1326vm_waitpfault(void)
1327{
1328
1329	mtx_lock(&vm_page_queue_free_mtx);
1330	if (!vm_pages_needed) {
1331		vm_pages_needed = 1;
1332		wakeup(&vm_pages_needed);
1333	}
1334	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1335	    "pfault", 0);
1336}
1337
1338/*
1339 *	vm_page_requeue:
1340 *
1341 *	Move the given page to the tail of its present page queue.
1342 *
1343 *	The page queues must be locked.
1344 */
1345void
1346vm_page_requeue(vm_page_t m)
1347{
1348	int queue = VM_PAGE_GETQUEUE(m);
1349	struct vpgqueues *vpq;
1350
1351	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1352	KASSERT(queue != PQ_NONE,
1353	    ("vm_page_requeue: page %p is not queued", m));
1354	vpq = &vm_page_queues[queue];
1355	TAILQ_REMOVE(&vpq->pl, m, pageq);
1356	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1357}
1358
1359/*
1360 *	vm_page_queue_remove:
1361 *
1362 *	Remove the given page from the specified queue.
1363 *
1364 *	The page and page queues must be locked.
1365 */
1366static __inline void
1367vm_page_queue_remove(int queue, vm_page_t m)
1368{
1369	struct vpgqueues *pq;
1370
1371	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1372	vm_page_lock_assert(m, MA_OWNED);
1373	pq = &vm_page_queues[queue];
1374	TAILQ_REMOVE(&pq->pl, m, pageq);
1375	(*pq->cnt)--;
1376}
1377
1378/*
1379 *	vm_pageq_remove:
1380 *
1381 *	Remove a page from its queue.
1382 *
1383 *	The given page must be locked.
1384 *	This routine may not block.
1385 */
1386void
1387vm_pageq_remove(vm_page_t m)
1388{
1389	int queue = VM_PAGE_GETQUEUE(m);
1390
1391	vm_page_lock_assert(m, MA_OWNED);
1392	if (queue != PQ_NONE) {
1393		vm_page_lock_queues();
1394		VM_PAGE_SETQUEUE2(m, PQ_NONE);
1395		vm_page_queue_remove(queue, m);
1396		vm_page_unlock_queues();
1397	}
1398}
1399
1400/*
1401 *	vm_page_enqueue:
1402 *
1403 *	Add the given page to the specified queue.
1404 *
1405 *	The page queues must be locked.
1406 */
1407static void
1408vm_page_enqueue(int queue, vm_page_t m)
1409{
1410	struct vpgqueues *vpq;
1411
1412	vpq = &vm_page_queues[queue];
1413	VM_PAGE_SETQUEUE2(m, queue);
1414	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1415	++*vpq->cnt;
1416}
1417
1418/*
1419 *	vm_page_activate:
1420 *
1421 *	Put the specified page on the active list (if appropriate).
1422 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1423 *	mess with it.
1424 *
1425 *	The page must be locked.
1426 *	This routine may not block.
1427 */
1428void
1429vm_page_activate(vm_page_t m)
1430{
1431	int queue;
1432
1433	vm_page_lock_assert(m, MA_OWNED);
1434	if ((queue = VM_PAGE_GETKNOWNQUEUE2(m)) != PQ_ACTIVE) {
1435		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1436			if (m->act_count < ACT_INIT)
1437				m->act_count = ACT_INIT;
1438			vm_page_lock_queues();
1439			if (queue != PQ_NONE)
1440				vm_page_queue_remove(queue, m);
1441			vm_page_enqueue(PQ_ACTIVE, m);
1442			vm_page_unlock_queues();
1443		} else
1444			KASSERT(queue == PQ_NONE,
1445			    ("vm_page_activate: wired page %p is queued", m));
1446	} else {
1447		if (m->act_count < ACT_INIT)
1448			m->act_count = ACT_INIT;
1449	}
1450}
1451
1452/*
1453 *	vm_page_free_wakeup:
1454 *
1455 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1456 *	routine is called when a page has been added to the cache or free
1457 *	queues.
1458 *
1459 *	The page queues must be locked.
1460 *	This routine may not block.
1461 */
1462static inline void
1463vm_page_free_wakeup(void)
1464{
1465
1466	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1467	/*
1468	 * if pageout daemon needs pages, then tell it that there are
1469	 * some free.
1470	 */
1471	if (vm_pageout_pages_needed &&
1472	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1473		wakeup(&vm_pageout_pages_needed);
1474		vm_pageout_pages_needed = 0;
1475	}
1476	/*
1477	 * wakeup processes that are waiting on memory if we hit a
1478	 * high water mark. And wakeup scheduler process if we have
1479	 * lots of memory. this process will swapin processes.
1480	 */
1481	if (vm_pages_needed && !vm_page_count_min()) {
1482		vm_pages_needed = 0;
1483		wakeup(&cnt.v_free_count);
1484	}
1485}
1486
1487/*
1488 *	vm_page_free_toq:
1489 *
1490 *	Returns the given page to the free list,
1491 *	disassociating it with any VM object.
1492 *
1493 *	Object and page must be locked prior to entry.
1494 *	This routine may not block.
1495 */
1496
1497void
1498vm_page_free_toq(vm_page_t m)
1499{
1500
1501	if ((m->flags & PG_UNMANAGED) == 0) {
1502		vm_page_lock_assert(m, MA_OWNED);
1503		KASSERT(!pmap_page_is_mapped(m),
1504		    ("vm_page_free_toq: freeing mapped page %p", m));
1505	}
1506	PCPU_INC(cnt.v_tfree);
1507
1508	if (m->busy || VM_PAGE_IS_FREE(m)) {
1509		printf(
1510		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1511		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1512		    m->hold_count);
1513		if (VM_PAGE_IS_FREE(m))
1514			panic("vm_page_free: freeing free page");
1515		else
1516			panic("vm_page_free: freeing busy page");
1517	}
1518
1519	/*
1520	 * unqueue, then remove page.  Note that we cannot destroy
1521	 * the page here because we do not want to call the pager's
1522	 * callback routine until after we've put the page on the
1523	 * appropriate free queue.
1524	 */
1525	if ((m->flags & PG_UNMANAGED) == 0)
1526		vm_pageq_remove(m);
1527	vm_page_remove(m);
1528
1529	/*
1530	 * If fictitious remove object association and
1531	 * return, otherwise delay object association removal.
1532	 */
1533	if ((m->flags & PG_FICTITIOUS) != 0) {
1534		return;
1535	}
1536
1537	m->valid = 0;
1538	vm_page_undirty(m);
1539
1540	if (m->wire_count != 0) {
1541		if (m->wire_count > 1) {
1542			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1543				m->wire_count, (long)m->pindex);
1544		}
1545		panic("vm_page_free: freeing wired page");
1546	}
1547	if (m->hold_count != 0) {
1548		m->flags &= ~PG_ZERO;
1549		vm_page_lock_queues();
1550		vm_page_enqueue(PQ_HOLD, m);
1551		vm_page_unlock_queues();
1552	} else {
1553		/*
1554		 * Restore the default memory attribute to the page.
1555		 */
1556		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1557			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1558
1559		/*
1560		 * Insert the page into the physical memory allocator's
1561		 * cache/free page queues.
1562		 */
1563		mtx_lock(&vm_page_queue_free_mtx);
1564		m->flags |= PG_FREE;
1565		cnt.v_free_count++;
1566#if VM_NRESERVLEVEL > 0
1567		if (!vm_reserv_free_page(m))
1568#else
1569		if (TRUE)
1570#endif
1571			vm_phys_free_pages(m, 0);
1572		if ((m->flags & PG_ZERO) != 0)
1573			++vm_page_zero_count;
1574		else
1575			vm_page_zero_idle_wakeup();
1576		vm_page_free_wakeup();
1577		mtx_unlock(&vm_page_queue_free_mtx);
1578	}
1579}
1580
1581/*
1582 *	vm_page_wire:
1583 *
1584 *	Mark this page as wired down by yet
1585 *	another map, removing it from paging queues
1586 *	as necessary.
1587 *
1588 *	If the page is fictitious, then its wire count must remain one.
1589 *
1590 *	The page must be locked.
1591 *	This routine may not block.
1592 */
1593void
1594vm_page_wire(vm_page_t m)
1595{
1596
1597	/*
1598	 * Only bump the wire statistics if the page is not already wired,
1599	 * and only unqueue the page if it is on some queue (if it is unmanaged
1600	 * it is already off the queues).
1601	 */
1602	vm_page_lock_assert(m, MA_OWNED);
1603	if ((m->flags & PG_FICTITIOUS) != 0) {
1604		KASSERT(m->wire_count == 1,
1605		    ("vm_page_wire: fictitious page %p's wire count isn't one",
1606		    m));
1607		return;
1608	}
1609	if (m->wire_count == 0) {
1610		if ((m->flags & PG_UNMANAGED) == 0)
1611			vm_pageq_remove(m);
1612		atomic_add_int(&cnt.v_wire_count, 1);
1613	}
1614	m->wire_count++;
1615	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1616}
1617
1618/*
1619 * vm_page_unwire:
1620 *
1621 * Release one wiring of the specified page, potentially enabling it to be
1622 * paged again.  If paging is enabled, then the value of the parameter
1623 * "activate" determines to which queue the page is added.  If "activate" is
1624 * non-zero, then the page is added to the active queue.  Otherwise, it is
1625 * added to the inactive queue.
1626 *
1627 * However, unless the page belongs to an object, it is not enqueued because
1628 * it cannot be paged out.
1629 *
1630 * If a page is fictitious, then its wire count must alway be one.
1631 *
1632 * A managed page must be locked.
1633 */
1634void
1635vm_page_unwire(vm_page_t m, int activate)
1636{
1637
1638	if ((m->flags & PG_UNMANAGED) == 0)
1639		vm_page_lock_assert(m, MA_OWNED);
1640	if ((m->flags & PG_FICTITIOUS) != 0) {
1641		KASSERT(m->wire_count == 1,
1642	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
1643		return;
1644	}
1645	if (m->wire_count > 0) {
1646		m->wire_count--;
1647		if (m->wire_count == 0) {
1648			atomic_subtract_int(&cnt.v_wire_count, 1);
1649			if ((m->flags & PG_UNMANAGED) != 0 ||
1650			    m->object == NULL)
1651				return;
1652			vm_page_lock_queues();
1653			if (activate)
1654				vm_page_enqueue(PQ_ACTIVE, m);
1655			else {
1656				vm_page_flag_clear(m, PG_WINATCFLS);
1657				vm_page_enqueue(PQ_INACTIVE, m);
1658			}
1659			vm_page_unlock_queues();
1660		}
1661	} else
1662		panic("vm_page_unwire: page %p's wire count is zero", m);
1663}
1664
1665/*
1666 * Move the specified page to the inactive queue.
1667 *
1668 * Many pages placed on the inactive queue should actually go
1669 * into the cache, but it is difficult to figure out which.  What
1670 * we do instead, if the inactive target is well met, is to put
1671 * clean pages at the head of the inactive queue instead of the tail.
1672 * This will cause them to be moved to the cache more quickly and
1673 * if not actively re-referenced, reclaimed more quickly.  If we just
1674 * stick these pages at the end of the inactive queue, heavy filesystem
1675 * meta-data accesses can cause an unnecessary paging load on memory bound
1676 * processes.  This optimization causes one-time-use metadata to be
1677 * reused more quickly.
1678 *
1679 * Normally athead is 0 resulting in LRU operation.  athead is set
1680 * to 1 if we want this page to be 'as if it were placed in the cache',
1681 * except without unmapping it from the process address space.
1682 *
1683 * This routine may not block.
1684 */
1685static inline void
1686_vm_page_deactivate(vm_page_t m, int athead)
1687{
1688	int queue;
1689
1690	vm_page_lock_assert(m, MA_OWNED);
1691
1692	/*
1693	 * Ignore if already inactive.
1694	 */
1695	if ((queue = VM_PAGE_GETKNOWNQUEUE2(m)) == PQ_INACTIVE)
1696		return;
1697	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1698		vm_page_lock_queues();
1699		vm_page_flag_clear(m, PG_WINATCFLS);
1700		if (queue != PQ_NONE)
1701			vm_page_queue_remove(queue, m);
1702		if (athead)
1703			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
1704			    pageq);
1705		else
1706			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
1707			    pageq);
1708		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1709		cnt.v_inactive_count++;
1710		vm_page_unlock_queues();
1711	}
1712}
1713
1714/*
1715 * Move the specified page to the inactive queue.
1716 *
1717 * The page must be locked.
1718 */
1719void
1720vm_page_deactivate(vm_page_t m)
1721{
1722
1723	_vm_page_deactivate(m, 0);
1724}
1725
1726/*
1727 * vm_page_try_to_cache:
1728 *
1729 * Returns 0 on failure, 1 on success
1730 */
1731int
1732vm_page_try_to_cache(vm_page_t m)
1733{
1734
1735	vm_page_lock_assert(m, MA_OWNED);
1736	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1737	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1738	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1739		return (0);
1740	pmap_remove_all(m);
1741	if (m->dirty)
1742		return (0);
1743	vm_page_cache(m);
1744	return (1);
1745}
1746
1747/*
1748 * vm_page_try_to_free()
1749 *
1750 *	Attempt to free the page.  If we cannot free it, we do nothing.
1751 *	1 is returned on success, 0 on failure.
1752 */
1753int
1754vm_page_try_to_free(vm_page_t m)
1755{
1756
1757	vm_page_lock_assert(m, MA_OWNED);
1758	if (m->object != NULL)
1759		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1760	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1761	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1762		return (0);
1763	pmap_remove_all(m);
1764	if (m->dirty)
1765		return (0);
1766	vm_page_free(m);
1767	return (1);
1768}
1769
1770/*
1771 * vm_page_cache
1772 *
1773 * Put the specified page onto the page cache queue (if appropriate).
1774 *
1775 * This routine may not block.
1776 */
1777void
1778vm_page_cache(vm_page_t m)
1779{
1780	vm_object_t object;
1781	vm_page_t root;
1782
1783	vm_page_lock_assert(m, MA_OWNED);
1784	object = m->object;
1785	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1786	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1787	    m->hold_count || m->wire_count)
1788		panic("vm_page_cache: attempting to cache busy page");
1789	pmap_remove_all(m);
1790	if (m->dirty != 0)
1791		panic("vm_page_cache: page %p is dirty", m);
1792	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
1793	    (object->type == OBJT_SWAP &&
1794	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
1795		/*
1796		 * Hypothesis: A cache-elgible page belonging to a
1797		 * default object or swap object but without a backing
1798		 * store must be zero filled.
1799		 */
1800		vm_page_free(m);
1801		return;
1802	}
1803	KASSERT((m->flags & PG_CACHED) == 0,
1804	    ("vm_page_cache: page %p is already cached", m));
1805	PCPU_INC(cnt.v_tcached);
1806
1807	/*
1808	 * Remove the page from the paging queues.
1809	 */
1810	vm_pageq_remove(m);
1811
1812	/*
1813	 * Remove the page from the object's collection of resident
1814	 * pages.
1815	 */
1816	if (m != object->root)
1817		vm_page_splay(m->pindex, object->root);
1818	if (m->left == NULL)
1819		root = m->right;
1820	else {
1821		root = vm_page_splay(m->pindex, m->left);
1822		root->right = m->right;
1823	}
1824	object->root = root;
1825	TAILQ_REMOVE(&object->memq, m, listq);
1826	object->resident_page_count--;
1827	object->generation++;
1828
1829	/*
1830	 * Restore the default memory attribute to the page.
1831	 */
1832	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1833		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1834
1835	/*
1836	 * Insert the page into the object's collection of cached pages
1837	 * and the physical memory allocator's cache/free page queues.
1838	 */
1839	m->flags &= ~PG_ZERO;
1840	mtx_lock(&vm_page_queue_free_mtx);
1841	m->flags |= PG_CACHED;
1842	cnt.v_cache_count++;
1843	root = object->cache;
1844	if (root == NULL) {
1845		m->left = NULL;
1846		m->right = NULL;
1847	} else {
1848		root = vm_page_splay(m->pindex, root);
1849		if (m->pindex < root->pindex) {
1850			m->left = root->left;
1851			m->right = root;
1852			root->left = NULL;
1853		} else if (__predict_false(m->pindex == root->pindex))
1854			panic("vm_page_cache: offset already cached");
1855		else {
1856			m->right = root->right;
1857			m->left = root;
1858			root->right = NULL;
1859		}
1860	}
1861	object->cache = m;
1862#if VM_NRESERVLEVEL > 0
1863	if (!vm_reserv_free_page(m)) {
1864#else
1865	if (TRUE) {
1866#endif
1867		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
1868		vm_phys_free_pages(m, 0);
1869	}
1870	vm_page_free_wakeup();
1871	mtx_unlock(&vm_page_queue_free_mtx);
1872
1873	/*
1874	 * Increment the vnode's hold count if this is the object's only
1875	 * cached page.  Decrement the vnode's hold count if this was
1876	 * the object's only resident page.
1877	 */
1878	if (object->type == OBJT_VNODE) {
1879		if (root == NULL && object->resident_page_count != 0)
1880			vhold(object->handle);
1881		else if (root != NULL && object->resident_page_count == 0)
1882			vdrop(object->handle);
1883	}
1884}
1885
1886/*
1887 * vm_page_dontneed
1888 *
1889 *	Cache, deactivate, or do nothing as appropriate.  This routine
1890 *	is typically used by madvise() MADV_DONTNEED.
1891 *
1892 *	Generally speaking we want to move the page into the cache so
1893 *	it gets reused quickly.  However, this can result in a silly syndrome
1894 *	due to the page recycling too quickly.  Small objects will not be
1895 *	fully cached.  On the otherhand, if we move the page to the inactive
1896 *	queue we wind up with a problem whereby very large objects
1897 *	unnecessarily blow away our inactive and cache queues.
1898 *
1899 *	The solution is to move the pages based on a fixed weighting.  We
1900 *	either leave them alone, deactivate them, or move them to the cache,
1901 *	where moving them to the cache has the highest weighting.
1902 *	By forcing some pages into other queues we eventually force the
1903 *	system to balance the queues, potentially recovering other unrelated
1904 *	space from active.  The idea is to not force this to happen too
1905 *	often.
1906 */
1907void
1908vm_page_dontneed(vm_page_t m)
1909{
1910	int dnw;
1911	int head;
1912
1913	vm_page_lock_assert(m, MA_OWNED);
1914	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1915	dnw = PCPU_GET(dnweight);
1916	PCPU_INC(dnweight);
1917
1918	/*
1919	 * Occasionally leave the page alone.
1920	 */
1921	if ((dnw & 0x01F0) == 0 ||
1922	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) {
1923		if (m->act_count >= ACT_INIT)
1924			--m->act_count;
1925		return;
1926	}
1927
1928	/*
1929	 * Clear any references to the page.  Otherwise, the page daemon will
1930	 * immediately reactivate the page.
1931	 *
1932	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
1933	 * pmap operation, such as pmap_remove(), could clear a reference in
1934	 * the pmap and set PG_REFERENCED on the page before the
1935	 * pmap_clear_reference() had completed.  Consequently, the page would
1936	 * appear referenced based upon an old reference that occurred before
1937	 * this function ran.
1938	 */
1939	pmap_clear_reference(m);
1940	vm_page_lock_queues();
1941	vm_page_flag_clear(m, PG_REFERENCED);
1942	vm_page_unlock_queues();
1943
1944	if (m->dirty == 0 && pmap_is_modified(m))
1945		vm_page_dirty(m);
1946
1947	if (m->dirty || (dnw & 0x0070) == 0) {
1948		/*
1949		 * Deactivate the page 3 times out of 32.
1950		 */
1951		head = 0;
1952	} else {
1953		/*
1954		 * Cache the page 28 times out of every 32.  Note that
1955		 * the page is deactivated instead of cached, but placed
1956		 * at the head of the queue instead of the tail.
1957		 */
1958		head = 1;
1959	}
1960	_vm_page_deactivate(m, head);
1961}
1962
1963/*
1964 * Grab a page, waiting until we are waken up due to the page
1965 * changing state.  We keep on waiting, if the page continues
1966 * to be in the object.  If the page doesn't exist, first allocate it
1967 * and then conditionally zero it.
1968 *
1969 * This routine may block.
1970 */
1971vm_page_t
1972vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1973{
1974	vm_page_t m;
1975
1976	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1977retrylookup:
1978	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1979		if ((m->oflags & VPO_BUSY) != 0 || m->busy != 0) {
1980			if ((allocflags & VM_ALLOC_RETRY) != 0) {
1981				/*
1982				 * Reference the page before unlocking and
1983				 * sleeping so that the page daemon is less
1984				 * likely to reclaim it.
1985				 */
1986				vm_page_lock_queues();
1987				vm_page_flag_set(m, PG_REFERENCED);
1988			}
1989			vm_page_sleep(m, "pgrbwt");
1990			if ((allocflags & VM_ALLOC_RETRY) == 0)
1991				return (NULL);
1992			goto retrylookup;
1993		} else {
1994			if ((allocflags & VM_ALLOC_WIRED) != 0) {
1995				vm_page_lock(m);
1996				vm_page_wire(m);
1997				vm_page_unlock(m);
1998			}
1999			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2000				vm_page_busy(m);
2001			return (m);
2002		}
2003	}
2004	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
2005	if (m == NULL) {
2006		VM_OBJECT_UNLOCK(object);
2007		VM_WAIT;
2008		VM_OBJECT_LOCK(object);
2009		if ((allocflags & VM_ALLOC_RETRY) == 0)
2010			return (NULL);
2011		goto retrylookup;
2012	} else if (m->valid != 0)
2013		return (m);
2014	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2015		pmap_zero_page(m);
2016	return (m);
2017}
2018
2019/*
2020 * Mapping function for valid bits or for dirty bits in
2021 * a page.  May not block.
2022 *
2023 * Inputs are required to range within a page.
2024 */
2025int
2026vm_page_bits(int base, int size)
2027{
2028	int first_bit;
2029	int last_bit;
2030
2031	KASSERT(
2032	    base + size <= PAGE_SIZE,
2033	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2034	);
2035
2036	if (size == 0)		/* handle degenerate case */
2037		return (0);
2038
2039	first_bit = base >> DEV_BSHIFT;
2040	last_bit = (base + size - 1) >> DEV_BSHIFT;
2041
2042	return ((2 << last_bit) - (1 << first_bit));
2043}
2044
2045/*
2046 *	vm_page_set_valid:
2047 *
2048 *	Sets portions of a page valid.  The arguments are expected
2049 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2050 *	of any partial chunks touched by the range.  The invalid portion of
2051 *	such chunks will be zeroed.
2052 *
2053 *	(base + size) must be less then or equal to PAGE_SIZE.
2054 */
2055void
2056vm_page_set_valid(vm_page_t m, int base, int size)
2057{
2058	int endoff, frag;
2059
2060	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2061	if (size == 0)	/* handle degenerate case */
2062		return;
2063
2064	/*
2065	 * If the base is not DEV_BSIZE aligned and the valid
2066	 * bit is clear, we have to zero out a portion of the
2067	 * first block.
2068	 */
2069	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2070	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2071		pmap_zero_page_area(m, frag, base - frag);
2072
2073	/*
2074	 * If the ending offset is not DEV_BSIZE aligned and the
2075	 * valid bit is clear, we have to zero out a portion of
2076	 * the last block.
2077	 */
2078	endoff = base + size;
2079	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2080	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2081		pmap_zero_page_area(m, endoff,
2082		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2083
2084	/*
2085	 * Assert that no previously invalid block that is now being validated
2086	 * is already dirty.
2087	 */
2088	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2089	    ("vm_page_set_valid: page %p is dirty", m));
2090
2091	/*
2092	 * Set valid bits inclusive of any overlap.
2093	 */
2094	m->valid |= vm_page_bits(base, size);
2095}
2096
2097/*
2098 * Clear the given bits from the specified page's dirty field.
2099 */
2100static __inline void
2101vm_page_clear_dirty_mask(vm_page_t m, int pagebits)
2102{
2103
2104	/*
2105	 * If the object is locked and the page is neither VPO_BUSY nor
2106	 * PG_WRITEABLE, then the page's dirty field cannot possibly be
2107	 * modified by a concurrent pmap operation.
2108	 */
2109	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2110	if ((m->oflags & VPO_BUSY) == 0 && (m->flags & PG_WRITEABLE) == 0)
2111		m->dirty &= ~pagebits;
2112	else {
2113		vm_page_lock_queues();
2114		m->dirty &= ~pagebits;
2115		vm_page_unlock_queues();
2116	}
2117}
2118
2119/*
2120 *	vm_page_set_validclean:
2121 *
2122 *	Sets portions of a page valid and clean.  The arguments are expected
2123 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2124 *	of any partial chunks touched by the range.  The invalid portion of
2125 *	such chunks will be zero'd.
2126 *
2127 *	This routine may not block.
2128 *
2129 *	(base + size) must be less then or equal to PAGE_SIZE.
2130 */
2131void
2132vm_page_set_validclean(vm_page_t m, int base, int size)
2133{
2134	u_long oldvalid;
2135	int endoff, frag, pagebits;
2136
2137	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2138	if (size == 0)	/* handle degenerate case */
2139		return;
2140
2141	/*
2142	 * If the base is not DEV_BSIZE aligned and the valid
2143	 * bit is clear, we have to zero out a portion of the
2144	 * first block.
2145	 */
2146	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2147	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2148		pmap_zero_page_area(m, frag, base - frag);
2149
2150	/*
2151	 * If the ending offset is not DEV_BSIZE aligned and the
2152	 * valid bit is clear, we have to zero out a portion of
2153	 * the last block.
2154	 */
2155	endoff = base + size;
2156	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2157	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2158		pmap_zero_page_area(m, endoff,
2159		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2160
2161	/*
2162	 * Set valid, clear dirty bits.  If validating the entire
2163	 * page we can safely clear the pmap modify bit.  We also
2164	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2165	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2166	 * be set again.
2167	 *
2168	 * We set valid bits inclusive of any overlap, but we can only
2169	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2170	 * the range.
2171	 */
2172	oldvalid = m->valid;
2173	pagebits = vm_page_bits(base, size);
2174	m->valid |= pagebits;
2175#if 0	/* NOT YET */
2176	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2177		frag = DEV_BSIZE - frag;
2178		base += frag;
2179		size -= frag;
2180		if (size < 0)
2181			size = 0;
2182	}
2183	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2184#endif
2185	if (base == 0 && size == PAGE_SIZE) {
2186		/*
2187		 * The page can only be modified within the pmap if it is
2188		 * mapped, and it can only be mapped if it was previously
2189		 * fully valid.
2190		 */
2191		if (oldvalid == VM_PAGE_BITS_ALL)
2192			/*
2193			 * Perform the pmap_clear_modify() first.  Otherwise,
2194			 * a concurrent pmap operation, such as
2195			 * pmap_protect(), could clear a modification in the
2196			 * pmap and set the dirty field on the page before
2197			 * pmap_clear_modify() had begun and after the dirty
2198			 * field was cleared here.
2199			 */
2200			pmap_clear_modify(m);
2201		m->dirty = 0;
2202		m->oflags &= ~VPO_NOSYNC;
2203	} else if (oldvalid != VM_PAGE_BITS_ALL)
2204		m->dirty &= ~pagebits;
2205	else
2206		vm_page_clear_dirty_mask(m, pagebits);
2207}
2208
2209void
2210vm_page_clear_dirty(vm_page_t m, int base, int size)
2211{
2212
2213	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2214}
2215
2216/*
2217 *	vm_page_set_invalid:
2218 *
2219 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2220 *	valid and dirty bits for the effected areas are cleared.
2221 *
2222 *	May not block.
2223 */
2224void
2225vm_page_set_invalid(vm_page_t m, int base, int size)
2226{
2227	int bits;
2228
2229	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2230	KASSERT((m->oflags & VPO_BUSY) == 0,
2231	    ("vm_page_set_invalid: page %p is busy", m));
2232	bits = vm_page_bits(base, size);
2233	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2234		pmap_remove_all(m);
2235	KASSERT(!pmap_page_is_mapped(m),
2236	    ("vm_page_set_invalid: page %p is mapped", m));
2237	m->valid &= ~bits;
2238	m->dirty &= ~bits;
2239	m->object->generation++;
2240}
2241
2242/*
2243 * vm_page_zero_invalid()
2244 *
2245 *	The kernel assumes that the invalid portions of a page contain
2246 *	garbage, but such pages can be mapped into memory by user code.
2247 *	When this occurs, we must zero out the non-valid portions of the
2248 *	page so user code sees what it expects.
2249 *
2250 *	Pages are most often semi-valid when the end of a file is mapped
2251 *	into memory and the file's size is not page aligned.
2252 */
2253void
2254vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2255{
2256	int b;
2257	int i;
2258
2259	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2260	/*
2261	 * Scan the valid bits looking for invalid sections that
2262	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2263	 * valid bit may be set ) have already been zerod by
2264	 * vm_page_set_validclean().
2265	 */
2266	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2267		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2268		    (m->valid & (1 << i))
2269		) {
2270			if (i > b) {
2271				pmap_zero_page_area(m,
2272				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2273			}
2274			b = i + 1;
2275		}
2276	}
2277
2278	/*
2279	 * setvalid is TRUE when we can safely set the zero'd areas
2280	 * as being valid.  We can do this if there are no cache consistancy
2281	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2282	 */
2283	if (setvalid)
2284		m->valid = VM_PAGE_BITS_ALL;
2285}
2286
2287/*
2288 *	vm_page_is_valid:
2289 *
2290 *	Is (partial) page valid?  Note that the case where size == 0
2291 *	will return FALSE in the degenerate case where the page is
2292 *	entirely invalid, and TRUE otherwise.
2293 *
2294 *	May not block.
2295 */
2296int
2297vm_page_is_valid(vm_page_t m, int base, int size)
2298{
2299	int bits = vm_page_bits(base, size);
2300
2301	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2302	if (m->valid && ((m->valid & bits) == bits))
2303		return 1;
2304	else
2305		return 0;
2306}
2307
2308/*
2309 * update dirty bits from pmap/mmu.  May not block.
2310 */
2311void
2312vm_page_test_dirty(vm_page_t m)
2313{
2314
2315	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2316	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2317		vm_page_dirty(m);
2318}
2319
2320int so_zerocp_fullpage = 0;
2321
2322/*
2323 *	Replace the given page with a copy.  The copied page assumes
2324 *	the portion of the given page's "wire_count" that is not the
2325 *	responsibility of this copy-on-write mechanism.
2326 *
2327 *	The object containing the given page must have a non-zero
2328 *	paging-in-progress count and be locked.
2329 */
2330void
2331vm_page_cowfault(vm_page_t m)
2332{
2333	vm_page_t mnew;
2334	vm_object_t object;
2335	vm_pindex_t pindex;
2336
2337	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
2338	vm_page_lock_assert(m, MA_OWNED);
2339	object = m->object;
2340	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2341	KASSERT(object->paging_in_progress != 0,
2342	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2343	    object));
2344	pindex = m->pindex;
2345
2346 retry_alloc:
2347	pmap_remove_all(m);
2348	vm_page_remove(m);
2349	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2350	if (mnew == NULL) {
2351		vm_page_insert(m, object, pindex);
2352		vm_page_unlock(m);
2353		VM_OBJECT_UNLOCK(object);
2354		VM_WAIT;
2355		VM_OBJECT_LOCK(object);
2356		if (m == vm_page_lookup(object, pindex)) {
2357			vm_page_lock(m);
2358			goto retry_alloc;
2359		} else {
2360			/*
2361			 * Page disappeared during the wait.
2362			 */
2363			return;
2364		}
2365	}
2366
2367	if (m->cow == 0) {
2368		/*
2369		 * check to see if we raced with an xmit complete when
2370		 * waiting to allocate a page.  If so, put things back
2371		 * the way they were
2372		 */
2373		vm_page_unlock(m);
2374		vm_page_lock(mnew);
2375		vm_page_free(mnew);
2376		vm_page_unlock(mnew);
2377		vm_page_insert(m, object, pindex);
2378	} else { /* clear COW & copy page */
2379		if (!so_zerocp_fullpage)
2380			pmap_copy_page(m, mnew);
2381		mnew->valid = VM_PAGE_BITS_ALL;
2382		vm_page_dirty(mnew);
2383		mnew->wire_count = m->wire_count - m->cow;
2384		m->wire_count = m->cow;
2385		vm_page_unlock(m);
2386	}
2387}
2388
2389void
2390vm_page_cowclear(vm_page_t m)
2391{
2392
2393	vm_page_lock_assert(m, MA_OWNED);
2394	if (m->cow) {
2395		m->cow--;
2396		/*
2397		 * let vm_fault add back write permission  lazily
2398		 */
2399	}
2400	/*
2401	 *  sf_buf_free() will free the page, so we needn't do it here
2402	 */
2403}
2404
2405int
2406vm_page_cowsetup(vm_page_t m)
2407{
2408
2409	vm_page_lock_assert(m, MA_OWNED);
2410	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
2411	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
2412		return (EBUSY);
2413	m->cow++;
2414	pmap_remove_write(m);
2415	VM_OBJECT_UNLOCK(m->object);
2416	return (0);
2417}
2418
2419#include "opt_ddb.h"
2420#ifdef DDB
2421#include <sys/kernel.h>
2422
2423#include <ddb/ddb.h>
2424
2425DB_SHOW_COMMAND(page, vm_page_print_page_info)
2426{
2427	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2428	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2429	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2430	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2431	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2432	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2433	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2434	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2435	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2436	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2437}
2438
2439DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2440{
2441
2442	db_printf("PQ_FREE:");
2443	db_printf(" %d", cnt.v_free_count);
2444	db_printf("\n");
2445
2446	db_printf("PQ_CACHE:");
2447	db_printf(" %d", cnt.v_cache_count);
2448	db_printf("\n");
2449
2450	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2451		*vm_page_queues[PQ_ACTIVE].cnt,
2452		*vm_page_queues[PQ_INACTIVE].cnt);
2453}
2454#endif /* DDB */
2455