vm_page.c revision 208574
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- a pageq mutex is required when adding or removing a page from a
67 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68 *	  busy state of a page.
69 *
70 *	- a hash chain mutex is required when associating or disassociating
71 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
72 *	  regardless of other mutexes or the busy state of a page.
73 *
74 *	- either a hash chain mutex OR a busied page is required in order
75 *	  to modify the page flags.  A hash chain mutex must be obtained in
76 *	  order to busy a page.  A page's flags cannot be modified by a
77 *	  hash chain mutex if the page is marked busy.
78 *
79 *	- The object memq mutex is held when inserting or removing
80 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
81 *	  is different from the object's main mutex.
82 *
83 *	Generally speaking, you have to be aware of side effects when running
84 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
85 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
86 *	vm_page_cache(), vm_page_activate(), and a number of other routines
87 *	will release the hash chain mutex for you.  Intermediate manipulation
88 *	routines such as vm_page_flag_set() expect the hash chain to be held
89 *	on entry and the hash chain will remain held on return.
90 *
91 *	pageq scanning can only occur with the pageq in question locked.
92 *	We have a known bottleneck with the active queue, but the cache
93 *	and free queues are actually arrays already.
94 */
95
96/*
97 *	Resident memory management module.
98 */
99
100#include <sys/cdefs.h>
101__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 208574 2010-05-26 18:00:44Z alc $");
102
103#include "opt_vm.h"
104
105#include <sys/param.h>
106#include <sys/systm.h>
107#include <sys/lock.h>
108#include <sys/kernel.h>
109#include <sys/limits.h>
110#include <sys/malloc.h>
111#include <sys/msgbuf.h>
112#include <sys/mutex.h>
113#include <sys/proc.h>
114#include <sys/sysctl.h>
115#include <sys/vmmeter.h>
116#include <sys/vnode.h>
117
118#include <vm/vm.h>
119#include <vm/pmap.h>
120#include <vm/vm_param.h>
121#include <vm/vm_kern.h>
122#include <vm/vm_object.h>
123#include <vm/vm_page.h>
124#include <vm/vm_pageout.h>
125#include <vm/vm_pager.h>
126#include <vm/vm_phys.h>
127#include <vm/vm_reserv.h>
128#include <vm/vm_extern.h>
129#include <vm/uma.h>
130#include <vm/uma_int.h>
131
132#include <machine/md_var.h>
133
134#if defined(__amd64__) || defined (__i386__)
135extern struct sysctl_oid_list sysctl__vm_pmap_children;
136#else
137SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
138#endif
139
140static uint64_t pmap_tryrelock_calls;
141SYSCTL_QUAD(_vm_pmap, OID_AUTO, tryrelock_calls, CTLFLAG_RD,
142    &pmap_tryrelock_calls, 0, "Number of tryrelock calls");
143
144static int pmap_tryrelock_restart;
145SYSCTL_INT(_vm_pmap, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
146    &pmap_tryrelock_restart, 0, "Number of tryrelock restarts");
147
148static int pmap_tryrelock_race;
149SYSCTL_INT(_vm_pmap, OID_AUTO, tryrelock_race, CTLFLAG_RD,
150    &pmap_tryrelock_race, 0, "Number of tryrelock pmap race cases");
151
152/*
153 *	Associated with page of user-allocatable memory is a
154 *	page structure.
155 */
156
157struct vpgqueues vm_page_queues[PQ_COUNT];
158struct vpglocks vm_page_queue_lock;
159struct vpglocks vm_page_queue_free_lock;
160
161struct vpglocks	pa_lock[PA_LOCK_COUNT] __aligned(CACHE_LINE_SIZE);
162
163vm_page_t vm_page_array = 0;
164int vm_page_array_size = 0;
165long first_page = 0;
166int vm_page_zero_count = 0;
167
168static int boot_pages = UMA_BOOT_PAGES;
169TUNABLE_INT("vm.boot_pages", &boot_pages);
170SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
171	"number of pages allocated for bootstrapping the VM system");
172
173static void vm_page_queue_remove(int queue, vm_page_t m);
174static void vm_page_enqueue(int queue, vm_page_t m);
175
176/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
177#if PAGE_SIZE == 32768
178#ifdef CTASSERT
179CTASSERT(sizeof(u_long) >= 8);
180#endif
181#endif
182
183/*
184 * Try to acquire a physical address lock while a pmap is locked.  If we
185 * fail to trylock we unlock and lock the pmap directly and cache the
186 * locked pa in *locked.  The caller should then restart their loop in case
187 * the virtual to physical mapping has changed.
188 */
189int
190vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
191{
192	vm_paddr_t lockpa;
193	uint32_t gen_count;
194
195	gen_count = pmap->pm_gen_count;
196	atomic_add_long((volatile long *)&pmap_tryrelock_calls, 1);
197	lockpa = *locked;
198	*locked = pa;
199	if (lockpa) {
200		PA_LOCK_ASSERT(lockpa, MA_OWNED);
201		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
202			return (0);
203		PA_UNLOCK(lockpa);
204	}
205	if (PA_TRYLOCK(pa))
206		return (0);
207	PMAP_UNLOCK(pmap);
208	atomic_add_int((volatile int *)&pmap_tryrelock_restart, 1);
209	PA_LOCK(pa);
210	PMAP_LOCK(pmap);
211
212	if (pmap->pm_gen_count != gen_count + 1) {
213		pmap->pm_retries++;
214		atomic_add_int((volatile int *)&pmap_tryrelock_race, 1);
215		return (EAGAIN);
216	}
217	return (0);
218}
219
220/*
221 *	vm_set_page_size:
222 *
223 *	Sets the page size, perhaps based upon the memory
224 *	size.  Must be called before any use of page-size
225 *	dependent functions.
226 */
227void
228vm_set_page_size(void)
229{
230	if (cnt.v_page_size == 0)
231		cnt.v_page_size = PAGE_SIZE;
232	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
233		panic("vm_set_page_size: page size not a power of two");
234}
235
236/*
237 *	vm_page_blacklist_lookup:
238 *
239 *	See if a physical address in this page has been listed
240 *	in the blacklist tunable.  Entries in the tunable are
241 *	separated by spaces or commas.  If an invalid integer is
242 *	encountered then the rest of the string is skipped.
243 */
244static int
245vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
246{
247	vm_paddr_t bad;
248	char *cp, *pos;
249
250	for (pos = list; *pos != '\0'; pos = cp) {
251		bad = strtoq(pos, &cp, 0);
252		if (*cp != '\0') {
253			if (*cp == ' ' || *cp == ',') {
254				cp++;
255				if (cp == pos)
256					continue;
257			} else
258				break;
259		}
260		if (pa == trunc_page(bad))
261			return (1);
262	}
263	return (0);
264}
265
266/*
267 *	vm_page_startup:
268 *
269 *	Initializes the resident memory module.
270 *
271 *	Allocates memory for the page cells, and
272 *	for the object/offset-to-page hash table headers.
273 *	Each page cell is initialized and placed on the free list.
274 */
275vm_offset_t
276vm_page_startup(vm_offset_t vaddr)
277{
278	vm_offset_t mapped;
279	vm_paddr_t page_range;
280	vm_paddr_t new_end;
281	int i;
282	vm_paddr_t pa;
283	int nblocks;
284	vm_paddr_t last_pa;
285	char *list;
286
287	/* the biggest memory array is the second group of pages */
288	vm_paddr_t end;
289	vm_paddr_t biggestsize;
290	vm_paddr_t low_water, high_water;
291	int biggestone;
292
293	biggestsize = 0;
294	biggestone = 0;
295	nblocks = 0;
296	vaddr = round_page(vaddr);
297
298	for (i = 0; phys_avail[i + 1]; i += 2) {
299		phys_avail[i] = round_page(phys_avail[i]);
300		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
301	}
302
303	low_water = phys_avail[0];
304	high_water = phys_avail[1];
305
306	for (i = 0; phys_avail[i + 1]; i += 2) {
307		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
308
309		if (size > biggestsize) {
310			biggestone = i;
311			biggestsize = size;
312		}
313		if (phys_avail[i] < low_water)
314			low_water = phys_avail[i];
315		if (phys_avail[i + 1] > high_water)
316			high_water = phys_avail[i + 1];
317		++nblocks;
318	}
319
320#ifdef XEN
321	low_water = 0;
322#endif
323
324	end = phys_avail[biggestone+1];
325
326	/*
327	 * Initialize the locks.
328	 */
329	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
330	    MTX_RECURSE);
331	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
332	    MTX_DEF);
333
334	/* Setup page locks. */
335	for (i = 0; i < PA_LOCK_COUNT; i++)
336		mtx_init(&pa_lock[i].data, "page lock", NULL,
337		    MTX_DEF | MTX_RECURSE | MTX_DUPOK);
338
339	/*
340	 * Initialize the queue headers for the hold queue, the active queue,
341	 * and the inactive queue.
342	 */
343	for (i = 0; i < PQ_COUNT; i++)
344		TAILQ_INIT(&vm_page_queues[i].pl);
345	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
346	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
347	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
348
349	/*
350	 * Allocate memory for use when boot strapping the kernel memory
351	 * allocator.
352	 */
353	new_end = end - (boot_pages * UMA_SLAB_SIZE);
354	new_end = trunc_page(new_end);
355	mapped = pmap_map(&vaddr, new_end, end,
356	    VM_PROT_READ | VM_PROT_WRITE);
357	bzero((void *)mapped, end - new_end);
358	uma_startup((void *)mapped, boot_pages);
359
360#if defined(__amd64__) || defined(__i386__) || defined(__arm__)
361	/*
362	 * Allocate a bitmap to indicate that a random physical page
363	 * needs to be included in a minidump.
364	 *
365	 * The amd64 port needs this to indicate which direct map pages
366	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
367	 *
368	 * However, i386 still needs this workspace internally within the
369	 * minidump code.  In theory, they are not needed on i386, but are
370	 * included should the sf_buf code decide to use them.
371	 */
372	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
373	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
374	new_end -= vm_page_dump_size;
375	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
376	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
377	bzero((void *)vm_page_dump, vm_page_dump_size);
378#endif
379#ifdef __amd64__
380	/*
381	 * Request that the physical pages underlying the message buffer be
382	 * included in a crash dump.  Since the message buffer is accessed
383	 * through the direct map, they are not automatically included.
384	 */
385	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
386	last_pa = pa + round_page(MSGBUF_SIZE);
387	while (pa < last_pa) {
388		dump_add_page(pa);
389		pa += PAGE_SIZE;
390	}
391#endif
392	/*
393	 * Compute the number of pages of memory that will be available for
394	 * use (taking into account the overhead of a page structure per
395	 * page).
396	 */
397	first_page = low_water / PAGE_SIZE;
398#ifdef VM_PHYSSEG_SPARSE
399	page_range = 0;
400	for (i = 0; phys_avail[i + 1] != 0; i += 2)
401		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
402#elif defined(VM_PHYSSEG_DENSE)
403	page_range = high_water / PAGE_SIZE - first_page;
404#else
405#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
406#endif
407	end = new_end;
408
409	/*
410	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
411	 */
412	vaddr += PAGE_SIZE;
413
414	/*
415	 * Initialize the mem entry structures now, and put them in the free
416	 * queue.
417	 */
418	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
419	mapped = pmap_map(&vaddr, new_end, end,
420	    VM_PROT_READ | VM_PROT_WRITE);
421	vm_page_array = (vm_page_t) mapped;
422#if VM_NRESERVLEVEL > 0
423	/*
424	 * Allocate memory for the reservation management system's data
425	 * structures.
426	 */
427	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
428#endif
429#ifdef __amd64__
430	/*
431	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
432	 * so the pages must be tracked for a crashdump to include this data.
433	 * This includes the vm_page_array and the early UMA bootstrap pages.
434	 */
435	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
436		dump_add_page(pa);
437#endif
438	phys_avail[biggestone + 1] = new_end;
439
440	/*
441	 * Clear all of the page structures
442	 */
443	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
444	for (i = 0; i < page_range; i++)
445		vm_page_array[i].order = VM_NFREEORDER;
446	vm_page_array_size = page_range;
447
448	/*
449	 * Initialize the physical memory allocator.
450	 */
451	vm_phys_init();
452
453	/*
454	 * Add every available physical page that is not blacklisted to
455	 * the free lists.
456	 */
457	cnt.v_page_count = 0;
458	cnt.v_free_count = 0;
459	list = getenv("vm.blacklist");
460	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
461		pa = phys_avail[i];
462		last_pa = phys_avail[i + 1];
463		while (pa < last_pa) {
464			if (list != NULL &&
465			    vm_page_blacklist_lookup(list, pa))
466				printf("Skipping page with pa 0x%jx\n",
467				    (uintmax_t)pa);
468			else
469				vm_phys_add_page(pa);
470			pa += PAGE_SIZE;
471		}
472	}
473	freeenv(list);
474#if VM_NRESERVLEVEL > 0
475	/*
476	 * Initialize the reservation management system.
477	 */
478	vm_reserv_init();
479#endif
480	return (vaddr);
481}
482
483void
484vm_page_flag_set(vm_page_t m, unsigned short bits)
485{
486
487	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
488	m->flags |= bits;
489}
490
491void
492vm_page_flag_clear(vm_page_t m, unsigned short bits)
493{
494
495	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
496	m->flags &= ~bits;
497}
498
499void
500vm_page_busy(vm_page_t m)
501{
502
503	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
504	KASSERT((m->oflags & VPO_BUSY) == 0,
505	    ("vm_page_busy: page already busy!!!"));
506	m->oflags |= VPO_BUSY;
507}
508
509/*
510 *      vm_page_flash:
511 *
512 *      wakeup anyone waiting for the page.
513 */
514void
515vm_page_flash(vm_page_t m)
516{
517
518	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
519	if (m->oflags & VPO_WANTED) {
520		m->oflags &= ~VPO_WANTED;
521		wakeup(m);
522	}
523}
524
525/*
526 *      vm_page_wakeup:
527 *
528 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
529 *      page.
530 *
531 */
532void
533vm_page_wakeup(vm_page_t m)
534{
535
536	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
537	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
538	m->oflags &= ~VPO_BUSY;
539	vm_page_flash(m);
540}
541
542void
543vm_page_io_start(vm_page_t m)
544{
545
546	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
547	m->busy++;
548}
549
550void
551vm_page_io_finish(vm_page_t m)
552{
553
554	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
555	m->busy--;
556	if (m->busy == 0)
557		vm_page_flash(m);
558}
559
560/*
561 * Keep page from being freed by the page daemon
562 * much of the same effect as wiring, except much lower
563 * overhead and should be used only for *very* temporary
564 * holding ("wiring").
565 */
566void
567vm_page_hold(vm_page_t mem)
568{
569
570	vm_page_lock_assert(mem, MA_OWNED);
571        mem->hold_count++;
572}
573
574void
575vm_page_unhold(vm_page_t mem)
576{
577
578	vm_page_lock_assert(mem, MA_OWNED);
579	--mem->hold_count;
580	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
581	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
582		vm_page_free_toq(mem);
583}
584
585/*
586 *	vm_page_free:
587 *
588 *	Free a page.
589 */
590void
591vm_page_free(vm_page_t m)
592{
593
594	m->flags &= ~PG_ZERO;
595	vm_page_free_toq(m);
596}
597
598/*
599 *	vm_page_free_zero:
600 *
601 *	Free a page to the zerod-pages queue
602 */
603void
604vm_page_free_zero(vm_page_t m)
605{
606
607	m->flags |= PG_ZERO;
608	vm_page_free_toq(m);
609}
610
611/*
612 *	vm_page_sleep:
613 *
614 *	Sleep and release the page and page queues locks.
615 *
616 *	The object containing the given page must be locked.
617 */
618void
619vm_page_sleep(vm_page_t m, const char *msg)
620{
621
622	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
623	if (mtx_owned(&vm_page_queue_mtx))
624		vm_page_unlock_queues();
625	if (mtx_owned(vm_page_lockptr(m)))
626		vm_page_unlock(m);
627
628	/*
629	 * It's possible that while we sleep, the page will get
630	 * unbusied and freed.  If we are holding the object
631	 * lock, we will assume we hold a reference to the object
632	 * such that even if m->object changes, we can re-lock
633	 * it.
634	 */
635	m->oflags |= VPO_WANTED;
636	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
637}
638
639/*
640 *	vm_page_dirty:
641 *
642 *	make page all dirty
643 */
644void
645vm_page_dirty(vm_page_t m)
646{
647
648	KASSERT((m->flags & PG_CACHED) == 0,
649	    ("vm_page_dirty: page in cache!"));
650	KASSERT(!VM_PAGE_IS_FREE(m),
651	    ("vm_page_dirty: page is free!"));
652	KASSERT(m->valid == VM_PAGE_BITS_ALL,
653	    ("vm_page_dirty: page is invalid!"));
654	m->dirty = VM_PAGE_BITS_ALL;
655}
656
657/*
658 *	vm_page_splay:
659 *
660 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
661 *	the vm_page containing the given pindex.  If, however, that
662 *	pindex is not found in the vm_object, returns a vm_page that is
663 *	adjacent to the pindex, coming before or after it.
664 */
665vm_page_t
666vm_page_splay(vm_pindex_t pindex, vm_page_t root)
667{
668	struct vm_page dummy;
669	vm_page_t lefttreemax, righttreemin, y;
670
671	if (root == NULL)
672		return (root);
673	lefttreemax = righttreemin = &dummy;
674	for (;; root = y) {
675		if (pindex < root->pindex) {
676			if ((y = root->left) == NULL)
677				break;
678			if (pindex < y->pindex) {
679				/* Rotate right. */
680				root->left = y->right;
681				y->right = root;
682				root = y;
683				if ((y = root->left) == NULL)
684					break;
685			}
686			/* Link into the new root's right tree. */
687			righttreemin->left = root;
688			righttreemin = root;
689		} else if (pindex > root->pindex) {
690			if ((y = root->right) == NULL)
691				break;
692			if (pindex > y->pindex) {
693				/* Rotate left. */
694				root->right = y->left;
695				y->left = root;
696				root = y;
697				if ((y = root->right) == NULL)
698					break;
699			}
700			/* Link into the new root's left tree. */
701			lefttreemax->right = root;
702			lefttreemax = root;
703		} else
704			break;
705	}
706	/* Assemble the new root. */
707	lefttreemax->right = root->left;
708	righttreemin->left = root->right;
709	root->left = dummy.right;
710	root->right = dummy.left;
711	return (root);
712}
713
714/*
715 *	vm_page_insert:		[ internal use only ]
716 *
717 *	Inserts the given mem entry into the object and object list.
718 *
719 *	The pagetables are not updated but will presumably fault the page
720 *	in if necessary, or if a kernel page the caller will at some point
721 *	enter the page into the kernel's pmap.  We are not allowed to block
722 *	here so we *can't* do this anyway.
723 *
724 *	The object and page must be locked.
725 *	This routine may not block.
726 */
727void
728vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
729{
730	vm_page_t root;
731
732	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
733	if (m->object != NULL)
734		panic("vm_page_insert: page already inserted");
735
736	/*
737	 * Record the object/offset pair in this page
738	 */
739	m->object = object;
740	m->pindex = pindex;
741
742	/*
743	 * Now link into the object's ordered list of backed pages.
744	 */
745	root = object->root;
746	if (root == NULL) {
747		m->left = NULL;
748		m->right = NULL;
749		TAILQ_INSERT_TAIL(&object->memq, m, listq);
750	} else {
751		root = vm_page_splay(pindex, root);
752		if (pindex < root->pindex) {
753			m->left = root->left;
754			m->right = root;
755			root->left = NULL;
756			TAILQ_INSERT_BEFORE(root, m, listq);
757		} else if (pindex == root->pindex)
758			panic("vm_page_insert: offset already allocated");
759		else {
760			m->right = root->right;
761			m->left = root;
762			root->right = NULL;
763			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
764		}
765	}
766	object->root = m;
767	object->generation++;
768
769	/*
770	 * show that the object has one more resident page.
771	 */
772	object->resident_page_count++;
773	/*
774	 * Hold the vnode until the last page is released.
775	 */
776	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
777		vhold((struct vnode *)object->handle);
778
779	/*
780	 * Since we are inserting a new and possibly dirty page,
781	 * update the object's OBJ_MIGHTBEDIRTY flag.
782	 */
783	if (m->flags & PG_WRITEABLE)
784		vm_object_set_writeable_dirty(object);
785}
786
787/*
788 *	vm_page_remove:
789 *				NOTE: used by device pager as well -wfj
790 *
791 *	Removes the given mem entry from the object/offset-page
792 *	table and the object page list, but do not invalidate/terminate
793 *	the backing store.
794 *
795 *	The object and page must be locked.
796 *	The underlying pmap entry (if any) is NOT removed here.
797 *	This routine may not block.
798 */
799void
800vm_page_remove(vm_page_t m)
801{
802	vm_object_t object;
803	vm_page_t root;
804
805	if ((m->flags & PG_UNMANAGED) == 0)
806		vm_page_lock_assert(m, MA_OWNED);
807	if ((object = m->object) == NULL)
808		return;
809	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
810	if (m->oflags & VPO_BUSY) {
811		m->oflags &= ~VPO_BUSY;
812		vm_page_flash(m);
813	}
814
815	/*
816	 * Now remove from the object's list of backed pages.
817	 */
818	if (m != object->root)
819		vm_page_splay(m->pindex, object->root);
820	if (m->left == NULL)
821		root = m->right;
822	else {
823		root = vm_page_splay(m->pindex, m->left);
824		root->right = m->right;
825	}
826	object->root = root;
827	TAILQ_REMOVE(&object->memq, m, listq);
828
829	/*
830	 * And show that the object has one fewer resident page.
831	 */
832	object->resident_page_count--;
833	object->generation++;
834	/*
835	 * The vnode may now be recycled.
836	 */
837	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
838		vdrop((struct vnode *)object->handle);
839
840	m->object = NULL;
841}
842
843/*
844 *	vm_page_lookup:
845 *
846 *	Returns the page associated with the object/offset
847 *	pair specified; if none is found, NULL is returned.
848 *
849 *	The object must be locked.
850 *	This routine may not block.
851 *	This is a critical path routine
852 */
853vm_page_t
854vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
855{
856	vm_page_t m;
857
858	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
859	if ((m = object->root) != NULL && m->pindex != pindex) {
860		m = vm_page_splay(pindex, m);
861		if ((object->root = m)->pindex != pindex)
862			m = NULL;
863	}
864	return (m);
865}
866
867/*
868 *	vm_page_rename:
869 *
870 *	Move the given memory entry from its
871 *	current object to the specified target object/offset.
872 *
873 *	The object must be locked.
874 *	This routine may not block.
875 *
876 *	Note: swap associated with the page must be invalidated by the move.  We
877 *	      have to do this for several reasons:  (1) we aren't freeing the
878 *	      page, (2) we are dirtying the page, (3) the VM system is probably
879 *	      moving the page from object A to B, and will then later move
880 *	      the backing store from A to B and we can't have a conflict.
881 *
882 *	Note: we *always* dirty the page.  It is necessary both for the
883 *	      fact that we moved it, and because we may be invalidating
884 *	      swap.  If the page is on the cache, we have to deactivate it
885 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
886 *	      on the cache.
887 */
888void
889vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
890{
891
892	vm_page_remove(m);
893	vm_page_insert(m, new_object, new_pindex);
894	vm_page_dirty(m);
895}
896
897/*
898 *	Convert all of the given object's cached pages that have a
899 *	pindex within the given range into free pages.  If the value
900 *	zero is given for "end", then the range's upper bound is
901 *	infinity.  If the given object is backed by a vnode and it
902 *	transitions from having one or more cached pages to none, the
903 *	vnode's hold count is reduced.
904 */
905void
906vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
907{
908	vm_page_t m, m_next;
909	boolean_t empty;
910
911	mtx_lock(&vm_page_queue_free_mtx);
912	if (__predict_false(object->cache == NULL)) {
913		mtx_unlock(&vm_page_queue_free_mtx);
914		return;
915	}
916	m = object->cache = vm_page_splay(start, object->cache);
917	if (m->pindex < start) {
918		if (m->right == NULL)
919			m = NULL;
920		else {
921			m_next = vm_page_splay(start, m->right);
922			m_next->left = m;
923			m->right = NULL;
924			m = object->cache = m_next;
925		}
926	}
927
928	/*
929	 * At this point, "m" is either (1) a reference to the page
930	 * with the least pindex that is greater than or equal to
931	 * "start" or (2) NULL.
932	 */
933	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
934		/*
935		 * Find "m"'s successor and remove "m" from the
936		 * object's cache.
937		 */
938		if (m->right == NULL) {
939			object->cache = m->left;
940			m_next = NULL;
941		} else {
942			m_next = vm_page_splay(start, m->right);
943			m_next->left = m->left;
944			object->cache = m_next;
945		}
946		/* Convert "m" to a free page. */
947		m->object = NULL;
948		m->valid = 0;
949		/* Clear PG_CACHED and set PG_FREE. */
950		m->flags ^= PG_CACHED | PG_FREE;
951		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
952		    ("vm_page_cache_free: page %p has inconsistent flags", m));
953		cnt.v_cache_count--;
954		cnt.v_free_count++;
955	}
956	empty = object->cache == NULL;
957	mtx_unlock(&vm_page_queue_free_mtx);
958	if (object->type == OBJT_VNODE && empty)
959		vdrop(object->handle);
960}
961
962/*
963 *	Returns the cached page that is associated with the given
964 *	object and offset.  If, however, none exists, returns NULL.
965 *
966 *	The free page queue must be locked.
967 */
968static inline vm_page_t
969vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
970{
971	vm_page_t m;
972
973	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
974	if ((m = object->cache) != NULL && m->pindex != pindex) {
975		m = vm_page_splay(pindex, m);
976		if ((object->cache = m)->pindex != pindex)
977			m = NULL;
978	}
979	return (m);
980}
981
982/*
983 *	Remove the given cached page from its containing object's
984 *	collection of cached pages.
985 *
986 *	The free page queue must be locked.
987 */
988void
989vm_page_cache_remove(vm_page_t m)
990{
991	vm_object_t object;
992	vm_page_t root;
993
994	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
995	KASSERT((m->flags & PG_CACHED) != 0,
996	    ("vm_page_cache_remove: page %p is not cached", m));
997	object = m->object;
998	if (m != object->cache) {
999		root = vm_page_splay(m->pindex, object->cache);
1000		KASSERT(root == m,
1001		    ("vm_page_cache_remove: page %p is not cached in object %p",
1002		    m, object));
1003	}
1004	if (m->left == NULL)
1005		root = m->right;
1006	else if (m->right == NULL)
1007		root = m->left;
1008	else {
1009		root = vm_page_splay(m->pindex, m->left);
1010		root->right = m->right;
1011	}
1012	object->cache = root;
1013	m->object = NULL;
1014	cnt.v_cache_count--;
1015}
1016
1017/*
1018 *	Transfer all of the cached pages with offset greater than or
1019 *	equal to 'offidxstart' from the original object's cache to the
1020 *	new object's cache.  However, any cached pages with offset
1021 *	greater than or equal to the new object's size are kept in the
1022 *	original object.  Initially, the new object's cache must be
1023 *	empty.  Offset 'offidxstart' in the original object must
1024 *	correspond to offset zero in the new object.
1025 *
1026 *	The new object must be locked.
1027 */
1028void
1029vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1030    vm_object_t new_object)
1031{
1032	vm_page_t m, m_next;
1033
1034	/*
1035	 * Insertion into an object's collection of cached pages
1036	 * requires the object to be locked.  In contrast, removal does
1037	 * not.
1038	 */
1039	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
1040	KASSERT(new_object->cache == NULL,
1041	    ("vm_page_cache_transfer: object %p has cached pages",
1042	    new_object));
1043	mtx_lock(&vm_page_queue_free_mtx);
1044	if ((m = orig_object->cache) != NULL) {
1045		/*
1046		 * Transfer all of the pages with offset greater than or
1047		 * equal to 'offidxstart' from the original object's
1048		 * cache to the new object's cache.
1049		 */
1050		m = vm_page_splay(offidxstart, m);
1051		if (m->pindex < offidxstart) {
1052			orig_object->cache = m;
1053			new_object->cache = m->right;
1054			m->right = NULL;
1055		} else {
1056			orig_object->cache = m->left;
1057			new_object->cache = m;
1058			m->left = NULL;
1059		}
1060		while ((m = new_object->cache) != NULL) {
1061			if ((m->pindex - offidxstart) >= new_object->size) {
1062				/*
1063				 * Return all of the cached pages with
1064				 * offset greater than or equal to the
1065				 * new object's size to the original
1066				 * object's cache.
1067				 */
1068				new_object->cache = m->left;
1069				m->left = orig_object->cache;
1070				orig_object->cache = m;
1071				break;
1072			}
1073			m_next = vm_page_splay(m->pindex, m->right);
1074			/* Update the page's object and offset. */
1075			m->object = new_object;
1076			m->pindex -= offidxstart;
1077			if (m_next == NULL)
1078				break;
1079			m->right = NULL;
1080			m_next->left = m;
1081			new_object->cache = m_next;
1082		}
1083		KASSERT(new_object->cache == NULL ||
1084		    new_object->type == OBJT_SWAP,
1085		    ("vm_page_cache_transfer: object %p's type is incompatible"
1086		    " with cached pages", new_object));
1087	}
1088	mtx_unlock(&vm_page_queue_free_mtx);
1089}
1090
1091/*
1092 *	vm_page_alloc:
1093 *
1094 *	Allocate and return a memory cell associated
1095 *	with this VM object/offset pair.
1096 *
1097 *	page_req classes:
1098 *	VM_ALLOC_NORMAL		normal process request
1099 *	VM_ALLOC_SYSTEM		system *really* needs a page
1100 *	VM_ALLOC_INTERRUPT	interrupt time request
1101 *	VM_ALLOC_ZERO		zero page
1102 *	VM_ALLOC_WIRED		wire the allocated page
1103 *	VM_ALLOC_NOOBJ		page is not associated with a vm object
1104 *	VM_ALLOC_NOBUSY		do not set the page busy
1105 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1106 *				is cached
1107 *
1108 *	This routine may not sleep.
1109 */
1110vm_page_t
1111vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1112{
1113	struct vnode *vp = NULL;
1114	vm_object_t m_object;
1115	vm_page_t m;
1116	int flags, page_req;
1117
1118	page_req = req & VM_ALLOC_CLASS_MASK;
1119	KASSERT(curthread->td_intr_nesting_level == 0 ||
1120	    page_req == VM_ALLOC_INTERRUPT,
1121	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
1122
1123	if ((req & VM_ALLOC_NOOBJ) == 0) {
1124		KASSERT(object != NULL,
1125		    ("vm_page_alloc: NULL object."));
1126		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1127	}
1128
1129	/*
1130	 * The pager is allowed to eat deeper into the free page list.
1131	 */
1132	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
1133		page_req = VM_ALLOC_SYSTEM;
1134	};
1135
1136	mtx_lock(&vm_page_queue_free_mtx);
1137	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1138	    (page_req == VM_ALLOC_SYSTEM &&
1139	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1140	    (page_req == VM_ALLOC_INTERRUPT &&
1141	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1142		/*
1143		 * Allocate from the free queue if the number of free pages
1144		 * exceeds the minimum for the request class.
1145		 */
1146		if (object != NULL &&
1147		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1148			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1149				mtx_unlock(&vm_page_queue_free_mtx);
1150				return (NULL);
1151			}
1152			if (vm_phys_unfree_page(m))
1153				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1154#if VM_NRESERVLEVEL > 0
1155			else if (!vm_reserv_reactivate_page(m))
1156#else
1157			else
1158#endif
1159				panic("vm_page_alloc: cache page %p is missing"
1160				    " from the free queue", m);
1161		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1162			mtx_unlock(&vm_page_queue_free_mtx);
1163			return (NULL);
1164#if VM_NRESERVLEVEL > 0
1165		} else if (object == NULL || object->type == OBJT_DEVICE ||
1166		    object->type == OBJT_SG ||
1167		    (object->flags & OBJ_COLORED) == 0 ||
1168		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1169#else
1170		} else {
1171#endif
1172			m = vm_phys_alloc_pages(object != NULL ?
1173			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1174#if VM_NRESERVLEVEL > 0
1175			if (m == NULL && vm_reserv_reclaim_inactive()) {
1176				m = vm_phys_alloc_pages(object != NULL ?
1177				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1178				    0);
1179			}
1180#endif
1181		}
1182	} else {
1183		/*
1184		 * Not allocatable, give up.
1185		 */
1186		mtx_unlock(&vm_page_queue_free_mtx);
1187		atomic_add_int(&vm_pageout_deficit, 1);
1188		pagedaemon_wakeup();
1189		return (NULL);
1190	}
1191
1192	/*
1193	 *  At this point we had better have found a good page.
1194	 */
1195
1196	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1197	KASSERT(m->queue == PQ_NONE,
1198	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1199	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1200	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1201	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1202	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1203	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1204	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1205	    pmap_page_get_memattr(m)));
1206	if ((m->flags & PG_CACHED) != 0) {
1207		KASSERT(m->valid != 0,
1208		    ("vm_page_alloc: cached page %p is invalid", m));
1209		if (m->object == object && m->pindex == pindex)
1210	  		cnt.v_reactivated++;
1211		else
1212			m->valid = 0;
1213		m_object = m->object;
1214		vm_page_cache_remove(m);
1215		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1216			vp = m_object->handle;
1217	} else {
1218		KASSERT(VM_PAGE_IS_FREE(m),
1219		    ("vm_page_alloc: page %p is not free", m));
1220		KASSERT(m->valid == 0,
1221		    ("vm_page_alloc: free page %p is valid", m));
1222		cnt.v_free_count--;
1223	}
1224
1225	/*
1226	 * Initialize structure.  Only the PG_ZERO flag is inherited.
1227	 */
1228	flags = 0;
1229	if (m->flags & PG_ZERO) {
1230		vm_page_zero_count--;
1231		if (req & VM_ALLOC_ZERO)
1232			flags = PG_ZERO;
1233	}
1234	if (object == NULL || object->type == OBJT_PHYS)
1235		flags |= PG_UNMANAGED;
1236	m->flags = flags;
1237	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
1238		m->oflags = 0;
1239	else
1240		m->oflags = VPO_BUSY;
1241	if (req & VM_ALLOC_WIRED) {
1242		atomic_add_int(&cnt.v_wire_count, 1);
1243		m->wire_count = 1;
1244	}
1245	m->act_count = 0;
1246	mtx_unlock(&vm_page_queue_free_mtx);
1247
1248	if (object != NULL) {
1249		/* Ignore device objects; the pager sets "memattr" for them. */
1250		if (object->memattr != VM_MEMATTR_DEFAULT &&
1251		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1252			pmap_page_set_memattr(m, object->memattr);
1253		vm_page_insert(m, object, pindex);
1254	} else
1255		m->pindex = pindex;
1256
1257	/*
1258	 * The following call to vdrop() must come after the above call
1259	 * to vm_page_insert() in case both affect the same object and
1260	 * vnode.  Otherwise, the affected vnode's hold count could
1261	 * temporarily become zero.
1262	 */
1263	if (vp != NULL)
1264		vdrop(vp);
1265
1266	/*
1267	 * Don't wakeup too often - wakeup the pageout daemon when
1268	 * we would be nearly out of memory.
1269	 */
1270	if (vm_paging_needed())
1271		pagedaemon_wakeup();
1272
1273	return (m);
1274}
1275
1276/*
1277 *	vm_wait:	(also see VM_WAIT macro)
1278 *
1279 *	Block until free pages are available for allocation
1280 *	- Called in various places before memory allocations.
1281 */
1282void
1283vm_wait(void)
1284{
1285
1286	mtx_lock(&vm_page_queue_free_mtx);
1287	if (curproc == pageproc) {
1288		vm_pageout_pages_needed = 1;
1289		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1290		    PDROP | PSWP, "VMWait", 0);
1291	} else {
1292		if (!vm_pages_needed) {
1293			vm_pages_needed = 1;
1294			wakeup(&vm_pages_needed);
1295		}
1296		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1297		    "vmwait", 0);
1298	}
1299}
1300
1301/*
1302 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1303 *
1304 *	Block until free pages are available for allocation
1305 *	- Called only in vm_fault so that processes page faulting
1306 *	  can be easily tracked.
1307 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1308 *	  processes will be able to grab memory first.  Do not change
1309 *	  this balance without careful testing first.
1310 */
1311void
1312vm_waitpfault(void)
1313{
1314
1315	mtx_lock(&vm_page_queue_free_mtx);
1316	if (!vm_pages_needed) {
1317		vm_pages_needed = 1;
1318		wakeup(&vm_pages_needed);
1319	}
1320	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1321	    "pfault", 0);
1322}
1323
1324/*
1325 *	vm_page_requeue:
1326 *
1327 *	If the given page is contained within a page queue, move it to the tail
1328 *	of that queue.
1329 *
1330 *	The page queues must be locked.
1331 */
1332void
1333vm_page_requeue(vm_page_t m)
1334{
1335	int queue = VM_PAGE_GETQUEUE(m);
1336	struct vpgqueues *vpq;
1337
1338	if (queue != PQ_NONE) {
1339		vpq = &vm_page_queues[queue];
1340		TAILQ_REMOVE(&vpq->pl, m, pageq);
1341		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1342	}
1343}
1344
1345/*
1346 *	vm_page_queue_remove:
1347 *
1348 *	Remove the given page from the specified queue.
1349 *
1350 *	The page and page queues must be locked.
1351 */
1352static __inline void
1353vm_page_queue_remove(int queue, vm_page_t m)
1354{
1355	struct vpgqueues *pq;
1356
1357	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1358	vm_page_lock_assert(m, MA_OWNED);
1359	pq = &vm_page_queues[queue];
1360	TAILQ_REMOVE(&pq->pl, m, pageq);
1361	(*pq->cnt)--;
1362}
1363
1364/*
1365 *	vm_pageq_remove:
1366 *
1367 *	Remove a page from its queue.
1368 *
1369 *	The given page must be locked.
1370 *	This routine may not block.
1371 */
1372void
1373vm_pageq_remove(vm_page_t m)
1374{
1375	int queue = VM_PAGE_GETQUEUE(m);
1376
1377	vm_page_lock_assert(m, MA_OWNED);
1378	if (queue != PQ_NONE) {
1379		vm_page_lock_queues();
1380		VM_PAGE_SETQUEUE2(m, PQ_NONE);
1381		vm_page_queue_remove(queue, m);
1382		vm_page_unlock_queues();
1383	}
1384}
1385
1386/*
1387 *	vm_page_enqueue:
1388 *
1389 *	Add the given page to the specified queue.
1390 *
1391 *	The page queues must be locked.
1392 */
1393static void
1394vm_page_enqueue(int queue, vm_page_t m)
1395{
1396	struct vpgqueues *vpq;
1397
1398	vpq = &vm_page_queues[queue];
1399	VM_PAGE_SETQUEUE2(m, queue);
1400	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1401	++*vpq->cnt;
1402}
1403
1404/*
1405 *	vm_page_activate:
1406 *
1407 *	Put the specified page on the active list (if appropriate).
1408 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1409 *	mess with it.
1410 *
1411 *	The page must be locked.
1412 *	This routine may not block.
1413 */
1414void
1415vm_page_activate(vm_page_t m)
1416{
1417	int queue;
1418
1419	vm_page_lock_assert(m, MA_OWNED);
1420	if ((queue = VM_PAGE_GETKNOWNQUEUE2(m)) != PQ_ACTIVE) {
1421		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1422			if (m->act_count < ACT_INIT)
1423				m->act_count = ACT_INIT;
1424			vm_page_lock_queues();
1425			if (queue != PQ_NONE)
1426				vm_page_queue_remove(queue, m);
1427			vm_page_enqueue(PQ_ACTIVE, m);
1428			vm_page_unlock_queues();
1429		} else
1430			KASSERT(queue == PQ_NONE,
1431			    ("vm_page_activate: wired page %p is queued", m));
1432	} else {
1433		if (m->act_count < ACT_INIT)
1434			m->act_count = ACT_INIT;
1435	}
1436}
1437
1438/*
1439 *	vm_page_free_wakeup:
1440 *
1441 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1442 *	routine is called when a page has been added to the cache or free
1443 *	queues.
1444 *
1445 *	The page queues must be locked.
1446 *	This routine may not block.
1447 */
1448static inline void
1449vm_page_free_wakeup(void)
1450{
1451
1452	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1453	/*
1454	 * if pageout daemon needs pages, then tell it that there are
1455	 * some free.
1456	 */
1457	if (vm_pageout_pages_needed &&
1458	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1459		wakeup(&vm_pageout_pages_needed);
1460		vm_pageout_pages_needed = 0;
1461	}
1462	/*
1463	 * wakeup processes that are waiting on memory if we hit a
1464	 * high water mark. And wakeup scheduler process if we have
1465	 * lots of memory. this process will swapin processes.
1466	 */
1467	if (vm_pages_needed && !vm_page_count_min()) {
1468		vm_pages_needed = 0;
1469		wakeup(&cnt.v_free_count);
1470	}
1471}
1472
1473/*
1474 *	vm_page_free_toq:
1475 *
1476 *	Returns the given page to the free list,
1477 *	disassociating it with any VM object.
1478 *
1479 *	Object and page must be locked prior to entry.
1480 *	This routine may not block.
1481 */
1482
1483void
1484vm_page_free_toq(vm_page_t m)
1485{
1486
1487	if ((m->flags & PG_UNMANAGED) == 0) {
1488		vm_page_lock_assert(m, MA_OWNED);
1489		KASSERT(!pmap_page_is_mapped(m),
1490		    ("vm_page_free_toq: freeing mapped page %p", m));
1491	}
1492	PCPU_INC(cnt.v_tfree);
1493
1494	if (m->busy || VM_PAGE_IS_FREE(m)) {
1495		printf(
1496		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1497		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1498		    m->hold_count);
1499		if (VM_PAGE_IS_FREE(m))
1500			panic("vm_page_free: freeing free page");
1501		else
1502			panic("vm_page_free: freeing busy page");
1503	}
1504
1505	/*
1506	 * unqueue, then remove page.  Note that we cannot destroy
1507	 * the page here because we do not want to call the pager's
1508	 * callback routine until after we've put the page on the
1509	 * appropriate free queue.
1510	 */
1511	if ((m->flags & PG_UNMANAGED) == 0)
1512		vm_pageq_remove(m);
1513	vm_page_remove(m);
1514
1515	/*
1516	 * If fictitious remove object association and
1517	 * return, otherwise delay object association removal.
1518	 */
1519	if ((m->flags & PG_FICTITIOUS) != 0) {
1520		return;
1521	}
1522
1523	m->valid = 0;
1524	vm_page_undirty(m);
1525
1526	if (m->wire_count != 0) {
1527		if (m->wire_count > 1) {
1528			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1529				m->wire_count, (long)m->pindex);
1530		}
1531		panic("vm_page_free: freeing wired page");
1532	}
1533	if (m->hold_count != 0) {
1534		m->flags &= ~PG_ZERO;
1535		vm_page_lock_queues();
1536		vm_page_enqueue(PQ_HOLD, m);
1537		vm_page_unlock_queues();
1538	} else {
1539		/*
1540		 * Restore the default memory attribute to the page.
1541		 */
1542		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1543			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1544
1545		/*
1546		 * Insert the page into the physical memory allocator's
1547		 * cache/free page queues.
1548		 */
1549		mtx_lock(&vm_page_queue_free_mtx);
1550		m->flags |= PG_FREE;
1551		cnt.v_free_count++;
1552#if VM_NRESERVLEVEL > 0
1553		if (!vm_reserv_free_page(m))
1554#else
1555		if (TRUE)
1556#endif
1557			vm_phys_free_pages(m, 0);
1558		if ((m->flags & PG_ZERO) != 0)
1559			++vm_page_zero_count;
1560		else
1561			vm_page_zero_idle_wakeup();
1562		vm_page_free_wakeup();
1563		mtx_unlock(&vm_page_queue_free_mtx);
1564	}
1565}
1566
1567/*
1568 *	vm_page_wire:
1569 *
1570 *	Mark this page as wired down by yet
1571 *	another map, removing it from paging queues
1572 *	as necessary.
1573 *
1574 *	The page must be locked.
1575 *	This routine may not block.
1576 */
1577void
1578vm_page_wire(vm_page_t m)
1579{
1580
1581	/*
1582	 * Only bump the wire statistics if the page is not already wired,
1583	 * and only unqueue the page if it is on some queue (if it is unmanaged
1584	 * it is already off the queues).
1585	 */
1586	vm_page_lock_assert(m, MA_OWNED);
1587	if (m->flags & PG_FICTITIOUS)
1588		return;
1589	if (m->wire_count == 0) {
1590		if ((m->flags & PG_UNMANAGED) == 0)
1591			vm_pageq_remove(m);
1592		atomic_add_int(&cnt.v_wire_count, 1);
1593	}
1594	m->wire_count++;
1595	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1596}
1597
1598/*
1599 *	vm_page_unwire:
1600 *
1601 *	Release one wiring of this page, potentially
1602 *	enabling it to be paged again.
1603 *
1604 *	Many pages placed on the inactive queue should actually go
1605 *	into the cache, but it is difficult to figure out which.  What
1606 *	we do instead, if the inactive target is well met, is to put
1607 *	clean pages at the head of the inactive queue instead of the tail.
1608 *	This will cause them to be moved to the cache more quickly and
1609 *	if not actively re-referenced, freed more quickly.  If we just
1610 *	stick these pages at the end of the inactive queue, heavy filesystem
1611 *	meta-data accesses can cause an unnecessary paging load on memory bound
1612 *	processes.  This optimization causes one-time-use metadata to be
1613 *	reused more quickly.
1614 *
1615 *	BUT, if we are in a low-memory situation we have no choice but to
1616 *	put clean pages on the cache queue.
1617 *
1618 *	A number of routines use vm_page_unwire() to guarantee that the page
1619 *	will go into either the inactive or active queues, and will NEVER
1620 *	be placed in the cache - for example, just after dirtying a page.
1621 *	dirty pages in the cache are not allowed.
1622 *
1623 *	The page must be locked.
1624 *	This routine may not block.
1625 */
1626void
1627vm_page_unwire(vm_page_t m, int activate)
1628{
1629
1630	if ((m->flags & PG_UNMANAGED) == 0)
1631		vm_page_lock_assert(m, MA_OWNED);
1632	if (m->flags & PG_FICTITIOUS)
1633		return;
1634	if (m->wire_count > 0) {
1635		m->wire_count--;
1636		if (m->wire_count == 0) {
1637			atomic_subtract_int(&cnt.v_wire_count, 1);
1638			if ((m->flags & PG_UNMANAGED) != 0)
1639				return;
1640			vm_page_lock_queues();
1641			if (activate)
1642				vm_page_enqueue(PQ_ACTIVE, m);
1643			else {
1644				vm_page_flag_clear(m, PG_WINATCFLS);
1645				vm_page_enqueue(PQ_INACTIVE, m);
1646			}
1647			vm_page_unlock_queues();
1648		}
1649	} else {
1650		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1651	}
1652}
1653
1654/*
1655 * Move the specified page to the inactive queue.
1656 *
1657 * Normally athead is 0 resulting in LRU operation.  athead is set
1658 * to 1 if we want this page to be 'as if it were placed in the cache',
1659 * except without unmapping it from the process address space.
1660 *
1661 * This routine may not block.
1662 */
1663static inline void
1664_vm_page_deactivate(vm_page_t m, int athead)
1665{
1666	int queue;
1667
1668	vm_page_lock_assert(m, MA_OWNED);
1669
1670	/*
1671	 * Ignore if already inactive.
1672	 */
1673	if ((queue = VM_PAGE_GETKNOWNQUEUE2(m)) == PQ_INACTIVE)
1674		return;
1675	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1676		vm_page_lock_queues();
1677		vm_page_flag_clear(m, PG_WINATCFLS);
1678		if (queue != PQ_NONE)
1679			vm_page_queue_remove(queue, m);
1680		if (athead)
1681			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
1682			    pageq);
1683		else
1684			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
1685			    pageq);
1686		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1687		cnt.v_inactive_count++;
1688		vm_page_unlock_queues();
1689	}
1690}
1691
1692/*
1693 * Move the specified page to the inactive queue.
1694 *
1695 * The page must be locked.
1696 */
1697void
1698vm_page_deactivate(vm_page_t m)
1699{
1700
1701	_vm_page_deactivate(m, 0);
1702}
1703
1704/*
1705 * vm_page_try_to_cache:
1706 *
1707 * Returns 0 on failure, 1 on success
1708 */
1709int
1710vm_page_try_to_cache(vm_page_t m)
1711{
1712
1713	vm_page_lock_assert(m, MA_OWNED);
1714	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1715	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1716	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1717		return (0);
1718	pmap_remove_all(m);
1719	if (m->dirty)
1720		return (0);
1721	vm_page_cache(m);
1722	return (1);
1723}
1724
1725/*
1726 * vm_page_try_to_free()
1727 *
1728 *	Attempt to free the page.  If we cannot free it, we do nothing.
1729 *	1 is returned on success, 0 on failure.
1730 */
1731int
1732vm_page_try_to_free(vm_page_t m)
1733{
1734
1735	vm_page_lock_assert(m, MA_OWNED);
1736	if (m->object != NULL)
1737		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1738	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1739	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1740		return (0);
1741	pmap_remove_all(m);
1742	if (m->dirty)
1743		return (0);
1744	vm_page_free(m);
1745	return (1);
1746}
1747
1748/*
1749 * vm_page_cache
1750 *
1751 * Put the specified page onto the page cache queue (if appropriate).
1752 *
1753 * This routine may not block.
1754 */
1755void
1756vm_page_cache(vm_page_t m)
1757{
1758	vm_object_t object;
1759	vm_page_t root;
1760
1761	vm_page_lock_assert(m, MA_OWNED);
1762	object = m->object;
1763	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1764	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1765	    m->hold_count || m->wire_count)
1766		panic("vm_page_cache: attempting to cache busy page");
1767	pmap_remove_all(m);
1768	if (m->dirty != 0)
1769		panic("vm_page_cache: page %p is dirty", m);
1770	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
1771	    (object->type == OBJT_SWAP &&
1772	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
1773		/*
1774		 * Hypothesis: A cache-elgible page belonging to a
1775		 * default object or swap object but without a backing
1776		 * store must be zero filled.
1777		 */
1778		vm_page_free(m);
1779		return;
1780	}
1781	KASSERT((m->flags & PG_CACHED) == 0,
1782	    ("vm_page_cache: page %p is already cached", m));
1783	PCPU_INC(cnt.v_tcached);
1784
1785	/*
1786	 * Remove the page from the paging queues.
1787	 */
1788	vm_pageq_remove(m);
1789
1790	/*
1791	 * Remove the page from the object's collection of resident
1792	 * pages.
1793	 */
1794	if (m != object->root)
1795		vm_page_splay(m->pindex, object->root);
1796	if (m->left == NULL)
1797		root = m->right;
1798	else {
1799		root = vm_page_splay(m->pindex, m->left);
1800		root->right = m->right;
1801	}
1802	object->root = root;
1803	TAILQ_REMOVE(&object->memq, m, listq);
1804	object->resident_page_count--;
1805	object->generation++;
1806
1807	/*
1808	 * Restore the default memory attribute to the page.
1809	 */
1810	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1811		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1812
1813	/*
1814	 * Insert the page into the object's collection of cached pages
1815	 * and the physical memory allocator's cache/free page queues.
1816	 */
1817	m->flags &= ~PG_ZERO;
1818	mtx_lock(&vm_page_queue_free_mtx);
1819	m->flags |= PG_CACHED;
1820	cnt.v_cache_count++;
1821	root = object->cache;
1822	if (root == NULL) {
1823		m->left = NULL;
1824		m->right = NULL;
1825	} else {
1826		root = vm_page_splay(m->pindex, root);
1827		if (m->pindex < root->pindex) {
1828			m->left = root->left;
1829			m->right = root;
1830			root->left = NULL;
1831		} else if (__predict_false(m->pindex == root->pindex))
1832			panic("vm_page_cache: offset already cached");
1833		else {
1834			m->right = root->right;
1835			m->left = root;
1836			root->right = NULL;
1837		}
1838	}
1839	object->cache = m;
1840#if VM_NRESERVLEVEL > 0
1841	if (!vm_reserv_free_page(m)) {
1842#else
1843	if (TRUE) {
1844#endif
1845		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
1846		vm_phys_free_pages(m, 0);
1847	}
1848	vm_page_free_wakeup();
1849	mtx_unlock(&vm_page_queue_free_mtx);
1850
1851	/*
1852	 * Increment the vnode's hold count if this is the object's only
1853	 * cached page.  Decrement the vnode's hold count if this was
1854	 * the object's only resident page.
1855	 */
1856	if (object->type == OBJT_VNODE) {
1857		if (root == NULL && object->resident_page_count != 0)
1858			vhold(object->handle);
1859		else if (root != NULL && object->resident_page_count == 0)
1860			vdrop(object->handle);
1861	}
1862}
1863
1864/*
1865 * vm_page_dontneed
1866 *
1867 *	Cache, deactivate, or do nothing as appropriate.  This routine
1868 *	is typically used by madvise() MADV_DONTNEED.
1869 *
1870 *	Generally speaking we want to move the page into the cache so
1871 *	it gets reused quickly.  However, this can result in a silly syndrome
1872 *	due to the page recycling too quickly.  Small objects will not be
1873 *	fully cached.  On the otherhand, if we move the page to the inactive
1874 *	queue we wind up with a problem whereby very large objects
1875 *	unnecessarily blow away our inactive and cache queues.
1876 *
1877 *	The solution is to move the pages based on a fixed weighting.  We
1878 *	either leave them alone, deactivate them, or move them to the cache,
1879 *	where moving them to the cache has the highest weighting.
1880 *	By forcing some pages into other queues we eventually force the
1881 *	system to balance the queues, potentially recovering other unrelated
1882 *	space from active.  The idea is to not force this to happen too
1883 *	often.
1884 */
1885void
1886vm_page_dontneed(vm_page_t m)
1887{
1888	int dnw;
1889	int head;
1890
1891	vm_page_lock_assert(m, MA_OWNED);
1892	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1893	dnw = PCPU_GET(dnweight);
1894	PCPU_INC(dnweight);
1895
1896	/*
1897	 * Occasionally leave the page alone.
1898	 */
1899	if ((dnw & 0x01F0) == 0 ||
1900	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) {
1901		if (m->act_count >= ACT_INIT)
1902			--m->act_count;
1903		return;
1904	}
1905
1906	/*
1907	 * Clear any references to the page.  Otherwise, the page daemon will
1908	 * immediately reactivate the page.
1909	 *
1910	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
1911	 * pmap operation, such as pmap_remove(), could clear a reference in
1912	 * the pmap and set PG_REFERENCED on the page before the
1913	 * pmap_clear_reference() had completed.  Consequently, the page would
1914	 * appear referenced based upon an old reference that occurred before
1915	 * this function ran.
1916	 */
1917	pmap_clear_reference(m);
1918	vm_page_lock_queues();
1919	vm_page_flag_clear(m, PG_REFERENCED);
1920	vm_page_unlock_queues();
1921
1922	if (m->dirty == 0 && pmap_is_modified(m))
1923		vm_page_dirty(m);
1924
1925	if (m->dirty || (dnw & 0x0070) == 0) {
1926		/*
1927		 * Deactivate the page 3 times out of 32.
1928		 */
1929		head = 0;
1930	} else {
1931		/*
1932		 * Cache the page 28 times out of every 32.  Note that
1933		 * the page is deactivated instead of cached, but placed
1934		 * at the head of the queue instead of the tail.
1935		 */
1936		head = 1;
1937	}
1938	_vm_page_deactivate(m, head);
1939}
1940
1941/*
1942 * Grab a page, waiting until we are waken up due to the page
1943 * changing state.  We keep on waiting, if the page continues
1944 * to be in the object.  If the page doesn't exist, first allocate it
1945 * and then conditionally zero it.
1946 *
1947 * This routine may block.
1948 */
1949vm_page_t
1950vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1951{
1952	vm_page_t m;
1953
1954	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1955retrylookup:
1956	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1957		if ((m->oflags & VPO_BUSY) != 0 || m->busy != 0) {
1958			if ((allocflags & VM_ALLOC_RETRY) != 0) {
1959				/*
1960				 * Reference the page before unlocking and
1961				 * sleeping so that the page daemon is less
1962				 * likely to reclaim it.
1963				 */
1964				vm_page_lock_queues();
1965				vm_page_flag_set(m, PG_REFERENCED);
1966			}
1967			vm_page_sleep(m, "pgrbwt");
1968			if ((allocflags & VM_ALLOC_RETRY) == 0)
1969				return (NULL);
1970			goto retrylookup;
1971		} else {
1972			if ((allocflags & VM_ALLOC_WIRED) != 0) {
1973				vm_page_lock(m);
1974				vm_page_wire(m);
1975				vm_page_unlock(m);
1976			}
1977			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1978				vm_page_busy(m);
1979			return (m);
1980		}
1981	}
1982	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1983	if (m == NULL) {
1984		VM_OBJECT_UNLOCK(object);
1985		VM_WAIT;
1986		VM_OBJECT_LOCK(object);
1987		if ((allocflags & VM_ALLOC_RETRY) == 0)
1988			return (NULL);
1989		goto retrylookup;
1990	} else if (m->valid != 0)
1991		return (m);
1992	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1993		pmap_zero_page(m);
1994	return (m);
1995}
1996
1997/*
1998 * Mapping function for valid bits or for dirty bits in
1999 * a page.  May not block.
2000 *
2001 * Inputs are required to range within a page.
2002 */
2003int
2004vm_page_bits(int base, int size)
2005{
2006	int first_bit;
2007	int last_bit;
2008
2009	KASSERT(
2010	    base + size <= PAGE_SIZE,
2011	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2012	);
2013
2014	if (size == 0)		/* handle degenerate case */
2015		return (0);
2016
2017	first_bit = base >> DEV_BSHIFT;
2018	last_bit = (base + size - 1) >> DEV_BSHIFT;
2019
2020	return ((2 << last_bit) - (1 << first_bit));
2021}
2022
2023/*
2024 *	vm_page_set_valid:
2025 *
2026 *	Sets portions of a page valid.  The arguments are expected
2027 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2028 *	of any partial chunks touched by the range.  The invalid portion of
2029 *	such chunks will be zeroed.
2030 *
2031 *	(base + size) must be less then or equal to PAGE_SIZE.
2032 */
2033void
2034vm_page_set_valid(vm_page_t m, int base, int size)
2035{
2036	int endoff, frag;
2037
2038	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2039	if (size == 0)	/* handle degenerate case */
2040		return;
2041
2042	/*
2043	 * If the base is not DEV_BSIZE aligned and the valid
2044	 * bit is clear, we have to zero out a portion of the
2045	 * first block.
2046	 */
2047	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2048	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2049		pmap_zero_page_area(m, frag, base - frag);
2050
2051	/*
2052	 * If the ending offset is not DEV_BSIZE aligned and the
2053	 * valid bit is clear, we have to zero out a portion of
2054	 * the last block.
2055	 */
2056	endoff = base + size;
2057	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2058	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2059		pmap_zero_page_area(m, endoff,
2060		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2061
2062	/*
2063	 * Assert that no previously invalid block that is now being validated
2064	 * is already dirty.
2065	 */
2066	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2067	    ("vm_page_set_valid: page %p is dirty", m));
2068
2069	/*
2070	 * Set valid bits inclusive of any overlap.
2071	 */
2072	m->valid |= vm_page_bits(base, size);
2073}
2074
2075/*
2076 *	vm_page_set_validclean:
2077 *
2078 *	Sets portions of a page valid and clean.  The arguments are expected
2079 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2080 *	of any partial chunks touched by the range.  The invalid portion of
2081 *	such chunks will be zero'd.
2082 *
2083 *	This routine may not block.
2084 *
2085 *	(base + size) must be less then or equal to PAGE_SIZE.
2086 */
2087void
2088vm_page_set_validclean(vm_page_t m, int base, int size)
2089{
2090	int pagebits;
2091	int frag;
2092	int endoff;
2093
2094	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2095	if (size == 0)	/* handle degenerate case */
2096		return;
2097
2098	/*
2099	 * If the base is not DEV_BSIZE aligned and the valid
2100	 * bit is clear, we have to zero out a portion of the
2101	 * first block.
2102	 */
2103	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2104	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2105		pmap_zero_page_area(m, frag, base - frag);
2106
2107	/*
2108	 * If the ending offset is not DEV_BSIZE aligned and the
2109	 * valid bit is clear, we have to zero out a portion of
2110	 * the last block.
2111	 */
2112	endoff = base + size;
2113	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2114	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2115		pmap_zero_page_area(m, endoff,
2116		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2117
2118	/*
2119	 * Set valid, clear dirty bits.  If validating the entire
2120	 * page we can safely clear the pmap modify bit.  We also
2121	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2122	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2123	 * be set again.
2124	 *
2125	 * We set valid bits inclusive of any overlap, but we can only
2126	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2127	 * the range.
2128	 */
2129	pagebits = vm_page_bits(base, size);
2130	m->valid |= pagebits;
2131#if 0	/* NOT YET */
2132	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2133		frag = DEV_BSIZE - frag;
2134		base += frag;
2135		size -= frag;
2136		if (size < 0)
2137			size = 0;
2138	}
2139	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2140#endif
2141	m->dirty &= ~pagebits;
2142	if (base == 0 && size == PAGE_SIZE) {
2143		pmap_clear_modify(m);
2144		m->oflags &= ~VPO_NOSYNC;
2145	}
2146}
2147
2148void
2149vm_page_clear_dirty(vm_page_t m, int base, int size)
2150{
2151
2152	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2153	if ((m->flags & PG_WRITEABLE) != 0)
2154		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2155	m->dirty &= ~vm_page_bits(base, size);
2156}
2157
2158/*
2159 *	vm_page_set_invalid:
2160 *
2161 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2162 *	valid and dirty bits for the effected areas are cleared.
2163 *
2164 *	May not block.
2165 */
2166void
2167vm_page_set_invalid(vm_page_t m, int base, int size)
2168{
2169	int bits;
2170
2171	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2172	KASSERT((m->oflags & VPO_BUSY) == 0,
2173	    ("vm_page_set_invalid: page %p is busy", m));
2174	bits = vm_page_bits(base, size);
2175	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2176		pmap_remove_all(m);
2177	KASSERT(!pmap_page_is_mapped(m),
2178	    ("vm_page_set_invalid: page %p is mapped", m));
2179	m->valid &= ~bits;
2180	m->dirty &= ~bits;
2181	m->object->generation++;
2182}
2183
2184/*
2185 * vm_page_zero_invalid()
2186 *
2187 *	The kernel assumes that the invalid portions of a page contain
2188 *	garbage, but such pages can be mapped into memory by user code.
2189 *	When this occurs, we must zero out the non-valid portions of the
2190 *	page so user code sees what it expects.
2191 *
2192 *	Pages are most often semi-valid when the end of a file is mapped
2193 *	into memory and the file's size is not page aligned.
2194 */
2195void
2196vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2197{
2198	int b;
2199	int i;
2200
2201	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2202	/*
2203	 * Scan the valid bits looking for invalid sections that
2204	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2205	 * valid bit may be set ) have already been zerod by
2206	 * vm_page_set_validclean().
2207	 */
2208	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2209		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2210		    (m->valid & (1 << i))
2211		) {
2212			if (i > b) {
2213				pmap_zero_page_area(m,
2214				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2215			}
2216			b = i + 1;
2217		}
2218	}
2219
2220	/*
2221	 * setvalid is TRUE when we can safely set the zero'd areas
2222	 * as being valid.  We can do this if there are no cache consistancy
2223	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2224	 */
2225	if (setvalid)
2226		m->valid = VM_PAGE_BITS_ALL;
2227}
2228
2229/*
2230 *	vm_page_is_valid:
2231 *
2232 *	Is (partial) page valid?  Note that the case where size == 0
2233 *	will return FALSE in the degenerate case where the page is
2234 *	entirely invalid, and TRUE otherwise.
2235 *
2236 *	May not block.
2237 */
2238int
2239vm_page_is_valid(vm_page_t m, int base, int size)
2240{
2241	int bits = vm_page_bits(base, size);
2242
2243	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2244	if (m->valid && ((m->valid & bits) == bits))
2245		return 1;
2246	else
2247		return 0;
2248}
2249
2250/*
2251 * update dirty bits from pmap/mmu.  May not block.
2252 */
2253void
2254vm_page_test_dirty(vm_page_t m)
2255{
2256
2257	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2258	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2259		vm_page_dirty(m);
2260}
2261
2262int so_zerocp_fullpage = 0;
2263
2264/*
2265 *	Replace the given page with a copy.  The copied page assumes
2266 *	the portion of the given page's "wire_count" that is not the
2267 *	responsibility of this copy-on-write mechanism.
2268 *
2269 *	The object containing the given page must have a non-zero
2270 *	paging-in-progress count and be locked.
2271 */
2272void
2273vm_page_cowfault(vm_page_t m)
2274{
2275	vm_page_t mnew;
2276	vm_object_t object;
2277	vm_pindex_t pindex;
2278
2279	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
2280	vm_page_lock_assert(m, MA_OWNED);
2281	object = m->object;
2282	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2283	KASSERT(object->paging_in_progress != 0,
2284	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2285	    object));
2286	pindex = m->pindex;
2287
2288 retry_alloc:
2289	pmap_remove_all(m);
2290	vm_page_remove(m);
2291	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2292	if (mnew == NULL) {
2293		vm_page_insert(m, object, pindex);
2294		vm_page_unlock(m);
2295		VM_OBJECT_UNLOCK(object);
2296		VM_WAIT;
2297		VM_OBJECT_LOCK(object);
2298		if (m == vm_page_lookup(object, pindex)) {
2299			vm_page_lock(m);
2300			goto retry_alloc;
2301		} else {
2302			/*
2303			 * Page disappeared during the wait.
2304			 */
2305			return;
2306		}
2307	}
2308
2309	if (m->cow == 0) {
2310		/*
2311		 * check to see if we raced with an xmit complete when
2312		 * waiting to allocate a page.  If so, put things back
2313		 * the way they were
2314		 */
2315		vm_page_unlock(m);
2316		vm_page_lock(mnew);
2317		vm_page_free(mnew);
2318		vm_page_unlock(mnew);
2319		vm_page_insert(m, object, pindex);
2320	} else { /* clear COW & copy page */
2321		if (!so_zerocp_fullpage)
2322			pmap_copy_page(m, mnew);
2323		mnew->valid = VM_PAGE_BITS_ALL;
2324		vm_page_dirty(mnew);
2325		mnew->wire_count = m->wire_count - m->cow;
2326		m->wire_count = m->cow;
2327		vm_page_unlock(m);
2328	}
2329}
2330
2331void
2332vm_page_cowclear(vm_page_t m)
2333{
2334
2335	vm_page_lock_assert(m, MA_OWNED);
2336	if (m->cow) {
2337		m->cow--;
2338		/*
2339		 * let vm_fault add back write permission  lazily
2340		 */
2341	}
2342	/*
2343	 *  sf_buf_free() will free the page, so we needn't do it here
2344	 */
2345}
2346
2347int
2348vm_page_cowsetup(vm_page_t m)
2349{
2350
2351	vm_page_lock_assert(m, MA_OWNED);
2352	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
2353	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
2354		return (EBUSY);
2355	m->cow++;
2356	pmap_remove_write(m);
2357	VM_OBJECT_UNLOCK(m->object);
2358	return (0);
2359}
2360
2361#include "opt_ddb.h"
2362#ifdef DDB
2363#include <sys/kernel.h>
2364
2365#include <ddb/ddb.h>
2366
2367DB_SHOW_COMMAND(page, vm_page_print_page_info)
2368{
2369	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2370	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2371	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2372	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2373	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2374	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2375	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2376	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2377	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2378	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2379}
2380
2381DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2382{
2383
2384	db_printf("PQ_FREE:");
2385	db_printf(" %d", cnt.v_free_count);
2386	db_printf("\n");
2387
2388	db_printf("PQ_CACHE:");
2389	db_printf(" %d", cnt.v_cache_count);
2390	db_printf("\n");
2391
2392	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2393		*vm_page_queues[PQ_ACTIVE].cnt,
2394		*vm_page_queues[PQ_INACTIVE].cnt);
2395}
2396#endif /* DDB */
2397