vm_page.c revision 174982
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33 */
34
35/*-
36 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37 * All rights reserved.
38 *
39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 *
41 * Permission to use, copy, modify and distribute this software and
42 * its documentation is hereby granted, provided that both the copyright
43 * notice and this permission notice appear in all copies of the
44 * software, derivative works or modified versions, and any portions
45 * thereof, and that both notices appear in supporting documentation.
46 *
47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 *
51 * Carnegie Mellon requests users of this software to return to
52 *
53 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54 *  School of Computer Science
55 *  Carnegie Mellon University
56 *  Pittsburgh PA 15213-3890
57 *
58 * any improvements or extensions that they make and grant Carnegie the
59 * rights to redistribute these changes.
60 */
61
62/*
63 *			GENERAL RULES ON VM_PAGE MANIPULATION
64 *
65 *	- a pageq mutex is required when adding or removing a page from a
66 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67 *	  busy state of a page.
68 *
69 *	- a hash chain mutex is required when associating or disassociating
70 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71 *	  regardless of other mutexes or the busy state of a page.
72 *
73 *	- either a hash chain mutex OR a busied page is required in order
74 *	  to modify the page flags.  A hash chain mutex must be obtained in
75 *	  order to busy a page.  A page's flags cannot be modified by a
76 *	  hash chain mutex if the page is marked busy.
77 *
78 *	- The object memq mutex is held when inserting or removing
79 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80 *	  is different from the object's main mutex.
81 *
82 *	Generally speaking, you have to be aware of side effects when running
83 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85 *	vm_page_cache(), vm_page_activate(), and a number of other routines
86 *	will release the hash chain mutex for you.  Intermediate manipulation
87 *	routines such as vm_page_flag_set() expect the hash chain to be held
88 *	on entry and the hash chain will remain held on return.
89 *
90 *	pageq scanning can only occur with the pageq in question locked.
91 *	We have a known bottleneck with the active queue, but the cache
92 *	and free queues are actually arrays already.
93 */
94
95/*
96 *	Resident memory management module.
97 */
98
99#include <sys/cdefs.h>
100__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 174982 2007-12-29 19:53:04Z alc $");
101
102#include "opt_vm.h"
103
104#include <sys/param.h>
105#include <sys/systm.h>
106#include <sys/lock.h>
107#include <sys/kernel.h>
108#include <sys/malloc.h>
109#include <sys/mutex.h>
110#include <sys/proc.h>
111#include <sys/sysctl.h>
112#include <sys/vmmeter.h>
113#include <sys/vnode.h>
114
115#include <vm/vm.h>
116#include <vm/vm_param.h>
117#include <vm/vm_kern.h>
118#include <vm/vm_object.h>
119#include <vm/vm_page.h>
120#include <vm/vm_pageout.h>
121#include <vm/vm_pager.h>
122#include <vm/vm_phys.h>
123#include <vm/vm_reserv.h>
124#include <vm/vm_extern.h>
125#include <vm/uma.h>
126#include <vm/uma_int.h>
127
128#include <machine/md_var.h>
129
130/*
131 *	Associated with page of user-allocatable memory is a
132 *	page structure.
133 */
134
135struct mtx vm_page_queue_mtx;
136struct mtx vm_page_queue_free_mtx;
137
138vm_page_t vm_page_array = 0;
139int vm_page_array_size = 0;
140long first_page = 0;
141int vm_page_zero_count = 0;
142
143static int boot_pages = UMA_BOOT_PAGES;
144TUNABLE_INT("vm.boot_pages", &boot_pages);
145SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
146	"number of pages allocated for bootstrapping the VM system");
147
148/*
149 *	vm_set_page_size:
150 *
151 *	Sets the page size, perhaps based upon the memory
152 *	size.  Must be called before any use of page-size
153 *	dependent functions.
154 */
155void
156vm_set_page_size(void)
157{
158	if (cnt.v_page_size == 0)
159		cnt.v_page_size = PAGE_SIZE;
160	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
161		panic("vm_set_page_size: page size not a power of two");
162}
163
164/*
165 *	vm_page_blacklist_lookup:
166 *
167 *	See if a physical address in this page has been listed
168 *	in the blacklist tunable.  Entries in the tunable are
169 *	separated by spaces or commas.  If an invalid integer is
170 *	encountered then the rest of the string is skipped.
171 */
172static int
173vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
174{
175	vm_paddr_t bad;
176	char *cp, *pos;
177
178	for (pos = list; *pos != '\0'; pos = cp) {
179		bad = strtoq(pos, &cp, 0);
180		if (*cp != '\0') {
181			if (*cp == ' ' || *cp == ',') {
182				cp++;
183				if (cp == pos)
184					continue;
185			} else
186				break;
187		}
188		if (pa == trunc_page(bad))
189			return (1);
190	}
191	return (0);
192}
193
194/*
195 *	vm_page_startup:
196 *
197 *	Initializes the resident memory module.
198 *
199 *	Allocates memory for the page cells, and
200 *	for the object/offset-to-page hash table headers.
201 *	Each page cell is initialized and placed on the free list.
202 */
203vm_offset_t
204vm_page_startup(vm_offset_t vaddr)
205{
206	vm_offset_t mapped;
207	vm_paddr_t page_range;
208	vm_paddr_t new_end;
209	int i;
210	vm_paddr_t pa;
211	int nblocks;
212	vm_paddr_t last_pa;
213	char *list;
214
215	/* the biggest memory array is the second group of pages */
216	vm_paddr_t end;
217	vm_paddr_t biggestsize;
218	vm_paddr_t low_water, high_water;
219	int biggestone;
220
221	biggestsize = 0;
222	biggestone = 0;
223	nblocks = 0;
224	vaddr = round_page(vaddr);
225
226	for (i = 0; phys_avail[i + 1]; i += 2) {
227		phys_avail[i] = round_page(phys_avail[i]);
228		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
229	}
230
231	low_water = phys_avail[0];
232	high_water = phys_avail[1];
233
234	for (i = 0; phys_avail[i + 1]; i += 2) {
235		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
236
237		if (size > biggestsize) {
238			biggestone = i;
239			biggestsize = size;
240		}
241		if (phys_avail[i] < low_water)
242			low_water = phys_avail[i];
243		if (phys_avail[i + 1] > high_water)
244			high_water = phys_avail[i + 1];
245		++nblocks;
246	}
247
248	end = phys_avail[biggestone+1];
249
250	/*
251	 * Initialize the locks.
252	 */
253	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
254	    MTX_RECURSE);
255	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
256	    MTX_DEF);
257
258	/*
259	 * Initialize the queue headers for the hold queue, the active queue,
260	 * and the inactive queue.
261	 */
262	vm_pageq_init();
263
264	/*
265	 * Allocate memory for use when boot strapping the kernel memory
266	 * allocator.
267	 */
268	new_end = end - (boot_pages * UMA_SLAB_SIZE);
269	new_end = trunc_page(new_end);
270	mapped = pmap_map(&vaddr, new_end, end,
271	    VM_PROT_READ | VM_PROT_WRITE);
272	bzero((void *)mapped, end - new_end);
273	uma_startup((void *)mapped, boot_pages);
274
275#if defined(__amd64__) || defined(__i386__)
276	/*
277	 * Allocate a bitmap to indicate that a random physical page
278	 * needs to be included in a minidump.
279	 *
280	 * The amd64 port needs this to indicate which direct map pages
281	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
282	 *
283	 * However, i386 still needs this workspace internally within the
284	 * minidump code.  In theory, they are not needed on i386, but are
285	 * included should the sf_buf code decide to use them.
286	 */
287	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
288	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
289	new_end -= vm_page_dump_size;
290	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
291	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
292	bzero((void *)vm_page_dump, vm_page_dump_size);
293#endif
294	/*
295	 * Compute the number of pages of memory that will be available for
296	 * use (taking into account the overhead of a page structure per
297	 * page).
298	 */
299	first_page = low_water / PAGE_SIZE;
300#ifdef VM_PHYSSEG_SPARSE
301	page_range = 0;
302	for (i = 0; phys_avail[i + 1] != 0; i += 2)
303		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
304#elif defined(VM_PHYSSEG_DENSE)
305	page_range = high_water / PAGE_SIZE - first_page;
306#else
307#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
308#endif
309	end = new_end;
310
311	/*
312	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
313	 */
314	vaddr += PAGE_SIZE;
315
316	/*
317	 * Initialize the mem entry structures now, and put them in the free
318	 * queue.
319	 */
320	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
321	mapped = pmap_map(&vaddr, new_end, end,
322	    VM_PROT_READ | VM_PROT_WRITE);
323	vm_page_array = (vm_page_t) mapped;
324#if VM_NRESERVLEVEL > 0
325	/*
326	 * Allocate memory for the reservation management system's data
327	 * structures.
328	 */
329	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
330#endif
331#ifdef __amd64__
332	/*
333	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
334	 * so the pages must be tracked for a crashdump to include this data.
335	 * This includes the vm_page_array and the early UMA bootstrap pages.
336	 */
337	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
338		dump_add_page(pa);
339#endif
340	phys_avail[biggestone + 1] = new_end;
341
342	/*
343	 * Clear all of the page structures
344	 */
345	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
346	for (i = 0; i < page_range; i++)
347		vm_page_array[i].order = VM_NFREEORDER;
348	vm_page_array_size = page_range;
349
350	/*
351	 * Initialize the physical memory allocator.
352	 */
353	vm_phys_init();
354
355	/*
356	 * Add every available physical page that is not blacklisted to
357	 * the free lists.
358	 */
359	cnt.v_page_count = 0;
360	cnt.v_free_count = 0;
361	list = getenv("vm.blacklist");
362	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
363		pa = phys_avail[i];
364		last_pa = phys_avail[i + 1];
365		while (pa < last_pa) {
366			if (list != NULL &&
367			    vm_page_blacklist_lookup(list, pa))
368				printf("Skipping page with pa 0x%jx\n",
369				    (uintmax_t)pa);
370			else
371				vm_phys_add_page(pa);
372			pa += PAGE_SIZE;
373		}
374	}
375	freeenv(list);
376#if VM_NRESERVLEVEL > 0
377	/*
378	 * Initialize the reservation management system.
379	 */
380	vm_reserv_init();
381#endif
382	return (vaddr);
383}
384
385void
386vm_page_flag_set(vm_page_t m, unsigned short bits)
387{
388
389	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
390	m->flags |= bits;
391}
392
393void
394vm_page_flag_clear(vm_page_t m, unsigned short bits)
395{
396
397	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
398	m->flags &= ~bits;
399}
400
401void
402vm_page_busy(vm_page_t m)
403{
404
405	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
406	KASSERT((m->oflags & VPO_BUSY) == 0,
407	    ("vm_page_busy: page already busy!!!"));
408	m->oflags |= VPO_BUSY;
409}
410
411/*
412 *      vm_page_flash:
413 *
414 *      wakeup anyone waiting for the page.
415 */
416void
417vm_page_flash(vm_page_t m)
418{
419
420	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
421	if (m->oflags & VPO_WANTED) {
422		m->oflags &= ~VPO_WANTED;
423		wakeup(m);
424	}
425}
426
427/*
428 *      vm_page_wakeup:
429 *
430 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
431 *      page.
432 *
433 */
434void
435vm_page_wakeup(vm_page_t m)
436{
437
438	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
439	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
440	m->oflags &= ~VPO_BUSY;
441	vm_page_flash(m);
442}
443
444void
445vm_page_io_start(vm_page_t m)
446{
447
448	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
449	m->busy++;
450}
451
452void
453vm_page_io_finish(vm_page_t m)
454{
455
456	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
457	m->busy--;
458	if (m->busy == 0)
459		vm_page_flash(m);
460}
461
462/*
463 * Keep page from being freed by the page daemon
464 * much of the same effect as wiring, except much lower
465 * overhead and should be used only for *very* temporary
466 * holding ("wiring").
467 */
468void
469vm_page_hold(vm_page_t mem)
470{
471
472	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
473        mem->hold_count++;
474}
475
476void
477vm_page_unhold(vm_page_t mem)
478{
479
480	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
481	--mem->hold_count;
482	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
483	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
484		vm_page_free_toq(mem);
485}
486
487/*
488 *	vm_page_free:
489 *
490 *	Free a page.
491 */
492void
493vm_page_free(vm_page_t m)
494{
495
496	m->flags &= ~PG_ZERO;
497	vm_page_free_toq(m);
498}
499
500/*
501 *	vm_page_free_zero:
502 *
503 *	Free a page to the zerod-pages queue
504 */
505void
506vm_page_free_zero(vm_page_t m)
507{
508
509	m->flags |= PG_ZERO;
510	vm_page_free_toq(m);
511}
512
513/*
514 *	vm_page_sleep:
515 *
516 *	Sleep and release the page queues lock.
517 *
518 *	The object containing the given page must be locked.
519 */
520void
521vm_page_sleep(vm_page_t m, const char *msg)
522{
523
524	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
525	if (!mtx_owned(&vm_page_queue_mtx))
526		vm_page_lock_queues();
527	vm_page_flag_set(m, PG_REFERENCED);
528	vm_page_unlock_queues();
529
530	/*
531	 * It's possible that while we sleep, the page will get
532	 * unbusied and freed.  If we are holding the object
533	 * lock, we will assume we hold a reference to the object
534	 * such that even if m->object changes, we can re-lock
535	 * it.
536	 */
537	m->oflags |= VPO_WANTED;
538	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
539}
540
541/*
542 *	vm_page_dirty:
543 *
544 *	make page all dirty
545 */
546void
547vm_page_dirty(vm_page_t m)
548{
549	KASSERT((m->flags & PG_CACHED) == 0,
550	    ("vm_page_dirty: page in cache!"));
551	KASSERT(!VM_PAGE_IS_FREE(m),
552	    ("vm_page_dirty: page is free!"));
553	m->dirty = VM_PAGE_BITS_ALL;
554}
555
556/*
557 *	vm_page_splay:
558 *
559 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
560 *	the vm_page containing the given pindex.  If, however, that
561 *	pindex is not found in the vm_object, returns a vm_page that is
562 *	adjacent to the pindex, coming before or after it.
563 */
564vm_page_t
565vm_page_splay(vm_pindex_t pindex, vm_page_t root)
566{
567	struct vm_page dummy;
568	vm_page_t lefttreemax, righttreemin, y;
569
570	if (root == NULL)
571		return (root);
572	lefttreemax = righttreemin = &dummy;
573	for (;; root = y) {
574		if (pindex < root->pindex) {
575			if ((y = root->left) == NULL)
576				break;
577			if (pindex < y->pindex) {
578				/* Rotate right. */
579				root->left = y->right;
580				y->right = root;
581				root = y;
582				if ((y = root->left) == NULL)
583					break;
584			}
585			/* Link into the new root's right tree. */
586			righttreemin->left = root;
587			righttreemin = root;
588		} else if (pindex > root->pindex) {
589			if ((y = root->right) == NULL)
590				break;
591			if (pindex > y->pindex) {
592				/* Rotate left. */
593				root->right = y->left;
594				y->left = root;
595				root = y;
596				if ((y = root->right) == NULL)
597					break;
598			}
599			/* Link into the new root's left tree. */
600			lefttreemax->right = root;
601			lefttreemax = root;
602		} else
603			break;
604	}
605	/* Assemble the new root. */
606	lefttreemax->right = root->left;
607	righttreemin->left = root->right;
608	root->left = dummy.right;
609	root->right = dummy.left;
610	return (root);
611}
612
613/*
614 *	vm_page_insert:		[ internal use only ]
615 *
616 *	Inserts the given mem entry into the object and object list.
617 *
618 *	The pagetables are not updated but will presumably fault the page
619 *	in if necessary, or if a kernel page the caller will at some point
620 *	enter the page into the kernel's pmap.  We are not allowed to block
621 *	here so we *can't* do this anyway.
622 *
623 *	The object and page must be locked.
624 *	This routine may not block.
625 */
626void
627vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
628{
629	vm_page_t root;
630
631	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
632	if (m->object != NULL)
633		panic("vm_page_insert: page already inserted");
634
635	/*
636	 * Record the object/offset pair in this page
637	 */
638	m->object = object;
639	m->pindex = pindex;
640
641	/*
642	 * Now link into the object's ordered list of backed pages.
643	 */
644	root = object->root;
645	if (root == NULL) {
646		m->left = NULL;
647		m->right = NULL;
648		TAILQ_INSERT_TAIL(&object->memq, m, listq);
649	} else {
650		root = vm_page_splay(pindex, root);
651		if (pindex < root->pindex) {
652			m->left = root->left;
653			m->right = root;
654			root->left = NULL;
655			TAILQ_INSERT_BEFORE(root, m, listq);
656		} else if (pindex == root->pindex)
657			panic("vm_page_insert: offset already allocated");
658		else {
659			m->right = root->right;
660			m->left = root;
661			root->right = NULL;
662			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
663		}
664	}
665	object->root = m;
666	object->generation++;
667
668	/*
669	 * show that the object has one more resident page.
670	 */
671	object->resident_page_count++;
672	/*
673	 * Hold the vnode until the last page is released.
674	 */
675	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
676		vhold((struct vnode *)object->handle);
677
678	/*
679	 * Since we are inserting a new and possibly dirty page,
680	 * update the object's OBJ_MIGHTBEDIRTY flag.
681	 */
682	if (m->flags & PG_WRITEABLE)
683		vm_object_set_writeable_dirty(object);
684}
685
686/*
687 *	vm_page_remove:
688 *				NOTE: used by device pager as well -wfj
689 *
690 *	Removes the given mem entry from the object/offset-page
691 *	table and the object page list, but do not invalidate/terminate
692 *	the backing store.
693 *
694 *	The object and page must be locked.
695 *	The underlying pmap entry (if any) is NOT removed here.
696 *	This routine may not block.
697 */
698void
699vm_page_remove(vm_page_t m)
700{
701	vm_object_t object;
702	vm_page_t root;
703
704	if ((object = m->object) == NULL)
705		return;
706	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
707	if (m->oflags & VPO_BUSY) {
708		m->oflags &= ~VPO_BUSY;
709		vm_page_flash(m);
710	}
711	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
712
713	/*
714	 * Now remove from the object's list of backed pages.
715	 */
716	if (m != object->root)
717		vm_page_splay(m->pindex, object->root);
718	if (m->left == NULL)
719		root = m->right;
720	else {
721		root = vm_page_splay(m->pindex, m->left);
722		root->right = m->right;
723	}
724	object->root = root;
725	TAILQ_REMOVE(&object->memq, m, listq);
726
727	/*
728	 * And show that the object has one fewer resident page.
729	 */
730	object->resident_page_count--;
731	object->generation++;
732	/*
733	 * The vnode may now be recycled.
734	 */
735	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
736		vdrop((struct vnode *)object->handle);
737
738	m->object = NULL;
739}
740
741/*
742 *	vm_page_lookup:
743 *
744 *	Returns the page associated with the object/offset
745 *	pair specified; if none is found, NULL is returned.
746 *
747 *	The object must be locked.
748 *	This routine may not block.
749 *	This is a critical path routine
750 */
751vm_page_t
752vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
753{
754	vm_page_t m;
755
756	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
757	if ((m = object->root) != NULL && m->pindex != pindex) {
758		m = vm_page_splay(pindex, m);
759		if ((object->root = m)->pindex != pindex)
760			m = NULL;
761	}
762	return (m);
763}
764
765/*
766 *	vm_page_rename:
767 *
768 *	Move the given memory entry from its
769 *	current object to the specified target object/offset.
770 *
771 *	The object must be locked.
772 *	This routine may not block.
773 *
774 *	Note: swap associated with the page must be invalidated by the move.  We
775 *	      have to do this for several reasons:  (1) we aren't freeing the
776 *	      page, (2) we are dirtying the page, (3) the VM system is probably
777 *	      moving the page from object A to B, and will then later move
778 *	      the backing store from A to B and we can't have a conflict.
779 *
780 *	Note: we *always* dirty the page.  It is necessary both for the
781 *	      fact that we moved it, and because we may be invalidating
782 *	      swap.  If the page is on the cache, we have to deactivate it
783 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
784 *	      on the cache.
785 */
786void
787vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
788{
789
790	vm_page_remove(m);
791	vm_page_insert(m, new_object, new_pindex);
792	vm_page_dirty(m);
793}
794
795/*
796 *	Convert all of the given object's cached pages that have a
797 *	pindex within the given range into free pages.  If the value
798 *	zero is given for "end", then the range's upper bound is
799 *	infinity.  If the given object is backed by a vnode and it
800 *	transitions from having one or more cached pages to none, the
801 *	vnode's hold count is reduced.
802 */
803void
804vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
805{
806	vm_page_t m, m_next;
807	boolean_t empty;
808
809	mtx_lock(&vm_page_queue_free_mtx);
810	if (__predict_false(object->cache == NULL)) {
811		mtx_unlock(&vm_page_queue_free_mtx);
812		return;
813	}
814	m = object->cache = vm_page_splay(start, object->cache);
815	if (m->pindex < start) {
816		if (m->right == NULL)
817			m = NULL;
818		else {
819			m_next = vm_page_splay(start, m->right);
820			m_next->left = m;
821			m->right = NULL;
822			m = object->cache = m_next;
823		}
824	}
825
826	/*
827	 * At this point, "m" is either (1) a reference to the page
828	 * with the least pindex that is greater than or equal to
829	 * "start" or (2) NULL.
830	 */
831	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
832		/*
833		 * Find "m"'s successor and remove "m" from the
834		 * object's cache.
835		 */
836		if (m->right == NULL) {
837			object->cache = m->left;
838			m_next = NULL;
839		} else {
840			m_next = vm_page_splay(start, m->right);
841			m_next->left = m->left;
842			object->cache = m_next;
843		}
844		/* Convert "m" to a free page. */
845		m->object = NULL;
846		m->valid = 0;
847		/* Clear PG_CACHED and set PG_FREE. */
848		m->flags ^= PG_CACHED | PG_FREE;
849		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
850		    ("vm_page_cache_free: page %p has inconsistent flags", m));
851		cnt.v_cache_count--;
852		cnt.v_free_count++;
853	}
854	empty = object->cache == NULL;
855	mtx_unlock(&vm_page_queue_free_mtx);
856	if (object->type == OBJT_VNODE && empty)
857		vdrop(object->handle);
858}
859
860/*
861 *	Returns the cached page that is associated with the given
862 *	object and offset.  If, however, none exists, returns NULL.
863 *
864 *	The free page queue must be locked.
865 */
866static inline vm_page_t
867vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
868{
869	vm_page_t m;
870
871	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
872	if ((m = object->cache) != NULL && m->pindex != pindex) {
873		m = vm_page_splay(pindex, m);
874		if ((object->cache = m)->pindex != pindex)
875			m = NULL;
876	}
877	return (m);
878}
879
880/*
881 *	Remove the given cached page from its containing object's
882 *	collection of cached pages.
883 *
884 *	The free page queue must be locked.
885 */
886void
887vm_page_cache_remove(vm_page_t m)
888{
889	vm_object_t object;
890	vm_page_t root;
891
892	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
893	KASSERT((m->flags & PG_CACHED) != 0,
894	    ("vm_page_cache_remove: page %p is not cached", m));
895	object = m->object;
896	if (m != object->cache) {
897		root = vm_page_splay(m->pindex, object->cache);
898		KASSERT(root == m,
899		    ("vm_page_cache_remove: page %p is not cached in object %p",
900		    m, object));
901	}
902	if (m->left == NULL)
903		root = m->right;
904	else if (m->right == NULL)
905		root = m->left;
906	else {
907		root = vm_page_splay(m->pindex, m->left);
908		root->right = m->right;
909	}
910	object->cache = root;
911	m->object = NULL;
912	cnt.v_cache_count--;
913}
914
915/*
916 *	Transfer all of the cached pages with offset greater than or
917 *	equal to 'offidxstart' from the original object's cache to the
918 *	new object's cache.  However, any cached pages with offset
919 *	greater than or equal to the new object's size are kept in the
920 *	original object.  Initially, the new object's cache must be
921 *	empty.  Offset 'offidxstart' in the original object must
922 *	correspond to offset zero in the new object.
923 *
924 *	The new object must be locked.
925 */
926void
927vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
928    vm_object_t new_object)
929{
930	vm_page_t m, m_next;
931
932	/*
933	 * Insertion into an object's collection of cached pages
934	 * requires the object to be locked.  In contrast, removal does
935	 * not.
936	 */
937	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
938	KASSERT(new_object->cache == NULL,
939	    ("vm_page_cache_transfer: object %p has cached pages",
940	    new_object));
941	mtx_lock(&vm_page_queue_free_mtx);
942	if ((m = orig_object->cache) != NULL) {
943		/*
944		 * Transfer all of the pages with offset greater than or
945		 * equal to 'offidxstart' from the original object's
946		 * cache to the new object's cache.
947		 */
948		m = vm_page_splay(offidxstart, m);
949		if (m->pindex < offidxstart) {
950			orig_object->cache = m;
951			new_object->cache = m->right;
952			m->right = NULL;
953		} else {
954			orig_object->cache = m->left;
955			new_object->cache = m;
956			m->left = NULL;
957		}
958		while ((m = new_object->cache) != NULL) {
959			if ((m->pindex - offidxstart) >= new_object->size) {
960				/*
961				 * Return all of the cached pages with
962				 * offset greater than or equal to the
963				 * new object's size to the original
964				 * object's cache.
965				 */
966				new_object->cache = m->left;
967				m->left = orig_object->cache;
968				orig_object->cache = m;
969				break;
970			}
971			m_next = vm_page_splay(m->pindex, m->right);
972			/* Update the page's object and offset. */
973			m->object = new_object;
974			m->pindex -= offidxstart;
975			if (m_next == NULL)
976				break;
977			m->right = NULL;
978			m_next->left = m;
979			new_object->cache = m_next;
980		}
981		KASSERT(new_object->cache == NULL ||
982		    new_object->type == OBJT_SWAP,
983		    ("vm_page_cache_transfer: object %p's type is incompatible"
984		    " with cached pages", new_object));
985	}
986	mtx_unlock(&vm_page_queue_free_mtx);
987}
988
989/*
990 *	vm_page_alloc:
991 *
992 *	Allocate and return a memory cell associated
993 *	with this VM object/offset pair.
994 *
995 *	page_req classes:
996 *	VM_ALLOC_NORMAL		normal process request
997 *	VM_ALLOC_SYSTEM		system *really* needs a page
998 *	VM_ALLOC_INTERRUPT	interrupt time request
999 *	VM_ALLOC_ZERO		zero page
1000 *
1001 *	This routine may not block.
1002 */
1003vm_page_t
1004vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1005{
1006	struct vnode *vp = NULL;
1007	vm_object_t m_object;
1008	vm_page_t m;
1009	int flags, page_req;
1010
1011	page_req = req & VM_ALLOC_CLASS_MASK;
1012	KASSERT(curthread->td_intr_nesting_level == 0 ||
1013	    page_req == VM_ALLOC_INTERRUPT,
1014	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
1015
1016	if ((req & VM_ALLOC_NOOBJ) == 0) {
1017		KASSERT(object != NULL,
1018		    ("vm_page_alloc: NULL object."));
1019		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1020	}
1021
1022	/*
1023	 * The pager is allowed to eat deeper into the free page list.
1024	 */
1025	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
1026		page_req = VM_ALLOC_SYSTEM;
1027	};
1028
1029	mtx_lock(&vm_page_queue_free_mtx);
1030	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1031	    (page_req == VM_ALLOC_SYSTEM &&
1032	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1033	    (page_req == VM_ALLOC_INTERRUPT &&
1034	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1035		/*
1036		 * Allocate from the free queue if the number of free pages
1037		 * exceeds the minimum for the request class.
1038		 */
1039		if (object != NULL &&
1040		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1041			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1042				mtx_unlock(&vm_page_queue_free_mtx);
1043				return (NULL);
1044			}
1045			if (vm_phys_unfree_page(m))
1046				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1047#if VM_NRESERVLEVEL > 0
1048			else if (!vm_reserv_reactivate_page(m))
1049#else
1050			else
1051#endif
1052				panic("vm_page_alloc: cache page %p is missing"
1053				    " from the free queue", m);
1054		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1055			mtx_unlock(&vm_page_queue_free_mtx);
1056			return (NULL);
1057#if VM_NRESERVLEVEL > 0
1058		} else if (object == NULL ||
1059		    (object->flags & OBJ_COLORED) == 0 ||
1060		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1061#else
1062		} else {
1063#endif
1064			m = vm_phys_alloc_pages(object != NULL ?
1065			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1066#if VM_NRESERVLEVEL > 0
1067			if (m == NULL && vm_reserv_reclaim()) {
1068				m = vm_phys_alloc_pages(object != NULL ?
1069				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1070				    0);
1071			}
1072#endif
1073		}
1074	} else {
1075		/*
1076		 * Not allocatable, give up.
1077		 */
1078		mtx_unlock(&vm_page_queue_free_mtx);
1079		atomic_add_int(&vm_pageout_deficit, 1);
1080		pagedaemon_wakeup();
1081		return (NULL);
1082	}
1083
1084	/*
1085	 *  At this point we had better have found a good page.
1086	 */
1087
1088	KASSERT(
1089	    m != NULL,
1090	    ("vm_page_alloc(): missing page on free queue")
1091	);
1092	if ((m->flags & PG_CACHED) != 0) {
1093		KASSERT(m->valid != 0,
1094		    ("vm_page_alloc: cached page %p is invalid", m));
1095		if (m->object == object && m->pindex == pindex)
1096	  		cnt.v_reactivated++;
1097		else
1098			m->valid = 0;
1099		m_object = m->object;
1100		vm_page_cache_remove(m);
1101		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1102			vp = m_object->handle;
1103	} else {
1104		KASSERT(VM_PAGE_IS_FREE(m),
1105		    ("vm_page_alloc: page %p is not free", m));
1106		KASSERT(m->valid == 0,
1107		    ("vm_page_alloc: free page %p is valid", m));
1108		cnt.v_free_count--;
1109	}
1110
1111	/*
1112	 * Initialize structure.  Only the PG_ZERO flag is inherited.
1113	 */
1114	flags = 0;
1115	if (m->flags & PG_ZERO) {
1116		vm_page_zero_count--;
1117		if (req & VM_ALLOC_ZERO)
1118			flags = PG_ZERO;
1119	}
1120	if (object == NULL || object->type == OBJT_PHYS)
1121		flags |= PG_UNMANAGED;
1122	m->flags = flags;
1123	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
1124		m->oflags = 0;
1125	else
1126		m->oflags = VPO_BUSY;
1127	if (req & VM_ALLOC_WIRED) {
1128		atomic_add_int(&cnt.v_wire_count, 1);
1129		m->wire_count = 1;
1130	} else
1131		m->wire_count = 0;
1132	m->hold_count = 0;
1133	m->act_count = 0;
1134	m->busy = 0;
1135	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
1136	mtx_unlock(&vm_page_queue_free_mtx);
1137
1138	if ((req & VM_ALLOC_NOOBJ) == 0)
1139		vm_page_insert(m, object, pindex);
1140	else
1141		m->pindex = pindex;
1142
1143	/*
1144	 * The following call to vdrop() must come after the above call
1145	 * to vm_page_insert() in case both affect the same object and
1146	 * vnode.  Otherwise, the affected vnode's hold count could
1147	 * temporarily become zero.
1148	 */
1149	if (vp != NULL)
1150		vdrop(vp);
1151
1152	/*
1153	 * Don't wakeup too often - wakeup the pageout daemon when
1154	 * we would be nearly out of memory.
1155	 */
1156	if (vm_paging_needed())
1157		pagedaemon_wakeup();
1158
1159	return (m);
1160}
1161
1162/*
1163 *	vm_wait:	(also see VM_WAIT macro)
1164 *
1165 *	Block until free pages are available for allocation
1166 *	- Called in various places before memory allocations.
1167 */
1168void
1169vm_wait(void)
1170{
1171
1172	mtx_lock(&vm_page_queue_free_mtx);
1173	if (curproc == pageproc) {
1174		vm_pageout_pages_needed = 1;
1175		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1176		    PDROP | PSWP, "VMWait", 0);
1177	} else {
1178		if (!vm_pages_needed) {
1179			vm_pages_needed = 1;
1180			wakeup(&vm_pages_needed);
1181		}
1182		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1183		    "vmwait", 0);
1184	}
1185}
1186
1187/*
1188 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1189 *
1190 *	Block until free pages are available for allocation
1191 *	- Called only in vm_fault so that processes page faulting
1192 *	  can be easily tracked.
1193 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1194 *	  processes will be able to grab memory first.  Do not change
1195 *	  this balance without careful testing first.
1196 */
1197void
1198vm_waitpfault(void)
1199{
1200
1201	mtx_lock(&vm_page_queue_free_mtx);
1202	if (!vm_pages_needed) {
1203		vm_pages_needed = 1;
1204		wakeup(&vm_pages_needed);
1205	}
1206	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1207	    "pfault", 0);
1208}
1209
1210/*
1211 *	vm_page_activate:
1212 *
1213 *	Put the specified page on the active list (if appropriate).
1214 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1215 *	mess with it.
1216 *
1217 *	The page queues must be locked.
1218 *	This routine may not block.
1219 */
1220void
1221vm_page_activate(vm_page_t m)
1222{
1223
1224	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1225	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
1226		vm_pageq_remove(m);
1227		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1228			if (m->act_count < ACT_INIT)
1229				m->act_count = ACT_INIT;
1230			vm_pageq_enqueue(PQ_ACTIVE, m);
1231		}
1232	} else {
1233		if (m->act_count < ACT_INIT)
1234			m->act_count = ACT_INIT;
1235	}
1236}
1237
1238/*
1239 *	vm_page_free_wakeup:
1240 *
1241 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1242 *	routine is called when a page has been added to the cache or free
1243 *	queues.
1244 *
1245 *	The page queues must be locked.
1246 *	This routine may not block.
1247 */
1248static inline void
1249vm_page_free_wakeup(void)
1250{
1251
1252	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1253	/*
1254	 * if pageout daemon needs pages, then tell it that there are
1255	 * some free.
1256	 */
1257	if (vm_pageout_pages_needed &&
1258	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1259		wakeup(&vm_pageout_pages_needed);
1260		vm_pageout_pages_needed = 0;
1261	}
1262	/*
1263	 * wakeup processes that are waiting on memory if we hit a
1264	 * high water mark. And wakeup scheduler process if we have
1265	 * lots of memory. this process will swapin processes.
1266	 */
1267	if (vm_pages_needed && !vm_page_count_min()) {
1268		vm_pages_needed = 0;
1269		wakeup(&cnt.v_free_count);
1270	}
1271}
1272
1273/*
1274 *	vm_page_free_toq:
1275 *
1276 *	Returns the given page to the free list,
1277 *	disassociating it with any VM object.
1278 *
1279 *	Object and page must be locked prior to entry.
1280 *	This routine may not block.
1281 */
1282
1283void
1284vm_page_free_toq(vm_page_t m)
1285{
1286
1287	if (VM_PAGE_GETQUEUE(m) != PQ_NONE)
1288		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1289	KASSERT(!pmap_page_is_mapped(m),
1290	    ("vm_page_free_toq: freeing mapped page %p", m));
1291	PCPU_INC(cnt.v_tfree);
1292
1293	if (m->busy || VM_PAGE_IS_FREE(m)) {
1294		printf(
1295		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1296		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1297		    m->hold_count);
1298		if (VM_PAGE_IS_FREE(m))
1299			panic("vm_page_free: freeing free page");
1300		else
1301			panic("vm_page_free: freeing busy page");
1302	}
1303
1304	/*
1305	 * unqueue, then remove page.  Note that we cannot destroy
1306	 * the page here because we do not want to call the pager's
1307	 * callback routine until after we've put the page on the
1308	 * appropriate free queue.
1309	 */
1310	vm_pageq_remove(m);
1311	vm_page_remove(m);
1312
1313	/*
1314	 * If fictitious remove object association and
1315	 * return, otherwise delay object association removal.
1316	 */
1317	if ((m->flags & PG_FICTITIOUS) != 0) {
1318		return;
1319	}
1320
1321	m->valid = 0;
1322	vm_page_undirty(m);
1323
1324	if (m->wire_count != 0) {
1325		if (m->wire_count > 1) {
1326			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1327				m->wire_count, (long)m->pindex);
1328		}
1329		panic("vm_page_free: freeing wired page");
1330	}
1331	if (m->hold_count != 0) {
1332		m->flags &= ~PG_ZERO;
1333		vm_pageq_enqueue(PQ_HOLD, m);
1334	} else {
1335		m->flags |= PG_FREE;
1336		mtx_lock(&vm_page_queue_free_mtx);
1337		cnt.v_free_count++;
1338#if VM_NRESERVLEVEL > 0
1339		if (!vm_reserv_free_page(m))
1340#else
1341		if (TRUE)
1342#endif
1343			vm_phys_free_pages(m, 0);
1344		if ((m->flags & PG_ZERO) != 0)
1345			++vm_page_zero_count;
1346		else
1347			vm_page_zero_idle_wakeup();
1348		vm_page_free_wakeup();
1349		mtx_unlock(&vm_page_queue_free_mtx);
1350	}
1351}
1352
1353/*
1354 *	vm_page_wire:
1355 *
1356 *	Mark this page as wired down by yet
1357 *	another map, removing it from paging queues
1358 *	as necessary.
1359 *
1360 *	The page queues must be locked.
1361 *	This routine may not block.
1362 */
1363void
1364vm_page_wire(vm_page_t m)
1365{
1366
1367	/*
1368	 * Only bump the wire statistics if the page is not already wired,
1369	 * and only unqueue the page if it is on some queue (if it is unmanaged
1370	 * it is already off the queues).
1371	 */
1372	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1373	if (m->flags & PG_FICTITIOUS)
1374		return;
1375	if (m->wire_count == 0) {
1376		if ((m->flags & PG_UNMANAGED) == 0)
1377			vm_pageq_remove(m);
1378		atomic_add_int(&cnt.v_wire_count, 1);
1379	}
1380	m->wire_count++;
1381	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1382}
1383
1384/*
1385 *	vm_page_unwire:
1386 *
1387 *	Release one wiring of this page, potentially
1388 *	enabling it to be paged again.
1389 *
1390 *	Many pages placed on the inactive queue should actually go
1391 *	into the cache, but it is difficult to figure out which.  What
1392 *	we do instead, if the inactive target is well met, is to put
1393 *	clean pages at the head of the inactive queue instead of the tail.
1394 *	This will cause them to be moved to the cache more quickly and
1395 *	if not actively re-referenced, freed more quickly.  If we just
1396 *	stick these pages at the end of the inactive queue, heavy filesystem
1397 *	meta-data accesses can cause an unnecessary paging load on memory bound
1398 *	processes.  This optimization causes one-time-use metadata to be
1399 *	reused more quickly.
1400 *
1401 *	BUT, if we are in a low-memory situation we have no choice but to
1402 *	put clean pages on the cache queue.
1403 *
1404 *	A number of routines use vm_page_unwire() to guarantee that the page
1405 *	will go into either the inactive or active queues, and will NEVER
1406 *	be placed in the cache - for example, just after dirtying a page.
1407 *	dirty pages in the cache are not allowed.
1408 *
1409 *	The page queues must be locked.
1410 *	This routine may not block.
1411 */
1412void
1413vm_page_unwire(vm_page_t m, int activate)
1414{
1415
1416	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1417	if (m->flags & PG_FICTITIOUS)
1418		return;
1419	if (m->wire_count > 0) {
1420		m->wire_count--;
1421		if (m->wire_count == 0) {
1422			atomic_subtract_int(&cnt.v_wire_count, 1);
1423			if (m->flags & PG_UNMANAGED) {
1424				;
1425			} else if (activate)
1426				vm_pageq_enqueue(PQ_ACTIVE, m);
1427			else {
1428				vm_page_flag_clear(m, PG_WINATCFLS);
1429				vm_pageq_enqueue(PQ_INACTIVE, m);
1430			}
1431		}
1432	} else {
1433		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1434	}
1435}
1436
1437
1438/*
1439 * Move the specified page to the inactive queue.  If the page has
1440 * any associated swap, the swap is deallocated.
1441 *
1442 * Normally athead is 0 resulting in LRU operation.  athead is set
1443 * to 1 if we want this page to be 'as if it were placed in the cache',
1444 * except without unmapping it from the process address space.
1445 *
1446 * This routine may not block.
1447 */
1448static inline void
1449_vm_page_deactivate(vm_page_t m, int athead)
1450{
1451
1452	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1453
1454	/*
1455	 * Ignore if already inactive.
1456	 */
1457	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1458		return;
1459	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1460		vm_page_flag_clear(m, PG_WINATCFLS);
1461		vm_pageq_remove(m);
1462		if (athead)
1463			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1464		else
1465			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1466		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1467		cnt.v_inactive_count++;
1468	}
1469}
1470
1471void
1472vm_page_deactivate(vm_page_t m)
1473{
1474    _vm_page_deactivate(m, 0);
1475}
1476
1477/*
1478 * vm_page_try_to_cache:
1479 *
1480 * Returns 0 on failure, 1 on success
1481 */
1482int
1483vm_page_try_to_cache(vm_page_t m)
1484{
1485
1486	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1487	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1488	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1489	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1490		return (0);
1491	}
1492	pmap_remove_all(m);
1493	if (m->dirty)
1494		return (0);
1495	vm_page_cache(m);
1496	return (1);
1497}
1498
1499/*
1500 * vm_page_try_to_free()
1501 *
1502 *	Attempt to free the page.  If we cannot free it, we do nothing.
1503 *	1 is returned on success, 0 on failure.
1504 */
1505int
1506vm_page_try_to_free(vm_page_t m)
1507{
1508
1509	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1510	if (m->object != NULL)
1511		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1512	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1513	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1514		return (0);
1515	}
1516	pmap_remove_all(m);
1517	if (m->dirty)
1518		return (0);
1519	vm_page_free(m);
1520	return (1);
1521}
1522
1523/*
1524 * vm_page_cache
1525 *
1526 * Put the specified page onto the page cache queue (if appropriate).
1527 *
1528 * This routine may not block.
1529 */
1530void
1531vm_page_cache(vm_page_t m)
1532{
1533	vm_object_t object;
1534	vm_page_t root;
1535
1536	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1537	object = m->object;
1538	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1539	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1540	    m->hold_count || m->wire_count) {
1541		panic("vm_page_cache: attempting to cache busy page");
1542	}
1543	pmap_remove_all(m);
1544	if (m->dirty != 0)
1545		panic("vm_page_cache: page %p is dirty", m);
1546	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
1547	    (object->type == OBJT_SWAP &&
1548	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
1549		/*
1550		 * Hypothesis: A cache-elgible page belonging to a
1551		 * default object or swap object but without a backing
1552		 * store must be zero filled.
1553		 */
1554		vm_page_free(m);
1555		return;
1556	}
1557	KASSERT((m->flags & PG_CACHED) == 0,
1558	    ("vm_page_cache: page %p is already cached", m));
1559	cnt.v_tcached++;
1560
1561	/*
1562	 * Remove the page from the paging queues.
1563	 */
1564	vm_pageq_remove(m);
1565
1566	/*
1567	 * Remove the page from the object's collection of resident
1568	 * pages.
1569	 */
1570	if (m != object->root)
1571		vm_page_splay(m->pindex, object->root);
1572	if (m->left == NULL)
1573		root = m->right;
1574	else {
1575		root = vm_page_splay(m->pindex, m->left);
1576		root->right = m->right;
1577	}
1578	object->root = root;
1579	TAILQ_REMOVE(&object->memq, m, listq);
1580	object->resident_page_count--;
1581	object->generation++;
1582
1583	/*
1584	 * Insert the page into the object's collection of cached pages
1585	 * and the physical memory allocator's cache/free page queues.
1586	 */
1587	vm_page_flag_set(m, PG_CACHED);
1588	vm_page_flag_clear(m, PG_ZERO);
1589	mtx_lock(&vm_page_queue_free_mtx);
1590	cnt.v_cache_count++;
1591	root = object->cache;
1592	if (root == NULL) {
1593		m->left = NULL;
1594		m->right = NULL;
1595	} else {
1596		root = vm_page_splay(m->pindex, root);
1597		if (m->pindex < root->pindex) {
1598			m->left = root->left;
1599			m->right = root;
1600			root->left = NULL;
1601		} else if (__predict_false(m->pindex == root->pindex))
1602			panic("vm_page_cache: offset already cached");
1603		else {
1604			m->right = root->right;
1605			m->left = root;
1606			root->right = NULL;
1607		}
1608	}
1609	object->cache = m;
1610#if VM_NRESERVLEVEL > 0
1611	if (!vm_reserv_free_page(m)) {
1612#else
1613	if (TRUE) {
1614#endif
1615		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
1616		vm_phys_free_pages(m, 0);
1617	}
1618	vm_page_free_wakeup();
1619	mtx_unlock(&vm_page_queue_free_mtx);
1620
1621	/*
1622	 * Increment the vnode's hold count if this is the object's only
1623	 * cached page.  Decrement the vnode's hold count if this was
1624	 * the object's only resident page.
1625	 */
1626	if (object->type == OBJT_VNODE) {
1627		if (root == NULL && object->resident_page_count != 0)
1628			vhold(object->handle);
1629		else if (root != NULL && object->resident_page_count == 0)
1630			vdrop(object->handle);
1631	}
1632}
1633
1634/*
1635 * vm_page_dontneed
1636 *
1637 *	Cache, deactivate, or do nothing as appropriate.  This routine
1638 *	is typically used by madvise() MADV_DONTNEED.
1639 *
1640 *	Generally speaking we want to move the page into the cache so
1641 *	it gets reused quickly.  However, this can result in a silly syndrome
1642 *	due to the page recycling too quickly.  Small objects will not be
1643 *	fully cached.  On the otherhand, if we move the page to the inactive
1644 *	queue we wind up with a problem whereby very large objects
1645 *	unnecessarily blow away our inactive and cache queues.
1646 *
1647 *	The solution is to move the pages based on a fixed weighting.  We
1648 *	either leave them alone, deactivate them, or move them to the cache,
1649 *	where moving them to the cache has the highest weighting.
1650 *	By forcing some pages into other queues we eventually force the
1651 *	system to balance the queues, potentially recovering other unrelated
1652 *	space from active.  The idea is to not force this to happen too
1653 *	often.
1654 */
1655void
1656vm_page_dontneed(vm_page_t m)
1657{
1658	static int dnweight;
1659	int dnw;
1660	int head;
1661
1662	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1663	dnw = ++dnweight;
1664
1665	/*
1666	 * occassionally leave the page alone
1667	 */
1668	if ((dnw & 0x01F0) == 0 ||
1669	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) {
1670		if (m->act_count >= ACT_INIT)
1671			--m->act_count;
1672		return;
1673	}
1674
1675	if (m->dirty == 0 && pmap_is_modified(m))
1676		vm_page_dirty(m);
1677
1678	if (m->dirty || (dnw & 0x0070) == 0) {
1679		/*
1680		 * Deactivate the page 3 times out of 32.
1681		 */
1682		head = 0;
1683	} else {
1684		/*
1685		 * Cache the page 28 times out of every 32.  Note that
1686		 * the page is deactivated instead of cached, but placed
1687		 * at the head of the queue instead of the tail.
1688		 */
1689		head = 1;
1690	}
1691	_vm_page_deactivate(m, head);
1692}
1693
1694/*
1695 * Grab a page, waiting until we are waken up due to the page
1696 * changing state.  We keep on waiting, if the page continues
1697 * to be in the object.  If the page doesn't exist, first allocate it
1698 * and then conditionally zero it.
1699 *
1700 * This routine may block.
1701 */
1702vm_page_t
1703vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1704{
1705	vm_page_t m;
1706
1707	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1708retrylookup:
1709	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1710		if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
1711			if ((allocflags & VM_ALLOC_RETRY) == 0)
1712				return (NULL);
1713			goto retrylookup;
1714		} else {
1715			if ((allocflags & VM_ALLOC_WIRED) != 0) {
1716				vm_page_lock_queues();
1717				vm_page_wire(m);
1718				vm_page_unlock_queues();
1719			}
1720			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1721				vm_page_busy(m);
1722			return (m);
1723		}
1724	}
1725	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1726	if (m == NULL) {
1727		VM_OBJECT_UNLOCK(object);
1728		VM_WAIT;
1729		VM_OBJECT_LOCK(object);
1730		if ((allocflags & VM_ALLOC_RETRY) == 0)
1731			return (NULL);
1732		goto retrylookup;
1733	} else if (m->valid != 0)
1734		return (m);
1735	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1736		pmap_zero_page(m);
1737	return (m);
1738}
1739
1740/*
1741 * Mapping function for valid bits or for dirty bits in
1742 * a page.  May not block.
1743 *
1744 * Inputs are required to range within a page.
1745 */
1746int
1747vm_page_bits(int base, int size)
1748{
1749	int first_bit;
1750	int last_bit;
1751
1752	KASSERT(
1753	    base + size <= PAGE_SIZE,
1754	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1755	);
1756
1757	if (size == 0)		/* handle degenerate case */
1758		return (0);
1759
1760	first_bit = base >> DEV_BSHIFT;
1761	last_bit = (base + size - 1) >> DEV_BSHIFT;
1762
1763	return ((2 << last_bit) - (1 << first_bit));
1764}
1765
1766/*
1767 *	vm_page_set_validclean:
1768 *
1769 *	Sets portions of a page valid and clean.  The arguments are expected
1770 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1771 *	of any partial chunks touched by the range.  The invalid portion of
1772 *	such chunks will be zero'd.
1773 *
1774 *	This routine may not block.
1775 *
1776 *	(base + size) must be less then or equal to PAGE_SIZE.
1777 */
1778void
1779vm_page_set_validclean(vm_page_t m, int base, int size)
1780{
1781	int pagebits;
1782	int frag;
1783	int endoff;
1784
1785	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1786	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1787	if (size == 0)	/* handle degenerate case */
1788		return;
1789
1790	/*
1791	 * If the base is not DEV_BSIZE aligned and the valid
1792	 * bit is clear, we have to zero out a portion of the
1793	 * first block.
1794	 */
1795	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1796	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1797		pmap_zero_page_area(m, frag, base - frag);
1798
1799	/*
1800	 * If the ending offset is not DEV_BSIZE aligned and the
1801	 * valid bit is clear, we have to zero out a portion of
1802	 * the last block.
1803	 */
1804	endoff = base + size;
1805	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1806	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1807		pmap_zero_page_area(m, endoff,
1808		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1809
1810	/*
1811	 * Set valid, clear dirty bits.  If validating the entire
1812	 * page we can safely clear the pmap modify bit.  We also
1813	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
1814	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1815	 * be set again.
1816	 *
1817	 * We set valid bits inclusive of any overlap, but we can only
1818	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1819	 * the range.
1820	 */
1821	pagebits = vm_page_bits(base, size);
1822	m->valid |= pagebits;
1823#if 0	/* NOT YET */
1824	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1825		frag = DEV_BSIZE - frag;
1826		base += frag;
1827		size -= frag;
1828		if (size < 0)
1829			size = 0;
1830	}
1831	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1832#endif
1833	m->dirty &= ~pagebits;
1834	if (base == 0 && size == PAGE_SIZE) {
1835		pmap_clear_modify(m);
1836		m->oflags &= ~VPO_NOSYNC;
1837	}
1838}
1839
1840void
1841vm_page_clear_dirty(vm_page_t m, int base, int size)
1842{
1843
1844	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1845	m->dirty &= ~vm_page_bits(base, size);
1846}
1847
1848/*
1849 *	vm_page_set_invalid:
1850 *
1851 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1852 *	valid and dirty bits for the effected areas are cleared.
1853 *
1854 *	May not block.
1855 */
1856void
1857vm_page_set_invalid(vm_page_t m, int base, int size)
1858{
1859	int bits;
1860
1861	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1862	bits = vm_page_bits(base, size);
1863	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1864	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1865		pmap_remove_all(m);
1866	m->valid &= ~bits;
1867	m->dirty &= ~bits;
1868	m->object->generation++;
1869}
1870
1871/*
1872 * vm_page_zero_invalid()
1873 *
1874 *	The kernel assumes that the invalid portions of a page contain
1875 *	garbage, but such pages can be mapped into memory by user code.
1876 *	When this occurs, we must zero out the non-valid portions of the
1877 *	page so user code sees what it expects.
1878 *
1879 *	Pages are most often semi-valid when the end of a file is mapped
1880 *	into memory and the file's size is not page aligned.
1881 */
1882void
1883vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1884{
1885	int b;
1886	int i;
1887
1888	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1889	/*
1890	 * Scan the valid bits looking for invalid sections that
1891	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1892	 * valid bit may be set ) have already been zerod by
1893	 * vm_page_set_validclean().
1894	 */
1895	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1896		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1897		    (m->valid & (1 << i))
1898		) {
1899			if (i > b) {
1900				pmap_zero_page_area(m,
1901				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1902			}
1903			b = i + 1;
1904		}
1905	}
1906
1907	/*
1908	 * setvalid is TRUE when we can safely set the zero'd areas
1909	 * as being valid.  We can do this if there are no cache consistancy
1910	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1911	 */
1912	if (setvalid)
1913		m->valid = VM_PAGE_BITS_ALL;
1914}
1915
1916/*
1917 *	vm_page_is_valid:
1918 *
1919 *	Is (partial) page valid?  Note that the case where size == 0
1920 *	will return FALSE in the degenerate case where the page is
1921 *	entirely invalid, and TRUE otherwise.
1922 *
1923 *	May not block.
1924 */
1925int
1926vm_page_is_valid(vm_page_t m, int base, int size)
1927{
1928	int bits = vm_page_bits(base, size);
1929
1930	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1931	if (m->valid && ((m->valid & bits) == bits))
1932		return 1;
1933	else
1934		return 0;
1935}
1936
1937/*
1938 * update dirty bits from pmap/mmu.  May not block.
1939 */
1940void
1941vm_page_test_dirty(vm_page_t m)
1942{
1943	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1944		vm_page_dirty(m);
1945	}
1946}
1947
1948int so_zerocp_fullpage = 0;
1949
1950/*
1951 *	Replace the given page with a copy.  The copied page assumes
1952 *	the portion of the given page's "wire_count" that is not the
1953 *	responsibility of this copy-on-write mechanism.
1954 *
1955 *	The object containing the given page must have a non-zero
1956 *	paging-in-progress count and be locked.
1957 */
1958void
1959vm_page_cowfault(vm_page_t m)
1960{
1961	vm_page_t mnew;
1962	vm_object_t object;
1963	vm_pindex_t pindex;
1964
1965	object = m->object;
1966	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1967	KASSERT(object->paging_in_progress != 0,
1968	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
1969	    object));
1970	pindex = m->pindex;
1971
1972 retry_alloc:
1973	pmap_remove_all(m);
1974	vm_page_remove(m);
1975	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
1976	if (mnew == NULL) {
1977		vm_page_insert(m, object, pindex);
1978		vm_page_unlock_queues();
1979		VM_OBJECT_UNLOCK(object);
1980		VM_WAIT;
1981		VM_OBJECT_LOCK(object);
1982		if (m == vm_page_lookup(object, pindex)) {
1983			vm_page_lock_queues();
1984			goto retry_alloc;
1985		} else {
1986			/*
1987			 * Page disappeared during the wait.
1988			 */
1989			vm_page_lock_queues();
1990			return;
1991		}
1992	}
1993
1994	if (m->cow == 0) {
1995		/*
1996		 * check to see if we raced with an xmit complete when
1997		 * waiting to allocate a page.  If so, put things back
1998		 * the way they were
1999		 */
2000		vm_page_free(mnew);
2001		vm_page_insert(m, object, pindex);
2002	} else { /* clear COW & copy page */
2003		if (!so_zerocp_fullpage)
2004			pmap_copy_page(m, mnew);
2005		mnew->valid = VM_PAGE_BITS_ALL;
2006		vm_page_dirty(mnew);
2007		mnew->wire_count = m->wire_count - m->cow;
2008		m->wire_count = m->cow;
2009	}
2010}
2011
2012void
2013vm_page_cowclear(vm_page_t m)
2014{
2015
2016	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2017	if (m->cow) {
2018		m->cow--;
2019		/*
2020		 * let vm_fault add back write permission  lazily
2021		 */
2022	}
2023	/*
2024	 *  sf_buf_free() will free the page, so we needn't do it here
2025	 */
2026}
2027
2028void
2029vm_page_cowsetup(vm_page_t m)
2030{
2031
2032	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2033	m->cow++;
2034	pmap_remove_write(m);
2035}
2036
2037#include "opt_ddb.h"
2038#ifdef DDB
2039#include <sys/kernel.h>
2040
2041#include <ddb/ddb.h>
2042
2043DB_SHOW_COMMAND(page, vm_page_print_page_info)
2044{
2045	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2046	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2047	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2048	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2049	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2050	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2051	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2052	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2053	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2054	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2055}
2056
2057DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2058{
2059
2060	db_printf("PQ_FREE:");
2061	db_printf(" %d", cnt.v_free_count);
2062	db_printf("\n");
2063
2064	db_printf("PQ_CACHE:");
2065	db_printf(" %d", cnt.v_cache_count);
2066	db_printf("\n");
2067
2068	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2069		*vm_page_queues[PQ_ACTIVE].cnt,
2070		*vm_page_queues[PQ_INACTIVE].cnt);
2071}
2072#endif /* DDB */
2073