vm_page.c revision 170517
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33 */
34
35/*-
36 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37 * All rights reserved.
38 *
39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 *
41 * Permission to use, copy, modify and distribute this software and
42 * its documentation is hereby granted, provided that both the copyright
43 * notice and this permission notice appear in all copies of the
44 * software, derivative works or modified versions, and any portions
45 * thereof, and that both notices appear in supporting documentation.
46 *
47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 *
51 * Carnegie Mellon requests users of this software to return to
52 *
53 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54 *  School of Computer Science
55 *  Carnegie Mellon University
56 *  Pittsburgh PA 15213-3890
57 *
58 * any improvements or extensions that they make and grant Carnegie the
59 * rights to redistribute these changes.
60 */
61
62/*
63 *			GENERAL RULES ON VM_PAGE MANIPULATION
64 *
65 *	- a pageq mutex is required when adding or removing a page from a
66 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67 *	  busy state of a page.
68 *
69 *	- a hash chain mutex is required when associating or disassociating
70 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71 *	  regardless of other mutexes or the busy state of a page.
72 *
73 *	- either a hash chain mutex OR a busied page is required in order
74 *	  to modify the page flags.  A hash chain mutex must be obtained in
75 *	  order to busy a page.  A page's flags cannot be modified by a
76 *	  hash chain mutex if the page is marked busy.
77 *
78 *	- The object memq mutex is held when inserting or removing
79 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80 *	  is different from the object's main mutex.
81 *
82 *	Generally speaking, you have to be aware of side effects when running
83 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85 *	vm_page_cache(), vm_page_activate(), and a number of other routines
86 *	will release the hash chain mutex for you.  Intermediate manipulation
87 *	routines such as vm_page_flag_set() expect the hash chain to be held
88 *	on entry and the hash chain will remain held on return.
89 *
90 *	pageq scanning can only occur with the pageq in question locked.
91 *	We have a known bottleneck with the active queue, but the cache
92 *	and free queues are actually arrays already.
93 */
94
95/*
96 *	Resident memory management module.
97 */
98
99#include <sys/cdefs.h>
100__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 170517 2007-06-10 21:59:14Z attilio $");
101
102#include <sys/param.h>
103#include <sys/systm.h>
104#include <sys/lock.h>
105#include <sys/kernel.h>
106#include <sys/malloc.h>
107#include <sys/mutex.h>
108#include <sys/proc.h>
109#include <sys/sysctl.h>
110#include <sys/vmmeter.h>
111#include <sys/vnode.h>
112
113#include <vm/vm.h>
114#include <vm/vm_param.h>
115#include <vm/vm_kern.h>
116#include <vm/vm_object.h>
117#include <vm/vm_page.h>
118#include <vm/vm_pageout.h>
119#include <vm/vm_pager.h>
120#include <vm/vm_extern.h>
121#include <vm/uma.h>
122#include <vm/uma_int.h>
123
124#include <machine/md_var.h>
125
126/*
127 *	Associated with page of user-allocatable memory is a
128 *	page structure.
129 */
130
131struct mtx vm_page_queue_mtx;
132struct mtx vm_page_queue_free_mtx;
133
134vm_page_t vm_page_array = 0;
135int vm_page_array_size = 0;
136long first_page = 0;
137int vm_page_zero_count = 0;
138
139static int boot_pages = UMA_BOOT_PAGES;
140TUNABLE_INT("vm.boot_pages", &boot_pages);
141SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
142	"number of pages allocated for bootstrapping the VM system");
143
144/*
145 *	vm_set_page_size:
146 *
147 *	Sets the page size, perhaps based upon the memory
148 *	size.  Must be called before any use of page-size
149 *	dependent functions.
150 */
151void
152vm_set_page_size(void)
153{
154	if (cnt.v_page_size == 0)
155		cnt.v_page_size = PAGE_SIZE;
156	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
157		panic("vm_set_page_size: page size not a power of two");
158}
159
160/*
161 *	vm_page_blacklist_lookup:
162 *
163 *	See if a physical address in this page has been listed
164 *	in the blacklist tunable.  Entries in the tunable are
165 *	separated by spaces or commas.  If an invalid integer is
166 *	encountered then the rest of the string is skipped.
167 */
168static int
169vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
170{
171	vm_paddr_t bad;
172	char *cp, *pos;
173
174	for (pos = list; *pos != '\0'; pos = cp) {
175		bad = strtoq(pos, &cp, 0);
176		if (*cp != '\0') {
177			if (*cp == ' ' || *cp == ',') {
178				cp++;
179				if (cp == pos)
180					continue;
181			} else
182				break;
183		}
184		if (pa == trunc_page(bad))
185			return (1);
186	}
187	return (0);
188}
189
190/*
191 *	vm_page_startup:
192 *
193 *	Initializes the resident memory module.
194 *
195 *	Allocates memory for the page cells, and
196 *	for the object/offset-to-page hash table headers.
197 *	Each page cell is initialized and placed on the free list.
198 */
199vm_offset_t
200vm_page_startup(vm_offset_t vaddr)
201{
202	vm_offset_t mapped;
203	vm_size_t npages;
204	vm_paddr_t page_range;
205	vm_paddr_t new_end;
206	int i;
207	vm_paddr_t pa;
208	int nblocks;
209	vm_paddr_t last_pa;
210	char *list;
211
212	/* the biggest memory array is the second group of pages */
213	vm_paddr_t end;
214	vm_paddr_t biggestsize;
215	vm_paddr_t low_water, high_water;
216	int biggestone;
217
218	vm_paddr_t total;
219
220	total = 0;
221	biggestsize = 0;
222	biggestone = 0;
223	nblocks = 0;
224	vaddr = round_page(vaddr);
225
226	for (i = 0; phys_avail[i + 1]; i += 2) {
227		phys_avail[i] = round_page(phys_avail[i]);
228		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
229	}
230
231	low_water = phys_avail[0];
232	high_water = phys_avail[1];
233
234	for (i = 0; phys_avail[i + 1]; i += 2) {
235		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
236
237		if (size > biggestsize) {
238			biggestone = i;
239			biggestsize = size;
240		}
241		if (phys_avail[i] < low_water)
242			low_water = phys_avail[i];
243		if (phys_avail[i + 1] > high_water)
244			high_water = phys_avail[i + 1];
245		++nblocks;
246		total += size;
247	}
248
249	end = phys_avail[biggestone+1];
250
251	/*
252	 * Initialize the locks.
253	 */
254	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
255	    MTX_RECURSE);
256	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
257	    MTX_DEF);
258
259	/*
260	 * Initialize the queue headers for the free queue, the active queue
261	 * and the inactive queue.
262	 */
263	vm_pageq_init();
264
265	/*
266	 * Allocate memory for use when boot strapping the kernel memory
267	 * allocator.
268	 */
269	new_end = end - (boot_pages * UMA_SLAB_SIZE);
270	new_end = trunc_page(new_end);
271	mapped = pmap_map(&vaddr, new_end, end,
272	    VM_PROT_READ | VM_PROT_WRITE);
273	bzero((void *)mapped, end - new_end);
274	uma_startup((void *)mapped, boot_pages);
275
276#if defined(__amd64__) || defined(__i386__)
277	/*
278	 * Allocate a bitmap to indicate that a random physical page
279	 * needs to be included in a minidump.
280	 *
281	 * The amd64 port needs this to indicate which direct map pages
282	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
283	 *
284	 * However, i386 still needs this workspace internally within the
285	 * minidump code.  In theory, they are not needed on i386, but are
286	 * included should the sf_buf code decide to use them.
287	 */
288	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
289	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
290	new_end -= vm_page_dump_size;
291	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
292	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
293	bzero((void *)vm_page_dump, vm_page_dump_size);
294#endif
295	/*
296	 * Compute the number of pages of memory that will be available for
297	 * use (taking into account the overhead of a page structure per
298	 * page).
299	 */
300	first_page = low_water / PAGE_SIZE;
301#ifdef VM_PHYSSEG_SPARSE
302	page_range = 0;
303	for (i = 0; phys_avail[i + 1] != 0; i += 2)
304		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
305#elif defined(VM_PHYSSEG_DENSE)
306	page_range = high_water / PAGE_SIZE - first_page;
307#else
308#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
309#endif
310	npages = (total - (page_range * sizeof(struct vm_page)) -
311	    (end - new_end)) / PAGE_SIZE;
312	end = new_end;
313
314	/*
315	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
316	 */
317	vaddr += PAGE_SIZE;
318
319	/*
320	 * Initialize the mem entry structures now, and put them in the free
321	 * queue.
322	 */
323	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
324	mapped = pmap_map(&vaddr, new_end, end,
325	    VM_PROT_READ | VM_PROT_WRITE);
326	vm_page_array = (vm_page_t) mapped;
327#ifdef __amd64__
328	/*
329	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
330	 * so the pages must be tracked for a crashdump to include this data.
331	 * This includes the vm_page_array and the early UMA bootstrap pages.
332	 */
333	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
334		dump_add_page(pa);
335#endif
336	phys_avail[biggestone + 1] = new_end;
337
338	/*
339	 * Clear all of the page structures
340	 */
341	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
342	vm_page_array_size = page_range;
343
344	/*
345	 * This assertion tests the hypothesis that npages and total are
346	 * redundant.  XXX
347	 */
348	page_range = 0;
349	for (i = 0; phys_avail[i + 1] != 0; i += 2)
350		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
351	KASSERT(page_range == npages,
352	    ("vm_page_startup: inconsistent page counts"));
353
354	/*
355	 * Construct the free queue(s) in descending order (by physical
356	 * address) so that the first 16MB of physical memory is allocated
357	 * last rather than first.  On large-memory machines, this avoids
358	 * the exhaustion of low physical memory before isa_dma_init has run.
359	 */
360	cnt.v_page_count = 0;
361	cnt.v_free_count = 0;
362	list = getenv("vm.blacklist");
363	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
364		pa = phys_avail[i];
365		last_pa = phys_avail[i + 1];
366		while (pa < last_pa) {
367			if (list != NULL &&
368			    vm_page_blacklist_lookup(list, pa))
369				printf("Skipping page with pa 0x%jx\n",
370				    (uintmax_t)pa);
371			else
372				vm_pageq_add_new_page(pa);
373			pa += PAGE_SIZE;
374		}
375	}
376	freeenv(list);
377	return (vaddr);
378}
379
380void
381vm_page_flag_set(vm_page_t m, unsigned short bits)
382{
383
384	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
385	m->flags |= bits;
386}
387
388void
389vm_page_flag_clear(vm_page_t m, unsigned short bits)
390{
391
392	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
393	m->flags &= ~bits;
394}
395
396void
397vm_page_busy(vm_page_t m)
398{
399
400	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
401	KASSERT((m->oflags & VPO_BUSY) == 0,
402	    ("vm_page_busy: page already busy!!!"));
403	m->oflags |= VPO_BUSY;
404}
405
406/*
407 *      vm_page_flash:
408 *
409 *      wakeup anyone waiting for the page.
410 */
411void
412vm_page_flash(vm_page_t m)
413{
414
415	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
416	if (m->oflags & VPO_WANTED) {
417		m->oflags &= ~VPO_WANTED;
418		wakeup(m);
419	}
420}
421
422/*
423 *      vm_page_wakeup:
424 *
425 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
426 *      page.
427 *
428 */
429void
430vm_page_wakeup(vm_page_t m)
431{
432
433	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
434	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
435	m->oflags &= ~VPO_BUSY;
436	vm_page_flash(m);
437}
438
439void
440vm_page_io_start(vm_page_t m)
441{
442
443	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
444	m->busy++;
445}
446
447void
448vm_page_io_finish(vm_page_t m)
449{
450
451	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
452	m->busy--;
453	if (m->busy == 0)
454		vm_page_flash(m);
455}
456
457/*
458 * Keep page from being freed by the page daemon
459 * much of the same effect as wiring, except much lower
460 * overhead and should be used only for *very* temporary
461 * holding ("wiring").
462 */
463void
464vm_page_hold(vm_page_t mem)
465{
466
467	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
468        mem->hold_count++;
469}
470
471void
472vm_page_unhold(vm_page_t mem)
473{
474
475	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
476	--mem->hold_count;
477	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
478	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
479		vm_page_free_toq(mem);
480}
481
482/*
483 *	vm_page_free:
484 *
485 *	Free a page.
486 */
487void
488vm_page_free(vm_page_t m)
489{
490
491	m->flags &= ~PG_ZERO;
492	vm_page_free_toq(m);
493}
494
495/*
496 *	vm_page_free_zero:
497 *
498 *	Free a page to the zerod-pages queue
499 */
500void
501vm_page_free_zero(vm_page_t m)
502{
503
504	m->flags |= PG_ZERO;
505	vm_page_free_toq(m);
506}
507
508/*
509 *	vm_page_sleep:
510 *
511 *	Sleep and release the page queues lock.
512 *
513 *	The object containing the given page must be locked.
514 */
515void
516vm_page_sleep(vm_page_t m, const char *msg)
517{
518
519	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
520	if (!mtx_owned(&vm_page_queue_mtx))
521		vm_page_lock_queues();
522	vm_page_flag_set(m, PG_REFERENCED);
523	vm_page_unlock_queues();
524
525	/*
526	 * It's possible that while we sleep, the page will get
527	 * unbusied and freed.  If we are holding the object
528	 * lock, we will assume we hold a reference to the object
529	 * such that even if m->object changes, we can re-lock
530	 * it.
531	 */
532	m->oflags |= VPO_WANTED;
533	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
534}
535
536/*
537 *	vm_page_dirty:
538 *
539 *	make page all dirty
540 */
541void
542vm_page_dirty(vm_page_t m)
543{
544	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_CACHE,
545	    ("vm_page_dirty: page in cache!"));
546	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_FREE,
547	    ("vm_page_dirty: page is free!"));
548	m->dirty = VM_PAGE_BITS_ALL;
549}
550
551/*
552 *	vm_page_splay:
553 *
554 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
555 *	the vm_page containing the given pindex.  If, however, that
556 *	pindex is not found in the vm_object, returns a vm_page that is
557 *	adjacent to the pindex, coming before or after it.
558 */
559vm_page_t
560vm_page_splay(vm_pindex_t pindex, vm_page_t root)
561{
562	struct vm_page dummy;
563	vm_page_t lefttreemax, righttreemin, y;
564
565	if (root == NULL)
566		return (root);
567	lefttreemax = righttreemin = &dummy;
568	for (;; root = y) {
569		if (pindex < root->pindex) {
570			if ((y = root->left) == NULL)
571				break;
572			if (pindex < y->pindex) {
573				/* Rotate right. */
574				root->left = y->right;
575				y->right = root;
576				root = y;
577				if ((y = root->left) == NULL)
578					break;
579			}
580			/* Link into the new root's right tree. */
581			righttreemin->left = root;
582			righttreemin = root;
583		} else if (pindex > root->pindex) {
584			if ((y = root->right) == NULL)
585				break;
586			if (pindex > y->pindex) {
587				/* Rotate left. */
588				root->right = y->left;
589				y->left = root;
590				root = y;
591				if ((y = root->right) == NULL)
592					break;
593			}
594			/* Link into the new root's left tree. */
595			lefttreemax->right = root;
596			lefttreemax = root;
597		} else
598			break;
599	}
600	/* Assemble the new root. */
601	lefttreemax->right = root->left;
602	righttreemin->left = root->right;
603	root->left = dummy.right;
604	root->right = dummy.left;
605	return (root);
606}
607
608/*
609 *	vm_page_insert:		[ internal use only ]
610 *
611 *	Inserts the given mem entry into the object and object list.
612 *
613 *	The pagetables are not updated but will presumably fault the page
614 *	in if necessary, or if a kernel page the caller will at some point
615 *	enter the page into the kernel's pmap.  We are not allowed to block
616 *	here so we *can't* do this anyway.
617 *
618 *	The object and page must be locked.
619 *	This routine may not block.
620 */
621void
622vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
623{
624	vm_page_t root;
625
626	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
627	if (m->object != NULL)
628		panic("vm_page_insert: page already inserted");
629
630	/*
631	 * Record the object/offset pair in this page
632	 */
633	m->object = object;
634	m->pindex = pindex;
635
636	/*
637	 * Now link into the object's ordered list of backed pages.
638	 */
639	root = object->root;
640	if (root == NULL) {
641		m->left = NULL;
642		m->right = NULL;
643		TAILQ_INSERT_TAIL(&object->memq, m, listq);
644	} else {
645		root = vm_page_splay(pindex, root);
646		if (pindex < root->pindex) {
647			m->left = root->left;
648			m->right = root;
649			root->left = NULL;
650			TAILQ_INSERT_BEFORE(root, m, listq);
651		} else if (pindex == root->pindex)
652			panic("vm_page_insert: offset already allocated");
653		else {
654			m->right = root->right;
655			m->left = root;
656			root->right = NULL;
657			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
658		}
659	}
660	object->root = m;
661	object->generation++;
662
663	/*
664	 * show that the object has one more resident page.
665	 */
666	object->resident_page_count++;
667	/*
668	 * Hold the vnode until the last page is released.
669	 */
670	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
671		vhold((struct vnode *)object->handle);
672
673	/*
674	 * Since we are inserting a new and possibly dirty page,
675	 * update the object's OBJ_MIGHTBEDIRTY flag.
676	 */
677	if (m->flags & PG_WRITEABLE)
678		vm_object_set_writeable_dirty(object);
679}
680
681/*
682 *	vm_page_remove:
683 *				NOTE: used by device pager as well -wfj
684 *
685 *	Removes the given mem entry from the object/offset-page
686 *	table and the object page list, but do not invalidate/terminate
687 *	the backing store.
688 *
689 *	The object and page must be locked.
690 *	The underlying pmap entry (if any) is NOT removed here.
691 *	This routine may not block.
692 */
693void
694vm_page_remove(vm_page_t m)
695{
696	vm_object_t object;
697	vm_page_t root;
698
699	if ((object = m->object) == NULL)
700		return;
701	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
702	if (m->oflags & VPO_BUSY) {
703		m->oflags &= ~VPO_BUSY;
704		vm_page_flash(m);
705	}
706	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
707
708	/*
709	 * Now remove from the object's list of backed pages.
710	 */
711	if (m != object->root)
712		vm_page_splay(m->pindex, object->root);
713	if (m->left == NULL)
714		root = m->right;
715	else {
716		root = vm_page_splay(m->pindex, m->left);
717		root->right = m->right;
718	}
719	object->root = root;
720	TAILQ_REMOVE(&object->memq, m, listq);
721
722	/*
723	 * And show that the object has one fewer resident page.
724	 */
725	object->resident_page_count--;
726	object->generation++;
727	/*
728	 * The vnode may now be recycled.
729	 */
730	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
731		vdrop((struct vnode *)object->handle);
732
733	m->object = NULL;
734}
735
736/*
737 *	vm_page_lookup:
738 *
739 *	Returns the page associated with the object/offset
740 *	pair specified; if none is found, NULL is returned.
741 *
742 *	The object must be locked.
743 *	This routine may not block.
744 *	This is a critical path routine
745 */
746vm_page_t
747vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
748{
749	vm_page_t m;
750
751	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
752	if ((m = object->root) != NULL && m->pindex != pindex) {
753		m = vm_page_splay(pindex, m);
754		if ((object->root = m)->pindex != pindex)
755			m = NULL;
756	}
757	return (m);
758}
759
760/*
761 *	vm_page_rename:
762 *
763 *	Move the given memory entry from its
764 *	current object to the specified target object/offset.
765 *
766 *	The object must be locked.
767 *	This routine may not block.
768 *
769 *	Note: swap associated with the page must be invalidated by the move.  We
770 *	      have to do this for several reasons:  (1) we aren't freeing the
771 *	      page, (2) we are dirtying the page, (3) the VM system is probably
772 *	      moving the page from object A to B, and will then later move
773 *	      the backing store from A to B and we can't have a conflict.
774 *
775 *	Note: we *always* dirty the page.  It is necessary both for the
776 *	      fact that we moved it, and because we may be invalidating
777 *	      swap.  If the page is on the cache, we have to deactivate it
778 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
779 *	      on the cache.
780 */
781void
782vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
783{
784
785	vm_page_remove(m);
786	vm_page_insert(m, new_object, new_pindex);
787	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
788		vm_page_deactivate(m);
789	vm_page_dirty(m);
790}
791
792/*
793 *	vm_page_select_cache:
794 *
795 *	Move a page of the given color from the cache queue to the free
796 *	queue.  As pages might be found, but are not applicable, they are
797 *	deactivated.
798 *
799 *	This routine may not block.
800 */
801vm_page_t
802vm_page_select_cache(int color)
803{
804	vm_object_t object;
805	vm_page_t m;
806	boolean_t was_trylocked;
807
808	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
809	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
810		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
811		KASSERT(!pmap_page_is_mapped(m),
812		    ("Found mapped cache page %p", m));
813		KASSERT((m->flags & PG_UNMANAGED) == 0,
814		    ("Found unmanaged cache page %p", m));
815		KASSERT(m->wire_count == 0, ("Found wired cache page %p", m));
816		if (m->hold_count == 0 && (object = m->object,
817		    (was_trylocked = VM_OBJECT_TRYLOCK(object)) ||
818		    VM_OBJECT_LOCKED(object))) {
819			KASSERT((m->oflags & VPO_BUSY) == 0 && m->busy == 0,
820			    ("Found busy cache page %p", m));
821			vm_page_free(m);
822			if (was_trylocked)
823				VM_OBJECT_UNLOCK(object);
824			break;
825		}
826		vm_page_deactivate(m);
827	}
828	return (m);
829}
830
831/*
832 *	vm_page_alloc:
833 *
834 *	Allocate and return a memory cell associated
835 *	with this VM object/offset pair.
836 *
837 *	page_req classes:
838 *	VM_ALLOC_NORMAL		normal process request
839 *	VM_ALLOC_SYSTEM		system *really* needs a page
840 *	VM_ALLOC_INTERRUPT	interrupt time request
841 *	VM_ALLOC_ZERO		zero page
842 *
843 *	This routine may not block.
844 *
845 *	Additional special handling is required when called from an
846 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
847 *	the page cache in this case.
848 */
849vm_page_t
850vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
851{
852	vm_page_t m = NULL;
853	int color, flags, page_req;
854
855	page_req = req & VM_ALLOC_CLASS_MASK;
856	KASSERT(curthread->td_intr_nesting_level == 0 ||
857	    page_req == VM_ALLOC_INTERRUPT,
858	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
859
860	if ((req & VM_ALLOC_NOOBJ) == 0) {
861		KASSERT(object != NULL,
862		    ("vm_page_alloc: NULL object."));
863		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
864		color = (pindex + object->pg_color) & PQ_COLORMASK;
865	} else
866		color = pindex & PQ_COLORMASK;
867
868	/*
869	 * The pager is allowed to eat deeper into the free page list.
870	 */
871	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
872		page_req = VM_ALLOC_SYSTEM;
873	};
874
875loop:
876	mtx_lock(&vm_page_queue_free_mtx);
877	if (cnt.v_free_count > cnt.v_free_reserved ||
878	    (page_req == VM_ALLOC_SYSTEM &&
879	     cnt.v_cache_count == 0 &&
880	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
881	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
882		/*
883		 * Allocate from the free queue if the number of free pages
884		 * exceeds the minimum for the request class.
885		 */
886		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
887	} else if (page_req != VM_ALLOC_INTERRUPT) {
888		mtx_unlock(&vm_page_queue_free_mtx);
889		/*
890		 * Allocatable from cache (non-interrupt only).  On success,
891		 * we must free the page and try again, thus ensuring that
892		 * cnt.v_*_free_min counters are replenished.
893		 */
894		vm_page_lock_queues();
895		if ((m = vm_page_select_cache(color)) == NULL) {
896			KASSERT(cnt.v_cache_count == 0,
897			    ("vm_page_alloc: cache queue is missing %d pages",
898			    cnt.v_cache_count));
899			vm_page_unlock_queues();
900			atomic_add_int(&vm_pageout_deficit, 1);
901			pagedaemon_wakeup();
902
903			if (page_req != VM_ALLOC_SYSTEM)
904				return (NULL);
905
906			mtx_lock(&vm_page_queue_free_mtx);
907			if (cnt.v_free_count <= cnt.v_interrupt_free_min) {
908				mtx_unlock(&vm_page_queue_free_mtx);
909				return (NULL);
910			}
911			m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
912		} else {
913			vm_page_unlock_queues();
914			goto loop;
915		}
916	} else {
917		/*
918		 * Not allocatable from cache from interrupt, give up.
919		 */
920		mtx_unlock(&vm_page_queue_free_mtx);
921		atomic_add_int(&vm_pageout_deficit, 1);
922		pagedaemon_wakeup();
923		return (NULL);
924	}
925
926	/*
927	 *  At this point we had better have found a good page.
928	 */
929
930	KASSERT(
931	    m != NULL,
932	    ("vm_page_alloc(): missing page on free queue")
933	);
934
935	/*
936	 * Remove from free queue
937	 */
938	vm_pageq_remove_nowakeup(m);
939
940	/*
941	 * Initialize structure.  Only the PG_ZERO flag is inherited.
942	 */
943	flags = 0;
944	if (m->flags & PG_ZERO) {
945		vm_page_zero_count--;
946		if (req & VM_ALLOC_ZERO)
947			flags = PG_ZERO;
948	}
949	if (object != NULL && object->type == OBJT_PHYS)
950		flags |= PG_UNMANAGED;
951	m->flags = flags;
952	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
953		m->oflags = 0;
954	else
955		m->oflags = VPO_BUSY;
956	if (req & VM_ALLOC_WIRED) {
957		atomic_add_int(&cnt.v_wire_count, 1);
958		m->wire_count = 1;
959	} else
960		m->wire_count = 0;
961	m->hold_count = 0;
962	m->act_count = 0;
963	m->busy = 0;
964	m->valid = 0;
965	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
966	mtx_unlock(&vm_page_queue_free_mtx);
967
968	if ((req & VM_ALLOC_NOOBJ) == 0)
969		vm_page_insert(m, object, pindex);
970	else
971		m->pindex = pindex;
972
973	/*
974	 * Don't wakeup too often - wakeup the pageout daemon when
975	 * we would be nearly out of memory.
976	 */
977	if (vm_paging_needed())
978		pagedaemon_wakeup();
979
980	return (m);
981}
982
983/*
984 *	vm_wait:	(also see VM_WAIT macro)
985 *
986 *	Block until free pages are available for allocation
987 *	- Called in various places before memory allocations.
988 */
989void
990vm_wait(void)
991{
992
993	mtx_lock(&vm_page_queue_free_mtx);
994	if (curproc == pageproc) {
995		vm_pageout_pages_needed = 1;
996		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
997		    PDROP | PSWP, "VMWait", 0);
998	} else {
999		if (!vm_pages_needed) {
1000			vm_pages_needed = 1;
1001			wakeup(&vm_pages_needed);
1002		}
1003		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1004		    "vmwait", 0);
1005	}
1006}
1007
1008/*
1009 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1010 *
1011 *	Block until free pages are available for allocation
1012 *	- Called only in vm_fault so that processes page faulting
1013 *	  can be easily tracked.
1014 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1015 *	  processes will be able to grab memory first.  Do not change
1016 *	  this balance without careful testing first.
1017 */
1018void
1019vm_waitpfault(void)
1020{
1021
1022	mtx_lock(&vm_page_queue_free_mtx);
1023	if (!vm_pages_needed) {
1024		vm_pages_needed = 1;
1025		wakeup(&vm_pages_needed);
1026	}
1027	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1028	    "pfault", 0);
1029}
1030
1031/*
1032 *	vm_page_activate:
1033 *
1034 *	Put the specified page on the active list (if appropriate).
1035 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1036 *	mess with it.
1037 *
1038 *	The page queues must be locked.
1039 *	This routine may not block.
1040 */
1041void
1042vm_page_activate(vm_page_t m)
1043{
1044
1045	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1046	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
1047		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1048			cnt.v_reactivated++;
1049		vm_pageq_remove(m);
1050		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1051			if (m->act_count < ACT_INIT)
1052				m->act_count = ACT_INIT;
1053			vm_pageq_enqueue(PQ_ACTIVE, m);
1054		}
1055	} else {
1056		if (m->act_count < ACT_INIT)
1057			m->act_count = ACT_INIT;
1058	}
1059}
1060
1061/*
1062 *	vm_page_free_wakeup:
1063 *
1064 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1065 *	routine is called when a page has been added to the cache or free
1066 *	queues.
1067 *
1068 *	The page queues must be locked.
1069 *	This routine may not block.
1070 */
1071static inline void
1072vm_page_free_wakeup(void)
1073{
1074
1075	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1076	/*
1077	 * if pageout daemon needs pages, then tell it that there are
1078	 * some free.
1079	 */
1080	if (vm_pageout_pages_needed &&
1081	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1082		wakeup(&vm_pageout_pages_needed);
1083		vm_pageout_pages_needed = 0;
1084	}
1085	/*
1086	 * wakeup processes that are waiting on memory if we hit a
1087	 * high water mark. And wakeup scheduler process if we have
1088	 * lots of memory. this process will swapin processes.
1089	 */
1090	if (vm_pages_needed && !vm_page_count_min()) {
1091		vm_pages_needed = 0;
1092		wakeup(&cnt.v_free_count);
1093	}
1094}
1095
1096/*
1097 *	vm_page_free_toq:
1098 *
1099 *	Returns the given page to the PQ_FREE list,
1100 *	disassociating it with any VM object.
1101 *
1102 *	Object and page must be locked prior to entry.
1103 *	This routine may not block.
1104 */
1105
1106void
1107vm_page_free_toq(vm_page_t m)
1108{
1109	struct vpgqueues *pq;
1110
1111	if (VM_PAGE_GETQUEUE(m) != PQ_NONE)
1112		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1113	KASSERT(!pmap_page_is_mapped(m),
1114	    ("vm_page_free_toq: freeing mapped page %p", m));
1115	PCPU_INC(cnt.v_tfree);
1116
1117	if (m->busy || VM_PAGE_INQUEUE1(m, PQ_FREE)) {
1118		printf(
1119		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1120		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1121		    m->hold_count);
1122		if (VM_PAGE_INQUEUE1(m, PQ_FREE))
1123			panic("vm_page_free: freeing free page");
1124		else
1125			panic("vm_page_free: freeing busy page");
1126	}
1127
1128	/*
1129	 * unqueue, then remove page.  Note that we cannot destroy
1130	 * the page here because we do not want to call the pager's
1131	 * callback routine until after we've put the page on the
1132	 * appropriate free queue.
1133	 */
1134	vm_pageq_remove_nowakeup(m);
1135	vm_page_remove(m);
1136
1137	/*
1138	 * If fictitious remove object association and
1139	 * return, otherwise delay object association removal.
1140	 */
1141	if ((m->flags & PG_FICTITIOUS) != 0) {
1142		return;
1143	}
1144
1145	m->valid = 0;
1146	vm_page_undirty(m);
1147
1148	if (m->wire_count != 0) {
1149		if (m->wire_count > 1) {
1150			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1151				m->wire_count, (long)m->pindex);
1152		}
1153		panic("vm_page_free: freeing wired page");
1154	}
1155	if (m->hold_count != 0) {
1156		m->flags &= ~PG_ZERO;
1157		vm_pageq_enqueue(PQ_HOLD, m);
1158		return;
1159	}
1160	VM_PAGE_SETQUEUE1(m, PQ_FREE);
1161	mtx_lock(&vm_page_queue_free_mtx);
1162	pq = &vm_page_queues[VM_PAGE_GETQUEUE(m)];
1163	pq->lcnt++;
1164	++(*pq->cnt);
1165
1166	/*
1167	 * Put zero'd pages on the end ( where we look for zero'd pages
1168	 * first ) and non-zerod pages at the head.
1169	 */
1170	if (m->flags & PG_ZERO) {
1171		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1172		++vm_page_zero_count;
1173	} else {
1174		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1175		vm_page_zero_idle_wakeup();
1176	}
1177	vm_page_free_wakeup();
1178	mtx_unlock(&vm_page_queue_free_mtx);
1179}
1180
1181/*
1182 *	vm_page_wire:
1183 *
1184 *	Mark this page as wired down by yet
1185 *	another map, removing it from paging queues
1186 *	as necessary.
1187 *
1188 *	The page queues must be locked.
1189 *	This routine may not block.
1190 */
1191void
1192vm_page_wire(vm_page_t m)
1193{
1194
1195	/*
1196	 * Only bump the wire statistics if the page is not already wired,
1197	 * and only unqueue the page if it is on some queue (if it is unmanaged
1198	 * it is already off the queues).
1199	 */
1200	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1201	if (m->flags & PG_FICTITIOUS)
1202		return;
1203	if (m->wire_count == 0) {
1204		if ((m->flags & PG_UNMANAGED) == 0)
1205			vm_pageq_remove(m);
1206		atomic_add_int(&cnt.v_wire_count, 1);
1207	}
1208	m->wire_count++;
1209	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1210}
1211
1212/*
1213 *	vm_page_unwire:
1214 *
1215 *	Release one wiring of this page, potentially
1216 *	enabling it to be paged again.
1217 *
1218 *	Many pages placed on the inactive queue should actually go
1219 *	into the cache, but it is difficult to figure out which.  What
1220 *	we do instead, if the inactive target is well met, is to put
1221 *	clean pages at the head of the inactive queue instead of the tail.
1222 *	This will cause them to be moved to the cache more quickly and
1223 *	if not actively re-referenced, freed more quickly.  If we just
1224 *	stick these pages at the end of the inactive queue, heavy filesystem
1225 *	meta-data accesses can cause an unnecessary paging load on memory bound
1226 *	processes.  This optimization causes one-time-use metadata to be
1227 *	reused more quickly.
1228 *
1229 *	BUT, if we are in a low-memory situation we have no choice but to
1230 *	put clean pages on the cache queue.
1231 *
1232 *	A number of routines use vm_page_unwire() to guarantee that the page
1233 *	will go into either the inactive or active queues, and will NEVER
1234 *	be placed in the cache - for example, just after dirtying a page.
1235 *	dirty pages in the cache are not allowed.
1236 *
1237 *	The page queues must be locked.
1238 *	This routine may not block.
1239 */
1240void
1241vm_page_unwire(vm_page_t m, int activate)
1242{
1243
1244	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1245	if (m->flags & PG_FICTITIOUS)
1246		return;
1247	if (m->wire_count > 0) {
1248		m->wire_count--;
1249		if (m->wire_count == 0) {
1250			atomic_subtract_int(&cnt.v_wire_count, 1);
1251			if (m->flags & PG_UNMANAGED) {
1252				;
1253			} else if (activate)
1254				vm_pageq_enqueue(PQ_ACTIVE, m);
1255			else {
1256				vm_page_flag_clear(m, PG_WINATCFLS);
1257				vm_pageq_enqueue(PQ_INACTIVE, m);
1258			}
1259		}
1260	} else {
1261		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1262	}
1263}
1264
1265
1266/*
1267 * Move the specified page to the inactive queue.  If the page has
1268 * any associated swap, the swap is deallocated.
1269 *
1270 * Normally athead is 0 resulting in LRU operation.  athead is set
1271 * to 1 if we want this page to be 'as if it were placed in the cache',
1272 * except without unmapping it from the process address space.
1273 *
1274 * This routine may not block.
1275 */
1276static inline void
1277_vm_page_deactivate(vm_page_t m, int athead)
1278{
1279
1280	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1281
1282	/*
1283	 * Ignore if already inactive.
1284	 */
1285	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1286		return;
1287	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1288		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1289			cnt.v_reactivated++;
1290		vm_page_flag_clear(m, PG_WINATCFLS);
1291		vm_pageq_remove(m);
1292		if (athead)
1293			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1294		else
1295			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1296		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1297		vm_page_queues[PQ_INACTIVE].lcnt++;
1298		cnt.v_inactive_count++;
1299	}
1300}
1301
1302void
1303vm_page_deactivate(vm_page_t m)
1304{
1305    _vm_page_deactivate(m, 0);
1306}
1307
1308/*
1309 * vm_page_try_to_cache:
1310 *
1311 * Returns 0 on failure, 1 on success
1312 */
1313int
1314vm_page_try_to_cache(vm_page_t m)
1315{
1316
1317	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1318	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1319	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1320	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1321		return (0);
1322	}
1323	pmap_remove_all(m);
1324	if (m->dirty)
1325		return (0);
1326	vm_page_cache(m);
1327	return (1);
1328}
1329
1330/*
1331 * vm_page_try_to_free()
1332 *
1333 *	Attempt to free the page.  If we cannot free it, we do nothing.
1334 *	1 is returned on success, 0 on failure.
1335 */
1336int
1337vm_page_try_to_free(vm_page_t m)
1338{
1339
1340	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1341	if (m->object != NULL)
1342		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1343	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1344	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1345		return (0);
1346	}
1347	pmap_remove_all(m);
1348	if (m->dirty)
1349		return (0);
1350	vm_page_free(m);
1351	return (1);
1352}
1353
1354/*
1355 * vm_page_cache
1356 *
1357 * Put the specified page onto the page cache queue (if appropriate).
1358 *
1359 * This routine may not block.
1360 */
1361void
1362vm_page_cache(vm_page_t m)
1363{
1364
1365	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1366	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1367	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1368	    m->hold_count || m->wire_count) {
1369		printf("vm_page_cache: attempting to cache busy page\n");
1370		return;
1371	}
1372	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1373		return;
1374
1375	/*
1376	 * Remove all pmaps and indicate that the page is not
1377	 * writeable or mapped.
1378	 */
1379	pmap_remove_all(m);
1380	if (m->dirty != 0) {
1381		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1382			(long)m->pindex);
1383	}
1384	vm_pageq_remove_nowakeup(m);
1385	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1386	mtx_lock(&vm_page_queue_free_mtx);
1387	vm_page_free_wakeup();
1388	mtx_unlock(&vm_page_queue_free_mtx);
1389}
1390
1391/*
1392 * vm_page_dontneed
1393 *
1394 *	Cache, deactivate, or do nothing as appropriate.  This routine
1395 *	is typically used by madvise() MADV_DONTNEED.
1396 *
1397 *	Generally speaking we want to move the page into the cache so
1398 *	it gets reused quickly.  However, this can result in a silly syndrome
1399 *	due to the page recycling too quickly.  Small objects will not be
1400 *	fully cached.  On the otherhand, if we move the page to the inactive
1401 *	queue we wind up with a problem whereby very large objects
1402 *	unnecessarily blow away our inactive and cache queues.
1403 *
1404 *	The solution is to move the pages based on a fixed weighting.  We
1405 *	either leave them alone, deactivate them, or move them to the cache,
1406 *	where moving them to the cache has the highest weighting.
1407 *	By forcing some pages into other queues we eventually force the
1408 *	system to balance the queues, potentially recovering other unrelated
1409 *	space from active.  The idea is to not force this to happen too
1410 *	often.
1411 */
1412void
1413vm_page_dontneed(vm_page_t m)
1414{
1415	static int dnweight;
1416	int dnw;
1417	int head;
1418
1419	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1420	dnw = ++dnweight;
1421
1422	/*
1423	 * occassionally leave the page alone
1424	 */
1425	if ((dnw & 0x01F0) == 0 ||
1426	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE) ||
1427	    VM_PAGE_INQUEUE1(m, PQ_CACHE)
1428	) {
1429		if (m->act_count >= ACT_INIT)
1430			--m->act_count;
1431		return;
1432	}
1433
1434	if (m->dirty == 0 && pmap_is_modified(m))
1435		vm_page_dirty(m);
1436
1437	if (m->dirty || (dnw & 0x0070) == 0) {
1438		/*
1439		 * Deactivate the page 3 times out of 32.
1440		 */
1441		head = 0;
1442	} else {
1443		/*
1444		 * Cache the page 28 times out of every 32.  Note that
1445		 * the page is deactivated instead of cached, but placed
1446		 * at the head of the queue instead of the tail.
1447		 */
1448		head = 1;
1449	}
1450	_vm_page_deactivate(m, head);
1451}
1452
1453/*
1454 * Grab a page, waiting until we are waken up due to the page
1455 * changing state.  We keep on waiting, if the page continues
1456 * to be in the object.  If the page doesn't exist, first allocate it
1457 * and then conditionally zero it.
1458 *
1459 * This routine may block.
1460 */
1461vm_page_t
1462vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1463{
1464	vm_page_t m;
1465
1466	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1467retrylookup:
1468	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1469		if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
1470			if ((allocflags & VM_ALLOC_RETRY) == 0)
1471				return (NULL);
1472			goto retrylookup;
1473		} else {
1474			if ((allocflags & VM_ALLOC_WIRED) != 0) {
1475				vm_page_lock_queues();
1476				vm_page_wire(m);
1477				vm_page_unlock_queues();
1478			}
1479			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1480				vm_page_busy(m);
1481			return (m);
1482		}
1483	}
1484	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1485	if (m == NULL) {
1486		VM_OBJECT_UNLOCK(object);
1487		VM_WAIT;
1488		VM_OBJECT_LOCK(object);
1489		if ((allocflags & VM_ALLOC_RETRY) == 0)
1490			return (NULL);
1491		goto retrylookup;
1492	}
1493	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1494		pmap_zero_page(m);
1495	return (m);
1496}
1497
1498/*
1499 * Mapping function for valid bits or for dirty bits in
1500 * a page.  May not block.
1501 *
1502 * Inputs are required to range within a page.
1503 */
1504inline int
1505vm_page_bits(int base, int size)
1506{
1507	int first_bit;
1508	int last_bit;
1509
1510	KASSERT(
1511	    base + size <= PAGE_SIZE,
1512	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1513	);
1514
1515	if (size == 0)		/* handle degenerate case */
1516		return (0);
1517
1518	first_bit = base >> DEV_BSHIFT;
1519	last_bit = (base + size - 1) >> DEV_BSHIFT;
1520
1521	return ((2 << last_bit) - (1 << first_bit));
1522}
1523
1524/*
1525 *	vm_page_set_validclean:
1526 *
1527 *	Sets portions of a page valid and clean.  The arguments are expected
1528 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1529 *	of any partial chunks touched by the range.  The invalid portion of
1530 *	such chunks will be zero'd.
1531 *
1532 *	This routine may not block.
1533 *
1534 *	(base + size) must be less then or equal to PAGE_SIZE.
1535 */
1536void
1537vm_page_set_validclean(vm_page_t m, int base, int size)
1538{
1539	int pagebits;
1540	int frag;
1541	int endoff;
1542
1543	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1544	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1545	if (size == 0)	/* handle degenerate case */
1546		return;
1547
1548	/*
1549	 * If the base is not DEV_BSIZE aligned and the valid
1550	 * bit is clear, we have to zero out a portion of the
1551	 * first block.
1552	 */
1553	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1554	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1555		pmap_zero_page_area(m, frag, base - frag);
1556
1557	/*
1558	 * If the ending offset is not DEV_BSIZE aligned and the
1559	 * valid bit is clear, we have to zero out a portion of
1560	 * the last block.
1561	 */
1562	endoff = base + size;
1563	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1564	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1565		pmap_zero_page_area(m, endoff,
1566		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1567
1568	/*
1569	 * Set valid, clear dirty bits.  If validating the entire
1570	 * page we can safely clear the pmap modify bit.  We also
1571	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
1572	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1573	 * be set again.
1574	 *
1575	 * We set valid bits inclusive of any overlap, but we can only
1576	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1577	 * the range.
1578	 */
1579	pagebits = vm_page_bits(base, size);
1580	m->valid |= pagebits;
1581#if 0	/* NOT YET */
1582	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1583		frag = DEV_BSIZE - frag;
1584		base += frag;
1585		size -= frag;
1586		if (size < 0)
1587			size = 0;
1588	}
1589	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1590#endif
1591	m->dirty &= ~pagebits;
1592	if (base == 0 && size == PAGE_SIZE) {
1593		pmap_clear_modify(m);
1594		m->oflags &= ~VPO_NOSYNC;
1595	}
1596}
1597
1598void
1599vm_page_clear_dirty(vm_page_t m, int base, int size)
1600{
1601
1602	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1603	m->dirty &= ~vm_page_bits(base, size);
1604}
1605
1606/*
1607 *	vm_page_set_invalid:
1608 *
1609 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1610 *	valid and dirty bits for the effected areas are cleared.
1611 *
1612 *	May not block.
1613 */
1614void
1615vm_page_set_invalid(vm_page_t m, int base, int size)
1616{
1617	int bits;
1618
1619	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1620	bits = vm_page_bits(base, size);
1621	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1622	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1623		pmap_remove_all(m);
1624	m->valid &= ~bits;
1625	m->dirty &= ~bits;
1626	m->object->generation++;
1627}
1628
1629/*
1630 * vm_page_zero_invalid()
1631 *
1632 *	The kernel assumes that the invalid portions of a page contain
1633 *	garbage, but such pages can be mapped into memory by user code.
1634 *	When this occurs, we must zero out the non-valid portions of the
1635 *	page so user code sees what it expects.
1636 *
1637 *	Pages are most often semi-valid when the end of a file is mapped
1638 *	into memory and the file's size is not page aligned.
1639 */
1640void
1641vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1642{
1643	int b;
1644	int i;
1645
1646	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1647	/*
1648	 * Scan the valid bits looking for invalid sections that
1649	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1650	 * valid bit may be set ) have already been zerod by
1651	 * vm_page_set_validclean().
1652	 */
1653	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1654		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1655		    (m->valid & (1 << i))
1656		) {
1657			if (i > b) {
1658				pmap_zero_page_area(m,
1659				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1660			}
1661			b = i + 1;
1662		}
1663	}
1664
1665	/*
1666	 * setvalid is TRUE when we can safely set the zero'd areas
1667	 * as being valid.  We can do this if there are no cache consistancy
1668	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1669	 */
1670	if (setvalid)
1671		m->valid = VM_PAGE_BITS_ALL;
1672}
1673
1674/*
1675 *	vm_page_is_valid:
1676 *
1677 *	Is (partial) page valid?  Note that the case where size == 0
1678 *	will return FALSE in the degenerate case where the page is
1679 *	entirely invalid, and TRUE otherwise.
1680 *
1681 *	May not block.
1682 */
1683int
1684vm_page_is_valid(vm_page_t m, int base, int size)
1685{
1686	int bits = vm_page_bits(base, size);
1687
1688	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1689	if (m->valid && ((m->valid & bits) == bits))
1690		return 1;
1691	else
1692		return 0;
1693}
1694
1695/*
1696 * update dirty bits from pmap/mmu.  May not block.
1697 */
1698void
1699vm_page_test_dirty(vm_page_t m)
1700{
1701	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1702		vm_page_dirty(m);
1703	}
1704}
1705
1706int so_zerocp_fullpage = 0;
1707
1708void
1709vm_page_cowfault(vm_page_t m)
1710{
1711	vm_page_t mnew;
1712	vm_object_t object;
1713	vm_pindex_t pindex;
1714
1715	object = m->object;
1716	pindex = m->pindex;
1717
1718 retry_alloc:
1719	pmap_remove_all(m);
1720	vm_page_remove(m);
1721	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
1722	if (mnew == NULL) {
1723		vm_page_insert(m, object, pindex);
1724		vm_page_unlock_queues();
1725		VM_OBJECT_UNLOCK(object);
1726		VM_WAIT;
1727		VM_OBJECT_LOCK(object);
1728		vm_page_lock_queues();
1729		goto retry_alloc;
1730	}
1731
1732	if (m->cow == 0) {
1733		/*
1734		 * check to see if we raced with an xmit complete when
1735		 * waiting to allocate a page.  If so, put things back
1736		 * the way they were
1737		 */
1738		vm_page_free(mnew);
1739		vm_page_insert(m, object, pindex);
1740	} else { /* clear COW & copy page */
1741		if (!so_zerocp_fullpage)
1742			pmap_copy_page(m, mnew);
1743		mnew->valid = VM_PAGE_BITS_ALL;
1744		vm_page_dirty(mnew);
1745		mnew->wire_count = m->wire_count - m->cow;
1746		m->wire_count = m->cow;
1747	}
1748}
1749
1750void
1751vm_page_cowclear(vm_page_t m)
1752{
1753
1754	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1755	if (m->cow) {
1756		m->cow--;
1757		/*
1758		 * let vm_fault add back write permission  lazily
1759		 */
1760	}
1761	/*
1762	 *  sf_buf_free() will free the page, so we needn't do it here
1763	 */
1764}
1765
1766void
1767vm_page_cowsetup(vm_page_t m)
1768{
1769
1770	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1771	m->cow++;
1772	pmap_remove_write(m);
1773}
1774
1775#include "opt_ddb.h"
1776#ifdef DDB
1777#include <sys/kernel.h>
1778
1779#include <ddb/ddb.h>
1780
1781DB_SHOW_COMMAND(page, vm_page_print_page_info)
1782{
1783	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1784	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1785	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1786	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1787	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1788	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1789	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1790	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1791	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1792	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1793}
1794
1795DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1796{
1797	int i;
1798	db_printf("PQ_FREE:");
1799	for (i = 0; i < PQ_NUMCOLORS; i++) {
1800		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1801	}
1802	db_printf("\n");
1803
1804	db_printf("PQ_CACHE:");
1805	for (i = 0; i < PQ_NUMCOLORS; i++) {
1806		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1807	}
1808	db_printf("\n");
1809
1810	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1811		vm_page_queues[PQ_ACTIVE].lcnt,
1812		vm_page_queues[PQ_INACTIVE].lcnt);
1813}
1814#endif /* DDB */
1815