vm_page.c revision 169805
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33 */
34
35/*-
36 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37 * All rights reserved.
38 *
39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 *
41 * Permission to use, copy, modify and distribute this software and
42 * its documentation is hereby granted, provided that both the copyright
43 * notice and this permission notice appear in all copies of the
44 * software, derivative works or modified versions, and any portions
45 * thereof, and that both notices appear in supporting documentation.
46 *
47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 *
51 * Carnegie Mellon requests users of this software to return to
52 *
53 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54 *  School of Computer Science
55 *  Carnegie Mellon University
56 *  Pittsburgh PA 15213-3890
57 *
58 * any improvements or extensions that they make and grant Carnegie the
59 * rights to redistribute these changes.
60 */
61
62/*
63 *			GENERAL RULES ON VM_PAGE MANIPULATION
64 *
65 *	- a pageq mutex is required when adding or removing a page from a
66 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67 *	  busy state of a page.
68 *
69 *	- a hash chain mutex is required when associating or disassociating
70 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71 *	  regardless of other mutexes or the busy state of a page.
72 *
73 *	- either a hash chain mutex OR a busied page is required in order
74 *	  to modify the page flags.  A hash chain mutex must be obtained in
75 *	  order to busy a page.  A page's flags cannot be modified by a
76 *	  hash chain mutex if the page is marked busy.
77 *
78 *	- The object memq mutex is held when inserting or removing
79 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80 *	  is different from the object's main mutex.
81 *
82 *	Generally speaking, you have to be aware of side effects when running
83 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85 *	vm_page_cache(), vm_page_activate(), and a number of other routines
86 *	will release the hash chain mutex for you.  Intermediate manipulation
87 *	routines such as vm_page_flag_set() expect the hash chain to be held
88 *	on entry and the hash chain will remain held on return.
89 *
90 *	pageq scanning can only occur with the pageq in question locked.
91 *	We have a known bottleneck with the active queue, but the cache
92 *	and free queues are actually arrays already.
93 */
94
95/*
96 *	Resident memory management module.
97 */
98
99#include <sys/cdefs.h>
100__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 169805 2007-05-20 22:33:42Z jeff $");
101
102#include <sys/param.h>
103#include <sys/systm.h>
104#include <sys/lock.h>
105#include <sys/kernel.h>
106#include <sys/malloc.h>
107#include <sys/mutex.h>
108#include <sys/proc.h>
109#include <sys/sysctl.h>
110#include <sys/vmmeter.h>
111#include <sys/vnode.h>
112
113#include <vm/vm.h>
114#include <vm/vm_param.h>
115#include <vm/vm_kern.h>
116#include <vm/vm_object.h>
117#include <vm/vm_page.h>
118#include <vm/vm_pageout.h>
119#include <vm/vm_pager.h>
120#include <vm/vm_extern.h>
121#include <vm/uma.h>
122#include <vm/uma_int.h>
123
124#include <machine/md_var.h>
125
126/*
127 *	Associated with page of user-allocatable memory is a
128 *	page structure.
129 */
130
131struct mtx vm_page_queue_mtx;
132struct mtx vm_page_queue_free_mtx;
133
134vm_page_t vm_page_array = 0;
135int vm_page_array_size = 0;
136long first_page = 0;
137int vm_page_zero_count = 0;
138
139static int boot_pages = UMA_BOOT_PAGES;
140TUNABLE_INT("vm.boot_pages", &boot_pages);
141SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
142	"number of pages allocated for bootstrapping the VM system");
143
144/*
145 *	vm_set_page_size:
146 *
147 *	Sets the page size, perhaps based upon the memory
148 *	size.  Must be called before any use of page-size
149 *	dependent functions.
150 */
151void
152vm_set_page_size(void)
153{
154	if (VMCNT_GET(page_size) == 0)
155		VMCNT_SET(page_size, PAGE_SIZE);
156	if (((VMCNT_GET(page_size) - 1) & VMCNT_GET(page_size)) != 0)
157		panic("vm_set_page_size: page size not a power of two");
158}
159
160/*
161 *	vm_page_blacklist_lookup:
162 *
163 *	See if a physical address in this page has been listed
164 *	in the blacklist tunable.  Entries in the tunable are
165 *	separated by spaces or commas.  If an invalid integer is
166 *	encountered then the rest of the string is skipped.
167 */
168static int
169vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
170{
171	vm_paddr_t bad;
172	char *cp, *pos;
173
174	for (pos = list; *pos != '\0'; pos = cp) {
175		bad = strtoq(pos, &cp, 0);
176		if (*cp != '\0') {
177			if (*cp == ' ' || *cp == ',') {
178				cp++;
179				if (cp == pos)
180					continue;
181			} else
182				break;
183		}
184		if (pa == trunc_page(bad))
185			return (1);
186	}
187	return (0);
188}
189
190/*
191 *	vm_page_startup:
192 *
193 *	Initializes the resident memory module.
194 *
195 *	Allocates memory for the page cells, and
196 *	for the object/offset-to-page hash table headers.
197 *	Each page cell is initialized and placed on the free list.
198 */
199vm_offset_t
200vm_page_startup(vm_offset_t vaddr)
201{
202	vm_offset_t mapped;
203	vm_size_t npages;
204	vm_paddr_t page_range;
205	vm_paddr_t new_end;
206	int i;
207	vm_paddr_t pa;
208	int nblocks;
209	vm_paddr_t last_pa;
210	char *list;
211
212	/* the biggest memory array is the second group of pages */
213	vm_paddr_t end;
214	vm_paddr_t biggestsize;
215	vm_paddr_t low_water, high_water;
216	int biggestone;
217
218	vm_paddr_t total;
219
220	total = 0;
221	biggestsize = 0;
222	biggestone = 0;
223	nblocks = 0;
224	vaddr = round_page(vaddr);
225
226	for (i = 0; phys_avail[i + 1]; i += 2) {
227		phys_avail[i] = round_page(phys_avail[i]);
228		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
229	}
230
231	low_water = phys_avail[0];
232	high_water = phys_avail[1];
233
234	for (i = 0; phys_avail[i + 1]; i += 2) {
235		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
236
237		if (size > biggestsize) {
238			biggestone = i;
239			biggestsize = size;
240		}
241		if (phys_avail[i] < low_water)
242			low_water = phys_avail[i];
243		if (phys_avail[i + 1] > high_water)
244			high_water = phys_avail[i + 1];
245		++nblocks;
246		total += size;
247	}
248
249	end = phys_avail[biggestone+1];
250
251	/*
252	 * Initialize the locks.
253	 */
254	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
255	    MTX_RECURSE);
256	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
257	    MTX_DEF);
258
259	/*
260	 * Initialize the queue headers for the free queue, the active queue
261	 * and the inactive queue.
262	 */
263	vm_pageq_init();
264
265	/*
266	 * Allocate memory for use when boot strapping the kernel memory
267	 * allocator.
268	 */
269	new_end = end - (boot_pages * UMA_SLAB_SIZE);
270	new_end = trunc_page(new_end);
271	mapped = pmap_map(&vaddr, new_end, end,
272	    VM_PROT_READ | VM_PROT_WRITE);
273	bzero((void *)mapped, end - new_end);
274	uma_startup((void *)mapped, boot_pages);
275
276#if defined(__amd64__) || defined(__i386__)
277	/*
278	 * Allocate a bitmap to indicate that a random physical page
279	 * needs to be included in a minidump.
280	 *
281	 * The amd64 port needs this to indicate which direct map pages
282	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
283	 *
284	 * However, i386 still needs this workspace internally within the
285	 * minidump code.  In theory, they are not needed on i386, but are
286	 * included should the sf_buf code decide to use them.
287	 */
288	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
289	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
290	new_end -= vm_page_dump_size;
291	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
292	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
293	bzero((void *)vm_page_dump, vm_page_dump_size);
294#endif
295	/*
296	 * Compute the number of pages of memory that will be available for
297	 * use (taking into account the overhead of a page structure per
298	 * page).
299	 */
300	first_page = low_water / PAGE_SIZE;
301#ifdef VM_PHYSSEG_SPARSE
302	page_range = 0;
303	for (i = 0; phys_avail[i + 1] != 0; i += 2)
304		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
305#elif defined(VM_PHYSSEG_DENSE)
306	page_range = high_water / PAGE_SIZE - first_page;
307#else
308#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
309#endif
310	npages = (total - (page_range * sizeof(struct vm_page)) -
311	    (end - new_end)) / PAGE_SIZE;
312	end = new_end;
313
314	/*
315	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
316	 */
317	vaddr += PAGE_SIZE;
318
319	/*
320	 * Initialize the mem entry structures now, and put them in the free
321	 * queue.
322	 */
323	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
324	mapped = pmap_map(&vaddr, new_end, end,
325	    VM_PROT_READ | VM_PROT_WRITE);
326	vm_page_array = (vm_page_t) mapped;
327#ifdef __amd64__
328	/*
329	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
330	 * so the pages must be tracked for a crashdump to include this data.
331	 * This includes the vm_page_array and the early UMA bootstrap pages.
332	 */
333	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
334		dump_add_page(pa);
335#endif
336	phys_avail[biggestone + 1] = new_end;
337
338	/*
339	 * Clear all of the page structures
340	 */
341	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
342	vm_page_array_size = page_range;
343
344	/*
345	 * This assertion tests the hypothesis that npages and total are
346	 * redundant.  XXX
347	 */
348	page_range = 0;
349	for (i = 0; phys_avail[i + 1] != 0; i += 2)
350		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
351	KASSERT(page_range == npages,
352	    ("vm_page_startup: inconsistent page counts"));
353
354	/*
355	 * Construct the free queue(s) in descending order (by physical
356	 * address) so that the first 16MB of physical memory is allocated
357	 * last rather than first.  On large-memory machines, this avoids
358	 * the exhaustion of low physical memory before isa_dma_init has run.
359	 */
360	VMCNT_SET(page_count, 0);
361	VMCNT_SET(free_count, 0);
362	list = getenv("vm.blacklist");
363	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
364		pa = phys_avail[i];
365		last_pa = phys_avail[i + 1];
366		while (pa < last_pa) {
367			if (list != NULL &&
368			    vm_page_blacklist_lookup(list, pa))
369				printf("Skipping page with pa 0x%jx\n",
370				    (uintmax_t)pa);
371			else
372				vm_pageq_add_new_page(pa);
373			pa += PAGE_SIZE;
374		}
375	}
376	freeenv(list);
377	return (vaddr);
378}
379
380void
381vm_page_flag_set(vm_page_t m, unsigned short bits)
382{
383
384	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
385	m->flags |= bits;
386}
387
388void
389vm_page_flag_clear(vm_page_t m, unsigned short bits)
390{
391
392	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
393	m->flags &= ~bits;
394}
395
396void
397vm_page_busy(vm_page_t m)
398{
399
400	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
401	KASSERT((m->oflags & VPO_BUSY) == 0,
402	    ("vm_page_busy: page already busy!!!"));
403	m->oflags |= VPO_BUSY;
404}
405
406/*
407 *      vm_page_flash:
408 *
409 *      wakeup anyone waiting for the page.
410 */
411void
412vm_page_flash(vm_page_t m)
413{
414
415	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
416	if (m->oflags & VPO_WANTED) {
417		m->oflags &= ~VPO_WANTED;
418		wakeup(m);
419	}
420}
421
422/*
423 *      vm_page_wakeup:
424 *
425 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
426 *      page.
427 *
428 */
429void
430vm_page_wakeup(vm_page_t m)
431{
432
433	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
434	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
435	m->oflags &= ~VPO_BUSY;
436	vm_page_flash(m);
437}
438
439void
440vm_page_io_start(vm_page_t m)
441{
442
443	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
444	m->busy++;
445}
446
447void
448vm_page_io_finish(vm_page_t m)
449{
450
451	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
452	m->busy--;
453	if (m->busy == 0)
454		vm_page_flash(m);
455}
456
457/*
458 * Keep page from being freed by the page daemon
459 * much of the same effect as wiring, except much lower
460 * overhead and should be used only for *very* temporary
461 * holding ("wiring").
462 */
463void
464vm_page_hold(vm_page_t mem)
465{
466
467	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
468        mem->hold_count++;
469}
470
471void
472vm_page_unhold(vm_page_t mem)
473{
474
475	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
476	--mem->hold_count;
477	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
478	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
479		vm_page_free_toq(mem);
480}
481
482/*
483 *	vm_page_free:
484 *
485 *	Free a page.
486 */
487void
488vm_page_free(vm_page_t m)
489{
490
491	m->flags &= ~PG_ZERO;
492	vm_page_free_toq(m);
493}
494
495/*
496 *	vm_page_free_zero:
497 *
498 *	Free a page to the zerod-pages queue
499 */
500void
501vm_page_free_zero(vm_page_t m)
502{
503
504	m->flags |= PG_ZERO;
505	vm_page_free_toq(m);
506}
507
508/*
509 *	vm_page_sleep:
510 *
511 *	Sleep and release the page queues lock.
512 *
513 *	The object containing the given page must be locked.
514 */
515void
516vm_page_sleep(vm_page_t m, const char *msg)
517{
518
519	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
520	if (!mtx_owned(&vm_page_queue_mtx))
521		vm_page_lock_queues();
522	vm_page_flag_set(m, PG_REFERENCED);
523	vm_page_unlock_queues();
524
525	/*
526	 * It's possible that while we sleep, the page will get
527	 * unbusied and freed.  If we are holding the object
528	 * lock, we will assume we hold a reference to the object
529	 * such that even if m->object changes, we can re-lock
530	 * it.
531	 */
532	m->oflags |= VPO_WANTED;
533	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
534}
535
536/*
537 *	vm_page_dirty:
538 *
539 *	make page all dirty
540 */
541void
542vm_page_dirty(vm_page_t m)
543{
544	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_CACHE,
545	    ("vm_page_dirty: page in cache!"));
546	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_FREE,
547	    ("vm_page_dirty: page is free!"));
548	m->dirty = VM_PAGE_BITS_ALL;
549}
550
551/*
552 *	vm_page_splay:
553 *
554 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
555 *	the vm_page containing the given pindex.  If, however, that
556 *	pindex is not found in the vm_object, returns a vm_page that is
557 *	adjacent to the pindex, coming before or after it.
558 */
559vm_page_t
560vm_page_splay(vm_pindex_t pindex, vm_page_t root)
561{
562	struct vm_page dummy;
563	vm_page_t lefttreemax, righttreemin, y;
564
565	if (root == NULL)
566		return (root);
567	lefttreemax = righttreemin = &dummy;
568	for (;; root = y) {
569		if (pindex < root->pindex) {
570			if ((y = root->left) == NULL)
571				break;
572			if (pindex < y->pindex) {
573				/* Rotate right. */
574				root->left = y->right;
575				y->right = root;
576				root = y;
577				if ((y = root->left) == NULL)
578					break;
579			}
580			/* Link into the new root's right tree. */
581			righttreemin->left = root;
582			righttreemin = root;
583		} else if (pindex > root->pindex) {
584			if ((y = root->right) == NULL)
585				break;
586			if (pindex > y->pindex) {
587				/* Rotate left. */
588				root->right = y->left;
589				y->left = root;
590				root = y;
591				if ((y = root->right) == NULL)
592					break;
593			}
594			/* Link into the new root's left tree. */
595			lefttreemax->right = root;
596			lefttreemax = root;
597		} else
598			break;
599	}
600	/* Assemble the new root. */
601	lefttreemax->right = root->left;
602	righttreemin->left = root->right;
603	root->left = dummy.right;
604	root->right = dummy.left;
605	return (root);
606}
607
608/*
609 *	vm_page_insert:		[ internal use only ]
610 *
611 *	Inserts the given mem entry into the object and object list.
612 *
613 *	The pagetables are not updated but will presumably fault the page
614 *	in if necessary, or if a kernel page the caller will at some point
615 *	enter the page into the kernel's pmap.  We are not allowed to block
616 *	here so we *can't* do this anyway.
617 *
618 *	The object and page must be locked.
619 *	This routine may not block.
620 */
621void
622vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
623{
624	vm_page_t root;
625
626	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
627	if (m->object != NULL)
628		panic("vm_page_insert: page already inserted");
629
630	/*
631	 * Record the object/offset pair in this page
632	 */
633	m->object = object;
634	m->pindex = pindex;
635
636	/*
637	 * Now link into the object's ordered list of backed pages.
638	 */
639	root = object->root;
640	if (root == NULL) {
641		m->left = NULL;
642		m->right = NULL;
643		TAILQ_INSERT_TAIL(&object->memq, m, listq);
644	} else {
645		root = vm_page_splay(pindex, root);
646		if (pindex < root->pindex) {
647			m->left = root->left;
648			m->right = root;
649			root->left = NULL;
650			TAILQ_INSERT_BEFORE(root, m, listq);
651		} else if (pindex == root->pindex)
652			panic("vm_page_insert: offset already allocated");
653		else {
654			m->right = root->right;
655			m->left = root;
656			root->right = NULL;
657			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
658		}
659	}
660	object->root = m;
661	object->generation++;
662
663	/*
664	 * show that the object has one more resident page.
665	 */
666	object->resident_page_count++;
667	/*
668	 * Hold the vnode until the last page is released.
669	 */
670	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
671		vhold((struct vnode *)object->handle);
672
673	/*
674	 * Since we are inserting a new and possibly dirty page,
675	 * update the object's OBJ_MIGHTBEDIRTY flag.
676	 */
677	if (m->flags & PG_WRITEABLE)
678		vm_object_set_writeable_dirty(object);
679}
680
681/*
682 *	vm_page_remove:
683 *				NOTE: used by device pager as well -wfj
684 *
685 *	Removes the given mem entry from the object/offset-page
686 *	table and the object page list, but do not invalidate/terminate
687 *	the backing store.
688 *
689 *	The object and page must be locked.
690 *	The underlying pmap entry (if any) is NOT removed here.
691 *	This routine may not block.
692 */
693void
694vm_page_remove(vm_page_t m)
695{
696	vm_object_t object;
697	vm_page_t root;
698
699	if ((object = m->object) == NULL)
700		return;
701	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
702	if (m->oflags & VPO_BUSY) {
703		m->oflags &= ~VPO_BUSY;
704		vm_page_flash(m);
705	}
706	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
707
708	/*
709	 * Now remove from the object's list of backed pages.
710	 */
711	if (m != object->root)
712		vm_page_splay(m->pindex, object->root);
713	if (m->left == NULL)
714		root = m->right;
715	else {
716		root = vm_page_splay(m->pindex, m->left);
717		root->right = m->right;
718	}
719	object->root = root;
720	TAILQ_REMOVE(&object->memq, m, listq);
721
722	/*
723	 * And show that the object has one fewer resident page.
724	 */
725	object->resident_page_count--;
726	object->generation++;
727	/*
728	 * The vnode may now be recycled.
729	 */
730	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
731		vdrop((struct vnode *)object->handle);
732
733	m->object = NULL;
734}
735
736/*
737 *	vm_page_lookup:
738 *
739 *	Returns the page associated with the object/offset
740 *	pair specified; if none is found, NULL is returned.
741 *
742 *	The object must be locked.
743 *	This routine may not block.
744 *	This is a critical path routine
745 */
746vm_page_t
747vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
748{
749	vm_page_t m;
750
751	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
752	if ((m = object->root) != NULL && m->pindex != pindex) {
753		m = vm_page_splay(pindex, m);
754		if ((object->root = m)->pindex != pindex)
755			m = NULL;
756	}
757	return (m);
758}
759
760/*
761 *	vm_page_rename:
762 *
763 *	Move the given memory entry from its
764 *	current object to the specified target object/offset.
765 *
766 *	The object must be locked.
767 *	This routine may not block.
768 *
769 *	Note: swap associated with the page must be invalidated by the move.  We
770 *	      have to do this for several reasons:  (1) we aren't freeing the
771 *	      page, (2) we are dirtying the page, (3) the VM system is probably
772 *	      moving the page from object A to B, and will then later move
773 *	      the backing store from A to B and we can't have a conflict.
774 *
775 *	Note: we *always* dirty the page.  It is necessary both for the
776 *	      fact that we moved it, and because we may be invalidating
777 *	      swap.  If the page is on the cache, we have to deactivate it
778 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
779 *	      on the cache.
780 */
781void
782vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
783{
784
785	vm_page_remove(m);
786	vm_page_insert(m, new_object, new_pindex);
787	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
788		vm_page_deactivate(m);
789	vm_page_dirty(m);
790}
791
792/*
793 *	vm_page_select_cache:
794 *
795 *	Move a page of the given color from the cache queue to the free
796 *	queue.  As pages might be found, but are not applicable, they are
797 *	deactivated.
798 *
799 *	This routine may not block.
800 */
801vm_page_t
802vm_page_select_cache(int color)
803{
804	vm_object_t object;
805	vm_page_t m;
806	boolean_t was_trylocked;
807
808	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
809	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
810		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
811		KASSERT(!pmap_page_is_mapped(m),
812		    ("Found mapped cache page %p", m));
813		KASSERT((m->flags & PG_UNMANAGED) == 0,
814		    ("Found unmanaged cache page %p", m));
815		KASSERT(m->wire_count == 0, ("Found wired cache page %p", m));
816		if (m->hold_count == 0 && (object = m->object,
817		    (was_trylocked = VM_OBJECT_TRYLOCK(object)) ||
818		    VM_OBJECT_LOCKED(object))) {
819			KASSERT((m->oflags & VPO_BUSY) == 0 && m->busy == 0,
820			    ("Found busy cache page %p", m));
821			vm_page_free(m);
822			if (was_trylocked)
823				VM_OBJECT_UNLOCK(object);
824			break;
825		}
826		vm_page_deactivate(m);
827	}
828	return (m);
829}
830
831/*
832 *	vm_page_alloc:
833 *
834 *	Allocate and return a memory cell associated
835 *	with this VM object/offset pair.
836 *
837 *	page_req classes:
838 *	VM_ALLOC_NORMAL		normal process request
839 *	VM_ALLOC_SYSTEM		system *really* needs a page
840 *	VM_ALLOC_INTERRUPT	interrupt time request
841 *	VM_ALLOC_ZERO		zero page
842 *
843 *	This routine may not block.
844 *
845 *	Additional special handling is required when called from an
846 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
847 *	the page cache in this case.
848 */
849vm_page_t
850vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
851{
852	vm_page_t m = NULL;
853	int color, flags, page_req;
854
855	page_req = req & VM_ALLOC_CLASS_MASK;
856	KASSERT(curthread->td_intr_nesting_level == 0 ||
857	    page_req == VM_ALLOC_INTERRUPT,
858	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
859
860	if ((req & VM_ALLOC_NOOBJ) == 0) {
861		KASSERT(object != NULL,
862		    ("vm_page_alloc: NULL object."));
863		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
864		color = (pindex + object->pg_color) & PQ_COLORMASK;
865	} else
866		color = pindex & PQ_COLORMASK;
867
868	/*
869	 * The pager is allowed to eat deeper into the free page list.
870	 */
871	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
872		page_req = VM_ALLOC_SYSTEM;
873	};
874
875loop:
876	mtx_lock(&vm_page_queue_free_mtx);
877	if (VMCNT_GET(free_count) > VMCNT_GET(free_reserved) ||
878	    (page_req == VM_ALLOC_SYSTEM &&
879	     VMCNT_GET(cache_count) == 0 &&
880	     VMCNT_GET(free_count) > VMCNT_GET(interrupt_free_min)) ||
881	    (page_req == VM_ALLOC_INTERRUPT && VMCNT_GET(free_count) > 0)) {
882		/*
883		 * Allocate from the free queue if the number of free pages
884		 * exceeds the minimum for the request class.
885		 */
886		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
887	} else if (page_req != VM_ALLOC_INTERRUPT) {
888		mtx_unlock(&vm_page_queue_free_mtx);
889		/*
890		 * Allocatable from cache (non-interrupt only).  On success,
891		 * we must free the page and try again, thus ensuring that
892		 * cnt.v_*_free_min counters are replenished.
893		 */
894		vm_page_lock_queues();
895		if ((m = vm_page_select_cache(color)) == NULL) {
896			KASSERT(VMCNT_GET(cache_count) == 0,
897			    ("vm_page_alloc: cache queue is missing %d pages",
898			    VMCNT_GET(cache_count)));
899			vm_page_unlock_queues();
900			atomic_add_int(&vm_pageout_deficit, 1);
901			pagedaemon_wakeup();
902
903			if (page_req != VM_ALLOC_SYSTEM)
904				return (NULL);
905
906			mtx_lock(&vm_page_queue_free_mtx);
907			if (VMCNT_GET(free_count) <=
908			    VMCNT_GET(interrupt_free_min)) {
909				mtx_unlock(&vm_page_queue_free_mtx);
910				return (NULL);
911			}
912			m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
913		} else {
914			vm_page_unlock_queues();
915			goto loop;
916		}
917	} else {
918		/*
919		 * Not allocatable from cache from interrupt, give up.
920		 */
921		mtx_unlock(&vm_page_queue_free_mtx);
922		atomic_add_int(&vm_pageout_deficit, 1);
923		pagedaemon_wakeup();
924		return (NULL);
925	}
926
927	/*
928	 *  At this point we had better have found a good page.
929	 */
930
931	KASSERT(
932	    m != NULL,
933	    ("vm_page_alloc(): missing page on free queue")
934	);
935
936	/*
937	 * Remove from free queue
938	 */
939	vm_pageq_remove_nowakeup(m);
940
941	/*
942	 * Initialize structure.  Only the PG_ZERO flag is inherited.
943	 */
944	flags = 0;
945	if (m->flags & PG_ZERO) {
946		vm_page_zero_count--;
947		if (req & VM_ALLOC_ZERO)
948			flags = PG_ZERO;
949	}
950	if (object != NULL && object->type == OBJT_PHYS)
951		flags |= PG_UNMANAGED;
952	m->flags = flags;
953	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
954		m->oflags = 0;
955	else
956		m->oflags = VPO_BUSY;
957	if (req & VM_ALLOC_WIRED) {
958		VMCNT_ADD(wire_count, 1);
959		m->wire_count = 1;
960	} else
961		m->wire_count = 0;
962	m->hold_count = 0;
963	m->act_count = 0;
964	m->busy = 0;
965	m->valid = 0;
966	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
967	mtx_unlock(&vm_page_queue_free_mtx);
968
969	if ((req & VM_ALLOC_NOOBJ) == 0)
970		vm_page_insert(m, object, pindex);
971	else
972		m->pindex = pindex;
973
974	/*
975	 * Don't wakeup too often - wakeup the pageout daemon when
976	 * we would be nearly out of memory.
977	 */
978	if (vm_paging_needed())
979		pagedaemon_wakeup();
980
981	return (m);
982}
983
984/*
985 *	vm_wait:	(also see VM_WAIT macro)
986 *
987 *	Block until free pages are available for allocation
988 *	- Called in various places before memory allocations.
989 */
990void
991vm_wait(void)
992{
993
994	mtx_lock(&vm_page_queue_free_mtx);
995	if (curproc == pageproc) {
996		vm_pageout_pages_needed = 1;
997		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
998		    PDROP | PSWP, "VMWait", 0);
999	} else {
1000		if (!vm_pages_needed) {
1001			vm_pages_needed = 1;
1002			wakeup(&vm_pages_needed);
1003		}
1004		msleep(VMCNT_PTR(free_count), &vm_page_queue_free_mtx, PDROP |
1005		    PVM, "vmwait", 0);
1006	}
1007}
1008
1009/*
1010 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1011 *
1012 *	Block until free pages are available for allocation
1013 *	- Called only in vm_fault so that processes page faulting
1014 *	  can be easily tracked.
1015 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1016 *	  processes will be able to grab memory first.  Do not change
1017 *	  this balance without careful testing first.
1018 */
1019void
1020vm_waitpfault(void)
1021{
1022
1023	mtx_lock(&vm_page_queue_free_mtx);
1024	if (!vm_pages_needed) {
1025		vm_pages_needed = 1;
1026		wakeup(&vm_pages_needed);
1027	}
1028	msleep(VMCNT_PTR(free_count), &vm_page_queue_free_mtx, PDROP | PUSER,
1029	    "pfault", 0);
1030}
1031
1032/*
1033 *	vm_page_activate:
1034 *
1035 *	Put the specified page on the active list (if appropriate).
1036 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1037 *	mess with it.
1038 *
1039 *	The page queues must be locked.
1040 *	This routine may not block.
1041 */
1042void
1043vm_page_activate(vm_page_t m)
1044{
1045
1046	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1047	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
1048		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1049			VMCNT_ADD(reactivated, 1);
1050		vm_pageq_remove(m);
1051		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1052			if (m->act_count < ACT_INIT)
1053				m->act_count = ACT_INIT;
1054			vm_pageq_enqueue(PQ_ACTIVE, m);
1055		}
1056	} else {
1057		if (m->act_count < ACT_INIT)
1058			m->act_count = ACT_INIT;
1059	}
1060}
1061
1062/*
1063 *	vm_page_free_wakeup:
1064 *
1065 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1066 *	routine is called when a page has been added to the cache or free
1067 *	queues.
1068 *
1069 *	The page queues must be locked.
1070 *	This routine may not block.
1071 */
1072static inline void
1073vm_page_free_wakeup(void)
1074{
1075
1076	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1077	/*
1078	 * if pageout daemon needs pages, then tell it that there are
1079	 * some free.
1080	 */
1081	if (vm_pageout_pages_needed &&
1082	    VMCNT_GET(cache_count) + VMCNT_GET(free_count) >=
1083	    VMCNT_GET(pageout_free_min)) {
1084		wakeup(&vm_pageout_pages_needed);
1085		vm_pageout_pages_needed = 0;
1086	}
1087	/*
1088	 * wakeup processes that are waiting on memory if we hit a
1089	 * high water mark. And wakeup scheduler process if we have
1090	 * lots of memory. this process will swapin processes.
1091	 */
1092	if (vm_pages_needed && !vm_page_count_min()) {
1093		vm_pages_needed = 0;
1094		wakeup(VMCNT_PTR(free_count));
1095	}
1096}
1097
1098/*
1099 *	vm_page_free_toq:
1100 *
1101 *	Returns the given page to the PQ_FREE list,
1102 *	disassociating it with any VM object.
1103 *
1104 *	Object and page must be locked prior to entry.
1105 *	This routine may not block.
1106 */
1107
1108void
1109vm_page_free_toq(vm_page_t m)
1110{
1111	struct vpgqueues *pq;
1112
1113	if (VM_PAGE_GETQUEUE(m) != PQ_NONE)
1114		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1115	KASSERT(!pmap_page_is_mapped(m),
1116	    ("vm_page_free_toq: freeing mapped page %p", m));
1117	VMCNT_ADD(tfree, 1);
1118
1119	if (m->busy || VM_PAGE_INQUEUE1(m, PQ_FREE)) {
1120		printf(
1121		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1122		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1123		    m->hold_count);
1124		if (VM_PAGE_INQUEUE1(m, PQ_FREE))
1125			panic("vm_page_free: freeing free page");
1126		else
1127			panic("vm_page_free: freeing busy page");
1128	}
1129
1130	/*
1131	 * unqueue, then remove page.  Note that we cannot destroy
1132	 * the page here because we do not want to call the pager's
1133	 * callback routine until after we've put the page on the
1134	 * appropriate free queue.
1135	 */
1136	vm_pageq_remove_nowakeup(m);
1137	vm_page_remove(m);
1138
1139	/*
1140	 * If fictitious remove object association and
1141	 * return, otherwise delay object association removal.
1142	 */
1143	if ((m->flags & PG_FICTITIOUS) != 0) {
1144		return;
1145	}
1146
1147	m->valid = 0;
1148	vm_page_undirty(m);
1149
1150	if (m->wire_count != 0) {
1151		if (m->wire_count > 1) {
1152			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1153				m->wire_count, (long)m->pindex);
1154		}
1155		panic("vm_page_free: freeing wired page");
1156	}
1157	if (m->hold_count != 0) {
1158		m->flags &= ~PG_ZERO;
1159		vm_pageq_enqueue(PQ_HOLD, m);
1160		return;
1161	}
1162	VM_PAGE_SETQUEUE1(m, PQ_FREE);
1163	mtx_lock(&vm_page_queue_free_mtx);
1164	pq = &vm_page_queues[VM_PAGE_GETQUEUE(m)];
1165	pq->lcnt++;
1166	++(*pq->cnt);
1167
1168	/*
1169	 * Put zero'd pages on the end ( where we look for zero'd pages
1170	 * first ) and non-zerod pages at the head.
1171	 */
1172	if (m->flags & PG_ZERO) {
1173		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1174		++vm_page_zero_count;
1175	} else {
1176		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1177		vm_page_zero_idle_wakeup();
1178	}
1179	vm_page_free_wakeup();
1180	mtx_unlock(&vm_page_queue_free_mtx);
1181}
1182
1183/*
1184 *	vm_page_wire:
1185 *
1186 *	Mark this page as wired down by yet
1187 *	another map, removing it from paging queues
1188 *	as necessary.
1189 *
1190 *	The page queues must be locked.
1191 *	This routine may not block.
1192 */
1193void
1194vm_page_wire(vm_page_t m)
1195{
1196
1197	/*
1198	 * Only bump the wire statistics if the page is not already wired,
1199	 * and only unqueue the page if it is on some queue (if it is unmanaged
1200	 * it is already off the queues).
1201	 */
1202	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1203	if (m->flags & PG_FICTITIOUS)
1204		return;
1205	if (m->wire_count == 0) {
1206		if ((m->flags & PG_UNMANAGED) == 0)
1207			vm_pageq_remove(m);
1208		VMCNT_ADD(wire_count, 1);
1209	}
1210	m->wire_count++;
1211	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1212}
1213
1214/*
1215 *	vm_page_unwire:
1216 *
1217 *	Release one wiring of this page, potentially
1218 *	enabling it to be paged again.
1219 *
1220 *	Many pages placed on the inactive queue should actually go
1221 *	into the cache, but it is difficult to figure out which.  What
1222 *	we do instead, if the inactive target is well met, is to put
1223 *	clean pages at the head of the inactive queue instead of the tail.
1224 *	This will cause them to be moved to the cache more quickly and
1225 *	if not actively re-referenced, freed more quickly.  If we just
1226 *	stick these pages at the end of the inactive queue, heavy filesystem
1227 *	meta-data accesses can cause an unnecessary paging load on memory bound
1228 *	processes.  This optimization causes one-time-use metadata to be
1229 *	reused more quickly.
1230 *
1231 *	BUT, if we are in a low-memory situation we have no choice but to
1232 *	put clean pages on the cache queue.
1233 *
1234 *	A number of routines use vm_page_unwire() to guarantee that the page
1235 *	will go into either the inactive or active queues, and will NEVER
1236 *	be placed in the cache - for example, just after dirtying a page.
1237 *	dirty pages in the cache are not allowed.
1238 *
1239 *	The page queues must be locked.
1240 *	This routine may not block.
1241 */
1242void
1243vm_page_unwire(vm_page_t m, int activate)
1244{
1245
1246	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1247	if (m->flags & PG_FICTITIOUS)
1248		return;
1249	if (m->wire_count > 0) {
1250		m->wire_count--;
1251		if (m->wire_count == 0) {
1252			VMCNT_SUB(wire_count, 1);
1253			if (m->flags & PG_UNMANAGED) {
1254				;
1255			} else if (activate)
1256				vm_pageq_enqueue(PQ_ACTIVE, m);
1257			else {
1258				vm_page_flag_clear(m, PG_WINATCFLS);
1259				vm_pageq_enqueue(PQ_INACTIVE, m);
1260			}
1261		}
1262	} else {
1263		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1264	}
1265}
1266
1267
1268/*
1269 * Move the specified page to the inactive queue.  If the page has
1270 * any associated swap, the swap is deallocated.
1271 *
1272 * Normally athead is 0 resulting in LRU operation.  athead is set
1273 * to 1 if we want this page to be 'as if it were placed in the cache',
1274 * except without unmapping it from the process address space.
1275 *
1276 * This routine may not block.
1277 */
1278static inline void
1279_vm_page_deactivate(vm_page_t m, int athead)
1280{
1281
1282	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1283
1284	/*
1285	 * Ignore if already inactive.
1286	 */
1287	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1288		return;
1289	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1290		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1291			VMCNT_ADD(reactivated, 1);
1292		vm_page_flag_clear(m, PG_WINATCFLS);
1293		vm_pageq_remove(m);
1294		if (athead)
1295			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1296		else
1297			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1298		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1299		vm_page_queues[PQ_INACTIVE].lcnt++;
1300		VMCNT_ADD(inactive_count, 1);
1301	}
1302}
1303
1304void
1305vm_page_deactivate(vm_page_t m)
1306{
1307    _vm_page_deactivate(m, 0);
1308}
1309
1310/*
1311 * vm_page_try_to_cache:
1312 *
1313 * Returns 0 on failure, 1 on success
1314 */
1315int
1316vm_page_try_to_cache(vm_page_t m)
1317{
1318
1319	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1320	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1321	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1322	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1323		return (0);
1324	}
1325	pmap_remove_all(m);
1326	if (m->dirty)
1327		return (0);
1328	vm_page_cache(m);
1329	return (1);
1330}
1331
1332/*
1333 * vm_page_try_to_free()
1334 *
1335 *	Attempt to free the page.  If we cannot free it, we do nothing.
1336 *	1 is returned on success, 0 on failure.
1337 */
1338int
1339vm_page_try_to_free(vm_page_t m)
1340{
1341
1342	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1343	if (m->object != NULL)
1344		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1345	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1346	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1347		return (0);
1348	}
1349	pmap_remove_all(m);
1350	if (m->dirty)
1351		return (0);
1352	vm_page_free(m);
1353	return (1);
1354}
1355
1356/*
1357 * vm_page_cache
1358 *
1359 * Put the specified page onto the page cache queue (if appropriate).
1360 *
1361 * This routine may not block.
1362 */
1363void
1364vm_page_cache(vm_page_t m)
1365{
1366
1367	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1368	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1369	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1370	    m->hold_count || m->wire_count) {
1371		printf("vm_page_cache: attempting to cache busy page\n");
1372		return;
1373	}
1374	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1375		return;
1376
1377	/*
1378	 * Remove all pmaps and indicate that the page is not
1379	 * writeable or mapped.
1380	 */
1381	pmap_remove_all(m);
1382	if (m->dirty != 0) {
1383		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1384			(long)m->pindex);
1385	}
1386	vm_pageq_remove_nowakeup(m);
1387	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1388	mtx_lock(&vm_page_queue_free_mtx);
1389	vm_page_free_wakeup();
1390	mtx_unlock(&vm_page_queue_free_mtx);
1391}
1392
1393/*
1394 * vm_page_dontneed
1395 *
1396 *	Cache, deactivate, or do nothing as appropriate.  This routine
1397 *	is typically used by madvise() MADV_DONTNEED.
1398 *
1399 *	Generally speaking we want to move the page into the cache so
1400 *	it gets reused quickly.  However, this can result in a silly syndrome
1401 *	due to the page recycling too quickly.  Small objects will not be
1402 *	fully cached.  On the otherhand, if we move the page to the inactive
1403 *	queue we wind up with a problem whereby very large objects
1404 *	unnecessarily blow away our inactive and cache queues.
1405 *
1406 *	The solution is to move the pages based on a fixed weighting.  We
1407 *	either leave them alone, deactivate them, or move them to the cache,
1408 *	where moving them to the cache has the highest weighting.
1409 *	By forcing some pages into other queues we eventually force the
1410 *	system to balance the queues, potentially recovering other unrelated
1411 *	space from active.  The idea is to not force this to happen too
1412 *	often.
1413 */
1414void
1415vm_page_dontneed(vm_page_t m)
1416{
1417	static int dnweight;
1418	int dnw;
1419	int head;
1420
1421	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1422	dnw = ++dnweight;
1423
1424	/*
1425	 * occassionally leave the page alone
1426	 */
1427	if ((dnw & 0x01F0) == 0 ||
1428	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE) ||
1429	    VM_PAGE_INQUEUE1(m, PQ_CACHE)
1430	) {
1431		if (m->act_count >= ACT_INIT)
1432			--m->act_count;
1433		return;
1434	}
1435
1436	if (m->dirty == 0 && pmap_is_modified(m))
1437		vm_page_dirty(m);
1438
1439	if (m->dirty || (dnw & 0x0070) == 0) {
1440		/*
1441		 * Deactivate the page 3 times out of 32.
1442		 */
1443		head = 0;
1444	} else {
1445		/*
1446		 * Cache the page 28 times out of every 32.  Note that
1447		 * the page is deactivated instead of cached, but placed
1448		 * at the head of the queue instead of the tail.
1449		 */
1450		head = 1;
1451	}
1452	_vm_page_deactivate(m, head);
1453}
1454
1455/*
1456 * Grab a page, waiting until we are waken up due to the page
1457 * changing state.  We keep on waiting, if the page continues
1458 * to be in the object.  If the page doesn't exist, first allocate it
1459 * and then conditionally zero it.
1460 *
1461 * This routine may block.
1462 */
1463vm_page_t
1464vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1465{
1466	vm_page_t m;
1467
1468	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1469retrylookup:
1470	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1471		if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
1472			if ((allocflags & VM_ALLOC_RETRY) == 0)
1473				return (NULL);
1474			goto retrylookup;
1475		} else {
1476			if ((allocflags & VM_ALLOC_WIRED) != 0) {
1477				vm_page_lock_queues();
1478				vm_page_wire(m);
1479				vm_page_unlock_queues();
1480			}
1481			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1482				vm_page_busy(m);
1483			return (m);
1484		}
1485	}
1486	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1487	if (m == NULL) {
1488		VM_OBJECT_UNLOCK(object);
1489		VM_WAIT;
1490		VM_OBJECT_LOCK(object);
1491		if ((allocflags & VM_ALLOC_RETRY) == 0)
1492			return (NULL);
1493		goto retrylookup;
1494	}
1495	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1496		pmap_zero_page(m);
1497	return (m);
1498}
1499
1500/*
1501 * Mapping function for valid bits or for dirty bits in
1502 * a page.  May not block.
1503 *
1504 * Inputs are required to range within a page.
1505 */
1506inline int
1507vm_page_bits(int base, int size)
1508{
1509	int first_bit;
1510	int last_bit;
1511
1512	KASSERT(
1513	    base + size <= PAGE_SIZE,
1514	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1515	);
1516
1517	if (size == 0)		/* handle degenerate case */
1518		return (0);
1519
1520	first_bit = base >> DEV_BSHIFT;
1521	last_bit = (base + size - 1) >> DEV_BSHIFT;
1522
1523	return ((2 << last_bit) - (1 << first_bit));
1524}
1525
1526/*
1527 *	vm_page_set_validclean:
1528 *
1529 *	Sets portions of a page valid and clean.  The arguments are expected
1530 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1531 *	of any partial chunks touched by the range.  The invalid portion of
1532 *	such chunks will be zero'd.
1533 *
1534 *	This routine may not block.
1535 *
1536 *	(base + size) must be less then or equal to PAGE_SIZE.
1537 */
1538void
1539vm_page_set_validclean(vm_page_t m, int base, int size)
1540{
1541	int pagebits;
1542	int frag;
1543	int endoff;
1544
1545	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1546	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1547	if (size == 0)	/* handle degenerate case */
1548		return;
1549
1550	/*
1551	 * If the base is not DEV_BSIZE aligned and the valid
1552	 * bit is clear, we have to zero out a portion of the
1553	 * first block.
1554	 */
1555	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1556	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1557		pmap_zero_page_area(m, frag, base - frag);
1558
1559	/*
1560	 * If the ending offset is not DEV_BSIZE aligned and the
1561	 * valid bit is clear, we have to zero out a portion of
1562	 * the last block.
1563	 */
1564	endoff = base + size;
1565	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1566	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1567		pmap_zero_page_area(m, endoff,
1568		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1569
1570	/*
1571	 * Set valid, clear dirty bits.  If validating the entire
1572	 * page we can safely clear the pmap modify bit.  We also
1573	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
1574	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1575	 * be set again.
1576	 *
1577	 * We set valid bits inclusive of any overlap, but we can only
1578	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1579	 * the range.
1580	 */
1581	pagebits = vm_page_bits(base, size);
1582	m->valid |= pagebits;
1583#if 0	/* NOT YET */
1584	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1585		frag = DEV_BSIZE - frag;
1586		base += frag;
1587		size -= frag;
1588		if (size < 0)
1589			size = 0;
1590	}
1591	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1592#endif
1593	m->dirty &= ~pagebits;
1594	if (base == 0 && size == PAGE_SIZE) {
1595		pmap_clear_modify(m);
1596		m->oflags &= ~VPO_NOSYNC;
1597	}
1598}
1599
1600void
1601vm_page_clear_dirty(vm_page_t m, int base, int size)
1602{
1603
1604	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1605	m->dirty &= ~vm_page_bits(base, size);
1606}
1607
1608/*
1609 *	vm_page_set_invalid:
1610 *
1611 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1612 *	valid and dirty bits for the effected areas are cleared.
1613 *
1614 *	May not block.
1615 */
1616void
1617vm_page_set_invalid(vm_page_t m, int base, int size)
1618{
1619	int bits;
1620
1621	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1622	bits = vm_page_bits(base, size);
1623	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1624	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1625		pmap_remove_all(m);
1626	m->valid &= ~bits;
1627	m->dirty &= ~bits;
1628	m->object->generation++;
1629}
1630
1631/*
1632 * vm_page_zero_invalid()
1633 *
1634 *	The kernel assumes that the invalid portions of a page contain
1635 *	garbage, but such pages can be mapped into memory by user code.
1636 *	When this occurs, we must zero out the non-valid portions of the
1637 *	page so user code sees what it expects.
1638 *
1639 *	Pages are most often semi-valid when the end of a file is mapped
1640 *	into memory and the file's size is not page aligned.
1641 */
1642void
1643vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1644{
1645	int b;
1646	int i;
1647
1648	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1649	/*
1650	 * Scan the valid bits looking for invalid sections that
1651	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1652	 * valid bit may be set ) have already been zerod by
1653	 * vm_page_set_validclean().
1654	 */
1655	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1656		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1657		    (m->valid & (1 << i))
1658		) {
1659			if (i > b) {
1660				pmap_zero_page_area(m,
1661				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1662			}
1663			b = i + 1;
1664		}
1665	}
1666
1667	/*
1668	 * setvalid is TRUE when we can safely set the zero'd areas
1669	 * as being valid.  We can do this if there are no cache consistancy
1670	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1671	 */
1672	if (setvalid)
1673		m->valid = VM_PAGE_BITS_ALL;
1674}
1675
1676/*
1677 *	vm_page_is_valid:
1678 *
1679 *	Is (partial) page valid?  Note that the case where size == 0
1680 *	will return FALSE in the degenerate case where the page is
1681 *	entirely invalid, and TRUE otherwise.
1682 *
1683 *	May not block.
1684 */
1685int
1686vm_page_is_valid(vm_page_t m, int base, int size)
1687{
1688	int bits = vm_page_bits(base, size);
1689
1690	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1691	if (m->valid && ((m->valid & bits) == bits))
1692		return 1;
1693	else
1694		return 0;
1695}
1696
1697/*
1698 * update dirty bits from pmap/mmu.  May not block.
1699 */
1700void
1701vm_page_test_dirty(vm_page_t m)
1702{
1703	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1704		vm_page_dirty(m);
1705	}
1706}
1707
1708int so_zerocp_fullpage = 0;
1709
1710void
1711vm_page_cowfault(vm_page_t m)
1712{
1713	vm_page_t mnew;
1714	vm_object_t object;
1715	vm_pindex_t pindex;
1716
1717	object = m->object;
1718	pindex = m->pindex;
1719
1720 retry_alloc:
1721	pmap_remove_all(m);
1722	vm_page_remove(m);
1723	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
1724	if (mnew == NULL) {
1725		vm_page_insert(m, object, pindex);
1726		vm_page_unlock_queues();
1727		VM_OBJECT_UNLOCK(object);
1728		VM_WAIT;
1729		VM_OBJECT_LOCK(object);
1730		vm_page_lock_queues();
1731		goto retry_alloc;
1732	}
1733
1734	if (m->cow == 0) {
1735		/*
1736		 * check to see if we raced with an xmit complete when
1737		 * waiting to allocate a page.  If so, put things back
1738		 * the way they were
1739		 */
1740		vm_page_free(mnew);
1741		vm_page_insert(m, object, pindex);
1742	} else { /* clear COW & copy page */
1743		if (!so_zerocp_fullpage)
1744			pmap_copy_page(m, mnew);
1745		mnew->valid = VM_PAGE_BITS_ALL;
1746		vm_page_dirty(mnew);
1747		mnew->wire_count = m->wire_count - m->cow;
1748		m->wire_count = m->cow;
1749	}
1750}
1751
1752void
1753vm_page_cowclear(vm_page_t m)
1754{
1755
1756	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1757	if (m->cow) {
1758		m->cow--;
1759		/*
1760		 * let vm_fault add back write permission  lazily
1761		 */
1762	}
1763	/*
1764	 *  sf_buf_free() will free the page, so we needn't do it here
1765	 */
1766}
1767
1768void
1769vm_page_cowsetup(vm_page_t m)
1770{
1771
1772	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1773	m->cow++;
1774	pmap_remove_write(m);
1775}
1776
1777#include "opt_ddb.h"
1778#ifdef DDB
1779#include <sys/kernel.h>
1780
1781#include <ddb/ddb.h>
1782
1783DB_SHOW_COMMAND(page, vm_page_print_page_info)
1784{
1785	db_printf("cnt.v_free_count: %d\n", VMCNT_GET(free_count));
1786	db_printf("cnt.v_cache_count: %d\n", VMCNT_GET(cache_count));
1787	db_printf("cnt.v_inactive_count: %d\n", VMCNT_GET(inactive_count));
1788	db_printf("cnt.v_active_count: %d\n", VMCNT_GET(active_count));
1789	db_printf("cnt.v_wire_count: %d\n", VMCNT_GET(wire_count));
1790	db_printf("cnt.v_free_reserved: %d\n", VMCNT_GET(free_reserved));
1791	db_printf("cnt.v_free_min: %d\n", VMCNT_GET(free_min));
1792	db_printf("cnt.v_free_target: %d\n", VMCNT_GET(free_target));
1793	db_printf("cnt.v_cache_min: %d\n", VMCNT_GET(cache_min));
1794	db_printf("cnt.v_inactive_target: %d\n", VMCNT_GET(inactive_target));
1795}
1796
1797DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1798{
1799	int i;
1800	db_printf("PQ_FREE:");
1801	for (i = 0; i < PQ_NUMCOLORS; i++) {
1802		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1803	}
1804	db_printf("\n");
1805
1806	db_printf("PQ_CACHE:");
1807	for (i = 0; i < PQ_NUMCOLORS; i++) {
1808		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1809	}
1810	db_printf("\n");
1811
1812	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1813		vm_page_queues[PQ_ACTIVE].lcnt,
1814		vm_page_queues[PQ_INACTIVE].lcnt);
1815}
1816#endif /* DDB */
1817