vm_page.c revision 166736
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33 */
34
35/*-
36 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37 * All rights reserved.
38 *
39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 *
41 * Permission to use, copy, modify and distribute this software and
42 * its documentation is hereby granted, provided that both the copyright
43 * notice and this permission notice appear in all copies of the
44 * software, derivative works or modified versions, and any portions
45 * thereof, and that both notices appear in supporting documentation.
46 *
47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 *
51 * Carnegie Mellon requests users of this software to return to
52 *
53 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54 *  School of Computer Science
55 *  Carnegie Mellon University
56 *  Pittsburgh PA 15213-3890
57 *
58 * any improvements or extensions that they make and grant Carnegie the
59 * rights to redistribute these changes.
60 */
61
62/*
63 *			GENERAL RULES ON VM_PAGE MANIPULATION
64 *
65 *	- a pageq mutex is required when adding or removing a page from a
66 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67 *	  busy state of a page.
68 *
69 *	- a hash chain mutex is required when associating or disassociating
70 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71 *	  regardless of other mutexes or the busy state of a page.
72 *
73 *	- either a hash chain mutex OR a busied page is required in order
74 *	  to modify the page flags.  A hash chain mutex must be obtained in
75 *	  order to busy a page.  A page's flags cannot be modified by a
76 *	  hash chain mutex if the page is marked busy.
77 *
78 *	- The object memq mutex is held when inserting or removing
79 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80 *	  is different from the object's main mutex.
81 *
82 *	Generally speaking, you have to be aware of side effects when running
83 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85 *	vm_page_cache(), vm_page_activate(), and a number of other routines
86 *	will release the hash chain mutex for you.  Intermediate manipulation
87 *	routines such as vm_page_flag_set() expect the hash chain to be held
88 *	on entry and the hash chain will remain held on return.
89 *
90 *	pageq scanning can only occur with the pageq in question locked.
91 *	We have a known bottleneck with the active queue, but the cache
92 *	and free queues are actually arrays already.
93 */
94
95/*
96 *	Resident memory management module.
97 */
98
99#include <sys/cdefs.h>
100__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 166736 2007-02-15 05:43:38Z alc $");
101
102#include <sys/param.h>
103#include <sys/systm.h>
104#include <sys/lock.h>
105#include <sys/kernel.h>
106#include <sys/malloc.h>
107#include <sys/mutex.h>
108#include <sys/proc.h>
109#include <sys/sysctl.h>
110#include <sys/vmmeter.h>
111#include <sys/vnode.h>
112
113#include <vm/vm.h>
114#include <vm/vm_param.h>
115#include <vm/vm_kern.h>
116#include <vm/vm_object.h>
117#include <vm/vm_page.h>
118#include <vm/vm_pageout.h>
119#include <vm/vm_pager.h>
120#include <vm/vm_extern.h>
121#include <vm/uma.h>
122#include <vm/uma_int.h>
123
124#include <machine/md_var.h>
125
126/*
127 *	Associated with page of user-allocatable memory is a
128 *	page structure.
129 */
130
131struct mtx vm_page_queue_mtx;
132struct mtx vm_page_queue_free_mtx;
133
134vm_page_t vm_page_array = 0;
135int vm_page_array_size = 0;
136long first_page = 0;
137int vm_page_zero_count = 0;
138
139static int boot_pages = UMA_BOOT_PAGES;
140TUNABLE_INT("vm.boot_pages", &boot_pages);
141SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
142	"number of pages allocated for bootstrapping the VM system");
143
144/*
145 *	vm_set_page_size:
146 *
147 *	Sets the page size, perhaps based upon the memory
148 *	size.  Must be called before any use of page-size
149 *	dependent functions.
150 */
151void
152vm_set_page_size(void)
153{
154	if (cnt.v_page_size == 0)
155		cnt.v_page_size = PAGE_SIZE;
156	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
157		panic("vm_set_page_size: page size not a power of two");
158}
159
160/*
161 *	vm_page_blacklist_lookup:
162 *
163 *	See if a physical address in this page has been listed
164 *	in the blacklist tunable.  Entries in the tunable are
165 *	separated by spaces or commas.  If an invalid integer is
166 *	encountered then the rest of the string is skipped.
167 */
168static int
169vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
170{
171	vm_paddr_t bad;
172	char *cp, *pos;
173
174	for (pos = list; *pos != '\0'; pos = cp) {
175		bad = strtoq(pos, &cp, 0);
176		if (*cp != '\0') {
177			if (*cp == ' ' || *cp == ',') {
178				cp++;
179				if (cp == pos)
180					continue;
181			} else
182				break;
183		}
184		if (pa == trunc_page(bad))
185			return (1);
186	}
187	return (0);
188}
189
190/*
191 *	vm_page_startup:
192 *
193 *	Initializes the resident memory module.
194 *
195 *	Allocates memory for the page cells, and
196 *	for the object/offset-to-page hash table headers.
197 *	Each page cell is initialized and placed on the free list.
198 */
199vm_offset_t
200vm_page_startup(vm_offset_t vaddr)
201{
202	vm_offset_t mapped;
203	vm_size_t npages;
204	vm_paddr_t page_range;
205	vm_paddr_t new_end;
206	int i;
207	vm_paddr_t pa;
208	int nblocks;
209	vm_paddr_t last_pa;
210	char *list;
211
212	/* the biggest memory array is the second group of pages */
213	vm_paddr_t end;
214	vm_paddr_t biggestsize;
215	vm_paddr_t low_water, high_water;
216	int biggestone;
217
218	vm_paddr_t total;
219
220	total = 0;
221	biggestsize = 0;
222	biggestone = 0;
223	nblocks = 0;
224	vaddr = round_page(vaddr);
225
226	for (i = 0; phys_avail[i + 1]; i += 2) {
227		phys_avail[i] = round_page(phys_avail[i]);
228		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
229	}
230
231	low_water = phys_avail[0];
232	high_water = phys_avail[1];
233
234	for (i = 0; phys_avail[i + 1]; i += 2) {
235		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
236
237		if (size > biggestsize) {
238			biggestone = i;
239			biggestsize = size;
240		}
241		if (phys_avail[i] < low_water)
242			low_water = phys_avail[i];
243		if (phys_avail[i + 1] > high_water)
244			high_water = phys_avail[i + 1];
245		++nblocks;
246		total += size;
247	}
248
249	end = phys_avail[biggestone+1];
250
251	/*
252	 * Initialize the locks.
253	 */
254	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
255	    MTX_RECURSE);
256	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
257	    MTX_DEF);
258
259	/*
260	 * Initialize the queue headers for the free queue, the active queue
261	 * and the inactive queue.
262	 */
263	vm_pageq_init();
264
265	/*
266	 * Allocate memory for use when boot strapping the kernel memory
267	 * allocator.
268	 */
269	new_end = end - (boot_pages * UMA_SLAB_SIZE);
270	new_end = trunc_page(new_end);
271	mapped = pmap_map(&vaddr, new_end, end,
272	    VM_PROT_READ | VM_PROT_WRITE);
273	bzero((void *)mapped, end - new_end);
274	uma_startup((void *)mapped, boot_pages);
275
276#if defined(__amd64__) || defined(__i386__)
277	/*
278	 * Allocate a bitmap to indicate that a random physical page
279	 * needs to be included in a minidump.
280	 *
281	 * The amd64 port needs this to indicate which direct map pages
282	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
283	 *
284	 * However, i386 still needs this workspace internally within the
285	 * minidump code.  In theory, they are not needed on i386, but are
286	 * included should the sf_buf code decide to use them.
287	 */
288	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
289	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
290	new_end -= vm_page_dump_size;
291	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
292	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
293	bzero((void *)vm_page_dump, vm_page_dump_size);
294#endif
295	/*
296	 * Compute the number of pages of memory that will be available for
297	 * use (taking into account the overhead of a page structure per
298	 * page).
299	 */
300	first_page = low_water / PAGE_SIZE;
301	page_range = high_water / PAGE_SIZE - first_page;
302	npages = (total - (page_range * sizeof(struct vm_page)) -
303	    (end - new_end)) / PAGE_SIZE;
304	end = new_end;
305
306	/*
307	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
308	 */
309	vaddr += PAGE_SIZE;
310
311	/*
312	 * Initialize the mem entry structures now, and put them in the free
313	 * queue.
314	 */
315	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
316	mapped = pmap_map(&vaddr, new_end, end,
317	    VM_PROT_READ | VM_PROT_WRITE);
318	vm_page_array = (vm_page_t) mapped;
319#ifdef __amd64__
320	/*
321	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
322	 * so the pages must be tracked for a crashdump to include this data.
323	 * This includes the vm_page_array and the early UMA bootstrap pages.
324	 */
325	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
326		dump_add_page(pa);
327#endif
328	phys_avail[biggestone + 1] = new_end;
329
330	/*
331	 * Clear all of the page structures
332	 */
333	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
334	vm_page_array_size = page_range;
335
336	/*
337	 * This assertion tests the hypothesis that npages and total are
338	 * redundant.  XXX
339	 */
340	page_range = 0;
341	for (i = 0; phys_avail[i + 1] != 0; i += 2)
342		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
343	KASSERT(page_range == npages,
344	    ("vm_page_startup: inconsistent page counts"));
345
346	/*
347	 * Construct the free queue(s) in descending order (by physical
348	 * address) so that the first 16MB of physical memory is allocated
349	 * last rather than first.  On large-memory machines, this avoids
350	 * the exhaustion of low physical memory before isa_dma_init has run.
351	 */
352	cnt.v_page_count = 0;
353	cnt.v_free_count = 0;
354	list = getenv("vm.blacklist");
355	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
356		pa = phys_avail[i];
357		last_pa = phys_avail[i + 1];
358		while (pa < last_pa) {
359			if (list != NULL &&
360			    vm_page_blacklist_lookup(list, pa))
361				printf("Skipping page with pa 0x%jx\n",
362				    (uintmax_t)pa);
363			else
364				vm_pageq_add_new_page(pa);
365			pa += PAGE_SIZE;
366		}
367	}
368	freeenv(list);
369	return (vaddr);
370}
371
372void
373vm_page_flag_set(vm_page_t m, unsigned short bits)
374{
375
376	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
377	m->flags |= bits;
378}
379
380void
381vm_page_flag_clear(vm_page_t m, unsigned short bits)
382{
383
384	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
385	m->flags &= ~bits;
386}
387
388void
389vm_page_busy(vm_page_t m)
390{
391
392	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
393	KASSERT((m->oflags & VPO_BUSY) == 0,
394	    ("vm_page_busy: page already busy!!!"));
395	m->oflags |= VPO_BUSY;
396}
397
398/*
399 *      vm_page_flash:
400 *
401 *      wakeup anyone waiting for the page.
402 */
403void
404vm_page_flash(vm_page_t m)
405{
406
407	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
408	if (m->oflags & VPO_WANTED) {
409		m->oflags &= ~VPO_WANTED;
410		wakeup(m);
411	}
412}
413
414/*
415 *      vm_page_wakeup:
416 *
417 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
418 *      page.
419 *
420 */
421void
422vm_page_wakeup(vm_page_t m)
423{
424
425	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
426	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
427	m->oflags &= ~VPO_BUSY;
428	vm_page_flash(m);
429}
430
431void
432vm_page_io_start(vm_page_t m)
433{
434
435	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
436	m->busy++;
437}
438
439void
440vm_page_io_finish(vm_page_t m)
441{
442
443	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
444	m->busy--;
445	if (m->busy == 0)
446		vm_page_flash(m);
447}
448
449/*
450 * Keep page from being freed by the page daemon
451 * much of the same effect as wiring, except much lower
452 * overhead and should be used only for *very* temporary
453 * holding ("wiring").
454 */
455void
456vm_page_hold(vm_page_t mem)
457{
458
459	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
460        mem->hold_count++;
461}
462
463void
464vm_page_unhold(vm_page_t mem)
465{
466
467	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
468	--mem->hold_count;
469	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
470	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
471		vm_page_free_toq(mem);
472}
473
474/*
475 *	vm_page_free:
476 *
477 *	Free a page
478 *
479 *	The clearing of PG_ZERO is a temporary safety until the code can be
480 *	reviewed to determine that PG_ZERO is being properly cleared on
481 *	write faults or maps.  PG_ZERO was previously cleared in
482 *	vm_page_alloc().
483 */
484void
485vm_page_free(vm_page_t m)
486{
487	vm_page_flag_clear(m, PG_ZERO);
488	vm_page_free_toq(m);
489}
490
491/*
492 *	vm_page_free_zero:
493 *
494 *	Free a page to the zerod-pages queue
495 */
496void
497vm_page_free_zero(vm_page_t m)
498{
499	vm_page_flag_set(m, PG_ZERO);
500	vm_page_free_toq(m);
501}
502
503/*
504 *	vm_page_sleep:
505 *
506 *	Sleep and release the page queues lock.
507 *
508 *	The object containing the given page must be locked.
509 */
510void
511vm_page_sleep(vm_page_t m, const char *msg)
512{
513
514	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
515	if (!mtx_owned(&vm_page_queue_mtx))
516		vm_page_lock_queues();
517	vm_page_flag_set(m, PG_REFERENCED);
518	vm_page_unlock_queues();
519
520	/*
521	 * It's possible that while we sleep, the page will get
522	 * unbusied and freed.  If we are holding the object
523	 * lock, we will assume we hold a reference to the object
524	 * such that even if m->object changes, we can re-lock
525	 * it.
526	 */
527	m->oflags |= VPO_WANTED;
528	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
529}
530
531/*
532 *	vm_page_dirty:
533 *
534 *	make page all dirty
535 */
536void
537vm_page_dirty(vm_page_t m)
538{
539	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_CACHE,
540	    ("vm_page_dirty: page in cache!"));
541	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_FREE,
542	    ("vm_page_dirty: page is free!"));
543	m->dirty = VM_PAGE_BITS_ALL;
544}
545
546/*
547 *	vm_page_splay:
548 *
549 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
550 *	the vm_page containing the given pindex.  If, however, that
551 *	pindex is not found in the vm_object, returns a vm_page that is
552 *	adjacent to the pindex, coming before or after it.
553 */
554vm_page_t
555vm_page_splay(vm_pindex_t pindex, vm_page_t root)
556{
557	struct vm_page dummy;
558	vm_page_t lefttreemax, righttreemin, y;
559
560	if (root == NULL)
561		return (root);
562	lefttreemax = righttreemin = &dummy;
563	for (;; root = y) {
564		if (pindex < root->pindex) {
565			if ((y = root->left) == NULL)
566				break;
567			if (pindex < y->pindex) {
568				/* Rotate right. */
569				root->left = y->right;
570				y->right = root;
571				root = y;
572				if ((y = root->left) == NULL)
573					break;
574			}
575			/* Link into the new root's right tree. */
576			righttreemin->left = root;
577			righttreemin = root;
578		} else if (pindex > root->pindex) {
579			if ((y = root->right) == NULL)
580				break;
581			if (pindex > y->pindex) {
582				/* Rotate left. */
583				root->right = y->left;
584				y->left = root;
585				root = y;
586				if ((y = root->right) == NULL)
587					break;
588			}
589			/* Link into the new root's left tree. */
590			lefttreemax->right = root;
591			lefttreemax = root;
592		} else
593			break;
594	}
595	/* Assemble the new root. */
596	lefttreemax->right = root->left;
597	righttreemin->left = root->right;
598	root->left = dummy.right;
599	root->right = dummy.left;
600	return (root);
601}
602
603/*
604 *	vm_page_insert:		[ internal use only ]
605 *
606 *	Inserts the given mem entry into the object and object list.
607 *
608 *	The pagetables are not updated but will presumably fault the page
609 *	in if necessary, or if a kernel page the caller will at some point
610 *	enter the page into the kernel's pmap.  We are not allowed to block
611 *	here so we *can't* do this anyway.
612 *
613 *	The object and page must be locked.
614 *	This routine may not block.
615 */
616void
617vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
618{
619	vm_page_t root;
620
621	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
622	if (m->object != NULL)
623		panic("vm_page_insert: page already inserted");
624
625	/*
626	 * Record the object/offset pair in this page
627	 */
628	m->object = object;
629	m->pindex = pindex;
630
631	/*
632	 * Now link into the object's ordered list of backed pages.
633	 */
634	root = object->root;
635	if (root == NULL) {
636		m->left = NULL;
637		m->right = NULL;
638		TAILQ_INSERT_TAIL(&object->memq, m, listq);
639	} else {
640		root = vm_page_splay(pindex, root);
641		if (pindex < root->pindex) {
642			m->left = root->left;
643			m->right = root;
644			root->left = NULL;
645			TAILQ_INSERT_BEFORE(root, m, listq);
646		} else if (pindex == root->pindex)
647			panic("vm_page_insert: offset already allocated");
648		else {
649			m->right = root->right;
650			m->left = root;
651			root->right = NULL;
652			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
653		}
654	}
655	object->root = m;
656	object->generation++;
657
658	/*
659	 * show that the object has one more resident page.
660	 */
661	object->resident_page_count++;
662	/*
663	 * Hold the vnode until the last page is released.
664	 */
665	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
666		vhold((struct vnode *)object->handle);
667
668	/*
669	 * Since we are inserting a new and possibly dirty page,
670	 * update the object's OBJ_MIGHTBEDIRTY flag.
671	 */
672	if (m->flags & PG_WRITEABLE)
673		vm_object_set_writeable_dirty(object);
674}
675
676/*
677 *	vm_page_remove:
678 *				NOTE: used by device pager as well -wfj
679 *
680 *	Removes the given mem entry from the object/offset-page
681 *	table and the object page list, but do not invalidate/terminate
682 *	the backing store.
683 *
684 *	The object and page must be locked.
685 *	The underlying pmap entry (if any) is NOT removed here.
686 *	This routine may not block.
687 */
688void
689vm_page_remove(vm_page_t m)
690{
691	vm_object_t object;
692	vm_page_t root;
693
694	if ((object = m->object) == NULL)
695		return;
696	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
697	if (m->oflags & VPO_BUSY) {
698		m->oflags &= ~VPO_BUSY;
699		vm_page_flash(m);
700	}
701	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
702
703	/*
704	 * Now remove from the object's list of backed pages.
705	 */
706	if (m != object->root)
707		vm_page_splay(m->pindex, object->root);
708	if (m->left == NULL)
709		root = m->right;
710	else {
711		root = vm_page_splay(m->pindex, m->left);
712		root->right = m->right;
713	}
714	object->root = root;
715	TAILQ_REMOVE(&object->memq, m, listq);
716
717	/*
718	 * And show that the object has one fewer resident page.
719	 */
720	object->resident_page_count--;
721	object->generation++;
722	/*
723	 * The vnode may now be recycled.
724	 */
725	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
726		vdrop((struct vnode *)object->handle);
727
728	m->object = NULL;
729}
730
731/*
732 *	vm_page_lookup:
733 *
734 *	Returns the page associated with the object/offset
735 *	pair specified; if none is found, NULL is returned.
736 *
737 *	The object must be locked.
738 *	This routine may not block.
739 *	This is a critical path routine
740 */
741vm_page_t
742vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
743{
744	vm_page_t m;
745
746	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
747	if ((m = object->root) != NULL && m->pindex != pindex) {
748		m = vm_page_splay(pindex, m);
749		if ((object->root = m)->pindex != pindex)
750			m = NULL;
751	}
752	return (m);
753}
754
755/*
756 *	vm_page_rename:
757 *
758 *	Move the given memory entry from its
759 *	current object to the specified target object/offset.
760 *
761 *	The object must be locked.
762 *	This routine may not block.
763 *
764 *	Note: swap associated with the page must be invalidated by the move.  We
765 *	      have to do this for several reasons:  (1) we aren't freeing the
766 *	      page, (2) we are dirtying the page, (3) the VM system is probably
767 *	      moving the page from object A to B, and will then later move
768 *	      the backing store from A to B and we can't have a conflict.
769 *
770 *	Note: we *always* dirty the page.  It is necessary both for the
771 *	      fact that we moved it, and because we may be invalidating
772 *	      swap.  If the page is on the cache, we have to deactivate it
773 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
774 *	      on the cache.
775 */
776void
777vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
778{
779
780	vm_page_remove(m);
781	vm_page_insert(m, new_object, new_pindex);
782	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
783		vm_page_deactivate(m);
784	vm_page_dirty(m);
785}
786
787/*
788 *	vm_page_select_cache:
789 *
790 *	Move a page of the given color from the cache queue to the free
791 *	queue.  As pages might be found, but are not applicable, they are
792 *	deactivated.
793 *
794 *	This routine may not block.
795 */
796vm_page_t
797vm_page_select_cache(int color)
798{
799	vm_object_t object;
800	vm_page_t m;
801	boolean_t was_trylocked;
802
803	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
804	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
805		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
806		KASSERT(!pmap_page_is_mapped(m),
807		    ("Found mapped cache page %p", m));
808		KASSERT((m->flags & PG_UNMANAGED) == 0,
809		    ("Found unmanaged cache page %p", m));
810		KASSERT(m->wire_count == 0, ("Found wired cache page %p", m));
811		if (m->hold_count == 0 && (object = m->object,
812		    (was_trylocked = VM_OBJECT_TRYLOCK(object)) ||
813		    VM_OBJECT_LOCKED(object))) {
814			KASSERT((m->oflags & VPO_BUSY) == 0 && m->busy == 0,
815			    ("Found busy cache page %p", m));
816			vm_page_free(m);
817			if (was_trylocked)
818				VM_OBJECT_UNLOCK(object);
819			break;
820		}
821		vm_page_deactivate(m);
822	}
823	return (m);
824}
825
826/*
827 *	vm_page_alloc:
828 *
829 *	Allocate and return a memory cell associated
830 *	with this VM object/offset pair.
831 *
832 *	page_req classes:
833 *	VM_ALLOC_NORMAL		normal process request
834 *	VM_ALLOC_SYSTEM		system *really* needs a page
835 *	VM_ALLOC_INTERRUPT	interrupt time request
836 *	VM_ALLOC_ZERO		zero page
837 *
838 *	This routine may not block.
839 *
840 *	Additional special handling is required when called from an
841 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
842 *	the page cache in this case.
843 */
844vm_page_t
845vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
846{
847	vm_page_t m = NULL;
848	int color, flags, page_req;
849
850	page_req = req & VM_ALLOC_CLASS_MASK;
851	KASSERT(curthread->td_intr_nesting_level == 0 ||
852	    page_req == VM_ALLOC_INTERRUPT,
853	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
854
855	if ((req & VM_ALLOC_NOOBJ) == 0) {
856		KASSERT(object != NULL,
857		    ("vm_page_alloc: NULL object."));
858		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
859		color = (pindex + object->pg_color) & PQ_COLORMASK;
860	} else
861		color = pindex & PQ_COLORMASK;
862
863	/*
864	 * The pager is allowed to eat deeper into the free page list.
865	 */
866	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
867		page_req = VM_ALLOC_SYSTEM;
868	};
869
870loop:
871	mtx_lock(&vm_page_queue_free_mtx);
872	if (cnt.v_free_count > cnt.v_free_reserved ||
873	    (page_req == VM_ALLOC_SYSTEM &&
874	     cnt.v_cache_count == 0 &&
875	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
876	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
877		/*
878		 * Allocate from the free queue if the number of free pages
879		 * exceeds the minimum for the request class.
880		 */
881		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
882	} else if (page_req != VM_ALLOC_INTERRUPT) {
883		mtx_unlock(&vm_page_queue_free_mtx);
884		/*
885		 * Allocatable from cache (non-interrupt only).  On success,
886		 * we must free the page and try again, thus ensuring that
887		 * cnt.v_*_free_min counters are replenished.
888		 */
889		vm_page_lock_queues();
890		if ((m = vm_page_select_cache(color)) == NULL) {
891			KASSERT(cnt.v_cache_count == 0,
892			    ("vm_page_alloc: cache queue is missing %d pages",
893			    cnt.v_cache_count));
894			vm_page_unlock_queues();
895			atomic_add_int(&vm_pageout_deficit, 1);
896			pagedaemon_wakeup();
897
898			if (page_req != VM_ALLOC_SYSTEM)
899				return (NULL);
900
901			mtx_lock(&vm_page_queue_free_mtx);
902			if (cnt.v_free_count <= cnt.v_interrupt_free_min) {
903				mtx_unlock(&vm_page_queue_free_mtx);
904				return (NULL);
905			}
906			m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
907		} else {
908			vm_page_unlock_queues();
909			goto loop;
910		}
911	} else {
912		/*
913		 * Not allocatable from cache from interrupt, give up.
914		 */
915		mtx_unlock(&vm_page_queue_free_mtx);
916		atomic_add_int(&vm_pageout_deficit, 1);
917		pagedaemon_wakeup();
918		return (NULL);
919	}
920
921	/*
922	 *  At this point we had better have found a good page.
923	 */
924
925	KASSERT(
926	    m != NULL,
927	    ("vm_page_alloc(): missing page on free queue")
928	);
929
930	/*
931	 * Remove from free queue
932	 */
933	vm_pageq_remove_nowakeup(m);
934
935	/*
936	 * Initialize structure.  Only the PG_ZERO flag is inherited.
937	 */
938	flags = 0;
939	if (m->flags & PG_ZERO) {
940		vm_page_zero_count--;
941		if (req & VM_ALLOC_ZERO)
942			flags = PG_ZERO;
943	}
944	m->flags = flags;
945	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
946		m->oflags = 0;
947	else
948		m->oflags = VPO_BUSY;
949	if (req & VM_ALLOC_WIRED) {
950		atomic_add_int(&cnt.v_wire_count, 1);
951		m->wire_count = 1;
952	} else
953		m->wire_count = 0;
954	m->hold_count = 0;
955	m->act_count = 0;
956	m->busy = 0;
957	m->valid = 0;
958	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
959	mtx_unlock(&vm_page_queue_free_mtx);
960
961	if ((req & VM_ALLOC_NOOBJ) == 0)
962		vm_page_insert(m, object, pindex);
963	else
964		m->pindex = pindex;
965
966	/*
967	 * Don't wakeup too often - wakeup the pageout daemon when
968	 * we would be nearly out of memory.
969	 */
970	if (vm_paging_needed())
971		pagedaemon_wakeup();
972
973	return (m);
974}
975
976/*
977 *	vm_wait:	(also see VM_WAIT macro)
978 *
979 *	Block until free pages are available for allocation
980 *	- Called in various places before memory allocations.
981 */
982void
983vm_wait(void)
984{
985
986	mtx_lock(&vm_page_queue_free_mtx);
987	if (curproc == pageproc) {
988		vm_pageout_pages_needed = 1;
989		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
990		    PDROP | PSWP, "VMWait", 0);
991	} else {
992		if (!vm_pages_needed) {
993			vm_pages_needed = 1;
994			wakeup(&vm_pages_needed);
995		}
996		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
997		    "vmwait", 0);
998	}
999}
1000
1001/*
1002 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1003 *
1004 *	Block until free pages are available for allocation
1005 *	- Called only in vm_fault so that processes page faulting
1006 *	  can be easily tracked.
1007 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1008 *	  processes will be able to grab memory first.  Do not change
1009 *	  this balance without careful testing first.
1010 */
1011void
1012vm_waitpfault(void)
1013{
1014
1015	mtx_lock(&vm_page_queue_free_mtx);
1016	if (!vm_pages_needed) {
1017		vm_pages_needed = 1;
1018		wakeup(&vm_pages_needed);
1019	}
1020	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1021	    "pfault", 0);
1022}
1023
1024/*
1025 *	vm_page_activate:
1026 *
1027 *	Put the specified page on the active list (if appropriate).
1028 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1029 *	mess with it.
1030 *
1031 *	The page queues must be locked.
1032 *	This routine may not block.
1033 */
1034void
1035vm_page_activate(vm_page_t m)
1036{
1037
1038	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1039	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
1040		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1041			cnt.v_reactivated++;
1042		vm_pageq_remove(m);
1043		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1044			if (m->act_count < ACT_INIT)
1045				m->act_count = ACT_INIT;
1046			vm_pageq_enqueue(PQ_ACTIVE, m);
1047		}
1048	} else {
1049		if (m->act_count < ACT_INIT)
1050			m->act_count = ACT_INIT;
1051	}
1052}
1053
1054/*
1055 *	vm_page_free_wakeup:
1056 *
1057 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1058 *	routine is called when a page has been added to the cache or free
1059 *	queues.
1060 *
1061 *	The page queues must be locked.
1062 *	This routine may not block.
1063 */
1064static inline void
1065vm_page_free_wakeup(void)
1066{
1067
1068	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1069	/*
1070	 * if pageout daemon needs pages, then tell it that there are
1071	 * some free.
1072	 */
1073	if (vm_pageout_pages_needed &&
1074	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1075		wakeup(&vm_pageout_pages_needed);
1076		vm_pageout_pages_needed = 0;
1077	}
1078	/*
1079	 * wakeup processes that are waiting on memory if we hit a
1080	 * high water mark. And wakeup scheduler process if we have
1081	 * lots of memory. this process will swapin processes.
1082	 */
1083	if (vm_pages_needed && !vm_page_count_min()) {
1084		vm_pages_needed = 0;
1085		wakeup(&cnt.v_free_count);
1086	}
1087}
1088
1089/*
1090 *	vm_page_free_toq:
1091 *
1092 *	Returns the given page to the PQ_FREE list,
1093 *	disassociating it with any VM object.
1094 *
1095 *	Object and page must be locked prior to entry.
1096 *	This routine may not block.
1097 */
1098
1099void
1100vm_page_free_toq(vm_page_t m)
1101{
1102	struct vpgqueues *pq;
1103
1104	if (VM_PAGE_GETQUEUE(m) != PQ_NONE)
1105		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1106	KASSERT(!pmap_page_is_mapped(m),
1107	    ("vm_page_free_toq: freeing mapped page %p", m));
1108	cnt.v_tfree++;
1109
1110	if (m->busy || VM_PAGE_INQUEUE1(m, PQ_FREE)) {
1111		printf(
1112		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1113		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1114		    m->hold_count);
1115		if (VM_PAGE_INQUEUE1(m, PQ_FREE))
1116			panic("vm_page_free: freeing free page");
1117		else
1118			panic("vm_page_free: freeing busy page");
1119	}
1120
1121	/*
1122	 * unqueue, then remove page.  Note that we cannot destroy
1123	 * the page here because we do not want to call the pager's
1124	 * callback routine until after we've put the page on the
1125	 * appropriate free queue.
1126	 */
1127	vm_pageq_remove_nowakeup(m);
1128	vm_page_remove(m);
1129
1130	/*
1131	 * If fictitious remove object association and
1132	 * return, otherwise delay object association removal.
1133	 */
1134	if ((m->flags & PG_FICTITIOUS) != 0) {
1135		return;
1136	}
1137
1138	m->valid = 0;
1139	vm_page_undirty(m);
1140
1141	if (m->wire_count != 0) {
1142		if (m->wire_count > 1) {
1143			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1144				m->wire_count, (long)m->pindex);
1145		}
1146		panic("vm_page_free: freeing wired page");
1147	}
1148	if (m->hold_count != 0) {
1149		m->flags &= ~PG_ZERO;
1150		vm_pageq_enqueue(PQ_HOLD, m);
1151		return;
1152	}
1153	VM_PAGE_SETQUEUE1(m, PQ_FREE);
1154	mtx_lock(&vm_page_queue_free_mtx);
1155	pq = &vm_page_queues[VM_PAGE_GETQUEUE(m)];
1156	pq->lcnt++;
1157	++(*pq->cnt);
1158
1159	/*
1160	 * Put zero'd pages on the end ( where we look for zero'd pages
1161	 * first ) and non-zerod pages at the head.
1162	 */
1163	if (m->flags & PG_ZERO) {
1164		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1165		++vm_page_zero_count;
1166	} else {
1167		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1168		vm_page_zero_idle_wakeup();
1169	}
1170	vm_page_free_wakeup();
1171	mtx_unlock(&vm_page_queue_free_mtx);
1172}
1173
1174/*
1175 *	vm_page_unmanage:
1176 *
1177 * 	Prevent PV management from being done on the page.  The page is
1178 *	removed from the paging queues as if it were wired, and as a
1179 *	consequence of no longer being managed the pageout daemon will not
1180 *	touch it (since there is no way to locate the pte mappings for the
1181 *	page).  madvise() calls that mess with the pmap will also no longer
1182 *	operate on the page.
1183 *
1184 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1185 *	will clear the flag.
1186 *
1187 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1188 *	physical memory as backing store rather then swap-backed memory and
1189 *	will eventually be extended to support 4MB unmanaged physical
1190 *	mappings.
1191 */
1192void
1193vm_page_unmanage(vm_page_t m)
1194{
1195
1196	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1197	if ((m->flags & PG_UNMANAGED) == 0) {
1198		if (m->wire_count == 0)
1199			vm_pageq_remove(m);
1200	}
1201	vm_page_flag_set(m, PG_UNMANAGED);
1202}
1203
1204/*
1205 *	vm_page_wire:
1206 *
1207 *	Mark this page as wired down by yet
1208 *	another map, removing it from paging queues
1209 *	as necessary.
1210 *
1211 *	The page queues must be locked.
1212 *	This routine may not block.
1213 */
1214void
1215vm_page_wire(vm_page_t m)
1216{
1217
1218	/*
1219	 * Only bump the wire statistics if the page is not already wired,
1220	 * and only unqueue the page if it is on some queue (if it is unmanaged
1221	 * it is already off the queues).
1222	 */
1223	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1224	if (m->flags & PG_FICTITIOUS)
1225		return;
1226	if (m->wire_count == 0) {
1227		if ((m->flags & PG_UNMANAGED) == 0)
1228			vm_pageq_remove(m);
1229		atomic_add_int(&cnt.v_wire_count, 1);
1230	}
1231	m->wire_count++;
1232	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1233}
1234
1235/*
1236 *	vm_page_unwire:
1237 *
1238 *	Release one wiring of this page, potentially
1239 *	enabling it to be paged again.
1240 *
1241 *	Many pages placed on the inactive queue should actually go
1242 *	into the cache, but it is difficult to figure out which.  What
1243 *	we do instead, if the inactive target is well met, is to put
1244 *	clean pages at the head of the inactive queue instead of the tail.
1245 *	This will cause them to be moved to the cache more quickly and
1246 *	if not actively re-referenced, freed more quickly.  If we just
1247 *	stick these pages at the end of the inactive queue, heavy filesystem
1248 *	meta-data accesses can cause an unnecessary paging load on memory bound
1249 *	processes.  This optimization causes one-time-use metadata to be
1250 *	reused more quickly.
1251 *
1252 *	BUT, if we are in a low-memory situation we have no choice but to
1253 *	put clean pages on the cache queue.
1254 *
1255 *	A number of routines use vm_page_unwire() to guarantee that the page
1256 *	will go into either the inactive or active queues, and will NEVER
1257 *	be placed in the cache - for example, just after dirtying a page.
1258 *	dirty pages in the cache are not allowed.
1259 *
1260 *	The page queues must be locked.
1261 *	This routine may not block.
1262 */
1263void
1264vm_page_unwire(vm_page_t m, int activate)
1265{
1266
1267	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1268	if (m->flags & PG_FICTITIOUS)
1269		return;
1270	if (m->wire_count > 0) {
1271		m->wire_count--;
1272		if (m->wire_count == 0) {
1273			atomic_subtract_int(&cnt.v_wire_count, 1);
1274			if (m->flags & PG_UNMANAGED) {
1275				;
1276			} else if (activate)
1277				vm_pageq_enqueue(PQ_ACTIVE, m);
1278			else {
1279				vm_page_flag_clear(m, PG_WINATCFLS);
1280				vm_pageq_enqueue(PQ_INACTIVE, m);
1281			}
1282		}
1283	} else {
1284		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1285	}
1286}
1287
1288
1289/*
1290 * Move the specified page to the inactive queue.  If the page has
1291 * any associated swap, the swap is deallocated.
1292 *
1293 * Normally athead is 0 resulting in LRU operation.  athead is set
1294 * to 1 if we want this page to be 'as if it were placed in the cache',
1295 * except without unmapping it from the process address space.
1296 *
1297 * This routine may not block.
1298 */
1299static inline void
1300_vm_page_deactivate(vm_page_t m, int athead)
1301{
1302
1303	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1304
1305	/*
1306	 * Ignore if already inactive.
1307	 */
1308	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1309		return;
1310	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1311		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1312			cnt.v_reactivated++;
1313		vm_page_flag_clear(m, PG_WINATCFLS);
1314		vm_pageq_remove(m);
1315		if (athead)
1316			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1317		else
1318			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1319		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1320		vm_page_queues[PQ_INACTIVE].lcnt++;
1321		cnt.v_inactive_count++;
1322	}
1323}
1324
1325void
1326vm_page_deactivate(vm_page_t m)
1327{
1328    _vm_page_deactivate(m, 0);
1329}
1330
1331/*
1332 * vm_page_try_to_cache:
1333 *
1334 * Returns 0 on failure, 1 on success
1335 */
1336int
1337vm_page_try_to_cache(vm_page_t m)
1338{
1339
1340	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1341	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1342	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1343	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1344		return (0);
1345	}
1346	pmap_remove_all(m);
1347	if (m->dirty)
1348		return (0);
1349	vm_page_cache(m);
1350	return (1);
1351}
1352
1353/*
1354 * vm_page_try_to_free()
1355 *
1356 *	Attempt to free the page.  If we cannot free it, we do nothing.
1357 *	1 is returned on success, 0 on failure.
1358 */
1359int
1360vm_page_try_to_free(vm_page_t m)
1361{
1362
1363	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1364	if (m->object != NULL)
1365		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1366	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1367	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1368		return (0);
1369	}
1370	pmap_remove_all(m);
1371	if (m->dirty)
1372		return (0);
1373	vm_page_free(m);
1374	return (1);
1375}
1376
1377/*
1378 * vm_page_cache
1379 *
1380 * Put the specified page onto the page cache queue (if appropriate).
1381 *
1382 * This routine may not block.
1383 */
1384void
1385vm_page_cache(vm_page_t m)
1386{
1387
1388	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1389	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1390	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1391	    m->hold_count || m->wire_count) {
1392		printf("vm_page_cache: attempting to cache busy page\n");
1393		return;
1394	}
1395	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1396		return;
1397
1398	/*
1399	 * Remove all pmaps and indicate that the page is not
1400	 * writeable or mapped.
1401	 */
1402	pmap_remove_all(m);
1403	if (m->dirty != 0) {
1404		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1405			(long)m->pindex);
1406	}
1407	vm_pageq_remove_nowakeup(m);
1408	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1409	mtx_lock(&vm_page_queue_free_mtx);
1410	vm_page_free_wakeup();
1411	mtx_unlock(&vm_page_queue_free_mtx);
1412}
1413
1414/*
1415 * vm_page_dontneed
1416 *
1417 *	Cache, deactivate, or do nothing as appropriate.  This routine
1418 *	is typically used by madvise() MADV_DONTNEED.
1419 *
1420 *	Generally speaking we want to move the page into the cache so
1421 *	it gets reused quickly.  However, this can result in a silly syndrome
1422 *	due to the page recycling too quickly.  Small objects will not be
1423 *	fully cached.  On the otherhand, if we move the page to the inactive
1424 *	queue we wind up with a problem whereby very large objects
1425 *	unnecessarily blow away our inactive and cache queues.
1426 *
1427 *	The solution is to move the pages based on a fixed weighting.  We
1428 *	either leave them alone, deactivate them, or move them to the cache,
1429 *	where moving them to the cache has the highest weighting.
1430 *	By forcing some pages into other queues we eventually force the
1431 *	system to balance the queues, potentially recovering other unrelated
1432 *	space from active.  The idea is to not force this to happen too
1433 *	often.
1434 */
1435void
1436vm_page_dontneed(vm_page_t m)
1437{
1438	static int dnweight;
1439	int dnw;
1440	int head;
1441
1442	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1443	dnw = ++dnweight;
1444
1445	/*
1446	 * occassionally leave the page alone
1447	 */
1448	if ((dnw & 0x01F0) == 0 ||
1449	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE) ||
1450	    VM_PAGE_INQUEUE1(m, PQ_CACHE)
1451	) {
1452		if (m->act_count >= ACT_INIT)
1453			--m->act_count;
1454		return;
1455	}
1456
1457	if (m->dirty == 0 && pmap_is_modified(m))
1458		vm_page_dirty(m);
1459
1460	if (m->dirty || (dnw & 0x0070) == 0) {
1461		/*
1462		 * Deactivate the page 3 times out of 32.
1463		 */
1464		head = 0;
1465	} else {
1466		/*
1467		 * Cache the page 28 times out of every 32.  Note that
1468		 * the page is deactivated instead of cached, but placed
1469		 * at the head of the queue instead of the tail.
1470		 */
1471		head = 1;
1472	}
1473	_vm_page_deactivate(m, head);
1474}
1475
1476/*
1477 * Grab a page, waiting until we are waken up due to the page
1478 * changing state.  We keep on waiting, if the page continues
1479 * to be in the object.  If the page doesn't exist, first allocate it
1480 * and then conditionally zero it.
1481 *
1482 * This routine may block.
1483 */
1484vm_page_t
1485vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1486{
1487	vm_page_t m;
1488
1489	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1490retrylookup:
1491	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1492		if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
1493			if ((allocflags & VM_ALLOC_RETRY) == 0)
1494				return (NULL);
1495			goto retrylookup;
1496		} else {
1497			if ((allocflags & VM_ALLOC_WIRED) != 0) {
1498				vm_page_lock_queues();
1499				vm_page_wire(m);
1500				vm_page_unlock_queues();
1501			}
1502			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1503				vm_page_busy(m);
1504			return (m);
1505		}
1506	}
1507	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1508	if (m == NULL) {
1509		VM_OBJECT_UNLOCK(object);
1510		VM_WAIT;
1511		VM_OBJECT_LOCK(object);
1512		if ((allocflags & VM_ALLOC_RETRY) == 0)
1513			return (NULL);
1514		goto retrylookup;
1515	}
1516	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1517		pmap_zero_page(m);
1518	return (m);
1519}
1520
1521/*
1522 * Mapping function for valid bits or for dirty bits in
1523 * a page.  May not block.
1524 *
1525 * Inputs are required to range within a page.
1526 */
1527inline int
1528vm_page_bits(int base, int size)
1529{
1530	int first_bit;
1531	int last_bit;
1532
1533	KASSERT(
1534	    base + size <= PAGE_SIZE,
1535	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1536	);
1537
1538	if (size == 0)		/* handle degenerate case */
1539		return (0);
1540
1541	first_bit = base >> DEV_BSHIFT;
1542	last_bit = (base + size - 1) >> DEV_BSHIFT;
1543
1544	return ((2 << last_bit) - (1 << first_bit));
1545}
1546
1547/*
1548 *	vm_page_set_validclean:
1549 *
1550 *	Sets portions of a page valid and clean.  The arguments are expected
1551 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1552 *	of any partial chunks touched by the range.  The invalid portion of
1553 *	such chunks will be zero'd.
1554 *
1555 *	This routine may not block.
1556 *
1557 *	(base + size) must be less then or equal to PAGE_SIZE.
1558 */
1559void
1560vm_page_set_validclean(vm_page_t m, int base, int size)
1561{
1562	int pagebits;
1563	int frag;
1564	int endoff;
1565
1566	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1567	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1568	if (size == 0)	/* handle degenerate case */
1569		return;
1570
1571	/*
1572	 * If the base is not DEV_BSIZE aligned and the valid
1573	 * bit is clear, we have to zero out a portion of the
1574	 * first block.
1575	 */
1576	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1577	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1578		pmap_zero_page_area(m, frag, base - frag);
1579
1580	/*
1581	 * If the ending offset is not DEV_BSIZE aligned and the
1582	 * valid bit is clear, we have to zero out a portion of
1583	 * the last block.
1584	 */
1585	endoff = base + size;
1586	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1587	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1588		pmap_zero_page_area(m, endoff,
1589		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1590
1591	/*
1592	 * Set valid, clear dirty bits.  If validating the entire
1593	 * page we can safely clear the pmap modify bit.  We also
1594	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
1595	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1596	 * be set again.
1597	 *
1598	 * We set valid bits inclusive of any overlap, but we can only
1599	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1600	 * the range.
1601	 */
1602	pagebits = vm_page_bits(base, size);
1603	m->valid |= pagebits;
1604#if 0	/* NOT YET */
1605	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1606		frag = DEV_BSIZE - frag;
1607		base += frag;
1608		size -= frag;
1609		if (size < 0)
1610			size = 0;
1611	}
1612	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1613#endif
1614	m->dirty &= ~pagebits;
1615	if (base == 0 && size == PAGE_SIZE) {
1616		pmap_clear_modify(m);
1617		m->oflags &= ~VPO_NOSYNC;
1618	}
1619}
1620
1621void
1622vm_page_clear_dirty(vm_page_t m, int base, int size)
1623{
1624
1625	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1626	m->dirty &= ~vm_page_bits(base, size);
1627}
1628
1629/*
1630 *	vm_page_set_invalid:
1631 *
1632 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1633 *	valid and dirty bits for the effected areas are cleared.
1634 *
1635 *	May not block.
1636 */
1637void
1638vm_page_set_invalid(vm_page_t m, int base, int size)
1639{
1640	int bits;
1641
1642	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1643	bits = vm_page_bits(base, size);
1644	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1645	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1646		pmap_remove_all(m);
1647	m->valid &= ~bits;
1648	m->dirty &= ~bits;
1649	m->object->generation++;
1650}
1651
1652/*
1653 * vm_page_zero_invalid()
1654 *
1655 *	The kernel assumes that the invalid portions of a page contain
1656 *	garbage, but such pages can be mapped into memory by user code.
1657 *	When this occurs, we must zero out the non-valid portions of the
1658 *	page so user code sees what it expects.
1659 *
1660 *	Pages are most often semi-valid when the end of a file is mapped
1661 *	into memory and the file's size is not page aligned.
1662 */
1663void
1664vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1665{
1666	int b;
1667	int i;
1668
1669	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1670	/*
1671	 * Scan the valid bits looking for invalid sections that
1672	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1673	 * valid bit may be set ) have already been zerod by
1674	 * vm_page_set_validclean().
1675	 */
1676	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1677		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1678		    (m->valid & (1 << i))
1679		) {
1680			if (i > b) {
1681				pmap_zero_page_area(m,
1682				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1683			}
1684			b = i + 1;
1685		}
1686	}
1687
1688	/*
1689	 * setvalid is TRUE when we can safely set the zero'd areas
1690	 * as being valid.  We can do this if there are no cache consistancy
1691	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1692	 */
1693	if (setvalid)
1694		m->valid = VM_PAGE_BITS_ALL;
1695}
1696
1697/*
1698 *	vm_page_is_valid:
1699 *
1700 *	Is (partial) page valid?  Note that the case where size == 0
1701 *	will return FALSE in the degenerate case where the page is
1702 *	entirely invalid, and TRUE otherwise.
1703 *
1704 *	May not block.
1705 */
1706int
1707vm_page_is_valid(vm_page_t m, int base, int size)
1708{
1709	int bits = vm_page_bits(base, size);
1710
1711	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1712	if (m->valid && ((m->valid & bits) == bits))
1713		return 1;
1714	else
1715		return 0;
1716}
1717
1718/*
1719 * update dirty bits from pmap/mmu.  May not block.
1720 */
1721void
1722vm_page_test_dirty(vm_page_t m)
1723{
1724	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1725		vm_page_dirty(m);
1726	}
1727}
1728
1729int so_zerocp_fullpage = 0;
1730
1731void
1732vm_page_cowfault(vm_page_t m)
1733{
1734	vm_page_t mnew;
1735	vm_object_t object;
1736	vm_pindex_t pindex;
1737
1738	object = m->object;
1739	pindex = m->pindex;
1740
1741 retry_alloc:
1742	pmap_remove_all(m);
1743	vm_page_remove(m);
1744	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
1745	if (mnew == NULL) {
1746		vm_page_insert(m, object, pindex);
1747		vm_page_unlock_queues();
1748		VM_OBJECT_UNLOCK(object);
1749		VM_WAIT;
1750		VM_OBJECT_LOCK(object);
1751		vm_page_lock_queues();
1752		goto retry_alloc;
1753	}
1754
1755	if (m->cow == 0) {
1756		/*
1757		 * check to see if we raced with an xmit complete when
1758		 * waiting to allocate a page.  If so, put things back
1759		 * the way they were
1760		 */
1761		vm_page_free(mnew);
1762		vm_page_insert(m, object, pindex);
1763	} else { /* clear COW & copy page */
1764		if (!so_zerocp_fullpage)
1765			pmap_copy_page(m, mnew);
1766		mnew->valid = VM_PAGE_BITS_ALL;
1767		vm_page_dirty(mnew);
1768		mnew->wire_count = m->wire_count - m->cow;
1769		m->wire_count = m->cow;
1770	}
1771}
1772
1773void
1774vm_page_cowclear(vm_page_t m)
1775{
1776
1777	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1778	if (m->cow) {
1779		m->cow--;
1780		/*
1781		 * let vm_fault add back write permission  lazily
1782		 */
1783	}
1784	/*
1785	 *  sf_buf_free() will free the page, so we needn't do it here
1786	 */
1787}
1788
1789void
1790vm_page_cowsetup(vm_page_t m)
1791{
1792
1793	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1794	m->cow++;
1795	pmap_remove_write(m);
1796}
1797
1798#include "opt_ddb.h"
1799#ifdef DDB
1800#include <sys/kernel.h>
1801
1802#include <ddb/ddb.h>
1803
1804DB_SHOW_COMMAND(page, vm_page_print_page_info)
1805{
1806	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1807	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1808	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1809	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1810	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1811	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1812	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1813	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1814	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1815	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1816}
1817
1818DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1819{
1820	int i;
1821	db_printf("PQ_FREE:");
1822	for (i = 0; i < PQ_NUMCOLORS; i++) {
1823		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1824	}
1825	db_printf("\n");
1826
1827	db_printf("PQ_CACHE:");
1828	for (i = 0; i < PQ_NUMCOLORS; i++) {
1829		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1830	}
1831	db_printf("\n");
1832
1833	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1834		vm_page_queues[PQ_ACTIVE].lcnt,
1835		vm_page_queues[PQ_INACTIVE].lcnt);
1836}
1837#endif /* DDB */
1838