vm_page.c revision 164100
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33 */
34
35/*-
36 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37 * All rights reserved.
38 *
39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 *
41 * Permission to use, copy, modify and distribute this software and
42 * its documentation is hereby granted, provided that both the copyright
43 * notice and this permission notice appear in all copies of the
44 * software, derivative works or modified versions, and any portions
45 * thereof, and that both notices appear in supporting documentation.
46 *
47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 *
51 * Carnegie Mellon requests users of this software to return to
52 *
53 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54 *  School of Computer Science
55 *  Carnegie Mellon University
56 *  Pittsburgh PA 15213-3890
57 *
58 * any improvements or extensions that they make and grant Carnegie the
59 * rights to redistribute these changes.
60 */
61
62/*
63 *			GENERAL RULES ON VM_PAGE MANIPULATION
64 *
65 *	- a pageq mutex is required when adding or removing a page from a
66 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67 *	  busy state of a page.
68 *
69 *	- a hash chain mutex is required when associating or disassociating
70 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71 *	  regardless of other mutexes or the busy state of a page.
72 *
73 *	- either a hash chain mutex OR a busied page is required in order
74 *	  to modify the page flags.  A hash chain mutex must be obtained in
75 *	  order to busy a page.  A page's flags cannot be modified by a
76 *	  hash chain mutex if the page is marked busy.
77 *
78 *	- The object memq mutex is held when inserting or removing
79 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80 *	  is different from the object's main mutex.
81 *
82 *	Generally speaking, you have to be aware of side effects when running
83 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85 *	vm_page_cache(), vm_page_activate(), and a number of other routines
86 *	will release the hash chain mutex for you.  Intermediate manipulation
87 *	routines such as vm_page_flag_set() expect the hash chain to be held
88 *	on entry and the hash chain will remain held on return.
89 *
90 *	pageq scanning can only occur with the pageq in question locked.
91 *	We have a known bottleneck with the active queue, but the cache
92 *	and free queues are actually arrays already.
93 */
94
95/*
96 *	Resident memory management module.
97 */
98
99#include <sys/cdefs.h>
100__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 164100 2006-11-08 18:43:47Z alc $");
101
102#include <sys/param.h>
103#include <sys/systm.h>
104#include <sys/lock.h>
105#include <sys/kernel.h>
106#include <sys/malloc.h>
107#include <sys/mutex.h>
108#include <sys/proc.h>
109#include <sys/sysctl.h>
110#include <sys/vmmeter.h>
111#include <sys/vnode.h>
112
113#include <vm/vm.h>
114#include <vm/vm_param.h>
115#include <vm/vm_kern.h>
116#include <vm/vm_object.h>
117#include <vm/vm_page.h>
118#include <vm/vm_pageout.h>
119#include <vm/vm_pager.h>
120#include <vm/vm_extern.h>
121#include <vm/uma.h>
122#include <vm/uma_int.h>
123
124#include <machine/md_var.h>
125
126/*
127 *	Associated with page of user-allocatable memory is a
128 *	page structure.
129 */
130
131struct mtx vm_page_queue_mtx;
132struct mtx vm_page_queue_free_mtx;
133
134vm_page_t vm_page_array = 0;
135int vm_page_array_size = 0;
136long first_page = 0;
137int vm_page_zero_count = 0;
138
139static int boot_pages = UMA_BOOT_PAGES;
140TUNABLE_INT("vm.boot_pages", &boot_pages);
141SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
142	"number of pages allocated for bootstrapping the VM system");
143
144/*
145 *	vm_set_page_size:
146 *
147 *	Sets the page size, perhaps based upon the memory
148 *	size.  Must be called before any use of page-size
149 *	dependent functions.
150 */
151void
152vm_set_page_size(void)
153{
154	if (cnt.v_page_size == 0)
155		cnt.v_page_size = PAGE_SIZE;
156	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
157		panic("vm_set_page_size: page size not a power of two");
158}
159
160/*
161 *	vm_page_blacklist_lookup:
162 *
163 *	See if a physical address in this page has been listed
164 *	in the blacklist tunable.  Entries in the tunable are
165 *	separated by spaces or commas.  If an invalid integer is
166 *	encountered then the rest of the string is skipped.
167 */
168static int
169vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
170{
171	vm_paddr_t bad;
172	char *cp, *pos;
173
174	for (pos = list; *pos != '\0'; pos = cp) {
175		bad = strtoq(pos, &cp, 0);
176		if (*cp != '\0') {
177			if (*cp == ' ' || *cp == ',') {
178				cp++;
179				if (cp == pos)
180					continue;
181			} else
182				break;
183		}
184		if (pa == trunc_page(bad))
185			return (1);
186	}
187	return (0);
188}
189
190/*
191 *	vm_page_startup:
192 *
193 *	Initializes the resident memory module.
194 *
195 *	Allocates memory for the page cells, and
196 *	for the object/offset-to-page hash table headers.
197 *	Each page cell is initialized and placed on the free list.
198 */
199vm_offset_t
200vm_page_startup(vm_offset_t vaddr)
201{
202	vm_offset_t mapped;
203	vm_size_t npages;
204	vm_paddr_t page_range;
205	vm_paddr_t new_end;
206	int i;
207	vm_paddr_t pa;
208	int nblocks;
209	vm_paddr_t last_pa;
210	char *list;
211
212	/* the biggest memory array is the second group of pages */
213	vm_paddr_t end;
214	vm_paddr_t biggestsize;
215	int biggestone;
216
217	vm_paddr_t total;
218
219	total = 0;
220	biggestsize = 0;
221	biggestone = 0;
222	nblocks = 0;
223	vaddr = round_page(vaddr);
224
225	for (i = 0; phys_avail[i + 1]; i += 2) {
226		phys_avail[i] = round_page(phys_avail[i]);
227		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
228	}
229
230	for (i = 0; phys_avail[i + 1]; i += 2) {
231		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
232
233		if (size > biggestsize) {
234			biggestone = i;
235			biggestsize = size;
236		}
237		++nblocks;
238		total += size;
239	}
240
241	end = phys_avail[biggestone+1];
242
243	/*
244	 * Initialize the locks.
245	 */
246	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
247	    MTX_RECURSE);
248	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
249	    MTX_SPIN);
250
251	/*
252	 * Initialize the queue headers for the free queue, the active queue
253	 * and the inactive queue.
254	 */
255	vm_pageq_init();
256
257	/*
258	 * Allocate memory for use when boot strapping the kernel memory
259	 * allocator.
260	 */
261	new_end = end - (boot_pages * UMA_SLAB_SIZE);
262	new_end = trunc_page(new_end);
263	mapped = pmap_map(&vaddr, new_end, end,
264	    VM_PROT_READ | VM_PROT_WRITE);
265	bzero((void *)mapped, end - new_end);
266	uma_startup((void *)mapped, boot_pages);
267
268#if defined(__amd64__) || defined(__i386__)
269	/*
270	 * Allocate a bitmap to indicate that a random physical page
271	 * needs to be included in a minidump.
272	 *
273	 * The amd64 port needs this to indicate which direct map pages
274	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
275	 *
276	 * However, i386 still needs this workspace internally within the
277	 * minidump code.  In theory, they are not needed on i386, but are
278	 * included should the sf_buf code decide to use them.
279	 */
280	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
281	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
282	new_end -= vm_page_dump_size;
283	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
284	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
285	bzero((void *)vm_page_dump, vm_page_dump_size);
286#endif
287	/*
288	 * Compute the number of pages of memory that will be available for
289	 * use (taking into account the overhead of a page structure per
290	 * page).
291	 */
292	first_page = phys_avail[0] / PAGE_SIZE;
293	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
294	npages = (total - (page_range * sizeof(struct vm_page)) -
295	    (end - new_end)) / PAGE_SIZE;
296	end = new_end;
297
298	/*
299	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
300	 */
301	vaddr += PAGE_SIZE;
302
303	/*
304	 * Initialize the mem entry structures now, and put them in the free
305	 * queue.
306	 */
307	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
308	mapped = pmap_map(&vaddr, new_end, end,
309	    VM_PROT_READ | VM_PROT_WRITE);
310	vm_page_array = (vm_page_t) mapped;
311#ifdef __amd64__
312	/*
313	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
314	 * so the pages must be tracked for a crashdump to include this data.
315	 * This includes the vm_page_array and the early UMA bootstrap pages.
316	 */
317	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
318		dump_add_page(pa);
319#endif
320	phys_avail[biggestone + 1] = new_end;
321
322	/*
323	 * This assertion tests the hypothesis that npages and total are
324	 * redundant.  XXX
325	 */
326	page_range = 0;
327	for (i = 0; phys_avail[i + 1] != 0; i += 2)
328		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
329	KASSERT(page_range == npages,
330	    ("vm_page_startup: inconsistent page counts"));
331
332	/*
333	 * Clear all of the page structures
334	 */
335	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
336	vm_page_array_size = page_range;
337
338	/*
339	 * Construct the free queue(s) in descending order (by physical
340	 * address) so that the first 16MB of physical memory is allocated
341	 * last rather than first.  On large-memory machines, this avoids
342	 * the exhaustion of low physical memory before isa_dma_init has run.
343	 */
344	cnt.v_page_count = 0;
345	cnt.v_free_count = 0;
346	list = getenv("vm.blacklist");
347	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
348		pa = phys_avail[i];
349		last_pa = phys_avail[i + 1];
350		while (pa < last_pa) {
351			if (list != NULL &&
352			    vm_page_blacklist_lookup(list, pa))
353				printf("Skipping page with pa 0x%jx\n",
354				    (uintmax_t)pa);
355			else
356				vm_pageq_add_new_page(pa);
357			pa += PAGE_SIZE;
358		}
359	}
360	freeenv(list);
361	return (vaddr);
362}
363
364void
365vm_page_flag_set(vm_page_t m, unsigned short bits)
366{
367
368	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
369	m->flags |= bits;
370}
371
372void
373vm_page_flag_clear(vm_page_t m, unsigned short bits)
374{
375
376	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
377	m->flags &= ~bits;
378}
379
380void
381vm_page_busy(vm_page_t m)
382{
383
384	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
385	KASSERT((m->oflags & VPO_BUSY) == 0,
386	    ("vm_page_busy: page already busy!!!"));
387	m->oflags |= VPO_BUSY;
388}
389
390/*
391 *      vm_page_flash:
392 *
393 *      wakeup anyone waiting for the page.
394 */
395void
396vm_page_flash(vm_page_t m)
397{
398
399	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
400	if (m->oflags & VPO_WANTED) {
401		m->oflags &= ~VPO_WANTED;
402		wakeup(m);
403	}
404}
405
406/*
407 *      vm_page_wakeup:
408 *
409 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
410 *      page.
411 *
412 */
413void
414vm_page_wakeup(vm_page_t m)
415{
416
417	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
418	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
419	m->oflags &= ~VPO_BUSY;
420	vm_page_flash(m);
421}
422
423void
424vm_page_io_start(vm_page_t m)
425{
426
427	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
428	m->busy++;
429}
430
431void
432vm_page_io_finish(vm_page_t m)
433{
434
435	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
436	m->busy--;
437	if (m->busy == 0)
438		vm_page_flash(m);
439}
440
441/*
442 * Keep page from being freed by the page daemon
443 * much of the same effect as wiring, except much lower
444 * overhead and should be used only for *very* temporary
445 * holding ("wiring").
446 */
447void
448vm_page_hold(vm_page_t mem)
449{
450
451	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
452        mem->hold_count++;
453}
454
455void
456vm_page_unhold(vm_page_t mem)
457{
458
459	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
460	--mem->hold_count;
461	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
462	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
463		vm_page_free_toq(mem);
464}
465
466/*
467 *	vm_page_free:
468 *
469 *	Free a page
470 *
471 *	The clearing of PG_ZERO is a temporary safety until the code can be
472 *	reviewed to determine that PG_ZERO is being properly cleared on
473 *	write faults or maps.  PG_ZERO was previously cleared in
474 *	vm_page_alloc().
475 */
476void
477vm_page_free(vm_page_t m)
478{
479	vm_page_flag_clear(m, PG_ZERO);
480	vm_page_free_toq(m);
481	vm_page_zero_idle_wakeup();
482}
483
484/*
485 *	vm_page_free_zero:
486 *
487 *	Free a page to the zerod-pages queue
488 */
489void
490vm_page_free_zero(vm_page_t m)
491{
492	vm_page_flag_set(m, PG_ZERO);
493	vm_page_free_toq(m);
494}
495
496/*
497 *	vm_page_sleep:
498 *
499 *	Sleep and release the page queues lock.
500 *
501 *	The object containing the given page must be locked.
502 */
503void
504vm_page_sleep(vm_page_t m, const char *msg)
505{
506
507	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
508	if (!mtx_owned(&vm_page_queue_mtx))
509		vm_page_lock_queues();
510	vm_page_flag_set(m, PG_REFERENCED);
511	vm_page_unlock_queues();
512
513	/*
514	 * It's possible that while we sleep, the page will get
515	 * unbusied and freed.  If we are holding the object
516	 * lock, we will assume we hold a reference to the object
517	 * such that even if m->object changes, we can re-lock
518	 * it.
519	 */
520	m->oflags |= VPO_WANTED;
521	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
522}
523
524/*
525 *	vm_page_dirty:
526 *
527 *	make page all dirty
528 */
529void
530vm_page_dirty(vm_page_t m)
531{
532	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_CACHE,
533	    ("vm_page_dirty: page in cache!"));
534	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_FREE,
535	    ("vm_page_dirty: page is free!"));
536	m->dirty = VM_PAGE_BITS_ALL;
537}
538
539/*
540 *	vm_page_splay:
541 *
542 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
543 *	the vm_page containing the given pindex.  If, however, that
544 *	pindex is not found in the vm_object, returns a vm_page that is
545 *	adjacent to the pindex, coming before or after it.
546 */
547vm_page_t
548vm_page_splay(vm_pindex_t pindex, vm_page_t root)
549{
550	struct vm_page dummy;
551	vm_page_t lefttreemax, righttreemin, y;
552
553	if (root == NULL)
554		return (root);
555	lefttreemax = righttreemin = &dummy;
556	for (;; root = y) {
557		if (pindex < root->pindex) {
558			if ((y = root->left) == NULL)
559				break;
560			if (pindex < y->pindex) {
561				/* Rotate right. */
562				root->left = y->right;
563				y->right = root;
564				root = y;
565				if ((y = root->left) == NULL)
566					break;
567			}
568			/* Link into the new root's right tree. */
569			righttreemin->left = root;
570			righttreemin = root;
571		} else if (pindex > root->pindex) {
572			if ((y = root->right) == NULL)
573				break;
574			if (pindex > y->pindex) {
575				/* Rotate left. */
576				root->right = y->left;
577				y->left = root;
578				root = y;
579				if ((y = root->right) == NULL)
580					break;
581			}
582			/* Link into the new root's left tree. */
583			lefttreemax->right = root;
584			lefttreemax = root;
585		} else
586			break;
587	}
588	/* Assemble the new root. */
589	lefttreemax->right = root->left;
590	righttreemin->left = root->right;
591	root->left = dummy.right;
592	root->right = dummy.left;
593	return (root);
594}
595
596/*
597 *	vm_page_insert:		[ internal use only ]
598 *
599 *	Inserts the given mem entry into the object and object list.
600 *
601 *	The pagetables are not updated but will presumably fault the page
602 *	in if necessary, or if a kernel page the caller will at some point
603 *	enter the page into the kernel's pmap.  We are not allowed to block
604 *	here so we *can't* do this anyway.
605 *
606 *	The object and page must be locked.
607 *	This routine may not block.
608 */
609void
610vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
611{
612	vm_page_t root;
613
614	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
615	if (m->object != NULL)
616		panic("vm_page_insert: page already inserted");
617
618	/*
619	 * Record the object/offset pair in this page
620	 */
621	m->object = object;
622	m->pindex = pindex;
623
624	/*
625	 * Now link into the object's ordered list of backed pages.
626	 */
627	root = object->root;
628	if (root == NULL) {
629		m->left = NULL;
630		m->right = NULL;
631		TAILQ_INSERT_TAIL(&object->memq, m, listq);
632	} else {
633		root = vm_page_splay(pindex, root);
634		if (pindex < root->pindex) {
635			m->left = root->left;
636			m->right = root;
637			root->left = NULL;
638			TAILQ_INSERT_BEFORE(root, m, listq);
639		} else if (pindex == root->pindex)
640			panic("vm_page_insert: offset already allocated");
641		else {
642			m->right = root->right;
643			m->left = root;
644			root->right = NULL;
645			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
646		}
647	}
648	object->root = m;
649	object->generation++;
650
651	/*
652	 * show that the object has one more resident page.
653	 */
654	object->resident_page_count++;
655	/*
656	 * Hold the vnode until the last page is released.
657	 */
658	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
659		vhold((struct vnode *)object->handle);
660
661	/*
662	 * Since we are inserting a new and possibly dirty page,
663	 * update the object's OBJ_MIGHTBEDIRTY flag.
664	 */
665	if (m->flags & PG_WRITEABLE)
666		vm_object_set_writeable_dirty(object);
667}
668
669/*
670 *	vm_page_remove:
671 *				NOTE: used by device pager as well -wfj
672 *
673 *	Removes the given mem entry from the object/offset-page
674 *	table and the object page list, but do not invalidate/terminate
675 *	the backing store.
676 *
677 *	The object and page must be locked.
678 *	The underlying pmap entry (if any) is NOT removed here.
679 *	This routine may not block.
680 */
681void
682vm_page_remove(vm_page_t m)
683{
684	vm_object_t object;
685	vm_page_t root;
686
687	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
688	if ((object = m->object) == NULL)
689		return;
690	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
691	if (m->oflags & VPO_BUSY) {
692		m->oflags &= ~VPO_BUSY;
693		vm_page_flash(m);
694	}
695
696	/*
697	 * Now remove from the object's list of backed pages.
698	 */
699	if (m != object->root)
700		vm_page_splay(m->pindex, object->root);
701	if (m->left == NULL)
702		root = m->right;
703	else {
704		root = vm_page_splay(m->pindex, m->left);
705		root->right = m->right;
706	}
707	object->root = root;
708	TAILQ_REMOVE(&object->memq, m, listq);
709
710	/*
711	 * And show that the object has one fewer resident page.
712	 */
713	object->resident_page_count--;
714	object->generation++;
715	/*
716	 * The vnode may now be recycled.
717	 */
718	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
719		vdrop((struct vnode *)object->handle);
720
721	m->object = NULL;
722}
723
724/*
725 *	vm_page_lookup:
726 *
727 *	Returns the page associated with the object/offset
728 *	pair specified; if none is found, NULL is returned.
729 *
730 *	The object must be locked.
731 *	This routine may not block.
732 *	This is a critical path routine
733 */
734vm_page_t
735vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
736{
737	vm_page_t m;
738
739	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
740	if ((m = object->root) != NULL && m->pindex != pindex) {
741		m = vm_page_splay(pindex, m);
742		if ((object->root = m)->pindex != pindex)
743			m = NULL;
744	}
745	return (m);
746}
747
748/*
749 *	vm_page_rename:
750 *
751 *	Move the given memory entry from its
752 *	current object to the specified target object/offset.
753 *
754 *	The object must be locked.
755 *	This routine may not block.
756 *
757 *	Note: swap associated with the page must be invalidated by the move.  We
758 *	      have to do this for several reasons:  (1) we aren't freeing the
759 *	      page, (2) we are dirtying the page, (3) the VM system is probably
760 *	      moving the page from object A to B, and will then later move
761 *	      the backing store from A to B and we can't have a conflict.
762 *
763 *	Note: we *always* dirty the page.  It is necessary both for the
764 *	      fact that we moved it, and because we may be invalidating
765 *	      swap.  If the page is on the cache, we have to deactivate it
766 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
767 *	      on the cache.
768 */
769void
770vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
771{
772
773	vm_page_remove(m);
774	vm_page_insert(m, new_object, new_pindex);
775	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
776		vm_page_deactivate(m);
777	vm_page_dirty(m);
778}
779
780/*
781 *	vm_page_select_cache:
782 *
783 *	Move a page of the given color from the cache queue to the free
784 *	queue.  As pages might be found, but are not applicable, they are
785 *	deactivated.
786 *
787 *	This routine may not block.
788 */
789vm_page_t
790vm_page_select_cache(int color)
791{
792	vm_object_t object;
793	vm_page_t m;
794	boolean_t was_trylocked;
795
796	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
797	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
798		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
799		KASSERT(!pmap_page_is_mapped(m),
800		    ("Found mapped cache page %p", m));
801		KASSERT((m->flags & PG_UNMANAGED) == 0,
802		    ("Found unmanaged cache page %p", m));
803		KASSERT(m->wire_count == 0, ("Found wired cache page %p", m));
804		if (m->hold_count == 0 && (object = m->object,
805		    (was_trylocked = VM_OBJECT_TRYLOCK(object)) ||
806		    VM_OBJECT_LOCKED(object))) {
807			KASSERT((m->oflags & VPO_BUSY) == 0 && m->busy == 0,
808			    ("Found busy cache page %p", m));
809			vm_page_free(m);
810			if (was_trylocked)
811				VM_OBJECT_UNLOCK(object);
812			break;
813		}
814		vm_page_deactivate(m);
815	}
816	return (m);
817}
818
819/*
820 *	vm_page_alloc:
821 *
822 *	Allocate and return a memory cell associated
823 *	with this VM object/offset pair.
824 *
825 *	page_req classes:
826 *	VM_ALLOC_NORMAL		normal process request
827 *	VM_ALLOC_SYSTEM		system *really* needs a page
828 *	VM_ALLOC_INTERRUPT	interrupt time request
829 *	VM_ALLOC_ZERO		zero page
830 *
831 *	This routine may not block.
832 *
833 *	Additional special handling is required when called from an
834 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
835 *	the page cache in this case.
836 */
837vm_page_t
838vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
839{
840	vm_page_t m = NULL;
841	int color, flags, page_req;
842
843	page_req = req & VM_ALLOC_CLASS_MASK;
844	KASSERT(curthread->td_intr_nesting_level == 0 ||
845	    page_req == VM_ALLOC_INTERRUPT,
846	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
847
848	if ((req & VM_ALLOC_NOOBJ) == 0) {
849		KASSERT(object != NULL,
850		    ("vm_page_alloc: NULL object."));
851		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
852		color = (pindex + object->pg_color) & PQ_COLORMASK;
853	} else
854		color = pindex & PQ_COLORMASK;
855
856	/*
857	 * The pager is allowed to eat deeper into the free page list.
858	 */
859	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
860		page_req = VM_ALLOC_SYSTEM;
861	};
862
863loop:
864	mtx_lock_spin(&vm_page_queue_free_mtx);
865	if (cnt.v_free_count > cnt.v_free_reserved ||
866	    (page_req == VM_ALLOC_SYSTEM &&
867	     cnt.v_cache_count == 0 &&
868	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
869	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
870		/*
871		 * Allocate from the free queue if the number of free pages
872		 * exceeds the minimum for the request class.
873		 */
874		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
875	} else if (page_req != VM_ALLOC_INTERRUPT) {
876		mtx_unlock_spin(&vm_page_queue_free_mtx);
877		/*
878		 * Allocatable from cache (non-interrupt only).  On success,
879		 * we must free the page and try again, thus ensuring that
880		 * cnt.v_*_free_min counters are replenished.
881		 */
882		vm_page_lock_queues();
883		if ((m = vm_page_select_cache(color)) == NULL) {
884			KASSERT(cnt.v_cache_count == 0,
885			    ("vm_page_alloc: cache queue is missing %d pages",
886			    cnt.v_cache_count));
887			vm_page_unlock_queues();
888			atomic_add_int(&vm_pageout_deficit, 1);
889			pagedaemon_wakeup();
890
891			if (page_req != VM_ALLOC_SYSTEM)
892				return (NULL);
893
894			mtx_lock_spin(&vm_page_queue_free_mtx);
895			if (cnt.v_free_count <= cnt.v_interrupt_free_min) {
896				mtx_unlock_spin(&vm_page_queue_free_mtx);
897				return (NULL);
898			}
899			m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
900		} else {
901			vm_page_unlock_queues();
902			goto loop;
903		}
904	} else {
905		/*
906		 * Not allocatable from cache from interrupt, give up.
907		 */
908		mtx_unlock_spin(&vm_page_queue_free_mtx);
909		atomic_add_int(&vm_pageout_deficit, 1);
910		pagedaemon_wakeup();
911		return (NULL);
912	}
913
914	/*
915	 *  At this point we had better have found a good page.
916	 */
917
918	KASSERT(
919	    m != NULL,
920	    ("vm_page_alloc(): missing page on free queue")
921	);
922
923	/*
924	 * Remove from free queue
925	 */
926	vm_pageq_remove_nowakeup(m);
927
928	/*
929	 * Initialize structure.  Only the PG_ZERO flag is inherited.
930	 */
931	flags = 0;
932	if (m->flags & PG_ZERO) {
933		vm_page_zero_count--;
934		if (req & VM_ALLOC_ZERO)
935			flags = PG_ZERO;
936	}
937	m->flags = flags;
938	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
939		m->oflags = 0;
940	else
941		m->oflags = VPO_BUSY;
942	if (req & VM_ALLOC_WIRED) {
943		atomic_add_int(&cnt.v_wire_count, 1);
944		m->wire_count = 1;
945	} else
946		m->wire_count = 0;
947	m->hold_count = 0;
948	m->act_count = 0;
949	m->busy = 0;
950	m->valid = 0;
951	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
952	mtx_unlock_spin(&vm_page_queue_free_mtx);
953
954	if ((req & VM_ALLOC_NOOBJ) == 0)
955		vm_page_insert(m, object, pindex);
956	else
957		m->pindex = pindex;
958
959	/*
960	 * Don't wakeup too often - wakeup the pageout daemon when
961	 * we would be nearly out of memory.
962	 */
963	if (vm_paging_needed())
964		pagedaemon_wakeup();
965
966	return (m);
967}
968
969/*
970 *	vm_wait:	(also see VM_WAIT macro)
971 *
972 *	Block until free pages are available for allocation
973 *	- Called in various places before memory allocations.
974 */
975void
976vm_wait(void)
977{
978
979	vm_page_lock_queues();
980	if (curproc == pageproc) {
981		vm_pageout_pages_needed = 1;
982		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
983		    PDROP | PSWP, "VMWait", 0);
984	} else {
985		if (!vm_pages_needed) {
986			vm_pages_needed = 1;
987			wakeup(&vm_pages_needed);
988		}
989		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
990		    "vmwait", 0);
991	}
992}
993
994/*
995 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
996 *
997 *	Block until free pages are available for allocation
998 *	- Called only in vm_fault so that processes page faulting
999 *	  can be easily tracked.
1000 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1001 *	  processes will be able to grab memory first.  Do not change
1002 *	  this balance without careful testing first.
1003 */
1004void
1005vm_waitpfault(void)
1006{
1007
1008	vm_page_lock_queues();
1009	if (!vm_pages_needed) {
1010		vm_pages_needed = 1;
1011		wakeup(&vm_pages_needed);
1012	}
1013	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
1014	    "pfault", 0);
1015}
1016
1017/*
1018 *	vm_page_activate:
1019 *
1020 *	Put the specified page on the active list (if appropriate).
1021 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1022 *	mess with it.
1023 *
1024 *	The page queues must be locked.
1025 *	This routine may not block.
1026 */
1027void
1028vm_page_activate(vm_page_t m)
1029{
1030
1031	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1032	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
1033		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1034			cnt.v_reactivated++;
1035		vm_pageq_remove(m);
1036		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1037			if (m->act_count < ACT_INIT)
1038				m->act_count = ACT_INIT;
1039			vm_pageq_enqueue(PQ_ACTIVE, m);
1040		}
1041	} else {
1042		if (m->act_count < ACT_INIT)
1043			m->act_count = ACT_INIT;
1044	}
1045}
1046
1047/*
1048 *	vm_page_free_wakeup:
1049 *
1050 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1051 *	routine is called when a page has been added to the cache or free
1052 *	queues.
1053 *
1054 *	The page queues must be locked.
1055 *	This routine may not block.
1056 */
1057static inline void
1058vm_page_free_wakeup(void)
1059{
1060
1061	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1062	/*
1063	 * if pageout daemon needs pages, then tell it that there are
1064	 * some free.
1065	 */
1066	if (vm_pageout_pages_needed &&
1067	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1068		wakeup(&vm_pageout_pages_needed);
1069		vm_pageout_pages_needed = 0;
1070	}
1071	/*
1072	 * wakeup processes that are waiting on memory if we hit a
1073	 * high water mark. And wakeup scheduler process if we have
1074	 * lots of memory. this process will swapin processes.
1075	 */
1076	if (vm_pages_needed && !vm_page_count_min()) {
1077		vm_pages_needed = 0;
1078		wakeup(&cnt.v_free_count);
1079	}
1080}
1081
1082/*
1083 *	vm_page_free_toq:
1084 *
1085 *	Returns the given page to the PQ_FREE list,
1086 *	disassociating it with any VM object.
1087 *
1088 *	Object and page must be locked prior to entry.
1089 *	This routine may not block.
1090 */
1091
1092void
1093vm_page_free_toq(vm_page_t m)
1094{
1095	struct vpgqueues *pq;
1096
1097	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1098	KASSERT(!pmap_page_is_mapped(m),
1099	    ("vm_page_free_toq: freeing mapped page %p", m));
1100	cnt.v_tfree++;
1101
1102	if (m->busy || VM_PAGE_INQUEUE1(m, PQ_FREE)) {
1103		printf(
1104		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1105		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1106		    m->hold_count);
1107		if (VM_PAGE_INQUEUE1(m, PQ_FREE))
1108			panic("vm_page_free: freeing free page");
1109		else
1110			panic("vm_page_free: freeing busy page");
1111	}
1112
1113	/*
1114	 * unqueue, then remove page.  Note that we cannot destroy
1115	 * the page here because we do not want to call the pager's
1116	 * callback routine until after we've put the page on the
1117	 * appropriate free queue.
1118	 */
1119	vm_pageq_remove_nowakeup(m);
1120	vm_page_remove(m);
1121
1122	/*
1123	 * If fictitious remove object association and
1124	 * return, otherwise delay object association removal.
1125	 */
1126	if ((m->flags & PG_FICTITIOUS) != 0) {
1127		return;
1128	}
1129
1130	m->valid = 0;
1131	vm_page_undirty(m);
1132
1133	if (m->wire_count != 0) {
1134		if (m->wire_count > 1) {
1135			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1136				m->wire_count, (long)m->pindex);
1137		}
1138		panic("vm_page_free: freeing wired page");
1139	}
1140	if (m->hold_count != 0) {
1141		m->flags &= ~PG_ZERO;
1142		VM_PAGE_SETQUEUE2(m, PQ_HOLD);
1143	} else
1144		VM_PAGE_SETQUEUE1(m, PQ_FREE);
1145	pq = &vm_page_queues[VM_PAGE_GETQUEUE(m)];
1146	mtx_lock_spin(&vm_page_queue_free_mtx);
1147	pq->lcnt++;
1148	++(*pq->cnt);
1149
1150	/*
1151	 * Put zero'd pages on the end ( where we look for zero'd pages
1152	 * first ) and non-zerod pages at the head.
1153	 */
1154	if (m->flags & PG_ZERO) {
1155		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1156		++vm_page_zero_count;
1157	} else {
1158		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1159	}
1160	mtx_unlock_spin(&vm_page_queue_free_mtx);
1161	vm_page_free_wakeup();
1162}
1163
1164/*
1165 *	vm_page_unmanage:
1166 *
1167 * 	Prevent PV management from being done on the page.  The page is
1168 *	removed from the paging queues as if it were wired, and as a
1169 *	consequence of no longer being managed the pageout daemon will not
1170 *	touch it (since there is no way to locate the pte mappings for the
1171 *	page).  madvise() calls that mess with the pmap will also no longer
1172 *	operate on the page.
1173 *
1174 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1175 *	will clear the flag.
1176 *
1177 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1178 *	physical memory as backing store rather then swap-backed memory and
1179 *	will eventually be extended to support 4MB unmanaged physical
1180 *	mappings.
1181 */
1182void
1183vm_page_unmanage(vm_page_t m)
1184{
1185
1186	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1187	if ((m->flags & PG_UNMANAGED) == 0) {
1188		if (m->wire_count == 0)
1189			vm_pageq_remove(m);
1190	}
1191	vm_page_flag_set(m, PG_UNMANAGED);
1192}
1193
1194/*
1195 *	vm_page_wire:
1196 *
1197 *	Mark this page as wired down by yet
1198 *	another map, removing it from paging queues
1199 *	as necessary.
1200 *
1201 *	The page queues must be locked.
1202 *	This routine may not block.
1203 */
1204void
1205vm_page_wire(vm_page_t m)
1206{
1207
1208	/*
1209	 * Only bump the wire statistics if the page is not already wired,
1210	 * and only unqueue the page if it is on some queue (if it is unmanaged
1211	 * it is already off the queues).
1212	 */
1213	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1214	if (m->flags & PG_FICTITIOUS)
1215		return;
1216	if (m->wire_count == 0) {
1217		if ((m->flags & PG_UNMANAGED) == 0)
1218			vm_pageq_remove(m);
1219		atomic_add_int(&cnt.v_wire_count, 1);
1220	}
1221	m->wire_count++;
1222	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1223}
1224
1225/*
1226 *	vm_page_unwire:
1227 *
1228 *	Release one wiring of this page, potentially
1229 *	enabling it to be paged again.
1230 *
1231 *	Many pages placed on the inactive queue should actually go
1232 *	into the cache, but it is difficult to figure out which.  What
1233 *	we do instead, if the inactive target is well met, is to put
1234 *	clean pages at the head of the inactive queue instead of the tail.
1235 *	This will cause them to be moved to the cache more quickly and
1236 *	if not actively re-referenced, freed more quickly.  If we just
1237 *	stick these pages at the end of the inactive queue, heavy filesystem
1238 *	meta-data accesses can cause an unnecessary paging load on memory bound
1239 *	processes.  This optimization causes one-time-use metadata to be
1240 *	reused more quickly.
1241 *
1242 *	BUT, if we are in a low-memory situation we have no choice but to
1243 *	put clean pages on the cache queue.
1244 *
1245 *	A number of routines use vm_page_unwire() to guarantee that the page
1246 *	will go into either the inactive or active queues, and will NEVER
1247 *	be placed in the cache - for example, just after dirtying a page.
1248 *	dirty pages in the cache are not allowed.
1249 *
1250 *	The page queues must be locked.
1251 *	This routine may not block.
1252 */
1253void
1254vm_page_unwire(vm_page_t m, int activate)
1255{
1256
1257	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1258	if (m->flags & PG_FICTITIOUS)
1259		return;
1260	if (m->wire_count > 0) {
1261		m->wire_count--;
1262		if (m->wire_count == 0) {
1263			atomic_subtract_int(&cnt.v_wire_count, 1);
1264			if (m->flags & PG_UNMANAGED) {
1265				;
1266			} else if (activate)
1267				vm_pageq_enqueue(PQ_ACTIVE, m);
1268			else {
1269				vm_page_flag_clear(m, PG_WINATCFLS);
1270				vm_pageq_enqueue(PQ_INACTIVE, m);
1271			}
1272		}
1273	} else {
1274		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1275	}
1276}
1277
1278
1279/*
1280 * Move the specified page to the inactive queue.  If the page has
1281 * any associated swap, the swap is deallocated.
1282 *
1283 * Normally athead is 0 resulting in LRU operation.  athead is set
1284 * to 1 if we want this page to be 'as if it were placed in the cache',
1285 * except without unmapping it from the process address space.
1286 *
1287 * This routine may not block.
1288 */
1289static inline void
1290_vm_page_deactivate(vm_page_t m, int athead)
1291{
1292
1293	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1294
1295	/*
1296	 * Ignore if already inactive.
1297	 */
1298	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1299		return;
1300	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1301		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1302			cnt.v_reactivated++;
1303		vm_page_flag_clear(m, PG_WINATCFLS);
1304		vm_pageq_remove(m);
1305		if (athead)
1306			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1307		else
1308			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1309		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1310		vm_page_queues[PQ_INACTIVE].lcnt++;
1311		cnt.v_inactive_count++;
1312	}
1313}
1314
1315void
1316vm_page_deactivate(vm_page_t m)
1317{
1318    _vm_page_deactivate(m, 0);
1319}
1320
1321/*
1322 * vm_page_try_to_cache:
1323 *
1324 * Returns 0 on failure, 1 on success
1325 */
1326int
1327vm_page_try_to_cache(vm_page_t m)
1328{
1329
1330	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1331	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1332	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1333	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1334		return (0);
1335	}
1336	pmap_remove_all(m);
1337	if (m->dirty)
1338		return (0);
1339	vm_page_cache(m);
1340	return (1);
1341}
1342
1343/*
1344 * vm_page_try_to_free()
1345 *
1346 *	Attempt to free the page.  If we cannot free it, we do nothing.
1347 *	1 is returned on success, 0 on failure.
1348 */
1349int
1350vm_page_try_to_free(vm_page_t m)
1351{
1352
1353	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1354	if (m->object != NULL)
1355		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1356	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1357	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1358		return (0);
1359	}
1360	pmap_remove_all(m);
1361	if (m->dirty)
1362		return (0);
1363	vm_page_free(m);
1364	return (1);
1365}
1366
1367/*
1368 * vm_page_cache
1369 *
1370 * Put the specified page onto the page cache queue (if appropriate).
1371 *
1372 * This routine may not block.
1373 */
1374void
1375vm_page_cache(vm_page_t m)
1376{
1377
1378	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1379	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1380	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1381	    m->hold_count || m->wire_count) {
1382		printf("vm_page_cache: attempting to cache busy page\n");
1383		return;
1384	}
1385	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1386		return;
1387
1388	/*
1389	 * Remove all pmaps and indicate that the page is not
1390	 * writeable or mapped.
1391	 */
1392	pmap_remove_all(m);
1393	if (m->dirty != 0) {
1394		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1395			(long)m->pindex);
1396	}
1397	vm_pageq_remove_nowakeup(m);
1398	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1399	vm_page_free_wakeup();
1400}
1401
1402/*
1403 * vm_page_dontneed
1404 *
1405 *	Cache, deactivate, or do nothing as appropriate.  This routine
1406 *	is typically used by madvise() MADV_DONTNEED.
1407 *
1408 *	Generally speaking we want to move the page into the cache so
1409 *	it gets reused quickly.  However, this can result in a silly syndrome
1410 *	due to the page recycling too quickly.  Small objects will not be
1411 *	fully cached.  On the otherhand, if we move the page to the inactive
1412 *	queue we wind up with a problem whereby very large objects
1413 *	unnecessarily blow away our inactive and cache queues.
1414 *
1415 *	The solution is to move the pages based on a fixed weighting.  We
1416 *	either leave them alone, deactivate them, or move them to the cache,
1417 *	where moving them to the cache has the highest weighting.
1418 *	By forcing some pages into other queues we eventually force the
1419 *	system to balance the queues, potentially recovering other unrelated
1420 *	space from active.  The idea is to not force this to happen too
1421 *	often.
1422 */
1423void
1424vm_page_dontneed(vm_page_t m)
1425{
1426	static int dnweight;
1427	int dnw;
1428	int head;
1429
1430	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1431	dnw = ++dnweight;
1432
1433	/*
1434	 * occassionally leave the page alone
1435	 */
1436	if ((dnw & 0x01F0) == 0 ||
1437	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE) ||
1438	    VM_PAGE_INQUEUE1(m, PQ_CACHE)
1439	) {
1440		if (m->act_count >= ACT_INIT)
1441			--m->act_count;
1442		return;
1443	}
1444
1445	if (m->dirty == 0 && pmap_is_modified(m))
1446		vm_page_dirty(m);
1447
1448	if (m->dirty || (dnw & 0x0070) == 0) {
1449		/*
1450		 * Deactivate the page 3 times out of 32.
1451		 */
1452		head = 0;
1453	} else {
1454		/*
1455		 * Cache the page 28 times out of every 32.  Note that
1456		 * the page is deactivated instead of cached, but placed
1457		 * at the head of the queue instead of the tail.
1458		 */
1459		head = 1;
1460	}
1461	_vm_page_deactivate(m, head);
1462}
1463
1464/*
1465 * Grab a page, waiting until we are waken up due to the page
1466 * changing state.  We keep on waiting, if the page continues
1467 * to be in the object.  If the page doesn't exist, first allocate it
1468 * and then conditionally zero it.
1469 *
1470 * This routine may block.
1471 */
1472vm_page_t
1473vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1474{
1475	vm_page_t m;
1476
1477	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1478retrylookup:
1479	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1480		if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
1481			if ((allocflags & VM_ALLOC_RETRY) == 0)
1482				return (NULL);
1483			goto retrylookup;
1484		} else {
1485			if ((allocflags & VM_ALLOC_WIRED) != 0) {
1486				vm_page_lock_queues();
1487				vm_page_wire(m);
1488				vm_page_unlock_queues();
1489			}
1490			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1491				vm_page_busy(m);
1492			return (m);
1493		}
1494	}
1495	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1496	if (m == NULL) {
1497		VM_OBJECT_UNLOCK(object);
1498		VM_WAIT;
1499		VM_OBJECT_LOCK(object);
1500		if ((allocflags & VM_ALLOC_RETRY) == 0)
1501			return (NULL);
1502		goto retrylookup;
1503	}
1504	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1505		pmap_zero_page(m);
1506	return (m);
1507}
1508
1509/*
1510 * Mapping function for valid bits or for dirty bits in
1511 * a page.  May not block.
1512 *
1513 * Inputs are required to range within a page.
1514 */
1515inline int
1516vm_page_bits(int base, int size)
1517{
1518	int first_bit;
1519	int last_bit;
1520
1521	KASSERT(
1522	    base + size <= PAGE_SIZE,
1523	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1524	);
1525
1526	if (size == 0)		/* handle degenerate case */
1527		return (0);
1528
1529	first_bit = base >> DEV_BSHIFT;
1530	last_bit = (base + size - 1) >> DEV_BSHIFT;
1531
1532	return ((2 << last_bit) - (1 << first_bit));
1533}
1534
1535/*
1536 *	vm_page_set_validclean:
1537 *
1538 *	Sets portions of a page valid and clean.  The arguments are expected
1539 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1540 *	of any partial chunks touched by the range.  The invalid portion of
1541 *	such chunks will be zero'd.
1542 *
1543 *	This routine may not block.
1544 *
1545 *	(base + size) must be less then or equal to PAGE_SIZE.
1546 */
1547void
1548vm_page_set_validclean(vm_page_t m, int base, int size)
1549{
1550	int pagebits;
1551	int frag;
1552	int endoff;
1553
1554	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1555	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1556	if (size == 0)	/* handle degenerate case */
1557		return;
1558
1559	/*
1560	 * If the base is not DEV_BSIZE aligned and the valid
1561	 * bit is clear, we have to zero out a portion of the
1562	 * first block.
1563	 */
1564	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1565	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1566		pmap_zero_page_area(m, frag, base - frag);
1567
1568	/*
1569	 * If the ending offset is not DEV_BSIZE aligned and the
1570	 * valid bit is clear, we have to zero out a portion of
1571	 * the last block.
1572	 */
1573	endoff = base + size;
1574	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1575	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1576		pmap_zero_page_area(m, endoff,
1577		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1578
1579	/*
1580	 * Set valid, clear dirty bits.  If validating the entire
1581	 * page we can safely clear the pmap modify bit.  We also
1582	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
1583	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1584	 * be set again.
1585	 *
1586	 * We set valid bits inclusive of any overlap, but we can only
1587	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1588	 * the range.
1589	 */
1590	pagebits = vm_page_bits(base, size);
1591	m->valid |= pagebits;
1592#if 0	/* NOT YET */
1593	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1594		frag = DEV_BSIZE - frag;
1595		base += frag;
1596		size -= frag;
1597		if (size < 0)
1598			size = 0;
1599	}
1600	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1601#endif
1602	m->dirty &= ~pagebits;
1603	if (base == 0 && size == PAGE_SIZE) {
1604		pmap_clear_modify(m);
1605		m->oflags &= ~VPO_NOSYNC;
1606	}
1607}
1608
1609void
1610vm_page_clear_dirty(vm_page_t m, int base, int size)
1611{
1612
1613	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1614	m->dirty &= ~vm_page_bits(base, size);
1615}
1616
1617/*
1618 *	vm_page_set_invalid:
1619 *
1620 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1621 *	valid and dirty bits for the effected areas are cleared.
1622 *
1623 *	May not block.
1624 */
1625void
1626vm_page_set_invalid(vm_page_t m, int base, int size)
1627{
1628	int bits;
1629
1630	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1631	bits = vm_page_bits(base, size);
1632	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1633	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1634		pmap_remove_all(m);
1635	m->valid &= ~bits;
1636	m->dirty &= ~bits;
1637	m->object->generation++;
1638}
1639
1640/*
1641 * vm_page_zero_invalid()
1642 *
1643 *	The kernel assumes that the invalid portions of a page contain
1644 *	garbage, but such pages can be mapped into memory by user code.
1645 *	When this occurs, we must zero out the non-valid portions of the
1646 *	page so user code sees what it expects.
1647 *
1648 *	Pages are most often semi-valid when the end of a file is mapped
1649 *	into memory and the file's size is not page aligned.
1650 */
1651void
1652vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1653{
1654	int b;
1655	int i;
1656
1657	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1658	/*
1659	 * Scan the valid bits looking for invalid sections that
1660	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1661	 * valid bit may be set ) have already been zerod by
1662	 * vm_page_set_validclean().
1663	 */
1664	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1665		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1666		    (m->valid & (1 << i))
1667		) {
1668			if (i > b) {
1669				pmap_zero_page_area(m,
1670				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1671			}
1672			b = i + 1;
1673		}
1674	}
1675
1676	/*
1677	 * setvalid is TRUE when we can safely set the zero'd areas
1678	 * as being valid.  We can do this if there are no cache consistancy
1679	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1680	 */
1681	if (setvalid)
1682		m->valid = VM_PAGE_BITS_ALL;
1683}
1684
1685/*
1686 *	vm_page_is_valid:
1687 *
1688 *	Is (partial) page valid?  Note that the case where size == 0
1689 *	will return FALSE in the degenerate case where the page is
1690 *	entirely invalid, and TRUE otherwise.
1691 *
1692 *	May not block.
1693 */
1694int
1695vm_page_is_valid(vm_page_t m, int base, int size)
1696{
1697	int bits = vm_page_bits(base, size);
1698
1699	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1700	if (m->valid && ((m->valid & bits) == bits))
1701		return 1;
1702	else
1703		return 0;
1704}
1705
1706/*
1707 * update dirty bits from pmap/mmu.  May not block.
1708 */
1709void
1710vm_page_test_dirty(vm_page_t m)
1711{
1712	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1713		vm_page_dirty(m);
1714	}
1715}
1716
1717int so_zerocp_fullpage = 0;
1718
1719void
1720vm_page_cowfault(vm_page_t m)
1721{
1722	vm_page_t mnew;
1723	vm_object_t object;
1724	vm_pindex_t pindex;
1725
1726	object = m->object;
1727	pindex = m->pindex;
1728
1729 retry_alloc:
1730	pmap_remove_all(m);
1731	vm_page_remove(m);
1732	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
1733	if (mnew == NULL) {
1734		vm_page_insert(m, object, pindex);
1735		vm_page_unlock_queues();
1736		VM_OBJECT_UNLOCK(object);
1737		VM_WAIT;
1738		VM_OBJECT_LOCK(object);
1739		vm_page_lock_queues();
1740		goto retry_alloc;
1741	}
1742
1743	if (m->cow == 0) {
1744		/*
1745		 * check to see if we raced with an xmit complete when
1746		 * waiting to allocate a page.  If so, put things back
1747		 * the way they were
1748		 */
1749		vm_page_free(mnew);
1750		vm_page_insert(m, object, pindex);
1751	} else { /* clear COW & copy page */
1752		if (!so_zerocp_fullpage)
1753			pmap_copy_page(m, mnew);
1754		mnew->valid = VM_PAGE_BITS_ALL;
1755		vm_page_dirty(mnew);
1756		mnew->wire_count = m->wire_count - m->cow;
1757		m->wire_count = m->cow;
1758	}
1759}
1760
1761void
1762vm_page_cowclear(vm_page_t m)
1763{
1764
1765	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1766	if (m->cow) {
1767		m->cow--;
1768		/*
1769		 * let vm_fault add back write permission  lazily
1770		 */
1771	}
1772	/*
1773	 *  sf_buf_free() will free the page, so we needn't do it here
1774	 */
1775}
1776
1777void
1778vm_page_cowsetup(vm_page_t m)
1779{
1780
1781	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1782	m->cow++;
1783	pmap_remove_write(m);
1784}
1785
1786#include "opt_ddb.h"
1787#ifdef DDB
1788#include <sys/kernel.h>
1789
1790#include <ddb/ddb.h>
1791
1792DB_SHOW_COMMAND(page, vm_page_print_page_info)
1793{
1794	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1795	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1796	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1797	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1798	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1799	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1800	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1801	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1802	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1803	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1804}
1805
1806DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1807{
1808	int i;
1809	db_printf("PQ_FREE:");
1810	for (i = 0; i < PQ_NUMCOLORS; i++) {
1811		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1812	}
1813	db_printf("\n");
1814
1815	db_printf("PQ_CACHE:");
1816	for (i = 0; i < PQ_NUMCOLORS; i++) {
1817		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1818	}
1819	db_printf("\n");
1820
1821	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1822		vm_page_queues[PQ_ACTIVE].lcnt,
1823		vm_page_queues[PQ_INACTIVE].lcnt);
1824}
1825#endif /* DDB */
1826