vm_page.c revision 161213
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33 */
34
35/*-
36 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37 * All rights reserved.
38 *
39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 *
41 * Permission to use, copy, modify and distribute this software and
42 * its documentation is hereby granted, provided that both the copyright
43 * notice and this permission notice appear in all copies of the
44 * software, derivative works or modified versions, and any portions
45 * thereof, and that both notices appear in supporting documentation.
46 *
47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 *
51 * Carnegie Mellon requests users of this software to return to
52 *
53 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54 *  School of Computer Science
55 *  Carnegie Mellon University
56 *  Pittsburgh PA 15213-3890
57 *
58 * any improvements or extensions that they make and grant Carnegie the
59 * rights to redistribute these changes.
60 */
61
62/*
63 *			GENERAL RULES ON VM_PAGE MANIPULATION
64 *
65 *	- a pageq mutex is required when adding or removing a page from a
66 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67 *	  busy state of a page.
68 *
69 *	- a hash chain mutex is required when associating or disassociating
70 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71 *	  regardless of other mutexes or the busy state of a page.
72 *
73 *	- either a hash chain mutex OR a busied page is required in order
74 *	  to modify the page flags.  A hash chain mutex must be obtained in
75 *	  order to busy a page.  A page's flags cannot be modified by a
76 *	  hash chain mutex if the page is marked busy.
77 *
78 *	- The object memq mutex is held when inserting or removing
79 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80 *	  is different from the object's main mutex.
81 *
82 *	Generally speaking, you have to be aware of side effects when running
83 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85 *	vm_page_cache(), vm_page_activate(), and a number of other routines
86 *	will release the hash chain mutex for you.  Intermediate manipulation
87 *	routines such as vm_page_flag_set() expect the hash chain to be held
88 *	on entry and the hash chain will remain held on return.
89 *
90 *	pageq scanning can only occur with the pageq in question locked.
91 *	We have a known bottleneck with the active queue, but the cache
92 *	and free queues are actually arrays already.
93 */
94
95/*
96 *	Resident memory management module.
97 */
98
99#include <sys/cdefs.h>
100__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 161213 2006-08-11 17:18:58Z alc $");
101
102#include <sys/param.h>
103#include <sys/systm.h>
104#include <sys/lock.h>
105#include <sys/kernel.h>
106#include <sys/malloc.h>
107#include <sys/mutex.h>
108#include <sys/proc.h>
109#include <sys/sysctl.h>
110#include <sys/vmmeter.h>
111#include <sys/vnode.h>
112
113#include <vm/vm.h>
114#include <vm/vm_param.h>
115#include <vm/vm_kern.h>
116#include <vm/vm_object.h>
117#include <vm/vm_page.h>
118#include <vm/vm_pageout.h>
119#include <vm/vm_pager.h>
120#include <vm/vm_extern.h>
121#include <vm/uma.h>
122#include <vm/uma_int.h>
123
124#include <machine/md_var.h>
125
126/*
127 *	Associated with page of user-allocatable memory is a
128 *	page structure.
129 */
130
131struct mtx vm_page_queue_mtx;
132struct mtx vm_page_queue_free_mtx;
133
134vm_page_t vm_page_array = 0;
135int vm_page_array_size = 0;
136long first_page = 0;
137int vm_page_zero_count = 0;
138
139static int boot_pages = UMA_BOOT_PAGES;
140TUNABLE_INT("vm.boot_pages", &boot_pages);
141SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
142	"number of pages allocated for bootstrapping the VM system");
143
144/*
145 *	vm_set_page_size:
146 *
147 *	Sets the page size, perhaps based upon the memory
148 *	size.  Must be called before any use of page-size
149 *	dependent functions.
150 */
151void
152vm_set_page_size(void)
153{
154	if (cnt.v_page_size == 0)
155		cnt.v_page_size = PAGE_SIZE;
156	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
157		panic("vm_set_page_size: page size not a power of two");
158}
159
160/*
161 *	vm_page_blacklist_lookup:
162 *
163 *	See if a physical address in this page has been listed
164 *	in the blacklist tunable.  Entries in the tunable are
165 *	separated by spaces or commas.  If an invalid integer is
166 *	encountered then the rest of the string is skipped.
167 */
168static int
169vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
170{
171	vm_paddr_t bad;
172	char *cp, *pos;
173
174	for (pos = list; *pos != '\0'; pos = cp) {
175		bad = strtoq(pos, &cp, 0);
176		if (*cp != '\0') {
177			if (*cp == ' ' || *cp == ',') {
178				cp++;
179				if (cp == pos)
180					continue;
181			} else
182				break;
183		}
184		if (pa == trunc_page(bad))
185			return (1);
186	}
187	return (0);
188}
189
190/*
191 *	vm_page_startup:
192 *
193 *	Initializes the resident memory module.
194 *
195 *	Allocates memory for the page cells, and
196 *	for the object/offset-to-page hash table headers.
197 *	Each page cell is initialized and placed on the free list.
198 */
199vm_offset_t
200vm_page_startup(vm_offset_t vaddr)
201{
202	vm_offset_t mapped;
203	vm_size_t npages;
204	vm_paddr_t page_range;
205	vm_paddr_t new_end;
206	int i;
207	vm_paddr_t pa;
208	int nblocks;
209	vm_paddr_t last_pa;
210	char *list;
211
212	/* the biggest memory array is the second group of pages */
213	vm_paddr_t end;
214	vm_paddr_t biggestsize;
215	int biggestone;
216
217	vm_paddr_t total;
218
219	total = 0;
220	biggestsize = 0;
221	biggestone = 0;
222	nblocks = 0;
223	vaddr = round_page(vaddr);
224
225	for (i = 0; phys_avail[i + 1]; i += 2) {
226		phys_avail[i] = round_page(phys_avail[i]);
227		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
228	}
229
230	for (i = 0; phys_avail[i + 1]; i += 2) {
231		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
232
233		if (size > biggestsize) {
234			biggestone = i;
235			biggestsize = size;
236		}
237		++nblocks;
238		total += size;
239	}
240
241	end = phys_avail[biggestone+1];
242
243	/*
244	 * Initialize the locks.
245	 */
246	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
247	    MTX_RECURSE);
248	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
249	    MTX_SPIN);
250
251	/*
252	 * Initialize the queue headers for the free queue, the active queue
253	 * and the inactive queue.
254	 */
255	vm_pageq_init();
256
257	/*
258	 * Allocate memory for use when boot strapping the kernel memory
259	 * allocator.
260	 */
261	new_end = end - (boot_pages * UMA_SLAB_SIZE);
262	new_end = trunc_page(new_end);
263	mapped = pmap_map(&vaddr, new_end, end,
264	    VM_PROT_READ | VM_PROT_WRITE);
265	bzero((void *)mapped, end - new_end);
266	uma_startup((void *)mapped, boot_pages);
267
268#if defined(__amd64__) || defined(__i386__)
269	/*
270	 * Allocate a bitmap to indicate that a random physical page
271	 * needs to be included in a minidump.
272	 *
273	 * The amd64 port needs this to indicate which direct map pages
274	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
275	 *
276	 * However, i386 still needs this workspace internally within the
277	 * minidump code.  In theory, they are not needed on i386, but are
278	 * included should the sf_buf code decide to use them.
279	 */
280	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
281	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
282	new_end -= vm_page_dump_size;
283	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
284	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
285	bzero((void *)vm_page_dump, vm_page_dump_size);
286#endif
287	/*
288	 * Compute the number of pages of memory that will be available for
289	 * use (taking into account the overhead of a page structure per
290	 * page).
291	 */
292	first_page = phys_avail[0] / PAGE_SIZE;
293	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
294	npages = (total - (page_range * sizeof(struct vm_page)) -
295	    (end - new_end)) / PAGE_SIZE;
296	end = new_end;
297
298	/*
299	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
300	 */
301	vaddr += PAGE_SIZE;
302
303	/*
304	 * Initialize the mem entry structures now, and put them in the free
305	 * queue.
306	 */
307	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
308	mapped = pmap_map(&vaddr, new_end, end,
309	    VM_PROT_READ | VM_PROT_WRITE);
310	vm_page_array = (vm_page_t) mapped;
311#ifdef __amd64__
312	/*
313	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
314	 * so the pages must be tracked for a crashdump to include this data.
315	 * This includes the vm_page_array and the early UMA bootstrap pages.
316	 */
317	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
318		dump_add_page(pa);
319#endif
320	phys_avail[biggestone + 1] = new_end;
321
322	/*
323	 * Clear all of the page structures
324	 */
325	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
326	vm_page_array_size = page_range;
327
328	/*
329	 * Construct the free queue(s) in descending order (by physical
330	 * address) so that the first 16MB of physical memory is allocated
331	 * last rather than first.  On large-memory machines, this avoids
332	 * the exhaustion of low physical memory before isa_dma_init has run.
333	 */
334	cnt.v_page_count = 0;
335	cnt.v_free_count = 0;
336	list = getenv("vm.blacklist");
337	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
338		pa = phys_avail[i];
339		last_pa = phys_avail[i + 1];
340		while (pa < last_pa && npages-- > 0) {
341			if (list != NULL &&
342			    vm_page_blacklist_lookup(list, pa))
343				printf("Skipping page with pa 0x%jx\n",
344				    (uintmax_t)pa);
345			else
346				vm_pageq_add_new_page(pa);
347			pa += PAGE_SIZE;
348		}
349	}
350	freeenv(list);
351	return (vaddr);
352}
353
354void
355vm_page_flag_set(vm_page_t m, unsigned short bits)
356{
357
358	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
359	m->flags |= bits;
360}
361
362void
363vm_page_flag_clear(vm_page_t m, unsigned short bits)
364{
365
366	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
367	m->flags &= ~bits;
368}
369
370void
371vm_page_busy(vm_page_t m)
372{
373
374	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
375	KASSERT((m->flags & PG_BUSY) == 0,
376	    ("vm_page_busy: page already busy!!!"));
377	vm_page_flag_set(m, PG_BUSY);
378}
379
380/*
381 *      vm_page_flash:
382 *
383 *      wakeup anyone waiting for the page.
384 */
385void
386vm_page_flash(vm_page_t m)
387{
388
389	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
390	if (m->oflags & VPO_WANTED) {
391		m->oflags &= ~VPO_WANTED;
392		wakeup(m);
393	}
394}
395
396/*
397 *      vm_page_wakeup:
398 *
399 *      clear the PG_BUSY flag and wakeup anyone waiting for the
400 *      page.
401 *
402 */
403void
404vm_page_wakeup(vm_page_t m)
405{
406
407	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
408	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
409	vm_page_flag_clear(m, PG_BUSY);
410	vm_page_flash(m);
411}
412
413void
414vm_page_io_start(vm_page_t m)
415{
416
417	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
418	m->busy++;
419}
420
421void
422vm_page_io_finish(vm_page_t m)
423{
424
425	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
426	m->busy--;
427	if (m->busy == 0)
428		vm_page_flash(m);
429}
430
431/*
432 * Keep page from being freed by the page daemon
433 * much of the same effect as wiring, except much lower
434 * overhead and should be used only for *very* temporary
435 * holding ("wiring").
436 */
437void
438vm_page_hold(vm_page_t mem)
439{
440
441	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
442        mem->hold_count++;
443}
444
445void
446vm_page_unhold(vm_page_t mem)
447{
448
449	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
450	--mem->hold_count;
451	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
452	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
453		vm_page_free_toq(mem);
454}
455
456/*
457 *	vm_page_free:
458 *
459 *	Free a page
460 *
461 *	The clearing of PG_ZERO is a temporary safety until the code can be
462 *	reviewed to determine that PG_ZERO is being properly cleared on
463 *	write faults or maps.  PG_ZERO was previously cleared in
464 *	vm_page_alloc().
465 */
466void
467vm_page_free(vm_page_t m)
468{
469	vm_page_flag_clear(m, PG_ZERO);
470	vm_page_free_toq(m);
471	vm_page_zero_idle_wakeup();
472}
473
474/*
475 *	vm_page_free_zero:
476 *
477 *	Free a page to the zerod-pages queue
478 */
479void
480vm_page_free_zero(vm_page_t m)
481{
482	vm_page_flag_set(m, PG_ZERO);
483	vm_page_free_toq(m);
484}
485
486/*
487 *	vm_page_sleep_if_busy:
488 *
489 *	Sleep and release the page queues lock if PG_BUSY is set or,
490 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
491 *	thread slept and the page queues lock was released.
492 *	Otherwise, retains the page queues lock and returns FALSE.
493 */
494int
495vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
496{
497
498	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
499	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
500		if (!mtx_owned(&vm_page_queue_mtx))
501			vm_page_lock_queues();
502		vm_page_flag_set(m, PG_REFERENCED);
503		vm_page_unlock_queues();
504
505		/*
506		 * It's possible that while we sleep, the page will get
507		 * unbusied and freed.  If we are holding the object
508		 * lock, we will assume we hold a reference to the object
509		 * such that even if m->object changes, we can re-lock
510		 * it.
511		 */
512		m->oflags |= VPO_WANTED;
513		msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
514		return (TRUE);
515	}
516	return (FALSE);
517}
518
519/*
520 *	vm_page_dirty:
521 *
522 *	make page all dirty
523 */
524void
525vm_page_dirty(vm_page_t m)
526{
527	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_CACHE,
528	    ("vm_page_dirty: page in cache!"));
529	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_FREE,
530	    ("vm_page_dirty: page is free!"));
531	m->dirty = VM_PAGE_BITS_ALL;
532}
533
534/*
535 *	vm_page_splay:
536 *
537 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
538 *	the vm_page containing the given pindex.  If, however, that
539 *	pindex is not found in the vm_object, returns a vm_page that is
540 *	adjacent to the pindex, coming before or after it.
541 */
542vm_page_t
543vm_page_splay(vm_pindex_t pindex, vm_page_t root)
544{
545	struct vm_page dummy;
546	vm_page_t lefttreemax, righttreemin, y;
547
548	if (root == NULL)
549		return (root);
550	lefttreemax = righttreemin = &dummy;
551	for (;; root = y) {
552		if (pindex < root->pindex) {
553			if ((y = root->left) == NULL)
554				break;
555			if (pindex < y->pindex) {
556				/* Rotate right. */
557				root->left = y->right;
558				y->right = root;
559				root = y;
560				if ((y = root->left) == NULL)
561					break;
562			}
563			/* Link into the new root's right tree. */
564			righttreemin->left = root;
565			righttreemin = root;
566		} else if (pindex > root->pindex) {
567			if ((y = root->right) == NULL)
568				break;
569			if (pindex > y->pindex) {
570				/* Rotate left. */
571				root->right = y->left;
572				y->left = root;
573				root = y;
574				if ((y = root->right) == NULL)
575					break;
576			}
577			/* Link into the new root's left tree. */
578			lefttreemax->right = root;
579			lefttreemax = root;
580		} else
581			break;
582	}
583	/* Assemble the new root. */
584	lefttreemax->right = root->left;
585	righttreemin->left = root->right;
586	root->left = dummy.right;
587	root->right = dummy.left;
588	return (root);
589}
590
591/*
592 *	vm_page_insert:		[ internal use only ]
593 *
594 *	Inserts the given mem entry into the object and object list.
595 *
596 *	The pagetables are not updated but will presumably fault the page
597 *	in if necessary, or if a kernel page the caller will at some point
598 *	enter the page into the kernel's pmap.  We are not allowed to block
599 *	here so we *can't* do this anyway.
600 *
601 *	The object and page must be locked.
602 *	This routine may not block.
603 */
604void
605vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
606{
607	vm_page_t root;
608
609	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
610	if (m->object != NULL)
611		panic("vm_page_insert: page already inserted");
612
613	/*
614	 * Record the object/offset pair in this page
615	 */
616	m->object = object;
617	m->pindex = pindex;
618
619	/*
620	 * Now link into the object's ordered list of backed pages.
621	 */
622	root = object->root;
623	if (root == NULL) {
624		m->left = NULL;
625		m->right = NULL;
626		TAILQ_INSERT_TAIL(&object->memq, m, listq);
627	} else {
628		root = vm_page_splay(pindex, root);
629		if (pindex < root->pindex) {
630			m->left = root->left;
631			m->right = root;
632			root->left = NULL;
633			TAILQ_INSERT_BEFORE(root, m, listq);
634		} else if (pindex == root->pindex)
635			panic("vm_page_insert: offset already allocated");
636		else {
637			m->right = root->right;
638			m->left = root;
639			root->right = NULL;
640			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
641		}
642	}
643	object->root = m;
644	object->generation++;
645
646	/*
647	 * show that the object has one more resident page.
648	 */
649	object->resident_page_count++;
650	/*
651	 * Hold the vnode until the last page is released.
652	 */
653	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
654		vhold((struct vnode *)object->handle);
655
656	/*
657	 * Since we are inserting a new and possibly dirty page,
658	 * update the object's OBJ_MIGHTBEDIRTY flag.
659	 */
660	if (m->flags & PG_WRITEABLE)
661		vm_object_set_writeable_dirty(object);
662}
663
664/*
665 *	vm_page_remove:
666 *				NOTE: used by device pager as well -wfj
667 *
668 *	Removes the given mem entry from the object/offset-page
669 *	table and the object page list, but do not invalidate/terminate
670 *	the backing store.
671 *
672 *	The object and page must be locked.
673 *	The underlying pmap entry (if any) is NOT removed here.
674 *	This routine may not block.
675 */
676void
677vm_page_remove(vm_page_t m)
678{
679	vm_object_t object;
680	vm_page_t root;
681
682	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
683	if ((object = m->object) == NULL)
684		return;
685	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
686	if (m->flags & PG_BUSY) {
687		vm_page_flag_clear(m, PG_BUSY);
688		vm_page_flash(m);
689	}
690
691	/*
692	 * Now remove from the object's list of backed pages.
693	 */
694	if (m != object->root)
695		vm_page_splay(m->pindex, object->root);
696	if (m->left == NULL)
697		root = m->right;
698	else {
699		root = vm_page_splay(m->pindex, m->left);
700		root->right = m->right;
701	}
702	object->root = root;
703	TAILQ_REMOVE(&object->memq, m, listq);
704
705	/*
706	 * And show that the object has one fewer resident page.
707	 */
708	object->resident_page_count--;
709	object->generation++;
710	/*
711	 * The vnode may now be recycled.
712	 */
713	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
714		vdrop((struct vnode *)object->handle);
715
716	m->object = NULL;
717}
718
719/*
720 *	vm_page_lookup:
721 *
722 *	Returns the page associated with the object/offset
723 *	pair specified; if none is found, NULL is returned.
724 *
725 *	The object must be locked.
726 *	This routine may not block.
727 *	This is a critical path routine
728 */
729vm_page_t
730vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
731{
732	vm_page_t m;
733
734	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
735	if ((m = object->root) != NULL && m->pindex != pindex) {
736		m = vm_page_splay(pindex, m);
737		if ((object->root = m)->pindex != pindex)
738			m = NULL;
739	}
740	return (m);
741}
742
743/*
744 *	vm_page_rename:
745 *
746 *	Move the given memory entry from its
747 *	current object to the specified target object/offset.
748 *
749 *	The object must be locked.
750 *	This routine may not block.
751 *
752 *	Note: swap associated with the page must be invalidated by the move.  We
753 *	      have to do this for several reasons:  (1) we aren't freeing the
754 *	      page, (2) we are dirtying the page, (3) the VM system is probably
755 *	      moving the page from object A to B, and will then later move
756 *	      the backing store from A to B and we can't have a conflict.
757 *
758 *	Note: we *always* dirty the page.  It is necessary both for the
759 *	      fact that we moved it, and because we may be invalidating
760 *	      swap.  If the page is on the cache, we have to deactivate it
761 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
762 *	      on the cache.
763 */
764void
765vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
766{
767
768	vm_page_remove(m);
769	vm_page_insert(m, new_object, new_pindex);
770	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
771		vm_page_deactivate(m);
772	vm_page_dirty(m);
773}
774
775/*
776 *	vm_page_select_cache:
777 *
778 *	Move a page of the given color from the cache queue to the free
779 *	queue.  As pages might be found, but are not applicable, they are
780 *	deactivated.
781 *
782 *	This routine may not block.
783 */
784vm_page_t
785vm_page_select_cache(int color)
786{
787	vm_object_t object;
788	vm_page_t m;
789	boolean_t was_trylocked;
790
791	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
792	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
793		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
794		KASSERT(!pmap_page_is_mapped(m),
795		    ("Found mapped cache page %p", m));
796		KASSERT((m->flags & PG_UNMANAGED) == 0,
797		    ("Found unmanaged cache page %p", m));
798		KASSERT(m->wire_count == 0, ("Found wired cache page %p", m));
799		if (m->hold_count == 0 && (object = m->object,
800		    (was_trylocked = VM_OBJECT_TRYLOCK(object)) ||
801		    VM_OBJECT_LOCKED(object))) {
802			KASSERT((m->flags & PG_BUSY) == 0 && m->busy == 0,
803			    ("Found busy cache page %p", m));
804			vm_page_free(m);
805			if (was_trylocked)
806				VM_OBJECT_UNLOCK(object);
807			break;
808		}
809		vm_page_deactivate(m);
810	}
811	return (m);
812}
813
814/*
815 *	vm_page_alloc:
816 *
817 *	Allocate and return a memory cell associated
818 *	with this VM object/offset pair.
819 *
820 *	page_req classes:
821 *	VM_ALLOC_NORMAL		normal process request
822 *	VM_ALLOC_SYSTEM		system *really* needs a page
823 *	VM_ALLOC_INTERRUPT	interrupt time request
824 *	VM_ALLOC_ZERO		zero page
825 *
826 *	This routine may not block.
827 *
828 *	Additional special handling is required when called from an
829 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
830 *	the page cache in this case.
831 */
832vm_page_t
833vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
834{
835	vm_page_t m = NULL;
836	int color, flags, page_req;
837
838	page_req = req & VM_ALLOC_CLASS_MASK;
839	KASSERT(curthread->td_intr_nesting_level == 0 ||
840	    page_req == VM_ALLOC_INTERRUPT,
841	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
842
843	if ((req & VM_ALLOC_NOOBJ) == 0) {
844		KASSERT(object != NULL,
845		    ("vm_page_alloc: NULL object."));
846		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
847		color = (pindex + object->pg_color) & PQ_COLORMASK;
848	} else
849		color = pindex & PQ_COLORMASK;
850
851	/*
852	 * The pager is allowed to eat deeper into the free page list.
853	 */
854	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
855		page_req = VM_ALLOC_SYSTEM;
856	};
857
858loop:
859	mtx_lock_spin(&vm_page_queue_free_mtx);
860	if (cnt.v_free_count > cnt.v_free_reserved ||
861	    (page_req == VM_ALLOC_SYSTEM &&
862	     cnt.v_cache_count == 0 &&
863	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
864	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
865		/*
866		 * Allocate from the free queue if the number of free pages
867		 * exceeds the minimum for the request class.
868		 */
869		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
870	} else if (page_req != VM_ALLOC_INTERRUPT) {
871		mtx_unlock_spin(&vm_page_queue_free_mtx);
872		/*
873		 * Allocatable from cache (non-interrupt only).  On success,
874		 * we must free the page and try again, thus ensuring that
875		 * cnt.v_*_free_min counters are replenished.
876		 */
877		vm_page_lock_queues();
878		if ((m = vm_page_select_cache(color)) == NULL) {
879			KASSERT(cnt.v_cache_count == 0,
880			    ("vm_page_alloc: cache queue is missing %d pages",
881			    cnt.v_cache_count));
882			vm_page_unlock_queues();
883			atomic_add_int(&vm_pageout_deficit, 1);
884			pagedaemon_wakeup();
885
886			if (page_req != VM_ALLOC_SYSTEM)
887				return NULL;
888
889			mtx_lock_spin(&vm_page_queue_free_mtx);
890			if (cnt.v_free_count <=  cnt.v_interrupt_free_min) {
891				mtx_unlock_spin(&vm_page_queue_free_mtx);
892				return (NULL);
893			}
894			m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
895		} else {
896			vm_page_unlock_queues();
897			goto loop;
898		}
899	} else {
900		/*
901		 * Not allocatable from cache from interrupt, give up.
902		 */
903		mtx_unlock_spin(&vm_page_queue_free_mtx);
904		atomic_add_int(&vm_pageout_deficit, 1);
905		pagedaemon_wakeup();
906		return (NULL);
907	}
908
909	/*
910	 *  At this point we had better have found a good page.
911	 */
912
913	KASSERT(
914	    m != NULL,
915	    ("vm_page_alloc(): missing page on free queue")
916	);
917
918	/*
919	 * Remove from free queue
920	 */
921	vm_pageq_remove_nowakeup(m);
922
923	/*
924	 * Initialize structure.  Only the PG_ZERO flag is inherited.
925	 */
926	flags = PG_BUSY;
927	if (m->flags & PG_ZERO) {
928		vm_page_zero_count--;
929		if (req & VM_ALLOC_ZERO)
930			flags = PG_ZERO | PG_BUSY;
931	}
932	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
933		flags &= ~PG_BUSY;
934	m->flags = flags;
935	m->oflags = 0;
936	if (req & VM_ALLOC_WIRED) {
937		atomic_add_int(&cnt.v_wire_count, 1);
938		m->wire_count = 1;
939	} else
940		m->wire_count = 0;
941	m->hold_count = 0;
942	m->act_count = 0;
943	m->busy = 0;
944	m->valid = 0;
945	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
946	mtx_unlock_spin(&vm_page_queue_free_mtx);
947
948	if ((req & VM_ALLOC_NOOBJ) == 0)
949		vm_page_insert(m, object, pindex);
950	else
951		m->pindex = pindex;
952
953	/*
954	 * Don't wakeup too often - wakeup the pageout daemon when
955	 * we would be nearly out of memory.
956	 */
957	if (vm_paging_needed())
958		pagedaemon_wakeup();
959
960	return (m);
961}
962
963/*
964 *	vm_wait:	(also see VM_WAIT macro)
965 *
966 *	Block until free pages are available for allocation
967 *	- Called in various places before memory allocations.
968 */
969void
970vm_wait(void)
971{
972
973	vm_page_lock_queues();
974	if (curproc == pageproc) {
975		vm_pageout_pages_needed = 1;
976		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
977		    PDROP | PSWP, "VMWait", 0);
978	} else {
979		if (!vm_pages_needed) {
980			vm_pages_needed = 1;
981			wakeup(&vm_pages_needed);
982		}
983		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
984		    "vmwait", 0);
985	}
986}
987
988/*
989 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
990 *
991 *	Block until free pages are available for allocation
992 *	- Called only in vm_fault so that processes page faulting
993 *	  can be easily tracked.
994 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
995 *	  processes will be able to grab memory first.  Do not change
996 *	  this balance without careful testing first.
997 */
998void
999vm_waitpfault(void)
1000{
1001
1002	vm_page_lock_queues();
1003	if (!vm_pages_needed) {
1004		vm_pages_needed = 1;
1005		wakeup(&vm_pages_needed);
1006	}
1007	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
1008	    "pfault", 0);
1009}
1010
1011/*
1012 *	vm_page_activate:
1013 *
1014 *	Put the specified page on the active list (if appropriate).
1015 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1016 *	mess with it.
1017 *
1018 *	The page queues must be locked.
1019 *	This routine may not block.
1020 */
1021void
1022vm_page_activate(vm_page_t m)
1023{
1024
1025	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1026	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
1027		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1028			cnt.v_reactivated++;
1029		vm_pageq_remove(m);
1030		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1031			if (m->act_count < ACT_INIT)
1032				m->act_count = ACT_INIT;
1033			vm_pageq_enqueue(PQ_ACTIVE, m);
1034		}
1035	} else {
1036		if (m->act_count < ACT_INIT)
1037			m->act_count = ACT_INIT;
1038	}
1039}
1040
1041/*
1042 *	vm_page_free_wakeup:
1043 *
1044 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1045 *	routine is called when a page has been added to the cache or free
1046 *	queues.
1047 *
1048 *	The page queues must be locked.
1049 *	This routine may not block.
1050 */
1051static inline void
1052vm_page_free_wakeup(void)
1053{
1054
1055	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1056	/*
1057	 * if pageout daemon needs pages, then tell it that there are
1058	 * some free.
1059	 */
1060	if (vm_pageout_pages_needed &&
1061	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1062		wakeup(&vm_pageout_pages_needed);
1063		vm_pageout_pages_needed = 0;
1064	}
1065	/*
1066	 * wakeup processes that are waiting on memory if we hit a
1067	 * high water mark. And wakeup scheduler process if we have
1068	 * lots of memory. this process will swapin processes.
1069	 */
1070	if (vm_pages_needed && !vm_page_count_min()) {
1071		vm_pages_needed = 0;
1072		wakeup(&cnt.v_free_count);
1073	}
1074}
1075
1076/*
1077 *	vm_page_free_toq:
1078 *
1079 *	Returns the given page to the PQ_FREE list,
1080 *	disassociating it with any VM object.
1081 *
1082 *	Object and page must be locked prior to entry.
1083 *	This routine may not block.
1084 */
1085
1086void
1087vm_page_free_toq(vm_page_t m)
1088{
1089	struct vpgqueues *pq;
1090
1091	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1092	KASSERT(!pmap_page_is_mapped(m),
1093	    ("vm_page_free_toq: freeing mapped page %p", m));
1094	cnt.v_tfree++;
1095
1096	if (m->busy || VM_PAGE_INQUEUE1(m, PQ_FREE)) {
1097		printf(
1098		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1099		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1100		    m->hold_count);
1101		if (VM_PAGE_INQUEUE1(m, PQ_FREE))
1102			panic("vm_page_free: freeing free page");
1103		else
1104			panic("vm_page_free: freeing busy page");
1105	}
1106
1107	/*
1108	 * unqueue, then remove page.  Note that we cannot destroy
1109	 * the page here because we do not want to call the pager's
1110	 * callback routine until after we've put the page on the
1111	 * appropriate free queue.
1112	 */
1113	vm_pageq_remove_nowakeup(m);
1114	vm_page_remove(m);
1115
1116	/*
1117	 * If fictitious remove object association and
1118	 * return, otherwise delay object association removal.
1119	 */
1120	if ((m->flags & PG_FICTITIOUS) != 0) {
1121		return;
1122	}
1123
1124	m->valid = 0;
1125	vm_page_undirty(m);
1126
1127	if (m->wire_count != 0) {
1128		if (m->wire_count > 1) {
1129			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1130				m->wire_count, (long)m->pindex);
1131		}
1132		panic("vm_page_free: freeing wired page");
1133	}
1134
1135	/*
1136	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1137	 */
1138	if (m->flags & PG_UNMANAGED) {
1139		m->flags &= ~PG_UNMANAGED;
1140	}
1141
1142	if (m->hold_count != 0) {
1143		m->flags &= ~PG_ZERO;
1144		VM_PAGE_SETQUEUE2(m, PQ_HOLD);
1145	} else
1146		VM_PAGE_SETQUEUE1(m, PQ_FREE);
1147	pq = &vm_page_queues[VM_PAGE_GETQUEUE(m)];
1148	mtx_lock_spin(&vm_page_queue_free_mtx);
1149	pq->lcnt++;
1150	++(*pq->cnt);
1151
1152	/*
1153	 * Put zero'd pages on the end ( where we look for zero'd pages
1154	 * first ) and non-zerod pages at the head.
1155	 */
1156	if (m->flags & PG_ZERO) {
1157		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1158		++vm_page_zero_count;
1159	} else {
1160		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1161	}
1162	mtx_unlock_spin(&vm_page_queue_free_mtx);
1163	vm_page_free_wakeup();
1164}
1165
1166/*
1167 *	vm_page_unmanage:
1168 *
1169 * 	Prevent PV management from being done on the page.  The page is
1170 *	removed from the paging queues as if it were wired, and as a
1171 *	consequence of no longer being managed the pageout daemon will not
1172 *	touch it (since there is no way to locate the pte mappings for the
1173 *	page).  madvise() calls that mess with the pmap will also no longer
1174 *	operate on the page.
1175 *
1176 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1177 *	will clear the flag.
1178 *
1179 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1180 *	physical memory as backing store rather then swap-backed memory and
1181 *	will eventually be extended to support 4MB unmanaged physical
1182 *	mappings.
1183 */
1184void
1185vm_page_unmanage(vm_page_t m)
1186{
1187
1188	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1189	if ((m->flags & PG_UNMANAGED) == 0) {
1190		if (m->wire_count == 0)
1191			vm_pageq_remove(m);
1192	}
1193	vm_page_flag_set(m, PG_UNMANAGED);
1194}
1195
1196/*
1197 *	vm_page_wire:
1198 *
1199 *	Mark this page as wired down by yet
1200 *	another map, removing it from paging queues
1201 *	as necessary.
1202 *
1203 *	The page queues must be locked.
1204 *	This routine may not block.
1205 */
1206void
1207vm_page_wire(vm_page_t m)
1208{
1209
1210	/*
1211	 * Only bump the wire statistics if the page is not already wired,
1212	 * and only unqueue the page if it is on some queue (if it is unmanaged
1213	 * it is already off the queues).
1214	 */
1215	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1216	if (m->flags & PG_FICTITIOUS)
1217		return;
1218	if (m->wire_count == 0) {
1219		if ((m->flags & PG_UNMANAGED) == 0)
1220			vm_pageq_remove(m);
1221		atomic_add_int(&cnt.v_wire_count, 1);
1222	}
1223	m->wire_count++;
1224	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1225}
1226
1227/*
1228 *	vm_page_unwire:
1229 *
1230 *	Release one wiring of this page, potentially
1231 *	enabling it to be paged again.
1232 *
1233 *	Many pages placed on the inactive queue should actually go
1234 *	into the cache, but it is difficult to figure out which.  What
1235 *	we do instead, if the inactive target is well met, is to put
1236 *	clean pages at the head of the inactive queue instead of the tail.
1237 *	This will cause them to be moved to the cache more quickly and
1238 *	if not actively re-referenced, freed more quickly.  If we just
1239 *	stick these pages at the end of the inactive queue, heavy filesystem
1240 *	meta-data accesses can cause an unnecessary paging load on memory bound
1241 *	processes.  This optimization causes one-time-use metadata to be
1242 *	reused more quickly.
1243 *
1244 *	BUT, if we are in a low-memory situation we have no choice but to
1245 *	put clean pages on the cache queue.
1246 *
1247 *	A number of routines use vm_page_unwire() to guarantee that the page
1248 *	will go into either the inactive or active queues, and will NEVER
1249 *	be placed in the cache - for example, just after dirtying a page.
1250 *	dirty pages in the cache are not allowed.
1251 *
1252 *	The page queues must be locked.
1253 *	This routine may not block.
1254 */
1255void
1256vm_page_unwire(vm_page_t m, int activate)
1257{
1258
1259	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1260	if (m->flags & PG_FICTITIOUS)
1261		return;
1262	if (m->wire_count > 0) {
1263		m->wire_count--;
1264		if (m->wire_count == 0) {
1265			atomic_subtract_int(&cnt.v_wire_count, 1);
1266			if (m->flags & PG_UNMANAGED) {
1267				;
1268			} else if (activate)
1269				vm_pageq_enqueue(PQ_ACTIVE, m);
1270			else {
1271				vm_page_flag_clear(m, PG_WINATCFLS);
1272				vm_pageq_enqueue(PQ_INACTIVE, m);
1273			}
1274		}
1275	} else {
1276		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1277	}
1278}
1279
1280
1281/*
1282 * Move the specified page to the inactive queue.  If the page has
1283 * any associated swap, the swap is deallocated.
1284 *
1285 * Normally athead is 0 resulting in LRU operation.  athead is set
1286 * to 1 if we want this page to be 'as if it were placed in the cache',
1287 * except without unmapping it from the process address space.
1288 *
1289 * This routine may not block.
1290 */
1291static inline void
1292_vm_page_deactivate(vm_page_t m, int athead)
1293{
1294
1295	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1296
1297	/*
1298	 * Ignore if already inactive.
1299	 */
1300	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1301		return;
1302	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1303		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1304			cnt.v_reactivated++;
1305		vm_page_flag_clear(m, PG_WINATCFLS);
1306		vm_pageq_remove(m);
1307		if (athead)
1308			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1309		else
1310			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1311		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1312		vm_page_queues[PQ_INACTIVE].lcnt++;
1313		cnt.v_inactive_count++;
1314	}
1315}
1316
1317void
1318vm_page_deactivate(vm_page_t m)
1319{
1320    _vm_page_deactivate(m, 0);
1321}
1322
1323/*
1324 * vm_page_try_to_cache:
1325 *
1326 * Returns 0 on failure, 1 on success
1327 */
1328int
1329vm_page_try_to_cache(vm_page_t m)
1330{
1331
1332	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1333	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1334	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1335	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1336		return (0);
1337	}
1338	pmap_remove_all(m);
1339	if (m->dirty)
1340		return (0);
1341	vm_page_cache(m);
1342	return (1);
1343}
1344
1345/*
1346 * vm_page_try_to_free()
1347 *
1348 *	Attempt to free the page.  If we cannot free it, we do nothing.
1349 *	1 is returned on success, 0 on failure.
1350 */
1351int
1352vm_page_try_to_free(vm_page_t m)
1353{
1354
1355	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1356	if (m->object != NULL)
1357		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1358	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1359	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1360		return (0);
1361	}
1362	pmap_remove_all(m);
1363	if (m->dirty)
1364		return (0);
1365	vm_page_free(m);
1366	return (1);
1367}
1368
1369/*
1370 * vm_page_cache
1371 *
1372 * Put the specified page onto the page cache queue (if appropriate).
1373 *
1374 * This routine may not block.
1375 */
1376void
1377vm_page_cache(vm_page_t m)
1378{
1379
1380	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1381	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1382	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1383	    m->hold_count || m->wire_count) {
1384		printf("vm_page_cache: attempting to cache busy page\n");
1385		return;
1386	}
1387	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1388		return;
1389
1390	/*
1391	 * Remove all pmaps and indicate that the page is not
1392	 * writeable or mapped.
1393	 */
1394	pmap_remove_all(m);
1395	if (m->dirty != 0) {
1396		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1397			(long)m->pindex);
1398	}
1399	vm_pageq_remove_nowakeup(m);
1400	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1401	vm_page_free_wakeup();
1402}
1403
1404/*
1405 * vm_page_dontneed
1406 *
1407 *	Cache, deactivate, or do nothing as appropriate.  This routine
1408 *	is typically used by madvise() MADV_DONTNEED.
1409 *
1410 *	Generally speaking we want to move the page into the cache so
1411 *	it gets reused quickly.  However, this can result in a silly syndrome
1412 *	due to the page recycling too quickly.  Small objects will not be
1413 *	fully cached.  On the otherhand, if we move the page to the inactive
1414 *	queue we wind up with a problem whereby very large objects
1415 *	unnecessarily blow away our inactive and cache queues.
1416 *
1417 *	The solution is to move the pages based on a fixed weighting.  We
1418 *	either leave them alone, deactivate them, or move them to the cache,
1419 *	where moving them to the cache has the highest weighting.
1420 *	By forcing some pages into other queues we eventually force the
1421 *	system to balance the queues, potentially recovering other unrelated
1422 *	space from active.  The idea is to not force this to happen too
1423 *	often.
1424 */
1425void
1426vm_page_dontneed(vm_page_t m)
1427{
1428	static int dnweight;
1429	int dnw;
1430	int head;
1431
1432	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1433	dnw = ++dnweight;
1434
1435	/*
1436	 * occassionally leave the page alone
1437	 */
1438	if ((dnw & 0x01F0) == 0 ||
1439	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE) ||
1440	    VM_PAGE_INQUEUE1(m, PQ_CACHE)
1441	) {
1442		if (m->act_count >= ACT_INIT)
1443			--m->act_count;
1444		return;
1445	}
1446
1447	if (m->dirty == 0 && pmap_is_modified(m))
1448		vm_page_dirty(m);
1449
1450	if (m->dirty || (dnw & 0x0070) == 0) {
1451		/*
1452		 * Deactivate the page 3 times out of 32.
1453		 */
1454		head = 0;
1455	} else {
1456		/*
1457		 * Cache the page 28 times out of every 32.  Note that
1458		 * the page is deactivated instead of cached, but placed
1459		 * at the head of the queue instead of the tail.
1460		 */
1461		head = 1;
1462	}
1463	_vm_page_deactivate(m, head);
1464}
1465
1466/*
1467 * Grab a page, waiting until we are waken up due to the page
1468 * changing state.  We keep on waiting, if the page continues
1469 * to be in the object.  If the page doesn't exist, first allocate it
1470 * and then conditionally zero it.
1471 *
1472 * This routine may block.
1473 */
1474vm_page_t
1475vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1476{
1477	vm_page_t m;
1478
1479	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1480retrylookup:
1481	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1482		if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
1483			if ((allocflags & VM_ALLOC_RETRY) == 0)
1484				return (NULL);
1485			goto retrylookup;
1486		} else {
1487			vm_page_lock_queues();
1488			if (allocflags & VM_ALLOC_WIRED)
1489				vm_page_wire(m);
1490			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1491				vm_page_busy(m);
1492			vm_page_unlock_queues();
1493			return (m);
1494		}
1495	}
1496	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1497	if (m == NULL) {
1498		VM_OBJECT_UNLOCK(object);
1499		VM_WAIT;
1500		VM_OBJECT_LOCK(object);
1501		if ((allocflags & VM_ALLOC_RETRY) == 0)
1502			return (NULL);
1503		goto retrylookup;
1504	}
1505	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1506		pmap_zero_page(m);
1507	return (m);
1508}
1509
1510/*
1511 * Mapping function for valid bits or for dirty bits in
1512 * a page.  May not block.
1513 *
1514 * Inputs are required to range within a page.
1515 */
1516inline int
1517vm_page_bits(int base, int size)
1518{
1519	int first_bit;
1520	int last_bit;
1521
1522	KASSERT(
1523	    base + size <= PAGE_SIZE,
1524	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1525	);
1526
1527	if (size == 0)		/* handle degenerate case */
1528		return (0);
1529
1530	first_bit = base >> DEV_BSHIFT;
1531	last_bit = (base + size - 1) >> DEV_BSHIFT;
1532
1533	return ((2 << last_bit) - (1 << first_bit));
1534}
1535
1536/*
1537 *	vm_page_set_validclean:
1538 *
1539 *	Sets portions of a page valid and clean.  The arguments are expected
1540 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1541 *	of any partial chunks touched by the range.  The invalid portion of
1542 *	such chunks will be zero'd.
1543 *
1544 *	This routine may not block.
1545 *
1546 *	(base + size) must be less then or equal to PAGE_SIZE.
1547 */
1548void
1549vm_page_set_validclean(vm_page_t m, int base, int size)
1550{
1551	int pagebits;
1552	int frag;
1553	int endoff;
1554
1555	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1556	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1557	if (size == 0)	/* handle degenerate case */
1558		return;
1559
1560	/*
1561	 * If the base is not DEV_BSIZE aligned and the valid
1562	 * bit is clear, we have to zero out a portion of the
1563	 * first block.
1564	 */
1565	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1566	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1567		pmap_zero_page_area(m, frag, base - frag);
1568
1569	/*
1570	 * If the ending offset is not DEV_BSIZE aligned and the
1571	 * valid bit is clear, we have to zero out a portion of
1572	 * the last block.
1573	 */
1574	endoff = base + size;
1575	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1576	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1577		pmap_zero_page_area(m, endoff,
1578		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1579
1580	/*
1581	 * Set valid, clear dirty bits.  If validating the entire
1582	 * page we can safely clear the pmap modify bit.  We also
1583	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1584	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1585	 * be set again.
1586	 *
1587	 * We set valid bits inclusive of any overlap, but we can only
1588	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1589	 * the range.
1590	 */
1591	pagebits = vm_page_bits(base, size);
1592	m->valid |= pagebits;
1593#if 0	/* NOT YET */
1594	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1595		frag = DEV_BSIZE - frag;
1596		base += frag;
1597		size -= frag;
1598		if (size < 0)
1599			size = 0;
1600	}
1601	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1602#endif
1603	m->dirty &= ~pagebits;
1604	if (base == 0 && size == PAGE_SIZE) {
1605		pmap_clear_modify(m);
1606		vm_page_flag_clear(m, PG_NOSYNC);
1607	}
1608}
1609
1610void
1611vm_page_clear_dirty(vm_page_t m, int base, int size)
1612{
1613
1614	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1615	m->dirty &= ~vm_page_bits(base, size);
1616}
1617
1618/*
1619 *	vm_page_set_invalid:
1620 *
1621 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1622 *	valid and dirty bits for the effected areas are cleared.
1623 *
1624 *	May not block.
1625 */
1626void
1627vm_page_set_invalid(vm_page_t m, int base, int size)
1628{
1629	int bits;
1630
1631	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1632	bits = vm_page_bits(base, size);
1633	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1634	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1635		pmap_remove_all(m);
1636	m->valid &= ~bits;
1637	m->dirty &= ~bits;
1638	m->object->generation++;
1639}
1640
1641/*
1642 * vm_page_zero_invalid()
1643 *
1644 *	The kernel assumes that the invalid portions of a page contain
1645 *	garbage, but such pages can be mapped into memory by user code.
1646 *	When this occurs, we must zero out the non-valid portions of the
1647 *	page so user code sees what it expects.
1648 *
1649 *	Pages are most often semi-valid when the end of a file is mapped
1650 *	into memory and the file's size is not page aligned.
1651 */
1652void
1653vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1654{
1655	int b;
1656	int i;
1657
1658	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1659	/*
1660	 * Scan the valid bits looking for invalid sections that
1661	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1662	 * valid bit may be set ) have already been zerod by
1663	 * vm_page_set_validclean().
1664	 */
1665	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1666		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1667		    (m->valid & (1 << i))
1668		) {
1669			if (i > b) {
1670				pmap_zero_page_area(m,
1671				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1672			}
1673			b = i + 1;
1674		}
1675	}
1676
1677	/*
1678	 * setvalid is TRUE when we can safely set the zero'd areas
1679	 * as being valid.  We can do this if there are no cache consistancy
1680	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1681	 */
1682	if (setvalid)
1683		m->valid = VM_PAGE_BITS_ALL;
1684}
1685
1686/*
1687 *	vm_page_is_valid:
1688 *
1689 *	Is (partial) page valid?  Note that the case where size == 0
1690 *	will return FALSE in the degenerate case where the page is
1691 *	entirely invalid, and TRUE otherwise.
1692 *
1693 *	May not block.
1694 */
1695int
1696vm_page_is_valid(vm_page_t m, int base, int size)
1697{
1698	int bits = vm_page_bits(base, size);
1699
1700	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1701	if (m->valid && ((m->valid & bits) == bits))
1702		return 1;
1703	else
1704		return 0;
1705}
1706
1707/*
1708 * update dirty bits from pmap/mmu.  May not block.
1709 */
1710void
1711vm_page_test_dirty(vm_page_t m)
1712{
1713	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1714		vm_page_dirty(m);
1715	}
1716}
1717
1718int so_zerocp_fullpage = 0;
1719
1720void
1721vm_page_cowfault(vm_page_t m)
1722{
1723	vm_page_t mnew;
1724	vm_object_t object;
1725	vm_pindex_t pindex;
1726
1727	object = m->object;
1728	pindex = m->pindex;
1729
1730 retry_alloc:
1731	pmap_remove_all(m);
1732	vm_page_remove(m);
1733	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
1734	if (mnew == NULL) {
1735		vm_page_insert(m, object, pindex);
1736		vm_page_unlock_queues();
1737		VM_OBJECT_UNLOCK(object);
1738		VM_WAIT;
1739		VM_OBJECT_LOCK(object);
1740		vm_page_lock_queues();
1741		goto retry_alloc;
1742	}
1743
1744	if (m->cow == 0) {
1745		/*
1746		 * check to see if we raced with an xmit complete when
1747		 * waiting to allocate a page.  If so, put things back
1748		 * the way they were
1749		 */
1750		vm_page_free(mnew);
1751		vm_page_insert(m, object, pindex);
1752	} else { /* clear COW & copy page */
1753		if (!so_zerocp_fullpage)
1754			pmap_copy_page(m, mnew);
1755		mnew->valid = VM_PAGE_BITS_ALL;
1756		vm_page_dirty(mnew);
1757		mnew->wire_count = m->wire_count - m->cow;
1758		m->wire_count = m->cow;
1759	}
1760}
1761
1762void
1763vm_page_cowclear(vm_page_t m)
1764{
1765
1766	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1767	if (m->cow) {
1768		m->cow--;
1769		/*
1770		 * let vm_fault add back write permission  lazily
1771		 */
1772	}
1773	/*
1774	 *  sf_buf_free() will free the page, so we needn't do it here
1775	 */
1776}
1777
1778void
1779vm_page_cowsetup(vm_page_t m)
1780{
1781
1782	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1783	m->cow++;
1784	pmap_remove_write(m);
1785}
1786
1787#include "opt_ddb.h"
1788#ifdef DDB
1789#include <sys/kernel.h>
1790
1791#include <ddb/ddb.h>
1792
1793DB_SHOW_COMMAND(page, vm_page_print_page_info)
1794{
1795	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1796	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1797	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1798	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1799	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1800	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1801	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1802	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1803	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1804	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1805}
1806
1807DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1808{
1809	int i;
1810	db_printf("PQ_FREE:");
1811	for (i = 0; i < PQ_NUMCOLORS; i++) {
1812		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1813	}
1814	db_printf("\n");
1815
1816	db_printf("PQ_CACHE:");
1817	for (i = 0; i < PQ_NUMCOLORS; i++) {
1818		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1819	}
1820	db_printf("\n");
1821
1822	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1823		vm_page_queues[PQ_ACTIVE].lcnt,
1824		vm_page_queues[PQ_INACTIVE].lcnt);
1825}
1826#endif /* DDB */
1827