vm_page.c revision 137168
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33 */
34
35/*
36 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37 * All rights reserved.
38 *
39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 *
41 * Permission to use, copy, modify and distribute this software and
42 * its documentation is hereby granted, provided that both the copyright
43 * notice and this permission notice appear in all copies of the
44 * software, derivative works or modified versions, and any portions
45 * thereof, and that both notices appear in supporting documentation.
46 *
47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 *
51 * Carnegie Mellon requests users of this software to return to
52 *
53 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54 *  School of Computer Science
55 *  Carnegie Mellon University
56 *  Pittsburgh PA 15213-3890
57 *
58 * any improvements or extensions that they make and grant Carnegie the
59 * rights to redistribute these changes.
60 */
61
62/*
63 *			GENERAL RULES ON VM_PAGE MANIPULATION
64 *
65 *	- a pageq mutex is required when adding or removing a page from a
66 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67 *	  busy state of a page.
68 *
69 *	- a hash chain mutex is required when associating or disassociating
70 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71 *	  regardless of other mutexes or the busy state of a page.
72 *
73 *	- either a hash chain mutex OR a busied page is required in order
74 *	  to modify the page flags.  A hash chain mutex must be obtained in
75 *	  order to busy a page.  A page's flags cannot be modified by a
76 *	  hash chain mutex if the page is marked busy.
77 *
78 *	- The object memq mutex is held when inserting or removing
79 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80 *	  is different from the object's main mutex.
81 *
82 *	Generally speaking, you have to be aware of side effects when running
83 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85 *	vm_page_cache(), vm_page_activate(), and a number of other routines
86 *	will release the hash chain mutex for you.  Intermediate manipulation
87 *	routines such as vm_page_flag_set() expect the hash chain to be held
88 *	on entry and the hash chain will remain held on return.
89 *
90 *	pageq scanning can only occur with the pageq in question locked.
91 *	We have a known bottleneck with the active queue, but the cache
92 *	and free queues are actually arrays already.
93 */
94
95/*
96 *	Resident memory management module.
97 */
98
99#include <sys/cdefs.h>
100__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 137168 2004-11-03 20:17:31Z alc $");
101
102#include <sys/param.h>
103#include <sys/systm.h>
104#include <sys/lock.h>
105#include <sys/malloc.h>
106#include <sys/mutex.h>
107#include <sys/proc.h>
108#include <sys/vmmeter.h>
109#include <sys/vnode.h>
110
111#include <vm/vm.h>
112#include <vm/vm_param.h>
113#include <vm/vm_kern.h>
114#include <vm/vm_object.h>
115#include <vm/vm_page.h>
116#include <vm/vm_pageout.h>
117#include <vm/vm_pager.h>
118#include <vm/vm_extern.h>
119#include <vm/uma.h>
120#include <vm/uma_int.h>
121
122/*
123 *	Associated with page of user-allocatable memory is a
124 *	page structure.
125 */
126
127struct mtx vm_page_queue_mtx;
128struct mtx vm_page_queue_free_mtx;
129
130vm_page_t vm_page_array = 0;
131int vm_page_array_size = 0;
132long first_page = 0;
133int vm_page_zero_count = 0;
134
135/*
136 *	vm_set_page_size:
137 *
138 *	Sets the page size, perhaps based upon the memory
139 *	size.  Must be called before any use of page-size
140 *	dependent functions.
141 */
142void
143vm_set_page_size(void)
144{
145	if (cnt.v_page_size == 0)
146		cnt.v_page_size = PAGE_SIZE;
147	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
148		panic("vm_set_page_size: page size not a power of two");
149}
150
151/*
152 *	vm_page_startup:
153 *
154 *	Initializes the resident memory module.
155 *
156 *	Allocates memory for the page cells, and
157 *	for the object/offset-to-page hash table headers.
158 *	Each page cell is initialized and placed on the free list.
159 */
160vm_offset_t
161vm_page_startup(vm_offset_t vaddr)
162{
163	vm_offset_t mapped;
164	vm_size_t npages;
165	vm_paddr_t page_range;
166	vm_paddr_t new_end;
167	int i;
168	vm_paddr_t pa;
169	int nblocks;
170	vm_paddr_t last_pa;
171
172	/* the biggest memory array is the second group of pages */
173	vm_paddr_t end;
174	vm_paddr_t biggestsize;
175	int biggestone;
176
177	vm_paddr_t total;
178	vm_size_t bootpages;
179
180	total = 0;
181	biggestsize = 0;
182	biggestone = 0;
183	nblocks = 0;
184	vaddr = round_page(vaddr);
185
186	for (i = 0; phys_avail[i + 1]; i += 2) {
187		phys_avail[i] = round_page(phys_avail[i]);
188		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
189	}
190
191	for (i = 0; phys_avail[i + 1]; i += 2) {
192		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
193
194		if (size > biggestsize) {
195			biggestone = i;
196			biggestsize = size;
197		}
198		++nblocks;
199		total += size;
200	}
201
202	end = phys_avail[biggestone+1];
203
204	/*
205	 * Initialize the locks.
206	 */
207	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
208	    MTX_RECURSE);
209	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
210	    MTX_SPIN);
211
212	/*
213	 * Initialize the queue headers for the free queue, the active queue
214	 * and the inactive queue.
215	 */
216	vm_pageq_init();
217
218	/*
219	 * Allocate memory for use when boot strapping the kernel memory
220	 * allocator.
221	 */
222	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
223	new_end = end - bootpages;
224	new_end = trunc_page(new_end);
225	mapped = pmap_map(&vaddr, new_end, end,
226	    VM_PROT_READ | VM_PROT_WRITE);
227	bzero((caddr_t) mapped, end - new_end);
228	uma_startup((caddr_t)mapped);
229
230	/*
231	 * Compute the number of pages of memory that will be available for
232	 * use (taking into account the overhead of a page structure per
233	 * page).
234	 */
235	first_page = phys_avail[0] / PAGE_SIZE;
236	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
237	npages = (total - (page_range * sizeof(struct vm_page)) -
238	    (end - new_end)) / PAGE_SIZE;
239	end = new_end;
240
241	/*
242	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
243	 */
244	vaddr += PAGE_SIZE;
245
246	/*
247	 * Initialize the mem entry structures now, and put them in the free
248	 * queue.
249	 */
250	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
251	mapped = pmap_map(&vaddr, new_end, end,
252	    VM_PROT_READ | VM_PROT_WRITE);
253	vm_page_array = (vm_page_t) mapped;
254	phys_avail[biggestone + 1] = new_end;
255
256	/*
257	 * Clear all of the page structures
258	 */
259	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
260	vm_page_array_size = page_range;
261
262	/*
263	 * Construct the free queue(s) in descending order (by physical
264	 * address) so that the first 16MB of physical memory is allocated
265	 * last rather than first.  On large-memory machines, this avoids
266	 * the exhaustion of low physical memory before isa_dma_init has run.
267	 */
268	cnt.v_page_count = 0;
269	cnt.v_free_count = 0;
270	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
271		pa = phys_avail[i];
272		last_pa = phys_avail[i + 1];
273		while (pa < last_pa && npages-- > 0) {
274			vm_pageq_add_new_page(pa);
275			pa += PAGE_SIZE;
276		}
277	}
278	return (vaddr);
279}
280
281void
282vm_page_flag_set(vm_page_t m, unsigned short bits)
283{
284
285	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
286	m->flags |= bits;
287}
288
289void
290vm_page_flag_clear(vm_page_t m, unsigned short bits)
291{
292
293	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
294	m->flags &= ~bits;
295}
296
297void
298vm_page_busy(vm_page_t m)
299{
300
301	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
302	KASSERT((m->flags & PG_BUSY) == 0,
303	    ("vm_page_busy: page already busy!!!"));
304	vm_page_flag_set(m, PG_BUSY);
305}
306
307/*
308 *      vm_page_flash:
309 *
310 *      wakeup anyone waiting for the page.
311 */
312void
313vm_page_flash(vm_page_t m)
314{
315
316	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
317	if (m->flags & PG_WANTED) {
318		vm_page_flag_clear(m, PG_WANTED);
319		wakeup(m);
320	}
321}
322
323/*
324 *      vm_page_wakeup:
325 *
326 *      clear the PG_BUSY flag and wakeup anyone waiting for the
327 *      page.
328 *
329 */
330void
331vm_page_wakeup(vm_page_t m)
332{
333
334	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
335	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
336	vm_page_flag_clear(m, PG_BUSY);
337	vm_page_flash(m);
338}
339
340void
341vm_page_io_start(vm_page_t m)
342{
343
344	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
345	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
346	m->busy++;
347}
348
349void
350vm_page_io_finish(vm_page_t m)
351{
352
353	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
354	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
355	m->busy--;
356	if (m->busy == 0)
357		vm_page_flash(m);
358}
359
360/*
361 * Keep page from being freed by the page daemon
362 * much of the same effect as wiring, except much lower
363 * overhead and should be used only for *very* temporary
364 * holding ("wiring").
365 */
366void
367vm_page_hold(vm_page_t mem)
368{
369
370	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
371        mem->hold_count++;
372}
373
374void
375vm_page_unhold(vm_page_t mem)
376{
377
378	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
379	--mem->hold_count;
380	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
381	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
382		vm_page_free_toq(mem);
383}
384
385/*
386 *	vm_page_free:
387 *
388 *	Free a page
389 *
390 *	The clearing of PG_ZERO is a temporary safety until the code can be
391 *	reviewed to determine that PG_ZERO is being properly cleared on
392 *	write faults or maps.  PG_ZERO was previously cleared in
393 *	vm_page_alloc().
394 */
395void
396vm_page_free(vm_page_t m)
397{
398	vm_page_flag_clear(m, PG_ZERO);
399	vm_page_free_toq(m);
400	vm_page_zero_idle_wakeup();
401}
402
403/*
404 *	vm_page_free_zero:
405 *
406 *	Free a page to the zerod-pages queue
407 */
408void
409vm_page_free_zero(vm_page_t m)
410{
411	vm_page_flag_set(m, PG_ZERO);
412	vm_page_free_toq(m);
413}
414
415/*
416 *	vm_page_sleep_if_busy:
417 *
418 *	Sleep and release the page queues lock if PG_BUSY is set or,
419 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
420 *	thread slept and the page queues lock was released.
421 *	Otherwise, retains the page queues lock and returns FALSE.
422 */
423int
424vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
425{
426	vm_object_t object;
427	int is_object_locked;
428
429	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
430	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
431		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
432		/*
433		 * It's possible that while we sleep, the page will get
434		 * unbusied and freed.  If we are holding the object
435		 * lock, we will assume we hold a reference to the object
436		 * such that even if m->object changes, we can re-lock
437		 * it.
438		 *
439		 * Remove mtx_owned() after vm_object locking is finished.
440		 */
441		object = m->object;
442		if ((is_object_locked = object != NULL &&
443		     mtx_owned(&object->mtx)))
444			mtx_unlock(&object->mtx);
445		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
446		if (is_object_locked)
447			mtx_lock(&object->mtx);
448		return (TRUE);
449	}
450	return (FALSE);
451}
452
453/*
454 *	vm_page_dirty:
455 *
456 *	make page all dirty
457 */
458void
459vm_page_dirty(vm_page_t m)
460{
461	KASSERT(m->queue - m->pc != PQ_CACHE,
462	    ("vm_page_dirty: page in cache!"));
463	KASSERT(m->queue - m->pc != PQ_FREE,
464	    ("vm_page_dirty: page is free!"));
465	m->dirty = VM_PAGE_BITS_ALL;
466}
467
468/*
469 *	vm_page_splay:
470 *
471 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
472 *	the vm_page containing the given pindex.  If, however, that
473 *	pindex is not found in the vm_object, returns a vm_page that is
474 *	adjacent to the pindex, coming before or after it.
475 */
476vm_page_t
477vm_page_splay(vm_pindex_t pindex, vm_page_t root)
478{
479	struct vm_page dummy;
480	vm_page_t lefttreemax, righttreemin, y;
481
482	if (root == NULL)
483		return (root);
484	lefttreemax = righttreemin = &dummy;
485	for (;; root = y) {
486		if (pindex < root->pindex) {
487			if ((y = root->left) == NULL)
488				break;
489			if (pindex < y->pindex) {
490				/* Rotate right. */
491				root->left = y->right;
492				y->right = root;
493				root = y;
494				if ((y = root->left) == NULL)
495					break;
496			}
497			/* Link into the new root's right tree. */
498			righttreemin->left = root;
499			righttreemin = root;
500		} else if (pindex > root->pindex) {
501			if ((y = root->right) == NULL)
502				break;
503			if (pindex > y->pindex) {
504				/* Rotate left. */
505				root->right = y->left;
506				y->left = root;
507				root = y;
508				if ((y = root->right) == NULL)
509					break;
510			}
511			/* Link into the new root's left tree. */
512			lefttreemax->right = root;
513			lefttreemax = root;
514		} else
515			break;
516	}
517	/* Assemble the new root. */
518	lefttreemax->right = root->left;
519	righttreemin->left = root->right;
520	root->left = dummy.right;
521	root->right = dummy.left;
522	return (root);
523}
524
525/*
526 *	vm_page_insert:		[ internal use only ]
527 *
528 *	Inserts the given mem entry into the object and object list.
529 *
530 *	The pagetables are not updated but will presumably fault the page
531 *	in if necessary, or if a kernel page the caller will at some point
532 *	enter the page into the kernel's pmap.  We are not allowed to block
533 *	here so we *can't* do this anyway.
534 *
535 *	The object and page must be locked.
536 *	This routine may not block.
537 */
538void
539vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
540{
541	vm_page_t root;
542
543	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
544	if (m->object != NULL)
545		panic("vm_page_insert: page already inserted");
546
547	/*
548	 * Record the object/offset pair in this page
549	 */
550	m->object = object;
551	m->pindex = pindex;
552
553	/*
554	 * Now link into the object's ordered list of backed pages.
555	 */
556	root = object->root;
557	if (root == NULL) {
558		m->left = NULL;
559		m->right = NULL;
560		TAILQ_INSERT_TAIL(&object->memq, m, listq);
561	} else {
562		root = vm_page_splay(pindex, root);
563		if (pindex < root->pindex) {
564			m->left = root->left;
565			m->right = root;
566			root->left = NULL;
567			TAILQ_INSERT_BEFORE(root, m, listq);
568		} else if (pindex == root->pindex)
569			panic("vm_page_insert: offset already allocated");
570		else {
571			m->right = root->right;
572			m->left = root;
573			root->right = NULL;
574			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
575		}
576	}
577	object->root = m;
578	object->generation++;
579
580	/*
581	 * show that the object has one more resident page.
582	 */
583	object->resident_page_count++;
584
585	/*
586	 * Since we are inserting a new and possibly dirty page,
587	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
588	 */
589	if (m->flags & PG_WRITEABLE)
590		vm_object_set_writeable_dirty(object);
591}
592
593/*
594 *	vm_page_remove:
595 *				NOTE: used by device pager as well -wfj
596 *
597 *	Removes the given mem entry from the object/offset-page
598 *	table and the object page list, but do not invalidate/terminate
599 *	the backing store.
600 *
601 *	The object and page must be locked.
602 *	The underlying pmap entry (if any) is NOT removed here.
603 *	This routine may not block.
604 */
605void
606vm_page_remove(vm_page_t m)
607{
608	vm_object_t object;
609	vm_page_t root;
610
611	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
612	if ((object = m->object) == NULL)
613		return;
614	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
615	if (m->flags & PG_BUSY) {
616		vm_page_flag_clear(m, PG_BUSY);
617		vm_page_flash(m);
618	}
619
620	/*
621	 * Now remove from the object's list of backed pages.
622	 */
623	if (m != object->root)
624		vm_page_splay(m->pindex, object->root);
625	if (m->left == NULL)
626		root = m->right;
627	else {
628		root = vm_page_splay(m->pindex, m->left);
629		root->right = m->right;
630	}
631	object->root = root;
632	TAILQ_REMOVE(&object->memq, m, listq);
633
634	/*
635	 * And show that the object has one fewer resident page.
636	 */
637	object->resident_page_count--;
638	object->generation++;
639
640	m->object = NULL;
641}
642
643/*
644 *	vm_page_lookup:
645 *
646 *	Returns the page associated with the object/offset
647 *	pair specified; if none is found, NULL is returned.
648 *
649 *	The object must be locked.
650 *	This routine may not block.
651 *	This is a critical path routine
652 */
653vm_page_t
654vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
655{
656	vm_page_t m;
657
658	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
659	if ((m = object->root) != NULL && m->pindex != pindex) {
660		m = vm_page_splay(pindex, m);
661		if ((object->root = m)->pindex != pindex)
662			m = NULL;
663	}
664	return (m);
665}
666
667/*
668 *	vm_page_rename:
669 *
670 *	Move the given memory entry from its
671 *	current object to the specified target object/offset.
672 *
673 *	The object must be locked.
674 *	This routine may not block.
675 *
676 *	Note: swap associated with the page must be invalidated by the move.  We
677 *	      have to do this for several reasons:  (1) we aren't freeing the
678 *	      page, (2) we are dirtying the page, (3) the VM system is probably
679 *	      moving the page from object A to B, and will then later move
680 *	      the backing store from A to B and we can't have a conflict.
681 *
682 *	Note: we *always* dirty the page.  It is necessary both for the
683 *	      fact that we moved it, and because we may be invalidating
684 *	      swap.  If the page is on the cache, we have to deactivate it
685 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
686 *	      on the cache.
687 */
688void
689vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
690{
691
692	vm_page_remove(m);
693	vm_page_insert(m, new_object, new_pindex);
694	if (m->queue - m->pc == PQ_CACHE)
695		vm_page_deactivate(m);
696	vm_page_dirty(m);
697}
698
699/*
700 *	vm_page_select_cache:
701 *
702 *	Find a page on the cache queue with color optimization.  As pages
703 *	might be found, but not applicable, they are deactivated.  This
704 *	keeps us from using potentially busy cached pages.
705 *
706 *	This routine may not block.
707 */
708vm_page_t
709vm_page_select_cache(int color)
710{
711	vm_page_t m;
712
713	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
714	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
715		if ((m->flags & PG_BUSY) == 0 && m->busy == 0 &&
716		    m->hold_count == 0 && (VM_OBJECT_TRYLOCK(m->object) ||
717		    VM_OBJECT_LOCKED(m->object))) {
718			KASSERT(m->dirty == 0,
719			    ("Found dirty cache page %p", m));
720			KASSERT(!pmap_page_is_mapped(m),
721			    ("Found mapped cache page %p", m));
722			KASSERT((m->flags & PG_UNMANAGED) == 0,
723			    ("Found unmanaged cache page %p", m));
724			KASSERT(m->wire_count == 0,
725			    ("Found wired cache page %p", m));
726			break;
727		}
728		vm_page_deactivate(m);
729	}
730	return (m);
731}
732
733/*
734 *	vm_page_alloc:
735 *
736 *	Allocate and return a memory cell associated
737 *	with this VM object/offset pair.
738 *
739 *	page_req classes:
740 *	VM_ALLOC_NORMAL		normal process request
741 *	VM_ALLOC_SYSTEM		system *really* needs a page
742 *	VM_ALLOC_INTERRUPT	interrupt time request
743 *	VM_ALLOC_ZERO		zero page
744 *
745 *	This routine may not block.
746 *
747 *	Additional special handling is required when called from an
748 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
749 *	the page cache in this case.
750 */
751vm_page_t
752vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
753{
754	vm_object_t m_object;
755	vm_page_t m = NULL;
756	int color, flags, page_req;
757
758	page_req = req & VM_ALLOC_CLASS_MASK;
759
760	if ((req & VM_ALLOC_NOOBJ) == 0) {
761		KASSERT(object != NULL,
762		    ("vm_page_alloc: NULL object."));
763		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
764		color = (pindex + object->pg_color) & PQ_L2_MASK;
765	} else
766		color = pindex & PQ_L2_MASK;
767
768	/*
769	 * The pager is allowed to eat deeper into the free page list.
770	 */
771	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
772		page_req = VM_ALLOC_SYSTEM;
773	};
774
775loop:
776	mtx_lock_spin(&vm_page_queue_free_mtx);
777	if (cnt.v_free_count > cnt.v_free_reserved ||
778	    (page_req == VM_ALLOC_SYSTEM &&
779	     cnt.v_cache_count == 0 &&
780	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
781	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
782		/*
783		 * Allocate from the free queue if the number of free pages
784		 * exceeds the minimum for the request class.
785		 */
786		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
787	} else if (page_req != VM_ALLOC_INTERRUPT) {
788		mtx_unlock_spin(&vm_page_queue_free_mtx);
789		/*
790		 * Allocatable from cache (non-interrupt only).  On success,
791		 * we must free the page and try again, thus ensuring that
792		 * cnt.v_*_free_min counters are replenished.
793		 */
794		vm_page_lock_queues();
795		if ((m = vm_page_select_cache(color)) == NULL) {
796#if defined(DIAGNOSTIC)
797			if (cnt.v_cache_count > 0)
798				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
799#endif
800			vm_page_unlock_queues();
801			atomic_add_int(&vm_pageout_deficit, 1);
802			pagedaemon_wakeup();
803			return (NULL);
804		}
805		m_object = m->object;
806		VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED);
807		vm_page_free(m);
808		vm_page_unlock_queues();
809		if (m_object != object)
810			VM_OBJECT_UNLOCK(m_object);
811		goto loop;
812	} else {
813		/*
814		 * Not allocatable from cache from interrupt, give up.
815		 */
816		mtx_unlock_spin(&vm_page_queue_free_mtx);
817		atomic_add_int(&vm_pageout_deficit, 1);
818		pagedaemon_wakeup();
819		return (NULL);
820	}
821
822	/*
823	 *  At this point we had better have found a good page.
824	 */
825
826	KASSERT(
827	    m != NULL,
828	    ("vm_page_alloc(): missing page on free queue")
829	);
830
831	/*
832	 * Remove from free queue
833	 */
834	vm_pageq_remove_nowakeup(m);
835
836	/*
837	 * Initialize structure.  Only the PG_ZERO flag is inherited.
838	 */
839	flags = PG_BUSY;
840	if (m->flags & PG_ZERO) {
841		vm_page_zero_count--;
842		if (req & VM_ALLOC_ZERO)
843			flags = PG_ZERO | PG_BUSY;
844	}
845	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
846		flags &= ~PG_BUSY;
847	m->flags = flags;
848	if (req & VM_ALLOC_WIRED) {
849		atomic_add_int(&cnt.v_wire_count, 1);
850		m->wire_count = 1;
851	} else
852		m->wire_count = 0;
853	m->hold_count = 0;
854	m->act_count = 0;
855	m->busy = 0;
856	m->valid = 0;
857	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
858	mtx_unlock_spin(&vm_page_queue_free_mtx);
859
860	if ((req & VM_ALLOC_NOOBJ) == 0)
861		vm_page_insert(m, object, pindex);
862	else
863		m->pindex = pindex;
864
865	/*
866	 * Don't wakeup too often - wakeup the pageout daemon when
867	 * we would be nearly out of memory.
868	 */
869	if (vm_paging_needed())
870		pagedaemon_wakeup();
871
872	return (m);
873}
874
875/*
876 *	vm_wait:	(also see VM_WAIT macro)
877 *
878 *	Block until free pages are available for allocation
879 *	- Called in various places before memory allocations.
880 */
881void
882vm_wait(void)
883{
884
885	vm_page_lock_queues();
886	if (curproc == pageproc) {
887		vm_pageout_pages_needed = 1;
888		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
889		    PDROP | PSWP, "VMWait", 0);
890	} else {
891		if (!vm_pages_needed) {
892			vm_pages_needed = 1;
893			wakeup(&vm_pages_needed);
894		}
895		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
896		    "vmwait", 0);
897	}
898}
899
900/*
901 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
902 *
903 *	Block until free pages are available for allocation
904 *	- Called only in vm_fault so that processes page faulting
905 *	  can be easily tracked.
906 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
907 *	  processes will be able to grab memory first.  Do not change
908 *	  this balance without careful testing first.
909 */
910void
911vm_waitpfault(void)
912{
913
914	vm_page_lock_queues();
915	if (!vm_pages_needed) {
916		vm_pages_needed = 1;
917		wakeup(&vm_pages_needed);
918	}
919	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
920	    "pfault", 0);
921}
922
923/*
924 *	vm_page_activate:
925 *
926 *	Put the specified page on the active list (if appropriate).
927 *	Ensure that act_count is at least ACT_INIT but do not otherwise
928 *	mess with it.
929 *
930 *	The page queues must be locked.
931 *	This routine may not block.
932 */
933void
934vm_page_activate(vm_page_t m)
935{
936
937	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
938	if (m->queue != PQ_ACTIVE) {
939		if ((m->queue - m->pc) == PQ_CACHE)
940			cnt.v_reactivated++;
941		vm_pageq_remove(m);
942		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
943			if (m->act_count < ACT_INIT)
944				m->act_count = ACT_INIT;
945			vm_pageq_enqueue(PQ_ACTIVE, m);
946		}
947	} else {
948		if (m->act_count < ACT_INIT)
949			m->act_count = ACT_INIT;
950	}
951}
952
953/*
954 *	vm_page_free_wakeup:
955 *
956 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
957 *	routine is called when a page has been added to the cache or free
958 *	queues.
959 *
960 *	The page queues must be locked.
961 *	This routine may not block.
962 */
963static __inline void
964vm_page_free_wakeup(void)
965{
966
967	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
968	/*
969	 * if pageout daemon needs pages, then tell it that there are
970	 * some free.
971	 */
972	if (vm_pageout_pages_needed &&
973	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
974		wakeup(&vm_pageout_pages_needed);
975		vm_pageout_pages_needed = 0;
976	}
977	/*
978	 * wakeup processes that are waiting on memory if we hit a
979	 * high water mark. And wakeup scheduler process if we have
980	 * lots of memory. this process will swapin processes.
981	 */
982	if (vm_pages_needed && !vm_page_count_min()) {
983		vm_pages_needed = 0;
984		wakeup(&cnt.v_free_count);
985	}
986}
987
988/*
989 *	vm_page_free_toq:
990 *
991 *	Returns the given page to the PQ_FREE list,
992 *	disassociating it with any VM object.
993 *
994 *	Object and page must be locked prior to entry.
995 *	This routine may not block.
996 */
997
998void
999vm_page_free_toq(vm_page_t m)
1000{
1001	struct vpgqueues *pq;
1002	vm_object_t object = m->object;
1003
1004	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1005	cnt.v_tfree++;
1006
1007	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1008		printf(
1009		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1010		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1011		    m->hold_count);
1012		if ((m->queue - m->pc) == PQ_FREE)
1013			panic("vm_page_free: freeing free page");
1014		else
1015			panic("vm_page_free: freeing busy page");
1016	}
1017
1018	/*
1019	 * unqueue, then remove page.  Note that we cannot destroy
1020	 * the page here because we do not want to call the pager's
1021	 * callback routine until after we've put the page on the
1022	 * appropriate free queue.
1023	 */
1024	vm_pageq_remove_nowakeup(m);
1025	vm_page_remove(m);
1026
1027	/*
1028	 * If fictitious remove object association and
1029	 * return, otherwise delay object association removal.
1030	 */
1031	if ((m->flags & PG_FICTITIOUS) != 0) {
1032		return;
1033	}
1034
1035	m->valid = 0;
1036	vm_page_undirty(m);
1037
1038	if (m->wire_count != 0) {
1039		if (m->wire_count > 1) {
1040			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1041				m->wire_count, (long)m->pindex);
1042		}
1043		panic("vm_page_free: freeing wired page");
1044	}
1045
1046	/*
1047	 * If we've exhausted the object's resident pages we want to free
1048	 * it up.
1049	 */
1050	if (object &&
1051	    (object->type == OBJT_VNODE) &&
1052	    ((object->flags & OBJ_DEAD) == 0)
1053	) {
1054		struct vnode *vp = (struct vnode *)object->handle;
1055
1056		if (vp) {
1057			VI_LOCK(vp);
1058			if (VSHOULDFREE(vp))
1059				vfree(vp);
1060			VI_UNLOCK(vp);
1061		}
1062	}
1063
1064	/*
1065	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1066	 */
1067	if (m->flags & PG_UNMANAGED) {
1068		m->flags &= ~PG_UNMANAGED;
1069	}
1070
1071	if (m->hold_count != 0) {
1072		m->flags &= ~PG_ZERO;
1073		m->queue = PQ_HOLD;
1074	} else
1075		m->queue = PQ_FREE + m->pc;
1076	pq = &vm_page_queues[m->queue];
1077	mtx_lock_spin(&vm_page_queue_free_mtx);
1078	pq->lcnt++;
1079	++(*pq->cnt);
1080
1081	/*
1082	 * Put zero'd pages on the end ( where we look for zero'd pages
1083	 * first ) and non-zerod pages at the head.
1084	 */
1085	if (m->flags & PG_ZERO) {
1086		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1087		++vm_page_zero_count;
1088	} else {
1089		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1090	}
1091	mtx_unlock_spin(&vm_page_queue_free_mtx);
1092	vm_page_free_wakeup();
1093}
1094
1095/*
1096 *	vm_page_unmanage:
1097 *
1098 * 	Prevent PV management from being done on the page.  The page is
1099 *	removed from the paging queues as if it were wired, and as a
1100 *	consequence of no longer being managed the pageout daemon will not
1101 *	touch it (since there is no way to locate the pte mappings for the
1102 *	page).  madvise() calls that mess with the pmap will also no longer
1103 *	operate on the page.
1104 *
1105 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1106 *	will clear the flag.
1107 *
1108 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1109 *	physical memory as backing store rather then swap-backed memory and
1110 *	will eventually be extended to support 4MB unmanaged physical
1111 *	mappings.
1112 */
1113void
1114vm_page_unmanage(vm_page_t m)
1115{
1116
1117	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1118	if ((m->flags & PG_UNMANAGED) == 0) {
1119		if (m->wire_count == 0)
1120			vm_pageq_remove(m);
1121	}
1122	vm_page_flag_set(m, PG_UNMANAGED);
1123}
1124
1125/*
1126 *	vm_page_wire:
1127 *
1128 *	Mark this page as wired down by yet
1129 *	another map, removing it from paging queues
1130 *	as necessary.
1131 *
1132 *	The page queues must be locked.
1133 *	This routine may not block.
1134 */
1135void
1136vm_page_wire(vm_page_t m)
1137{
1138
1139	/*
1140	 * Only bump the wire statistics if the page is not already wired,
1141	 * and only unqueue the page if it is on some queue (if it is unmanaged
1142	 * it is already off the queues).
1143	 */
1144	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1145	if (m->flags & PG_FICTITIOUS)
1146		return;
1147	if (m->wire_count == 0) {
1148		if ((m->flags & PG_UNMANAGED) == 0)
1149			vm_pageq_remove(m);
1150		atomic_add_int(&cnt.v_wire_count, 1);
1151	}
1152	m->wire_count++;
1153	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1154}
1155
1156/*
1157 *	vm_page_unwire:
1158 *
1159 *	Release one wiring of this page, potentially
1160 *	enabling it to be paged again.
1161 *
1162 *	Many pages placed on the inactive queue should actually go
1163 *	into the cache, but it is difficult to figure out which.  What
1164 *	we do instead, if the inactive target is well met, is to put
1165 *	clean pages at the head of the inactive queue instead of the tail.
1166 *	This will cause them to be moved to the cache more quickly and
1167 *	if not actively re-referenced, freed more quickly.  If we just
1168 *	stick these pages at the end of the inactive queue, heavy filesystem
1169 *	meta-data accesses can cause an unnecessary paging load on memory bound
1170 *	processes.  This optimization causes one-time-use metadata to be
1171 *	reused more quickly.
1172 *
1173 *	BUT, if we are in a low-memory situation we have no choice but to
1174 *	put clean pages on the cache queue.
1175 *
1176 *	A number of routines use vm_page_unwire() to guarantee that the page
1177 *	will go into either the inactive or active queues, and will NEVER
1178 *	be placed in the cache - for example, just after dirtying a page.
1179 *	dirty pages in the cache are not allowed.
1180 *
1181 *	The page queues must be locked.
1182 *	This routine may not block.
1183 */
1184void
1185vm_page_unwire(vm_page_t m, int activate)
1186{
1187
1188	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1189	if (m->flags & PG_FICTITIOUS)
1190		return;
1191	if (m->wire_count > 0) {
1192		m->wire_count--;
1193		if (m->wire_count == 0) {
1194			atomic_subtract_int(&cnt.v_wire_count, 1);
1195			if (m->flags & PG_UNMANAGED) {
1196				;
1197			} else if (activate)
1198				vm_pageq_enqueue(PQ_ACTIVE, m);
1199			else {
1200				vm_page_flag_clear(m, PG_WINATCFLS);
1201				vm_pageq_enqueue(PQ_INACTIVE, m);
1202			}
1203		}
1204	} else {
1205		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1206	}
1207}
1208
1209
1210/*
1211 * Move the specified page to the inactive queue.  If the page has
1212 * any associated swap, the swap is deallocated.
1213 *
1214 * Normally athead is 0 resulting in LRU operation.  athead is set
1215 * to 1 if we want this page to be 'as if it were placed in the cache',
1216 * except without unmapping it from the process address space.
1217 *
1218 * This routine may not block.
1219 */
1220static __inline void
1221_vm_page_deactivate(vm_page_t m, int athead)
1222{
1223
1224	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1225
1226	/*
1227	 * Ignore if already inactive.
1228	 */
1229	if (m->queue == PQ_INACTIVE)
1230		return;
1231	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1232		if ((m->queue - m->pc) == PQ_CACHE)
1233			cnt.v_reactivated++;
1234		vm_page_flag_clear(m, PG_WINATCFLS);
1235		vm_pageq_remove(m);
1236		if (athead)
1237			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1238		else
1239			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1240		m->queue = PQ_INACTIVE;
1241		vm_page_queues[PQ_INACTIVE].lcnt++;
1242		cnt.v_inactive_count++;
1243	}
1244}
1245
1246void
1247vm_page_deactivate(vm_page_t m)
1248{
1249    _vm_page_deactivate(m, 0);
1250}
1251
1252/*
1253 * vm_page_try_to_cache:
1254 *
1255 * Returns 0 on failure, 1 on success
1256 */
1257int
1258vm_page_try_to_cache(vm_page_t m)
1259{
1260
1261	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1262	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1263	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1264	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1265		return (0);
1266	}
1267	pmap_remove_all(m);
1268	if (m->dirty)
1269		return (0);
1270	vm_page_cache(m);
1271	return (1);
1272}
1273
1274/*
1275 * vm_page_try_to_free()
1276 *
1277 *	Attempt to free the page.  If we cannot free it, we do nothing.
1278 *	1 is returned on success, 0 on failure.
1279 */
1280int
1281vm_page_try_to_free(vm_page_t m)
1282{
1283
1284	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1285	if (m->object != NULL)
1286		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1287	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1288	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1289		return (0);
1290	}
1291	pmap_remove_all(m);
1292	if (m->dirty)
1293		return (0);
1294	vm_page_free(m);
1295	return (1);
1296}
1297
1298/*
1299 * vm_page_cache
1300 *
1301 * Put the specified page onto the page cache queue (if appropriate).
1302 *
1303 * This routine may not block.
1304 */
1305void
1306vm_page_cache(vm_page_t m)
1307{
1308
1309	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1310	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1311	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1312	    m->hold_count || m->wire_count) {
1313		printf("vm_page_cache: attempting to cache busy page\n");
1314		return;
1315	}
1316	if ((m->queue - m->pc) == PQ_CACHE)
1317		return;
1318
1319	/*
1320	 * Remove all pmaps and indicate that the page is not
1321	 * writeable or mapped.
1322	 */
1323	pmap_remove_all(m);
1324	if (m->dirty != 0) {
1325		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1326			(long)m->pindex);
1327	}
1328	vm_pageq_remove_nowakeup(m);
1329	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1330	vm_page_free_wakeup();
1331}
1332
1333/*
1334 * vm_page_dontneed
1335 *
1336 *	Cache, deactivate, or do nothing as appropriate.  This routine
1337 *	is typically used by madvise() MADV_DONTNEED.
1338 *
1339 *	Generally speaking we want to move the page into the cache so
1340 *	it gets reused quickly.  However, this can result in a silly syndrome
1341 *	due to the page recycling too quickly.  Small objects will not be
1342 *	fully cached.  On the otherhand, if we move the page to the inactive
1343 *	queue we wind up with a problem whereby very large objects
1344 *	unnecessarily blow away our inactive and cache queues.
1345 *
1346 *	The solution is to move the pages based on a fixed weighting.  We
1347 *	either leave them alone, deactivate them, or move them to the cache,
1348 *	where moving them to the cache has the highest weighting.
1349 *	By forcing some pages into other queues we eventually force the
1350 *	system to balance the queues, potentially recovering other unrelated
1351 *	space from active.  The idea is to not force this to happen too
1352 *	often.
1353 */
1354void
1355vm_page_dontneed(vm_page_t m)
1356{
1357	static int dnweight;
1358	int dnw;
1359	int head;
1360
1361	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1362	dnw = ++dnweight;
1363
1364	/*
1365	 * occassionally leave the page alone
1366	 */
1367	if ((dnw & 0x01F0) == 0 ||
1368	    m->queue == PQ_INACTIVE ||
1369	    m->queue - m->pc == PQ_CACHE
1370	) {
1371		if (m->act_count >= ACT_INIT)
1372			--m->act_count;
1373		return;
1374	}
1375
1376	if (m->dirty == 0 && pmap_is_modified(m))
1377		vm_page_dirty(m);
1378
1379	if (m->dirty || (dnw & 0x0070) == 0) {
1380		/*
1381		 * Deactivate the page 3 times out of 32.
1382		 */
1383		head = 0;
1384	} else {
1385		/*
1386		 * Cache the page 28 times out of every 32.  Note that
1387		 * the page is deactivated instead of cached, but placed
1388		 * at the head of the queue instead of the tail.
1389		 */
1390		head = 1;
1391	}
1392	_vm_page_deactivate(m, head);
1393}
1394
1395/*
1396 * Grab a page, waiting until we are waken up due to the page
1397 * changing state.  We keep on waiting, if the page continues
1398 * to be in the object.  If the page doesn't exist, first allocate it
1399 * and then conditionally zero it.
1400 *
1401 * This routine may block.
1402 */
1403vm_page_t
1404vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1405{
1406	vm_page_t m;
1407
1408	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1409retrylookup:
1410	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1411		vm_page_lock_queues();
1412		if (m->busy || (m->flags & PG_BUSY)) {
1413			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1414			VM_OBJECT_UNLOCK(object);
1415			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1416			VM_OBJECT_LOCK(object);
1417			if ((allocflags & VM_ALLOC_RETRY) == 0)
1418				return (NULL);
1419			goto retrylookup;
1420		} else {
1421			if (allocflags & VM_ALLOC_WIRED)
1422				vm_page_wire(m);
1423			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1424				vm_page_busy(m);
1425			vm_page_unlock_queues();
1426			return (m);
1427		}
1428	}
1429	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1430	if (m == NULL) {
1431		VM_OBJECT_UNLOCK(object);
1432		VM_WAIT;
1433		VM_OBJECT_LOCK(object);
1434		if ((allocflags & VM_ALLOC_RETRY) == 0)
1435			return (NULL);
1436		goto retrylookup;
1437	}
1438	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1439		pmap_zero_page(m);
1440	return (m);
1441}
1442
1443/*
1444 * Mapping function for valid bits or for dirty bits in
1445 * a page.  May not block.
1446 *
1447 * Inputs are required to range within a page.
1448 */
1449__inline int
1450vm_page_bits(int base, int size)
1451{
1452	int first_bit;
1453	int last_bit;
1454
1455	KASSERT(
1456	    base + size <= PAGE_SIZE,
1457	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1458	);
1459
1460	if (size == 0)		/* handle degenerate case */
1461		return (0);
1462
1463	first_bit = base >> DEV_BSHIFT;
1464	last_bit = (base + size - 1) >> DEV_BSHIFT;
1465
1466	return ((2 << last_bit) - (1 << first_bit));
1467}
1468
1469/*
1470 *	vm_page_set_validclean:
1471 *
1472 *	Sets portions of a page valid and clean.  The arguments are expected
1473 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1474 *	of any partial chunks touched by the range.  The invalid portion of
1475 *	such chunks will be zero'd.
1476 *
1477 *	This routine may not block.
1478 *
1479 *	(base + size) must be less then or equal to PAGE_SIZE.
1480 */
1481void
1482vm_page_set_validclean(vm_page_t m, int base, int size)
1483{
1484	int pagebits;
1485	int frag;
1486	int endoff;
1487
1488	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1489	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1490	if (size == 0)	/* handle degenerate case */
1491		return;
1492
1493	/*
1494	 * If the base is not DEV_BSIZE aligned and the valid
1495	 * bit is clear, we have to zero out a portion of the
1496	 * first block.
1497	 */
1498	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1499	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1500		pmap_zero_page_area(m, frag, base - frag);
1501
1502	/*
1503	 * If the ending offset is not DEV_BSIZE aligned and the
1504	 * valid bit is clear, we have to zero out a portion of
1505	 * the last block.
1506	 */
1507	endoff = base + size;
1508	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1509	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1510		pmap_zero_page_area(m, endoff,
1511		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1512
1513	/*
1514	 * Set valid, clear dirty bits.  If validating the entire
1515	 * page we can safely clear the pmap modify bit.  We also
1516	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1517	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1518	 * be set again.
1519	 *
1520	 * We set valid bits inclusive of any overlap, but we can only
1521	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1522	 * the range.
1523	 */
1524	pagebits = vm_page_bits(base, size);
1525	m->valid |= pagebits;
1526#if 0	/* NOT YET */
1527	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1528		frag = DEV_BSIZE - frag;
1529		base += frag;
1530		size -= frag;
1531		if (size < 0)
1532			size = 0;
1533	}
1534	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1535#endif
1536	m->dirty &= ~pagebits;
1537	if (base == 0 && size == PAGE_SIZE) {
1538		pmap_clear_modify(m);
1539		vm_page_flag_clear(m, PG_NOSYNC);
1540	}
1541}
1542
1543void
1544vm_page_clear_dirty(vm_page_t m, int base, int size)
1545{
1546
1547	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1548	m->dirty &= ~vm_page_bits(base, size);
1549}
1550
1551/*
1552 *	vm_page_set_invalid:
1553 *
1554 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1555 *	valid and dirty bits for the effected areas are cleared.
1556 *
1557 *	May not block.
1558 */
1559void
1560vm_page_set_invalid(vm_page_t m, int base, int size)
1561{
1562	int bits;
1563
1564	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1565	bits = vm_page_bits(base, size);
1566	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1567	m->valid &= ~bits;
1568	m->dirty &= ~bits;
1569	m->object->generation++;
1570}
1571
1572/*
1573 * vm_page_zero_invalid()
1574 *
1575 *	The kernel assumes that the invalid portions of a page contain
1576 *	garbage, but such pages can be mapped into memory by user code.
1577 *	When this occurs, we must zero out the non-valid portions of the
1578 *	page so user code sees what it expects.
1579 *
1580 *	Pages are most often semi-valid when the end of a file is mapped
1581 *	into memory and the file's size is not page aligned.
1582 */
1583void
1584vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1585{
1586	int b;
1587	int i;
1588
1589	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1590	/*
1591	 * Scan the valid bits looking for invalid sections that
1592	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1593	 * valid bit may be set ) have already been zerod by
1594	 * vm_page_set_validclean().
1595	 */
1596	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1597		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1598		    (m->valid & (1 << i))
1599		) {
1600			if (i > b) {
1601				pmap_zero_page_area(m,
1602				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1603			}
1604			b = i + 1;
1605		}
1606	}
1607
1608	/*
1609	 * setvalid is TRUE when we can safely set the zero'd areas
1610	 * as being valid.  We can do this if there are no cache consistancy
1611	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1612	 */
1613	if (setvalid)
1614		m->valid = VM_PAGE_BITS_ALL;
1615}
1616
1617/*
1618 *	vm_page_is_valid:
1619 *
1620 *	Is (partial) page valid?  Note that the case where size == 0
1621 *	will return FALSE in the degenerate case where the page is
1622 *	entirely invalid, and TRUE otherwise.
1623 *
1624 *	May not block.
1625 */
1626int
1627vm_page_is_valid(vm_page_t m, int base, int size)
1628{
1629	int bits = vm_page_bits(base, size);
1630
1631	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1632	if (m->valid && ((m->valid & bits) == bits))
1633		return 1;
1634	else
1635		return 0;
1636}
1637
1638/*
1639 * update dirty bits from pmap/mmu.  May not block.
1640 */
1641void
1642vm_page_test_dirty(vm_page_t m)
1643{
1644	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1645		vm_page_dirty(m);
1646	}
1647}
1648
1649int so_zerocp_fullpage = 0;
1650
1651void
1652vm_page_cowfault(vm_page_t m)
1653{
1654	vm_page_t mnew;
1655	vm_object_t object;
1656	vm_pindex_t pindex;
1657
1658	object = m->object;
1659	pindex = m->pindex;
1660
1661 retry_alloc:
1662	vm_page_remove(m);
1663	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1664	if (mnew == NULL) {
1665		vm_page_insert(m, object, pindex);
1666		vm_page_unlock_queues();
1667		VM_OBJECT_UNLOCK(object);
1668		VM_WAIT;
1669		VM_OBJECT_LOCK(object);
1670		vm_page_lock_queues();
1671		goto retry_alloc;
1672	}
1673
1674	if (m->cow == 0) {
1675		/*
1676		 * check to see if we raced with an xmit complete when
1677		 * waiting to allocate a page.  If so, put things back
1678		 * the way they were
1679		 */
1680		vm_page_free(mnew);
1681		vm_page_insert(m, object, pindex);
1682	} else { /* clear COW & copy page */
1683		if (!so_zerocp_fullpage)
1684			pmap_copy_page(m, mnew);
1685		mnew->valid = VM_PAGE_BITS_ALL;
1686		vm_page_dirty(mnew);
1687		vm_page_flag_clear(mnew, PG_BUSY);
1688	}
1689}
1690
1691void
1692vm_page_cowclear(vm_page_t m)
1693{
1694
1695	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1696	if (m->cow) {
1697		m->cow--;
1698		/*
1699		 * let vm_fault add back write permission  lazily
1700		 */
1701	}
1702	/*
1703	 *  sf_buf_free() will free the page, so we needn't do it here
1704	 */
1705}
1706
1707void
1708vm_page_cowsetup(vm_page_t m)
1709{
1710
1711	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1712	m->cow++;
1713	pmap_page_protect(m, VM_PROT_READ);
1714}
1715
1716#include "opt_ddb.h"
1717#ifdef DDB
1718#include <sys/kernel.h>
1719
1720#include <ddb/ddb.h>
1721
1722DB_SHOW_COMMAND(page, vm_page_print_page_info)
1723{
1724	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1725	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1726	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1727	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1728	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1729	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1730	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1731	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1732	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1733	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1734}
1735
1736DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1737{
1738	int i;
1739	db_printf("PQ_FREE:");
1740	for (i = 0; i < PQ_L2_SIZE; i++) {
1741		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1742	}
1743	db_printf("\n");
1744
1745	db_printf("PQ_CACHE:");
1746	for (i = 0; i < PQ_L2_SIZE; i++) {
1747		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1748	}
1749	db_printf("\n");
1750
1751	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1752		vm_page_queues[PQ_ACTIVE].lcnt,
1753		vm_page_queues[PQ_INACTIVE].lcnt);
1754}
1755#endif /* DDB */
1756