vm_page.c revision 136655
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33 */
34
35/*
36 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37 * All rights reserved.
38 *
39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 *
41 * Permission to use, copy, modify and distribute this software and
42 * its documentation is hereby granted, provided that both the copyright
43 * notice and this permission notice appear in all copies of the
44 * software, derivative works or modified versions, and any portions
45 * thereof, and that both notices appear in supporting documentation.
46 *
47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 *
51 * Carnegie Mellon requests users of this software to return to
52 *
53 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54 *  School of Computer Science
55 *  Carnegie Mellon University
56 *  Pittsburgh PA 15213-3890
57 *
58 * any improvements or extensions that they make and grant Carnegie the
59 * rights to redistribute these changes.
60 */
61
62/*
63 *			GENERAL RULES ON VM_PAGE MANIPULATION
64 *
65 *	- a pageq mutex is required when adding or removing a page from a
66 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67 *	  busy state of a page.
68 *
69 *	- a hash chain mutex is required when associating or disassociating
70 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71 *	  regardless of other mutexes or the busy state of a page.
72 *
73 *	- either a hash chain mutex OR a busied page is required in order
74 *	  to modify the page flags.  A hash chain mutex must be obtained in
75 *	  order to busy a page.  A page's flags cannot be modified by a
76 *	  hash chain mutex if the page is marked busy.
77 *
78 *	- The object memq mutex is held when inserting or removing
79 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80 *	  is different from the object's main mutex.
81 *
82 *	Generally speaking, you have to be aware of side effects when running
83 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85 *	vm_page_cache(), vm_page_activate(), and a number of other routines
86 *	will release the hash chain mutex for you.  Intermediate manipulation
87 *	routines such as vm_page_flag_set() expect the hash chain to be held
88 *	on entry and the hash chain will remain held on return.
89 *
90 *	pageq scanning can only occur with the pageq in question locked.
91 *	We have a known bottleneck with the active queue, but the cache
92 *	and free queues are actually arrays already.
93 */
94
95/*
96 *	Resident memory management module.
97 */
98
99#include <sys/cdefs.h>
100__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 136655 2004-10-18 08:11:59Z alc $");
101
102#include <sys/param.h>
103#include <sys/systm.h>
104#include <sys/lock.h>
105#include <sys/malloc.h>
106#include <sys/mutex.h>
107#include <sys/proc.h>
108#include <sys/vmmeter.h>
109#include <sys/vnode.h>
110
111#include <vm/vm.h>
112#include <vm/vm_param.h>
113#include <vm/vm_kern.h>
114#include <vm/vm_object.h>
115#include <vm/vm_page.h>
116#include <vm/vm_pageout.h>
117#include <vm/vm_pager.h>
118#include <vm/vm_extern.h>
119#include <vm/uma.h>
120#include <vm/uma_int.h>
121
122/*
123 *	Associated with page of user-allocatable memory is a
124 *	page structure.
125 */
126
127struct mtx vm_page_queue_mtx;
128struct mtx vm_page_queue_free_mtx;
129
130vm_page_t vm_page_array = 0;
131int vm_page_array_size = 0;
132long first_page = 0;
133int vm_page_zero_count = 0;
134
135/*
136 *	vm_set_page_size:
137 *
138 *	Sets the page size, perhaps based upon the memory
139 *	size.  Must be called before any use of page-size
140 *	dependent functions.
141 */
142void
143vm_set_page_size(void)
144{
145	if (cnt.v_page_size == 0)
146		cnt.v_page_size = PAGE_SIZE;
147	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
148		panic("vm_set_page_size: page size not a power of two");
149}
150
151/*
152 *	vm_page_startup:
153 *
154 *	Initializes the resident memory module.
155 *
156 *	Allocates memory for the page cells, and
157 *	for the object/offset-to-page hash table headers.
158 *	Each page cell is initialized and placed on the free list.
159 */
160vm_offset_t
161vm_page_startup(vm_offset_t vaddr)
162{
163	vm_offset_t mapped;
164	vm_size_t npages;
165	vm_paddr_t page_range;
166	vm_paddr_t new_end;
167	int i;
168	vm_paddr_t pa;
169	int nblocks;
170	vm_paddr_t last_pa;
171
172	/* the biggest memory array is the second group of pages */
173	vm_paddr_t end;
174	vm_paddr_t biggestsize;
175	int biggestone;
176
177	vm_paddr_t total;
178	vm_size_t bootpages;
179
180	total = 0;
181	biggestsize = 0;
182	biggestone = 0;
183	nblocks = 0;
184	vaddr = round_page(vaddr);
185
186	for (i = 0; phys_avail[i + 1]; i += 2) {
187		phys_avail[i] = round_page(phys_avail[i]);
188		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
189	}
190
191	for (i = 0; phys_avail[i + 1]; i += 2) {
192		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
193
194		if (size > biggestsize) {
195			biggestone = i;
196			biggestsize = size;
197		}
198		++nblocks;
199		total += size;
200	}
201
202	end = phys_avail[biggestone+1];
203
204	/*
205	 * Initialize the locks.
206	 */
207	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
208	    MTX_RECURSE);
209	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
210	    MTX_SPIN);
211
212	/*
213	 * Initialize the queue headers for the free queue, the active queue
214	 * and the inactive queue.
215	 */
216	vm_pageq_init();
217
218	/*
219	 * Allocate memory for use when boot strapping the kernel memory
220	 * allocator.
221	 */
222	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
223	new_end = end - bootpages;
224	new_end = trunc_page(new_end);
225	mapped = pmap_map(&vaddr, new_end, end,
226	    VM_PROT_READ | VM_PROT_WRITE);
227	bzero((caddr_t) mapped, end - new_end);
228	uma_startup((caddr_t)mapped);
229
230	/*
231	 * Compute the number of pages of memory that will be available for
232	 * use (taking into account the overhead of a page structure per
233	 * page).
234	 */
235	first_page = phys_avail[0] / PAGE_SIZE;
236	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
237	npages = (total - (page_range * sizeof(struct vm_page)) -
238	    (end - new_end)) / PAGE_SIZE;
239	end = new_end;
240
241	/*
242	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
243	 */
244	vaddr += PAGE_SIZE;
245
246	/*
247	 * Initialize the mem entry structures now, and put them in the free
248	 * queue.
249	 */
250	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
251	mapped = pmap_map(&vaddr, new_end, end,
252	    VM_PROT_READ | VM_PROT_WRITE);
253	vm_page_array = (vm_page_t) mapped;
254	phys_avail[biggestone + 1] = new_end;
255
256	/*
257	 * Clear all of the page structures
258	 */
259	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
260	vm_page_array_size = page_range;
261
262	/*
263	 * Construct the free queue(s) in descending order (by physical
264	 * address) so that the first 16MB of physical memory is allocated
265	 * last rather than first.  On large-memory machines, this avoids
266	 * the exhaustion of low physical memory before isa_dma_init has run.
267	 */
268	cnt.v_page_count = 0;
269	cnt.v_free_count = 0;
270	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
271		pa = phys_avail[i];
272		last_pa = phys_avail[i + 1];
273		while (pa < last_pa && npages-- > 0) {
274			vm_pageq_add_new_page(pa);
275			pa += PAGE_SIZE;
276		}
277	}
278	return (vaddr);
279}
280
281void
282vm_page_flag_set(vm_page_t m, unsigned short bits)
283{
284
285	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
286	m->flags |= bits;
287}
288
289void
290vm_page_flag_clear(vm_page_t m, unsigned short bits)
291{
292
293	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
294	m->flags &= ~bits;
295}
296
297void
298vm_page_busy(vm_page_t m)
299{
300	KASSERT((m->flags & PG_BUSY) == 0,
301	    ("vm_page_busy: page already busy!!!"));
302	vm_page_flag_set(m, PG_BUSY);
303}
304
305/*
306 *      vm_page_flash:
307 *
308 *      wakeup anyone waiting for the page.
309 */
310void
311vm_page_flash(vm_page_t m)
312{
313	if (m->flags & PG_WANTED) {
314		vm_page_flag_clear(m, PG_WANTED);
315		wakeup(m);
316	}
317}
318
319/*
320 *      vm_page_wakeup:
321 *
322 *      clear the PG_BUSY flag and wakeup anyone waiting for the
323 *      page.
324 *
325 */
326void
327vm_page_wakeup(vm_page_t m)
328{
329	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
330	vm_page_flag_clear(m, PG_BUSY);
331	vm_page_flash(m);
332}
333
334void
335vm_page_io_start(vm_page_t m)
336{
337
338	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
339	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
340	m->busy++;
341}
342
343void
344vm_page_io_finish(vm_page_t m)
345{
346
347	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
348	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
349	m->busy--;
350	if (m->busy == 0)
351		vm_page_flash(m);
352}
353
354/*
355 * Keep page from being freed by the page daemon
356 * much of the same effect as wiring, except much lower
357 * overhead and should be used only for *very* temporary
358 * holding ("wiring").
359 */
360void
361vm_page_hold(vm_page_t mem)
362{
363
364	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
365        mem->hold_count++;
366}
367
368void
369vm_page_unhold(vm_page_t mem)
370{
371
372	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
373	--mem->hold_count;
374	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
375	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
376		vm_page_free_toq(mem);
377}
378
379/*
380 *	vm_page_free:
381 *
382 *	Free a page
383 *
384 *	The clearing of PG_ZERO is a temporary safety until the code can be
385 *	reviewed to determine that PG_ZERO is being properly cleared on
386 *	write faults or maps.  PG_ZERO was previously cleared in
387 *	vm_page_alloc().
388 */
389void
390vm_page_free(vm_page_t m)
391{
392	vm_page_flag_clear(m, PG_ZERO);
393	vm_page_free_toq(m);
394	vm_page_zero_idle_wakeup();
395}
396
397/*
398 *	vm_page_free_zero:
399 *
400 *	Free a page to the zerod-pages queue
401 */
402void
403vm_page_free_zero(vm_page_t m)
404{
405	vm_page_flag_set(m, PG_ZERO);
406	vm_page_free_toq(m);
407}
408
409/*
410 *	vm_page_sleep_if_busy:
411 *
412 *	Sleep and release the page queues lock if PG_BUSY is set or,
413 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
414 *	thread slept and the page queues lock was released.
415 *	Otherwise, retains the page queues lock and returns FALSE.
416 */
417int
418vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
419{
420	vm_object_t object;
421	int is_object_locked;
422
423	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
424	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
425		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
426		/*
427		 * It's possible that while we sleep, the page will get
428		 * unbusied and freed.  If we are holding the object
429		 * lock, we will assume we hold a reference to the object
430		 * such that even if m->object changes, we can re-lock
431		 * it.
432		 *
433		 * Remove mtx_owned() after vm_object locking is finished.
434		 */
435		object = m->object;
436		if ((is_object_locked = object != NULL &&
437		     mtx_owned(&object->mtx)))
438			mtx_unlock(&object->mtx);
439		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
440		if (is_object_locked)
441			mtx_lock(&object->mtx);
442		return (TRUE);
443	}
444	return (FALSE);
445}
446
447/*
448 *	vm_page_dirty:
449 *
450 *	make page all dirty
451 */
452void
453vm_page_dirty(vm_page_t m)
454{
455	KASSERT(m->queue - m->pc != PQ_CACHE,
456	    ("vm_page_dirty: page in cache!"));
457	KASSERT(m->queue - m->pc != PQ_FREE,
458	    ("vm_page_dirty: page is free!"));
459	m->dirty = VM_PAGE_BITS_ALL;
460}
461
462/*
463 *	vm_page_splay:
464 *
465 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
466 *	the vm_page containing the given pindex.  If, however, that
467 *	pindex is not found in the vm_object, returns a vm_page that is
468 *	adjacent to the pindex, coming before or after it.
469 */
470vm_page_t
471vm_page_splay(vm_pindex_t pindex, vm_page_t root)
472{
473	struct vm_page dummy;
474	vm_page_t lefttreemax, righttreemin, y;
475
476	if (root == NULL)
477		return (root);
478	lefttreemax = righttreemin = &dummy;
479	for (;; root = y) {
480		if (pindex < root->pindex) {
481			if ((y = root->left) == NULL)
482				break;
483			if (pindex < y->pindex) {
484				/* Rotate right. */
485				root->left = y->right;
486				y->right = root;
487				root = y;
488				if ((y = root->left) == NULL)
489					break;
490			}
491			/* Link into the new root's right tree. */
492			righttreemin->left = root;
493			righttreemin = root;
494		} else if (pindex > root->pindex) {
495			if ((y = root->right) == NULL)
496				break;
497			if (pindex > y->pindex) {
498				/* Rotate left. */
499				root->right = y->left;
500				y->left = root;
501				root = y;
502				if ((y = root->right) == NULL)
503					break;
504			}
505			/* Link into the new root's left tree. */
506			lefttreemax->right = root;
507			lefttreemax = root;
508		} else
509			break;
510	}
511	/* Assemble the new root. */
512	lefttreemax->right = root->left;
513	righttreemin->left = root->right;
514	root->left = dummy.right;
515	root->right = dummy.left;
516	return (root);
517}
518
519/*
520 *	vm_page_insert:		[ internal use only ]
521 *
522 *	Inserts the given mem entry into the object and object list.
523 *
524 *	The pagetables are not updated but will presumably fault the page
525 *	in if necessary, or if a kernel page the caller will at some point
526 *	enter the page into the kernel's pmap.  We are not allowed to block
527 *	here so we *can't* do this anyway.
528 *
529 *	The object and page must be locked.
530 *	This routine may not block.
531 */
532void
533vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
534{
535	vm_page_t root;
536
537	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
538	if (m->object != NULL)
539		panic("vm_page_insert: page already inserted");
540
541	/*
542	 * Record the object/offset pair in this page
543	 */
544	m->object = object;
545	m->pindex = pindex;
546
547	/*
548	 * Now link into the object's ordered list of backed pages.
549	 */
550	root = object->root;
551	if (root == NULL) {
552		m->left = NULL;
553		m->right = NULL;
554		TAILQ_INSERT_TAIL(&object->memq, m, listq);
555	} else {
556		root = vm_page_splay(pindex, root);
557		if (pindex < root->pindex) {
558			m->left = root->left;
559			m->right = root;
560			root->left = NULL;
561			TAILQ_INSERT_BEFORE(root, m, listq);
562		} else if (pindex == root->pindex)
563			panic("vm_page_insert: offset already allocated");
564		else {
565			m->right = root->right;
566			m->left = root;
567			root->right = NULL;
568			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
569		}
570	}
571	object->root = m;
572	object->generation++;
573
574	/*
575	 * show that the object has one more resident page.
576	 */
577	object->resident_page_count++;
578
579	/*
580	 * Since we are inserting a new and possibly dirty page,
581	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
582	 */
583	if (m->flags & PG_WRITEABLE)
584		vm_object_set_writeable_dirty(object);
585}
586
587/*
588 *	vm_page_remove:
589 *				NOTE: used by device pager as well -wfj
590 *
591 *	Removes the given mem entry from the object/offset-page
592 *	table and the object page list, but do not invalidate/terminate
593 *	the backing store.
594 *
595 *	The object and page must be locked.
596 *	The underlying pmap entry (if any) is NOT removed here.
597 *	This routine may not block.
598 */
599void
600vm_page_remove(vm_page_t m)
601{
602	vm_object_t object;
603	vm_page_t root;
604
605	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
606	if (m->object == NULL)
607		return;
608	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
609	if ((m->flags & PG_BUSY) == 0) {
610		panic("vm_page_remove: page not busy");
611	}
612
613	/*
614	 * Basically destroy the page.
615	 */
616	vm_page_wakeup(m);
617
618	object = m->object;
619
620	/*
621	 * Now remove from the object's list of backed pages.
622	 */
623	if (m != object->root)
624		vm_page_splay(m->pindex, object->root);
625	if (m->left == NULL)
626		root = m->right;
627	else {
628		root = vm_page_splay(m->pindex, m->left);
629		root->right = m->right;
630	}
631	object->root = root;
632	TAILQ_REMOVE(&object->memq, m, listq);
633
634	/*
635	 * And show that the object has one fewer resident page.
636	 */
637	object->resident_page_count--;
638	object->generation++;
639
640	m->object = NULL;
641}
642
643/*
644 *	vm_page_lookup:
645 *
646 *	Returns the page associated with the object/offset
647 *	pair specified; if none is found, NULL is returned.
648 *
649 *	The object must be locked.
650 *	This routine may not block.
651 *	This is a critical path routine
652 */
653vm_page_t
654vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
655{
656	vm_page_t m;
657
658	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
659	if ((m = object->root) != NULL && m->pindex != pindex) {
660		m = vm_page_splay(pindex, m);
661		if ((object->root = m)->pindex != pindex)
662			m = NULL;
663	}
664	return (m);
665}
666
667/*
668 *	vm_page_rename:
669 *
670 *	Move the given memory entry from its
671 *	current object to the specified target object/offset.
672 *
673 *	The object must be locked.
674 *	This routine may not block.
675 *
676 *	Note: swap associated with the page must be invalidated by the move.  We
677 *	      have to do this for several reasons:  (1) we aren't freeing the
678 *	      page, (2) we are dirtying the page, (3) the VM system is probably
679 *	      moving the page from object A to B, and will then later move
680 *	      the backing store from A to B and we can't have a conflict.
681 *
682 *	Note: we *always* dirty the page.  It is necessary both for the
683 *	      fact that we moved it, and because we may be invalidating
684 *	      swap.  If the page is on the cache, we have to deactivate it
685 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
686 *	      on the cache.
687 */
688void
689vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
690{
691
692	vm_page_remove(m);
693	vm_page_insert(m, new_object, new_pindex);
694	if (m->queue - m->pc == PQ_CACHE)
695		vm_page_deactivate(m);
696	vm_page_dirty(m);
697}
698
699/*
700 *	vm_page_select_cache:
701 *
702 *	Find a page on the cache queue with color optimization.  As pages
703 *	might be found, but not applicable, they are deactivated.  This
704 *	keeps us from using potentially busy cached pages.
705 *
706 *	This routine may not block.
707 */
708vm_page_t
709vm_page_select_cache(int color)
710{
711	vm_page_t m;
712
713	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
714	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
715		if ((m->flags & PG_BUSY) == 0 && m->busy == 0 &&
716		    m->hold_count == 0 && (VM_OBJECT_TRYLOCK(m->object) ||
717		    VM_OBJECT_LOCKED(m->object))) {
718			KASSERT(m->dirty == 0,
719			    ("Found dirty cache page %p", m));
720			KASSERT(!pmap_page_is_mapped(m),
721			    ("Found mapped cache page %p", m));
722			KASSERT((m->flags & PG_UNMANAGED) == 0,
723			    ("Found unmanaged cache page %p", m));
724			KASSERT(m->wire_count == 0,
725			    ("Found wired cache page %p", m));
726			break;
727		}
728		vm_page_deactivate(m);
729	}
730	return (m);
731}
732
733/*
734 *	vm_page_alloc:
735 *
736 *	Allocate and return a memory cell associated
737 *	with this VM object/offset pair.
738 *
739 *	page_req classes:
740 *	VM_ALLOC_NORMAL		normal process request
741 *	VM_ALLOC_SYSTEM		system *really* needs a page
742 *	VM_ALLOC_INTERRUPT	interrupt time request
743 *	VM_ALLOC_ZERO		zero page
744 *
745 *	This routine may not block.
746 *
747 *	Additional special handling is required when called from an
748 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
749 *	the page cache in this case.
750 */
751vm_page_t
752vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
753{
754	vm_object_t m_object;
755	vm_page_t m = NULL;
756	int color, flags, page_req;
757
758	page_req = req & VM_ALLOC_CLASS_MASK;
759
760	if ((req & VM_ALLOC_NOOBJ) == 0) {
761		KASSERT(object != NULL,
762		    ("vm_page_alloc: NULL object."));
763		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
764		color = (pindex + object->pg_color) & PQ_L2_MASK;
765	} else
766		color = pindex & PQ_L2_MASK;
767
768	/*
769	 * The pager is allowed to eat deeper into the free page list.
770	 */
771	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
772		page_req = VM_ALLOC_SYSTEM;
773	};
774
775loop:
776	mtx_lock_spin(&vm_page_queue_free_mtx);
777	if (cnt.v_free_count > cnt.v_free_reserved ||
778	    (page_req == VM_ALLOC_SYSTEM &&
779	     cnt.v_cache_count == 0 &&
780	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
781	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
782		/*
783		 * Allocate from the free queue if the number of free pages
784		 * exceeds the minimum for the request class.
785		 */
786		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
787	} else if (page_req != VM_ALLOC_INTERRUPT) {
788		mtx_unlock_spin(&vm_page_queue_free_mtx);
789		/*
790		 * Allocatable from cache (non-interrupt only).  On success,
791		 * we must free the page and try again, thus ensuring that
792		 * cnt.v_*_free_min counters are replenished.
793		 */
794		vm_page_lock_queues();
795		if ((m = vm_page_select_cache(color)) == NULL) {
796#if defined(DIAGNOSTIC)
797			if (cnt.v_cache_count > 0)
798				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
799#endif
800			vm_page_unlock_queues();
801			atomic_add_int(&vm_pageout_deficit, 1);
802			pagedaemon_wakeup();
803			return (NULL);
804		}
805		m_object = m->object;
806		VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED);
807		vm_page_busy(m);
808		vm_page_free(m);
809		vm_page_unlock_queues();
810		if (m_object != object)
811			VM_OBJECT_UNLOCK(m_object);
812		goto loop;
813	} else {
814		/*
815		 * Not allocatable from cache from interrupt, give up.
816		 */
817		mtx_unlock_spin(&vm_page_queue_free_mtx);
818		atomic_add_int(&vm_pageout_deficit, 1);
819		pagedaemon_wakeup();
820		return (NULL);
821	}
822
823	/*
824	 *  At this point we had better have found a good page.
825	 */
826
827	KASSERT(
828	    m != NULL,
829	    ("vm_page_alloc(): missing page on free queue")
830	);
831
832	/*
833	 * Remove from free queue
834	 */
835	vm_pageq_remove_nowakeup(m);
836
837	/*
838	 * Initialize structure.  Only the PG_ZERO flag is inherited.
839	 */
840	flags = PG_BUSY;
841	if (m->flags & PG_ZERO) {
842		vm_page_zero_count--;
843		if (req & VM_ALLOC_ZERO)
844			flags = PG_ZERO | PG_BUSY;
845	}
846	if (req & VM_ALLOC_NOOBJ)
847		flags &= ~PG_BUSY;
848	m->flags = flags;
849	if (req & VM_ALLOC_WIRED) {
850		atomic_add_int(&cnt.v_wire_count, 1);
851		m->wire_count = 1;
852	} else
853		m->wire_count = 0;
854	m->hold_count = 0;
855	m->act_count = 0;
856	m->busy = 0;
857	m->valid = 0;
858	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
859	mtx_unlock_spin(&vm_page_queue_free_mtx);
860
861	if ((req & VM_ALLOC_NOOBJ) == 0)
862		vm_page_insert(m, object, pindex);
863	else
864		m->pindex = pindex;
865
866	/*
867	 * Don't wakeup too often - wakeup the pageout daemon when
868	 * we would be nearly out of memory.
869	 */
870	if (vm_paging_needed())
871		pagedaemon_wakeup();
872
873	return (m);
874}
875
876/*
877 *	vm_wait:	(also see VM_WAIT macro)
878 *
879 *	Block until free pages are available for allocation
880 *	- Called in various places before memory allocations.
881 */
882void
883vm_wait(void)
884{
885
886	vm_page_lock_queues();
887	if (curproc == pageproc) {
888		vm_pageout_pages_needed = 1;
889		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
890		    PDROP | PSWP, "VMWait", 0);
891	} else {
892		if (!vm_pages_needed) {
893			vm_pages_needed = 1;
894			wakeup(&vm_pages_needed);
895		}
896		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
897		    "vmwait", 0);
898	}
899}
900
901/*
902 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
903 *
904 *	Block until free pages are available for allocation
905 *	- Called only in vm_fault so that processes page faulting
906 *	  can be easily tracked.
907 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
908 *	  processes will be able to grab memory first.  Do not change
909 *	  this balance without careful testing first.
910 */
911void
912vm_waitpfault(void)
913{
914
915	vm_page_lock_queues();
916	if (!vm_pages_needed) {
917		vm_pages_needed = 1;
918		wakeup(&vm_pages_needed);
919	}
920	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
921	    "pfault", 0);
922}
923
924/*
925 *	vm_page_activate:
926 *
927 *	Put the specified page on the active list (if appropriate).
928 *	Ensure that act_count is at least ACT_INIT but do not otherwise
929 *	mess with it.
930 *
931 *	The page queues must be locked.
932 *	This routine may not block.
933 */
934void
935vm_page_activate(vm_page_t m)
936{
937
938	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
939	if (m->queue != PQ_ACTIVE) {
940		if ((m->queue - m->pc) == PQ_CACHE)
941			cnt.v_reactivated++;
942		vm_pageq_remove(m);
943		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
944			if (m->act_count < ACT_INIT)
945				m->act_count = ACT_INIT;
946			vm_pageq_enqueue(PQ_ACTIVE, m);
947		}
948	} else {
949		if (m->act_count < ACT_INIT)
950			m->act_count = ACT_INIT;
951	}
952}
953
954/*
955 *	vm_page_free_wakeup:
956 *
957 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
958 *	routine is called when a page has been added to the cache or free
959 *	queues.
960 *
961 *	The page queues must be locked.
962 *	This routine may not block.
963 */
964static __inline void
965vm_page_free_wakeup(void)
966{
967
968	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
969	/*
970	 * if pageout daemon needs pages, then tell it that there are
971	 * some free.
972	 */
973	if (vm_pageout_pages_needed &&
974	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
975		wakeup(&vm_pageout_pages_needed);
976		vm_pageout_pages_needed = 0;
977	}
978	/*
979	 * wakeup processes that are waiting on memory if we hit a
980	 * high water mark. And wakeup scheduler process if we have
981	 * lots of memory. this process will swapin processes.
982	 */
983	if (vm_pages_needed && !vm_page_count_min()) {
984		vm_pages_needed = 0;
985		wakeup(&cnt.v_free_count);
986	}
987}
988
989/*
990 *	vm_page_free_toq:
991 *
992 *	Returns the given page to the PQ_FREE list,
993 *	disassociating it with any VM object.
994 *
995 *	Object and page must be locked prior to entry.
996 *	This routine may not block.
997 */
998
999void
1000vm_page_free_toq(vm_page_t m)
1001{
1002	struct vpgqueues *pq;
1003	vm_object_t object = m->object;
1004
1005	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1006	cnt.v_tfree++;
1007
1008	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1009		printf(
1010		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1011		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1012		    m->hold_count);
1013		if ((m->queue - m->pc) == PQ_FREE)
1014			panic("vm_page_free: freeing free page");
1015		else
1016			panic("vm_page_free: freeing busy page");
1017	}
1018
1019	/*
1020	 * unqueue, then remove page.  Note that we cannot destroy
1021	 * the page here because we do not want to call the pager's
1022	 * callback routine until after we've put the page on the
1023	 * appropriate free queue.
1024	 */
1025	vm_pageq_remove_nowakeup(m);
1026	vm_page_remove(m);
1027
1028	/*
1029	 * If fictitious remove object association and
1030	 * return, otherwise delay object association removal.
1031	 */
1032	if ((m->flags & PG_FICTITIOUS) != 0) {
1033		return;
1034	}
1035
1036	m->valid = 0;
1037	vm_page_undirty(m);
1038
1039	if (m->wire_count != 0) {
1040		if (m->wire_count > 1) {
1041			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1042				m->wire_count, (long)m->pindex);
1043		}
1044		panic("vm_page_free: freeing wired page");
1045	}
1046
1047	/*
1048	 * If we've exhausted the object's resident pages we want to free
1049	 * it up.
1050	 */
1051	if (object &&
1052	    (object->type == OBJT_VNODE) &&
1053	    ((object->flags & OBJ_DEAD) == 0)
1054	) {
1055		struct vnode *vp = (struct vnode *)object->handle;
1056
1057		if (vp) {
1058			VI_LOCK(vp);
1059			if (VSHOULDFREE(vp))
1060				vfree(vp);
1061			VI_UNLOCK(vp);
1062		}
1063	}
1064
1065	/*
1066	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1067	 */
1068	if (m->flags & PG_UNMANAGED) {
1069		m->flags &= ~PG_UNMANAGED;
1070	}
1071
1072	if (m->hold_count != 0) {
1073		m->flags &= ~PG_ZERO;
1074		m->queue = PQ_HOLD;
1075	} else
1076		m->queue = PQ_FREE + m->pc;
1077	pq = &vm_page_queues[m->queue];
1078	mtx_lock_spin(&vm_page_queue_free_mtx);
1079	pq->lcnt++;
1080	++(*pq->cnt);
1081
1082	/*
1083	 * Put zero'd pages on the end ( where we look for zero'd pages
1084	 * first ) and non-zerod pages at the head.
1085	 */
1086	if (m->flags & PG_ZERO) {
1087		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1088		++vm_page_zero_count;
1089	} else {
1090		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1091	}
1092	mtx_unlock_spin(&vm_page_queue_free_mtx);
1093	vm_page_free_wakeup();
1094}
1095
1096/*
1097 *	vm_page_unmanage:
1098 *
1099 * 	Prevent PV management from being done on the page.  The page is
1100 *	removed from the paging queues as if it were wired, and as a
1101 *	consequence of no longer being managed the pageout daemon will not
1102 *	touch it (since there is no way to locate the pte mappings for the
1103 *	page).  madvise() calls that mess with the pmap will also no longer
1104 *	operate on the page.
1105 *
1106 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1107 *	will clear the flag.
1108 *
1109 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1110 *	physical memory as backing store rather then swap-backed memory and
1111 *	will eventually be extended to support 4MB unmanaged physical
1112 *	mappings.
1113 */
1114void
1115vm_page_unmanage(vm_page_t m)
1116{
1117
1118	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1119	if ((m->flags & PG_UNMANAGED) == 0) {
1120		if (m->wire_count == 0)
1121			vm_pageq_remove(m);
1122	}
1123	vm_page_flag_set(m, PG_UNMANAGED);
1124}
1125
1126/*
1127 *	vm_page_wire:
1128 *
1129 *	Mark this page as wired down by yet
1130 *	another map, removing it from paging queues
1131 *	as necessary.
1132 *
1133 *	The page queues must be locked.
1134 *	This routine may not block.
1135 */
1136void
1137vm_page_wire(vm_page_t m)
1138{
1139
1140	/*
1141	 * Only bump the wire statistics if the page is not already wired,
1142	 * and only unqueue the page if it is on some queue (if it is unmanaged
1143	 * it is already off the queues).
1144	 */
1145	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1146	if (m->flags & PG_FICTITIOUS)
1147		return;
1148	if (m->wire_count == 0) {
1149		if ((m->flags & PG_UNMANAGED) == 0)
1150			vm_pageq_remove(m);
1151		atomic_add_int(&cnt.v_wire_count, 1);
1152	}
1153	m->wire_count++;
1154	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1155}
1156
1157/*
1158 *	vm_page_unwire:
1159 *
1160 *	Release one wiring of this page, potentially
1161 *	enabling it to be paged again.
1162 *
1163 *	Many pages placed on the inactive queue should actually go
1164 *	into the cache, but it is difficult to figure out which.  What
1165 *	we do instead, if the inactive target is well met, is to put
1166 *	clean pages at the head of the inactive queue instead of the tail.
1167 *	This will cause them to be moved to the cache more quickly and
1168 *	if not actively re-referenced, freed more quickly.  If we just
1169 *	stick these pages at the end of the inactive queue, heavy filesystem
1170 *	meta-data accesses can cause an unnecessary paging load on memory bound
1171 *	processes.  This optimization causes one-time-use metadata to be
1172 *	reused more quickly.
1173 *
1174 *	BUT, if we are in a low-memory situation we have no choice but to
1175 *	put clean pages on the cache queue.
1176 *
1177 *	A number of routines use vm_page_unwire() to guarantee that the page
1178 *	will go into either the inactive or active queues, and will NEVER
1179 *	be placed in the cache - for example, just after dirtying a page.
1180 *	dirty pages in the cache are not allowed.
1181 *
1182 *	The page queues must be locked.
1183 *	This routine may not block.
1184 */
1185void
1186vm_page_unwire(vm_page_t m, int activate)
1187{
1188
1189	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1190	if (m->flags & PG_FICTITIOUS)
1191		return;
1192	if (m->wire_count > 0) {
1193		m->wire_count--;
1194		if (m->wire_count == 0) {
1195			atomic_subtract_int(&cnt.v_wire_count, 1);
1196			if (m->flags & PG_UNMANAGED) {
1197				;
1198			} else if (activate)
1199				vm_pageq_enqueue(PQ_ACTIVE, m);
1200			else {
1201				vm_page_flag_clear(m, PG_WINATCFLS);
1202				vm_pageq_enqueue(PQ_INACTIVE, m);
1203			}
1204		}
1205	} else {
1206		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1207	}
1208}
1209
1210
1211/*
1212 * Move the specified page to the inactive queue.  If the page has
1213 * any associated swap, the swap is deallocated.
1214 *
1215 * Normally athead is 0 resulting in LRU operation.  athead is set
1216 * to 1 if we want this page to be 'as if it were placed in the cache',
1217 * except without unmapping it from the process address space.
1218 *
1219 * This routine may not block.
1220 */
1221static __inline void
1222_vm_page_deactivate(vm_page_t m, int athead)
1223{
1224
1225	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1226
1227	/*
1228	 * Ignore if already inactive.
1229	 */
1230	if (m->queue == PQ_INACTIVE)
1231		return;
1232	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1233		if ((m->queue - m->pc) == PQ_CACHE)
1234			cnt.v_reactivated++;
1235		vm_page_flag_clear(m, PG_WINATCFLS);
1236		vm_pageq_remove(m);
1237		if (athead)
1238			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1239		else
1240			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1241		m->queue = PQ_INACTIVE;
1242		vm_page_queues[PQ_INACTIVE].lcnt++;
1243		cnt.v_inactive_count++;
1244	}
1245}
1246
1247void
1248vm_page_deactivate(vm_page_t m)
1249{
1250    _vm_page_deactivate(m, 0);
1251}
1252
1253/*
1254 * vm_page_try_to_cache:
1255 *
1256 * Returns 0 on failure, 1 on success
1257 */
1258int
1259vm_page_try_to_cache(vm_page_t m)
1260{
1261
1262	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1263	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1264	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1265		return (0);
1266	}
1267	pmap_remove_all(m);
1268	if (m->dirty)
1269		return (0);
1270	vm_page_cache(m);
1271	return (1);
1272}
1273
1274/*
1275 * vm_page_try_to_free()
1276 *
1277 *	Attempt to free the page.  If we cannot free it, we do nothing.
1278 *	1 is returned on success, 0 on failure.
1279 */
1280int
1281vm_page_try_to_free(vm_page_t m)
1282{
1283
1284	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1285	if (m->object != NULL)
1286		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1287	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1288	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1289		return (0);
1290	}
1291	pmap_remove_all(m);
1292	if (m->dirty)
1293		return (0);
1294	vm_page_busy(m);
1295	vm_page_free(m);
1296	return (1);
1297}
1298
1299/*
1300 * vm_page_cache
1301 *
1302 * Put the specified page onto the page cache queue (if appropriate).
1303 *
1304 * This routine may not block.
1305 */
1306void
1307vm_page_cache(vm_page_t m)
1308{
1309
1310	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1311	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1312	    m->hold_count || m->wire_count) {
1313		printf("vm_page_cache: attempting to cache busy page\n");
1314		return;
1315	}
1316	if ((m->queue - m->pc) == PQ_CACHE)
1317		return;
1318
1319	/*
1320	 * Remove all pmaps and indicate that the page is not
1321	 * writeable or mapped.
1322	 */
1323	pmap_remove_all(m);
1324	if (m->dirty != 0) {
1325		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1326			(long)m->pindex);
1327	}
1328	vm_pageq_remove_nowakeup(m);
1329	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1330	vm_page_free_wakeup();
1331}
1332
1333/*
1334 * vm_page_dontneed
1335 *
1336 *	Cache, deactivate, or do nothing as appropriate.  This routine
1337 *	is typically used by madvise() MADV_DONTNEED.
1338 *
1339 *	Generally speaking we want to move the page into the cache so
1340 *	it gets reused quickly.  However, this can result in a silly syndrome
1341 *	due to the page recycling too quickly.  Small objects will not be
1342 *	fully cached.  On the otherhand, if we move the page to the inactive
1343 *	queue we wind up with a problem whereby very large objects
1344 *	unnecessarily blow away our inactive and cache queues.
1345 *
1346 *	The solution is to move the pages based on a fixed weighting.  We
1347 *	either leave them alone, deactivate them, or move them to the cache,
1348 *	where moving them to the cache has the highest weighting.
1349 *	By forcing some pages into other queues we eventually force the
1350 *	system to balance the queues, potentially recovering other unrelated
1351 *	space from active.  The idea is to not force this to happen too
1352 *	often.
1353 */
1354void
1355vm_page_dontneed(vm_page_t m)
1356{
1357	static int dnweight;
1358	int dnw;
1359	int head;
1360
1361	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1362	dnw = ++dnweight;
1363
1364	/*
1365	 * occassionally leave the page alone
1366	 */
1367	if ((dnw & 0x01F0) == 0 ||
1368	    m->queue == PQ_INACTIVE ||
1369	    m->queue - m->pc == PQ_CACHE
1370	) {
1371		if (m->act_count >= ACT_INIT)
1372			--m->act_count;
1373		return;
1374	}
1375
1376	if (m->dirty == 0 && pmap_is_modified(m))
1377		vm_page_dirty(m);
1378
1379	if (m->dirty || (dnw & 0x0070) == 0) {
1380		/*
1381		 * Deactivate the page 3 times out of 32.
1382		 */
1383		head = 0;
1384	} else {
1385		/*
1386		 * Cache the page 28 times out of every 32.  Note that
1387		 * the page is deactivated instead of cached, but placed
1388		 * at the head of the queue instead of the tail.
1389		 */
1390		head = 1;
1391	}
1392	_vm_page_deactivate(m, head);
1393}
1394
1395/*
1396 * Grab a page, waiting until we are waken up due to the page
1397 * changing state.  We keep on waiting, if the page continues
1398 * to be in the object.  If the page doesn't exist, first allocate it
1399 * and then conditionally zero it.
1400 *
1401 * This routine may block.
1402 */
1403vm_page_t
1404vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1405{
1406	vm_page_t m;
1407
1408	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1409retrylookup:
1410	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1411		vm_page_lock_queues();
1412		if (m->busy || (m->flags & PG_BUSY)) {
1413			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1414			VM_OBJECT_UNLOCK(object);
1415			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1416			VM_OBJECT_LOCK(object);
1417			if ((allocflags & VM_ALLOC_RETRY) == 0)
1418				return (NULL);
1419			goto retrylookup;
1420		} else {
1421			if (allocflags & VM_ALLOC_WIRED)
1422				vm_page_wire(m);
1423			vm_page_busy(m);
1424			vm_page_unlock_queues();
1425			return (m);
1426		}
1427	}
1428	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1429	if (m == NULL) {
1430		VM_OBJECT_UNLOCK(object);
1431		VM_WAIT;
1432		VM_OBJECT_LOCK(object);
1433		if ((allocflags & VM_ALLOC_RETRY) == 0)
1434			return (NULL);
1435		goto retrylookup;
1436	}
1437	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1438		pmap_zero_page(m);
1439	return (m);
1440}
1441
1442/*
1443 * Mapping function for valid bits or for dirty bits in
1444 * a page.  May not block.
1445 *
1446 * Inputs are required to range within a page.
1447 */
1448__inline int
1449vm_page_bits(int base, int size)
1450{
1451	int first_bit;
1452	int last_bit;
1453
1454	KASSERT(
1455	    base + size <= PAGE_SIZE,
1456	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1457	);
1458
1459	if (size == 0)		/* handle degenerate case */
1460		return (0);
1461
1462	first_bit = base >> DEV_BSHIFT;
1463	last_bit = (base + size - 1) >> DEV_BSHIFT;
1464
1465	return ((2 << last_bit) - (1 << first_bit));
1466}
1467
1468/*
1469 *	vm_page_set_validclean:
1470 *
1471 *	Sets portions of a page valid and clean.  The arguments are expected
1472 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1473 *	of any partial chunks touched by the range.  The invalid portion of
1474 *	such chunks will be zero'd.
1475 *
1476 *	This routine may not block.
1477 *
1478 *	(base + size) must be less then or equal to PAGE_SIZE.
1479 */
1480void
1481vm_page_set_validclean(vm_page_t m, int base, int size)
1482{
1483	int pagebits;
1484	int frag;
1485	int endoff;
1486
1487	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1488	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1489	if (size == 0)	/* handle degenerate case */
1490		return;
1491
1492	/*
1493	 * If the base is not DEV_BSIZE aligned and the valid
1494	 * bit is clear, we have to zero out a portion of the
1495	 * first block.
1496	 */
1497	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1498	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1499		pmap_zero_page_area(m, frag, base - frag);
1500
1501	/*
1502	 * If the ending offset is not DEV_BSIZE aligned and the
1503	 * valid bit is clear, we have to zero out a portion of
1504	 * the last block.
1505	 */
1506	endoff = base + size;
1507	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1508	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1509		pmap_zero_page_area(m, endoff,
1510		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1511
1512	/*
1513	 * Set valid, clear dirty bits.  If validating the entire
1514	 * page we can safely clear the pmap modify bit.  We also
1515	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1516	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1517	 * be set again.
1518	 *
1519	 * We set valid bits inclusive of any overlap, but we can only
1520	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1521	 * the range.
1522	 */
1523	pagebits = vm_page_bits(base, size);
1524	m->valid |= pagebits;
1525#if 0	/* NOT YET */
1526	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1527		frag = DEV_BSIZE - frag;
1528		base += frag;
1529		size -= frag;
1530		if (size < 0)
1531			size = 0;
1532	}
1533	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1534#endif
1535	m->dirty &= ~pagebits;
1536	if (base == 0 && size == PAGE_SIZE) {
1537		pmap_clear_modify(m);
1538		vm_page_flag_clear(m, PG_NOSYNC);
1539	}
1540}
1541
1542void
1543vm_page_clear_dirty(vm_page_t m, int base, int size)
1544{
1545
1546	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1547	m->dirty &= ~vm_page_bits(base, size);
1548}
1549
1550/*
1551 *	vm_page_set_invalid:
1552 *
1553 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1554 *	valid and dirty bits for the effected areas are cleared.
1555 *
1556 *	May not block.
1557 */
1558void
1559vm_page_set_invalid(vm_page_t m, int base, int size)
1560{
1561	int bits;
1562
1563	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1564	bits = vm_page_bits(base, size);
1565	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1566	m->valid &= ~bits;
1567	m->dirty &= ~bits;
1568	m->object->generation++;
1569}
1570
1571/*
1572 * vm_page_zero_invalid()
1573 *
1574 *	The kernel assumes that the invalid portions of a page contain
1575 *	garbage, but such pages can be mapped into memory by user code.
1576 *	When this occurs, we must zero out the non-valid portions of the
1577 *	page so user code sees what it expects.
1578 *
1579 *	Pages are most often semi-valid when the end of a file is mapped
1580 *	into memory and the file's size is not page aligned.
1581 */
1582void
1583vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1584{
1585	int b;
1586	int i;
1587
1588	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1589	/*
1590	 * Scan the valid bits looking for invalid sections that
1591	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1592	 * valid bit may be set ) have already been zerod by
1593	 * vm_page_set_validclean().
1594	 */
1595	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1596		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1597		    (m->valid & (1 << i))
1598		) {
1599			if (i > b) {
1600				pmap_zero_page_area(m,
1601				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1602			}
1603			b = i + 1;
1604		}
1605	}
1606
1607	/*
1608	 * setvalid is TRUE when we can safely set the zero'd areas
1609	 * as being valid.  We can do this if there are no cache consistancy
1610	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1611	 */
1612	if (setvalid)
1613		m->valid = VM_PAGE_BITS_ALL;
1614}
1615
1616/*
1617 *	vm_page_is_valid:
1618 *
1619 *	Is (partial) page valid?  Note that the case where size == 0
1620 *	will return FALSE in the degenerate case where the page is
1621 *	entirely invalid, and TRUE otherwise.
1622 *
1623 *	May not block.
1624 */
1625int
1626vm_page_is_valid(vm_page_t m, int base, int size)
1627{
1628	int bits = vm_page_bits(base, size);
1629
1630	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1631	if (m->valid && ((m->valid & bits) == bits))
1632		return 1;
1633	else
1634		return 0;
1635}
1636
1637/*
1638 * update dirty bits from pmap/mmu.  May not block.
1639 */
1640void
1641vm_page_test_dirty(vm_page_t m)
1642{
1643	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1644		vm_page_dirty(m);
1645	}
1646}
1647
1648int so_zerocp_fullpage = 0;
1649
1650void
1651vm_page_cowfault(vm_page_t m)
1652{
1653	vm_page_t mnew;
1654	vm_object_t object;
1655	vm_pindex_t pindex;
1656
1657	object = m->object;
1658	pindex = m->pindex;
1659
1660 retry_alloc:
1661	vm_page_busy(m);
1662	vm_page_remove(m);
1663	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1664	if (mnew == NULL) {
1665		vm_page_insert(m, object, pindex);
1666		vm_page_unlock_queues();
1667		VM_OBJECT_UNLOCK(object);
1668		VM_WAIT;
1669		VM_OBJECT_LOCK(object);
1670		vm_page_lock_queues();
1671		goto retry_alloc;
1672	}
1673
1674	if (m->cow == 0) {
1675		/*
1676		 * check to see if we raced with an xmit complete when
1677		 * waiting to allocate a page.  If so, put things back
1678		 * the way they were
1679		 */
1680		vm_page_free(mnew);
1681		vm_page_insert(m, object, pindex);
1682	} else { /* clear COW & copy page */
1683		if (!so_zerocp_fullpage)
1684			pmap_copy_page(m, mnew);
1685		mnew->valid = VM_PAGE_BITS_ALL;
1686		vm_page_dirty(mnew);
1687		vm_page_flag_clear(mnew, PG_BUSY);
1688	}
1689}
1690
1691void
1692vm_page_cowclear(vm_page_t m)
1693{
1694
1695	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1696	if (m->cow) {
1697		m->cow--;
1698		/*
1699		 * let vm_fault add back write permission  lazily
1700		 */
1701	}
1702	/*
1703	 *  sf_buf_free() will free the page, so we needn't do it here
1704	 */
1705}
1706
1707void
1708vm_page_cowsetup(vm_page_t m)
1709{
1710
1711	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1712	m->cow++;
1713	pmap_page_protect(m, VM_PROT_READ);
1714}
1715
1716#include "opt_ddb.h"
1717#ifdef DDB
1718#include <sys/kernel.h>
1719
1720#include <ddb/ddb.h>
1721
1722DB_SHOW_COMMAND(page, vm_page_print_page_info)
1723{
1724	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1725	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1726	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1727	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1728	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1729	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1730	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1731	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1732	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1733	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1734}
1735
1736DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1737{
1738	int i;
1739	db_printf("PQ_FREE:");
1740	for (i = 0; i < PQ_L2_SIZE; i++) {
1741		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1742	}
1743	db_printf("\n");
1744
1745	db_printf("PQ_CACHE:");
1746	for (i = 0; i < PQ_L2_SIZE; i++) {
1747		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1748	}
1749	db_printf("\n");
1750
1751	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1752		vm_page_queues[PQ_ACTIVE].lcnt,
1753		vm_page_queues[PQ_INACTIVE].lcnt);
1754}
1755#endif /* DDB */
1756