vm_page.c revision 129145
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33 */
34
35/*
36 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37 * All rights reserved.
38 *
39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 *
41 * Permission to use, copy, modify and distribute this software and
42 * its documentation is hereby granted, provided that both the copyright
43 * notice and this permission notice appear in all copies of the
44 * software, derivative works or modified versions, and any portions
45 * thereof, and that both notices appear in supporting documentation.
46 *
47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 *
51 * Carnegie Mellon requests users of this software to return to
52 *
53 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54 *  School of Computer Science
55 *  Carnegie Mellon University
56 *  Pittsburgh PA 15213-3890
57 *
58 * any improvements or extensions that they make and grant Carnegie the
59 * rights to redistribute these changes.
60 */
61
62/*
63 *			GENERAL RULES ON VM_PAGE MANIPULATION
64 *
65 *	- a pageq mutex is required when adding or removing a page from a
66 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67 *	  busy state of a page.
68 *
69 *	- a hash chain mutex is required when associating or disassociating
70 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71 *	  regardless of other mutexes or the busy state of a page.
72 *
73 *	- either a hash chain mutex OR a busied page is required in order
74 *	  to modify the page flags.  A hash chain mutex must be obtained in
75 *	  order to busy a page.  A page's flags cannot be modified by a
76 *	  hash chain mutex if the page is marked busy.
77 *
78 *	- The object memq mutex is held when inserting or removing
79 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80 *	  is different from the object's main mutex.
81 *
82 *	Generally speaking, you have to be aware of side effects when running
83 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85 *	vm_page_cache(), vm_page_activate(), and a number of other routines
86 *	will release the hash chain mutex for you.  Intermediate manipulation
87 *	routines such as vm_page_flag_set() expect the hash chain to be held
88 *	on entry and the hash chain will remain held on return.
89 *
90 *	pageq scanning can only occur with the pageq in question locked.
91 *	We have a known bottleneck with the active queue, but the cache
92 *	and free queues are actually arrays already.
93 */
94
95/*
96 *	Resident memory management module.
97 */
98
99#include <sys/cdefs.h>
100__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 129145 2004-05-12 04:27:18Z alc $");
101
102#include <sys/param.h>
103#include <sys/systm.h>
104#include <sys/lock.h>
105#include <sys/malloc.h>
106#include <sys/mutex.h>
107#include <sys/proc.h>
108#include <sys/vmmeter.h>
109#include <sys/vnode.h>
110
111#include <vm/vm.h>
112#include <vm/vm_param.h>
113#include <vm/vm_kern.h>
114#include <vm/vm_object.h>
115#include <vm/vm_page.h>
116#include <vm/vm_pageout.h>
117#include <vm/vm_pager.h>
118#include <vm/vm_extern.h>
119#include <vm/uma.h>
120#include <vm/uma_int.h>
121
122/*
123 *	Associated with page of user-allocatable memory is a
124 *	page structure.
125 */
126
127struct mtx vm_page_queue_mtx;
128struct mtx vm_page_queue_free_mtx;
129
130vm_page_t vm_page_array = 0;
131int vm_page_array_size = 0;
132long first_page = 0;
133int vm_page_zero_count = 0;
134
135/*
136 *	vm_set_page_size:
137 *
138 *	Sets the page size, perhaps based upon the memory
139 *	size.  Must be called before any use of page-size
140 *	dependent functions.
141 */
142void
143vm_set_page_size(void)
144{
145	if (cnt.v_page_size == 0)
146		cnt.v_page_size = PAGE_SIZE;
147	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
148		panic("vm_set_page_size: page size not a power of two");
149}
150
151/*
152 *	vm_page_startup:
153 *
154 *	Initializes the resident memory module.
155 *
156 *	Allocates memory for the page cells, and
157 *	for the object/offset-to-page hash table headers.
158 *	Each page cell is initialized and placed on the free list.
159 */
160vm_offset_t
161vm_page_startup(vm_offset_t vaddr)
162{
163	vm_offset_t mapped;
164	vm_size_t npages;
165	vm_paddr_t page_range;
166	vm_paddr_t new_end;
167	int i;
168	vm_paddr_t pa;
169	int nblocks;
170	vm_paddr_t last_pa;
171
172	/* the biggest memory array is the second group of pages */
173	vm_paddr_t end;
174	vm_paddr_t biggestsize;
175	int biggestone;
176
177	vm_paddr_t total;
178	vm_size_t bootpages;
179
180	total = 0;
181	biggestsize = 0;
182	biggestone = 0;
183	nblocks = 0;
184	vaddr = round_page(vaddr);
185
186	for (i = 0; phys_avail[i + 1]; i += 2) {
187		phys_avail[i] = round_page(phys_avail[i]);
188		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
189	}
190
191	for (i = 0; phys_avail[i + 1]; i += 2) {
192		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
193
194		if (size > biggestsize) {
195			biggestone = i;
196			biggestsize = size;
197		}
198		++nblocks;
199		total += size;
200	}
201
202	end = phys_avail[biggestone+1];
203
204	/*
205	 * Initialize the locks.
206	 */
207	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
208	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
209	    MTX_SPIN);
210
211	/*
212	 * Initialize the queue headers for the free queue, the active queue
213	 * and the inactive queue.
214	 */
215	vm_pageq_init();
216
217	/*
218	 * Allocate memory for use when boot strapping the kernel memory
219	 * allocator.
220	 */
221	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
222	new_end = end - bootpages;
223	new_end = trunc_page(new_end);
224	mapped = pmap_map(&vaddr, new_end, end,
225	    VM_PROT_READ | VM_PROT_WRITE);
226	bzero((caddr_t) mapped, end - new_end);
227	uma_startup((caddr_t)mapped);
228
229	/*
230	 * Compute the number of pages of memory that will be available for
231	 * use (taking into account the overhead of a page structure per
232	 * page).
233	 */
234	first_page = phys_avail[0] / PAGE_SIZE;
235	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
236	npages = (total - (page_range * sizeof(struct vm_page)) -
237	    (end - new_end)) / PAGE_SIZE;
238	end = new_end;
239
240	/*
241	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
242	 */
243	vaddr += PAGE_SIZE;
244
245	/*
246	 * Initialize the mem entry structures now, and put them in the free
247	 * queue.
248	 */
249	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
250	mapped = pmap_map(&vaddr, new_end, end,
251	    VM_PROT_READ | VM_PROT_WRITE);
252	vm_page_array = (vm_page_t) mapped;
253	phys_avail[biggestone + 1] = new_end;
254
255	/*
256	 * Clear all of the page structures
257	 */
258	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
259	vm_page_array_size = page_range;
260
261	/*
262	 * Construct the free queue(s) in descending order (by physical
263	 * address) so that the first 16MB of physical memory is allocated
264	 * last rather than first.  On large-memory machines, this avoids
265	 * the exhaustion of low physical memory before isa_dmainit has run.
266	 */
267	cnt.v_page_count = 0;
268	cnt.v_free_count = 0;
269	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
270		pa = phys_avail[i];
271		last_pa = phys_avail[i + 1];
272		while (pa < last_pa && npages-- > 0) {
273			vm_pageq_add_new_page(pa);
274			pa += PAGE_SIZE;
275		}
276	}
277	return (vaddr);
278}
279
280void
281vm_page_flag_set(vm_page_t m, unsigned short bits)
282{
283
284	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
285	m->flags |= bits;
286}
287
288void
289vm_page_flag_clear(vm_page_t m, unsigned short bits)
290{
291
292	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
293	m->flags &= ~bits;
294}
295
296void
297vm_page_busy(vm_page_t m)
298{
299	KASSERT((m->flags & PG_BUSY) == 0,
300	    ("vm_page_busy: page already busy!!!"));
301	vm_page_flag_set(m, PG_BUSY);
302}
303
304/*
305 *      vm_page_flash:
306 *
307 *      wakeup anyone waiting for the page.
308 */
309void
310vm_page_flash(vm_page_t m)
311{
312	if (m->flags & PG_WANTED) {
313		vm_page_flag_clear(m, PG_WANTED);
314		wakeup(m);
315	}
316}
317
318/*
319 *      vm_page_wakeup:
320 *
321 *      clear the PG_BUSY flag and wakeup anyone waiting for the
322 *      page.
323 *
324 */
325void
326vm_page_wakeup(vm_page_t m)
327{
328	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
329	vm_page_flag_clear(m, PG_BUSY);
330	vm_page_flash(m);
331}
332
333void
334vm_page_io_start(vm_page_t m)
335{
336
337	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
338	m->busy++;
339}
340
341void
342vm_page_io_finish(vm_page_t m)
343{
344
345	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
346	m->busy--;
347	if (m->busy == 0)
348		vm_page_flash(m);
349}
350
351/*
352 * Keep page from being freed by the page daemon
353 * much of the same effect as wiring, except much lower
354 * overhead and should be used only for *very* temporary
355 * holding ("wiring").
356 */
357void
358vm_page_hold(vm_page_t mem)
359{
360
361	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
362        mem->hold_count++;
363}
364
365void
366vm_page_unhold(vm_page_t mem)
367{
368
369	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
370	--mem->hold_count;
371	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
372	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
373		vm_page_free_toq(mem);
374}
375
376/*
377 *	vm_page_free:
378 *
379 *	Free a page
380 *
381 *	The clearing of PG_ZERO is a temporary safety until the code can be
382 *	reviewed to determine that PG_ZERO is being properly cleared on
383 *	write faults or maps.  PG_ZERO was previously cleared in
384 *	vm_page_alloc().
385 */
386void
387vm_page_free(vm_page_t m)
388{
389	vm_page_flag_clear(m, PG_ZERO);
390	vm_page_free_toq(m);
391	vm_page_zero_idle_wakeup();
392}
393
394/*
395 *	vm_page_free_zero:
396 *
397 *	Free a page to the zerod-pages queue
398 */
399void
400vm_page_free_zero(vm_page_t m)
401{
402	vm_page_flag_set(m, PG_ZERO);
403	vm_page_free_toq(m);
404}
405
406/*
407 *	vm_page_sleep_if_busy:
408 *
409 *	Sleep and release the page queues lock if PG_BUSY is set or,
410 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
411 *	thread slept and the page queues lock was released.
412 *	Otherwise, retains the page queues lock and returns FALSE.
413 */
414int
415vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
416{
417	int is_object_locked;
418
419	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
420	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
421		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
422		/*
423		 * Remove mtx_owned() after vm_object locking is finished.
424		 */
425		if ((is_object_locked = m->object != NULL &&
426		     mtx_owned(&m->object->mtx)))
427			mtx_unlock(&m->object->mtx);
428		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
429		if (is_object_locked)
430			mtx_lock(&m->object->mtx);
431		return (TRUE);
432	}
433	return (FALSE);
434}
435
436/*
437 *	vm_page_dirty:
438 *
439 *	make page all dirty
440 */
441void
442vm_page_dirty(vm_page_t m)
443{
444	KASSERT(m->queue - m->pc != PQ_CACHE,
445	    ("vm_page_dirty: page in cache!"));
446	KASSERT(m->queue - m->pc != PQ_FREE,
447	    ("vm_page_dirty: page is free!"));
448	m->dirty = VM_PAGE_BITS_ALL;
449}
450
451/*
452 *	vm_page_splay:
453 *
454 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
455 *	the vm_page containing the given pindex.  If, however, that
456 *	pindex is not found in the vm_object, returns a vm_page that is
457 *	adjacent to the pindex, coming before or after it.
458 */
459vm_page_t
460vm_page_splay(vm_pindex_t pindex, vm_page_t root)
461{
462	struct vm_page dummy;
463	vm_page_t lefttreemax, righttreemin, y;
464
465	if (root == NULL)
466		return (root);
467	lefttreemax = righttreemin = &dummy;
468	for (;; root = y) {
469		if (pindex < root->pindex) {
470			if ((y = root->left) == NULL)
471				break;
472			if (pindex < y->pindex) {
473				/* Rotate right. */
474				root->left = y->right;
475				y->right = root;
476				root = y;
477				if ((y = root->left) == NULL)
478					break;
479			}
480			/* Link into the new root's right tree. */
481			righttreemin->left = root;
482			righttreemin = root;
483		} else if (pindex > root->pindex) {
484			if ((y = root->right) == NULL)
485				break;
486			if (pindex > y->pindex) {
487				/* Rotate left. */
488				root->right = y->left;
489				y->left = root;
490				root = y;
491				if ((y = root->right) == NULL)
492					break;
493			}
494			/* Link into the new root's left tree. */
495			lefttreemax->right = root;
496			lefttreemax = root;
497		} else
498			break;
499	}
500	/* Assemble the new root. */
501	lefttreemax->right = root->left;
502	righttreemin->left = root->right;
503	root->left = dummy.right;
504	root->right = dummy.left;
505	return (root);
506}
507
508/*
509 *	vm_page_insert:		[ internal use only ]
510 *
511 *	Inserts the given mem entry into the object and object list.
512 *
513 *	The pagetables are not updated but will presumably fault the page
514 *	in if necessary, or if a kernel page the caller will at some point
515 *	enter the page into the kernel's pmap.  We are not allowed to block
516 *	here so we *can't* do this anyway.
517 *
518 *	The object and page must be locked, and must be splhigh.
519 *	This routine may not block.
520 */
521void
522vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
523{
524	vm_page_t root;
525
526	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
527	if (m->object != NULL)
528		panic("vm_page_insert: page already inserted");
529
530	/*
531	 * Record the object/offset pair in this page
532	 */
533	m->object = object;
534	m->pindex = pindex;
535
536	/*
537	 * Now link into the object's ordered list of backed pages.
538	 */
539	root = object->root;
540	if (root == NULL) {
541		m->left = NULL;
542		m->right = NULL;
543		TAILQ_INSERT_TAIL(&object->memq, m, listq);
544	} else {
545		root = vm_page_splay(pindex, root);
546		if (pindex < root->pindex) {
547			m->left = root->left;
548			m->right = root;
549			root->left = NULL;
550			TAILQ_INSERT_BEFORE(root, m, listq);
551		} else if (pindex == root->pindex)
552			panic("vm_page_insert: offset already allocated");
553		else {
554			m->right = root->right;
555			m->left = root;
556			root->right = NULL;
557			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
558		}
559	}
560	object->root = m;
561	object->generation++;
562
563	/*
564	 * show that the object has one more resident page.
565	 */
566	object->resident_page_count++;
567
568	/*
569	 * Since we are inserting a new and possibly dirty page,
570	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
571	 */
572	if (m->flags & PG_WRITEABLE)
573		vm_object_set_writeable_dirty(object);
574}
575
576/*
577 *	vm_page_remove:
578 *				NOTE: used by device pager as well -wfj
579 *
580 *	Removes the given mem entry from the object/offset-page
581 *	table and the object page list, but do not invalidate/terminate
582 *	the backing store.
583 *
584 *	The object and page must be locked, and at splhigh.
585 *	The underlying pmap entry (if any) is NOT removed here.
586 *	This routine may not block.
587 */
588void
589vm_page_remove(vm_page_t m)
590{
591	vm_object_t object;
592	vm_page_t root;
593
594	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
595	if (m->object == NULL)
596		return;
597#ifndef	__alpha__
598	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
599#endif
600	if ((m->flags & PG_BUSY) == 0) {
601		panic("vm_page_remove: page not busy");
602	}
603
604	/*
605	 * Basically destroy the page.
606	 */
607	vm_page_wakeup(m);
608
609	object = m->object;
610
611	/*
612	 * Now remove from the object's list of backed pages.
613	 */
614	if (m != object->root)
615		vm_page_splay(m->pindex, object->root);
616	if (m->left == NULL)
617		root = m->right;
618	else {
619		root = vm_page_splay(m->pindex, m->left);
620		root->right = m->right;
621	}
622	object->root = root;
623	TAILQ_REMOVE(&object->memq, m, listq);
624
625	/*
626	 * And show that the object has one fewer resident page.
627	 */
628	object->resident_page_count--;
629	object->generation++;
630
631	m->object = NULL;
632}
633
634/*
635 *	vm_page_lookup:
636 *
637 *	Returns the page associated with the object/offset
638 *	pair specified; if none is found, NULL is returned.
639 *
640 *	The object must be locked.
641 *	This routine may not block.
642 *	This is a critical path routine
643 */
644vm_page_t
645vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
646{
647	vm_page_t m;
648
649	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
650	if ((m = object->root) != NULL && m->pindex != pindex) {
651		m = vm_page_splay(pindex, m);
652		if ((object->root = m)->pindex != pindex)
653			m = NULL;
654	}
655	return (m);
656}
657
658/*
659 *	vm_page_rename:
660 *
661 *	Move the given memory entry from its
662 *	current object to the specified target object/offset.
663 *
664 *	The object must be locked.
665 *	This routine may not block.
666 *
667 *	Note: this routine will raise itself to splvm(), the caller need not.
668 *
669 *	Note: swap associated with the page must be invalidated by the move.  We
670 *	      have to do this for several reasons:  (1) we aren't freeing the
671 *	      page, (2) we are dirtying the page, (3) the VM system is probably
672 *	      moving the page from object A to B, and will then later move
673 *	      the backing store from A to B and we can't have a conflict.
674 *
675 *	Note: we *always* dirty the page.  It is necessary both for the
676 *	      fact that we moved it, and because we may be invalidating
677 *	      swap.  If the page is on the cache, we have to deactivate it
678 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
679 *	      on the cache.
680 */
681void
682vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
683{
684	int s;
685
686	s = splvm();
687	vm_page_remove(m);
688	vm_page_insert(m, new_object, new_pindex);
689	if (m->queue - m->pc == PQ_CACHE)
690		vm_page_deactivate(m);
691	vm_page_dirty(m);
692	splx(s);
693}
694
695/*
696 *	vm_page_select_cache:
697 *
698 *	Find a page on the cache queue with color optimization.  As pages
699 *	might be found, but not applicable, they are deactivated.  This
700 *	keeps us from using potentially busy cached pages.
701 *
702 *	This routine must be called at splvm().
703 *	This routine may not block.
704 */
705vm_page_t
706vm_page_select_cache(int color)
707{
708	vm_page_t m;
709
710	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
711	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
712		if ((m->flags & PG_BUSY) == 0 && m->busy == 0 &&
713		    m->hold_count == 0 && (VM_OBJECT_TRYLOCK(m->object) ||
714		    VM_OBJECT_LOCKED(m->object))) {
715			KASSERT(m->dirty == 0,
716			    ("Found dirty cache page %p", m));
717			KASSERT(!pmap_page_is_mapped(m),
718			    ("Found mapped cache page %p", m));
719			KASSERT((m->flags & PG_UNMANAGED) == 0,
720			    ("Found unmanaged cache page %p", m));
721			KASSERT(m->wire_count == 0,
722			    ("Found wired cache page %p", m));
723			break;
724		}
725		vm_page_deactivate(m);
726	}
727	return (m);
728}
729
730/*
731 *	vm_page_alloc:
732 *
733 *	Allocate and return a memory cell associated
734 *	with this VM object/offset pair.
735 *
736 *	page_req classes:
737 *	VM_ALLOC_NORMAL		normal process request
738 *	VM_ALLOC_SYSTEM		system *really* needs a page
739 *	VM_ALLOC_INTERRUPT	interrupt time request
740 *	VM_ALLOC_ZERO		zero page
741 *
742 *	This routine may not block.
743 *
744 *	Additional special handling is required when called from an
745 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
746 *	the page cache in this case.
747 */
748vm_page_t
749vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
750{
751	vm_object_t m_object;
752	vm_page_t m = NULL;
753	int color, flags, page_req, s;
754
755	page_req = req & VM_ALLOC_CLASS_MASK;
756
757	if ((req & VM_ALLOC_NOOBJ) == 0) {
758		KASSERT(object != NULL,
759		    ("vm_page_alloc: NULL object."));
760		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
761		color = (pindex + object->pg_color) & PQ_L2_MASK;
762	} else
763		color = pindex & PQ_L2_MASK;
764
765	/*
766	 * The pager is allowed to eat deeper into the free page list.
767	 */
768	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
769		page_req = VM_ALLOC_SYSTEM;
770	};
771
772	s = splvm();
773loop:
774	mtx_lock_spin(&vm_page_queue_free_mtx);
775	if (cnt.v_free_count > cnt.v_free_reserved ||
776	    (page_req == VM_ALLOC_SYSTEM &&
777	     cnt.v_cache_count == 0 &&
778	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
779	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
780		/*
781		 * Allocate from the free queue if the number of free pages
782		 * exceeds the minimum for the request class.
783		 */
784		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
785	} else if (page_req != VM_ALLOC_INTERRUPT) {
786		mtx_unlock_spin(&vm_page_queue_free_mtx);
787		/*
788		 * Allocatable from cache (non-interrupt only).  On success,
789		 * we must free the page and try again, thus ensuring that
790		 * cnt.v_*_free_min counters are replenished.
791		 */
792		vm_page_lock_queues();
793		if ((m = vm_page_select_cache(color)) == NULL) {
794			vm_page_unlock_queues();
795			splx(s);
796#if defined(DIAGNOSTIC)
797			if (cnt.v_cache_count > 0)
798				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
799#endif
800			atomic_add_int(&vm_pageout_deficit, 1);
801			pagedaemon_wakeup();
802			return (NULL);
803		}
804		m_object = m->object;
805		VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED);
806		vm_page_busy(m);
807		vm_page_free(m);
808		vm_page_unlock_queues();
809		if (m_object != object)
810			VM_OBJECT_UNLOCK(m_object);
811		goto loop;
812	} else {
813		/*
814		 * Not allocatable from cache from interrupt, give up.
815		 */
816		mtx_unlock_spin(&vm_page_queue_free_mtx);
817		splx(s);
818		atomic_add_int(&vm_pageout_deficit, 1);
819		pagedaemon_wakeup();
820		return (NULL);
821	}
822
823	/*
824	 *  At this point we had better have found a good page.
825	 */
826
827	KASSERT(
828	    m != NULL,
829	    ("vm_page_alloc(): missing page on free queue\n")
830	);
831
832	/*
833	 * Remove from free queue
834	 */
835
836	vm_pageq_remove_nowakeup(m);
837
838	/*
839	 * Initialize structure.  Only the PG_ZERO flag is inherited.
840	 */
841	flags = PG_BUSY;
842	if (m->flags & PG_ZERO) {
843		vm_page_zero_count--;
844		if (req & VM_ALLOC_ZERO)
845			flags = PG_ZERO | PG_BUSY;
846	}
847	m->flags = flags;
848	if (req & VM_ALLOC_WIRED) {
849		atomic_add_int(&cnt.v_wire_count, 1);
850		m->wire_count = 1;
851	} else
852		m->wire_count = 0;
853	m->hold_count = 0;
854	m->act_count = 0;
855	m->busy = 0;
856	m->valid = 0;
857	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
858	mtx_unlock_spin(&vm_page_queue_free_mtx);
859
860	/*
861	 * vm_page_insert() is safe prior to the splx().  Note also that
862	 * inserting a page here does not insert it into the pmap (which
863	 * could cause us to block allocating memory).  We cannot block
864	 * anywhere.
865	 */
866	if ((req & VM_ALLOC_NOOBJ) == 0)
867		vm_page_insert(m, object, pindex);
868	else
869		m->pindex = pindex;
870
871	/*
872	 * Don't wakeup too often - wakeup the pageout daemon when
873	 * we would be nearly out of memory.
874	 */
875	if (vm_paging_needed())
876		pagedaemon_wakeup();
877
878	splx(s);
879	return (m);
880}
881
882/*
883 *	vm_wait:	(also see VM_WAIT macro)
884 *
885 *	Block until free pages are available for allocation
886 *	- Called in various places before memory allocations.
887 */
888void
889vm_wait(void)
890{
891	int s;
892
893	s = splvm();
894	vm_page_lock_queues();
895	if (curproc == pageproc) {
896		vm_pageout_pages_needed = 1;
897		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
898		    PDROP | PSWP, "VMWait", 0);
899	} else {
900		if (!vm_pages_needed) {
901			vm_pages_needed = 1;
902			wakeup(&vm_pages_needed);
903		}
904		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
905		    "vmwait", 0);
906	}
907	splx(s);
908}
909
910/*
911 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
912 *
913 *	Block until free pages are available for allocation
914 *	- Called only in vm_fault so that processes page faulting
915 *	  can be easily tracked.
916 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
917 *	  processes will be able to grab memory first.  Do not change
918 *	  this balance without careful testing first.
919 */
920void
921vm_waitpfault(void)
922{
923	int s;
924
925	s = splvm();
926	vm_page_lock_queues();
927	if (!vm_pages_needed) {
928		vm_pages_needed = 1;
929		wakeup(&vm_pages_needed);
930	}
931	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
932	    "pfault", 0);
933	splx(s);
934}
935
936/*
937 *	vm_page_activate:
938 *
939 *	Put the specified page on the active list (if appropriate).
940 *	Ensure that act_count is at least ACT_INIT but do not otherwise
941 *	mess with it.
942 *
943 *	The page queues must be locked.
944 *	This routine may not block.
945 */
946void
947vm_page_activate(vm_page_t m)
948{
949	int s;
950
951	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
952	s = splvm();
953	if (m->queue != PQ_ACTIVE) {
954		if ((m->queue - m->pc) == PQ_CACHE)
955			cnt.v_reactivated++;
956		vm_pageq_remove(m);
957		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
958			if (m->act_count < ACT_INIT)
959				m->act_count = ACT_INIT;
960			vm_pageq_enqueue(PQ_ACTIVE, m);
961		}
962	} else {
963		if (m->act_count < ACT_INIT)
964			m->act_count = ACT_INIT;
965	}
966	splx(s);
967}
968
969/*
970 *	vm_page_free_wakeup:
971 *
972 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
973 *	routine is called when a page has been added to the cache or free
974 *	queues.
975 *
976 *	This routine may not block.
977 *	This routine must be called at splvm()
978 */
979static __inline void
980vm_page_free_wakeup(void)
981{
982
983	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
984	/*
985	 * if pageout daemon needs pages, then tell it that there are
986	 * some free.
987	 */
988	if (vm_pageout_pages_needed &&
989	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
990		wakeup(&vm_pageout_pages_needed);
991		vm_pageout_pages_needed = 0;
992	}
993	/*
994	 * wakeup processes that are waiting on memory if we hit a
995	 * high water mark. And wakeup scheduler process if we have
996	 * lots of memory. this process will swapin processes.
997	 */
998	if (vm_pages_needed && !vm_page_count_min()) {
999		vm_pages_needed = 0;
1000		wakeup(&cnt.v_free_count);
1001	}
1002}
1003
1004/*
1005 *	vm_page_free_toq:
1006 *
1007 *	Returns the given page to the PQ_FREE list,
1008 *	disassociating it with any VM object.
1009 *
1010 *	Object and page must be locked prior to entry.
1011 *	This routine may not block.
1012 */
1013
1014void
1015vm_page_free_toq(vm_page_t m)
1016{
1017	int s;
1018	struct vpgqueues *pq;
1019	vm_object_t object = m->object;
1020
1021	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1022	s = splvm();
1023	cnt.v_tfree++;
1024
1025	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1026		printf(
1027		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1028		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1029		    m->hold_count);
1030		if ((m->queue - m->pc) == PQ_FREE)
1031			panic("vm_page_free: freeing free page");
1032		else
1033			panic("vm_page_free: freeing busy page");
1034	}
1035
1036	/*
1037	 * unqueue, then remove page.  Note that we cannot destroy
1038	 * the page here because we do not want to call the pager's
1039	 * callback routine until after we've put the page on the
1040	 * appropriate free queue.
1041	 */
1042	vm_pageq_remove_nowakeup(m);
1043	vm_page_remove(m);
1044
1045	/*
1046	 * If fictitious remove object association and
1047	 * return, otherwise delay object association removal.
1048	 */
1049	if ((m->flags & PG_FICTITIOUS) != 0) {
1050		splx(s);
1051		return;
1052	}
1053
1054	m->valid = 0;
1055	vm_page_undirty(m);
1056
1057	if (m->wire_count != 0) {
1058		if (m->wire_count > 1) {
1059			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1060				m->wire_count, (long)m->pindex);
1061		}
1062		panic("vm_page_free: freeing wired page\n");
1063	}
1064
1065	/*
1066	 * If we've exhausted the object's resident pages we want to free
1067	 * it up.
1068	 */
1069	if (object &&
1070	    (object->type == OBJT_VNODE) &&
1071	    ((object->flags & OBJ_DEAD) == 0)
1072	) {
1073		struct vnode *vp = (struct vnode *)object->handle;
1074
1075		if (vp) {
1076			VI_LOCK(vp);
1077			if (VSHOULDFREE(vp))
1078				vfree(vp);
1079			VI_UNLOCK(vp);
1080		}
1081	}
1082
1083	/*
1084	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1085	 */
1086	if (m->flags & PG_UNMANAGED) {
1087		m->flags &= ~PG_UNMANAGED;
1088	}
1089
1090	if (m->hold_count != 0) {
1091		m->flags &= ~PG_ZERO;
1092		m->queue = PQ_HOLD;
1093	} else
1094		m->queue = PQ_FREE + m->pc;
1095	pq = &vm_page_queues[m->queue];
1096	mtx_lock_spin(&vm_page_queue_free_mtx);
1097	pq->lcnt++;
1098	++(*pq->cnt);
1099
1100	/*
1101	 * Put zero'd pages on the end ( where we look for zero'd pages
1102	 * first ) and non-zerod pages at the head.
1103	 */
1104	if (m->flags & PG_ZERO) {
1105		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1106		++vm_page_zero_count;
1107	} else {
1108		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1109	}
1110	mtx_unlock_spin(&vm_page_queue_free_mtx);
1111	vm_page_free_wakeup();
1112	splx(s);
1113}
1114
1115/*
1116 *	vm_page_unmanage:
1117 *
1118 * 	Prevent PV management from being done on the page.  The page is
1119 *	removed from the paging queues as if it were wired, and as a
1120 *	consequence of no longer being managed the pageout daemon will not
1121 *	touch it (since there is no way to locate the pte mappings for the
1122 *	page).  madvise() calls that mess with the pmap will also no longer
1123 *	operate on the page.
1124 *
1125 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1126 *	will clear the flag.
1127 *
1128 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1129 *	physical memory as backing store rather then swap-backed memory and
1130 *	will eventually be extended to support 4MB unmanaged physical
1131 *	mappings.
1132 */
1133void
1134vm_page_unmanage(vm_page_t m)
1135{
1136	int s;
1137
1138	s = splvm();
1139	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1140	if ((m->flags & PG_UNMANAGED) == 0) {
1141		if (m->wire_count == 0)
1142			vm_pageq_remove(m);
1143	}
1144	vm_page_flag_set(m, PG_UNMANAGED);
1145	splx(s);
1146}
1147
1148/*
1149 *	vm_page_wire:
1150 *
1151 *	Mark this page as wired down by yet
1152 *	another map, removing it from paging queues
1153 *	as necessary.
1154 *
1155 *	The page queues must be locked.
1156 *	This routine may not block.
1157 */
1158void
1159vm_page_wire(vm_page_t m)
1160{
1161	int s;
1162
1163	/*
1164	 * Only bump the wire statistics if the page is not already wired,
1165	 * and only unqueue the page if it is on some queue (if it is unmanaged
1166	 * it is already off the queues).
1167	 */
1168	s = splvm();
1169	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1170	if (m->wire_count == 0) {
1171		if ((m->flags & PG_UNMANAGED) == 0)
1172			vm_pageq_remove(m);
1173		atomic_add_int(&cnt.v_wire_count, 1);
1174	}
1175	m->wire_count++;
1176	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1177	splx(s);
1178}
1179
1180/*
1181 *	vm_page_unwire:
1182 *
1183 *	Release one wiring of this page, potentially
1184 *	enabling it to be paged again.
1185 *
1186 *	Many pages placed on the inactive queue should actually go
1187 *	into the cache, but it is difficult to figure out which.  What
1188 *	we do instead, if the inactive target is well met, is to put
1189 *	clean pages at the head of the inactive queue instead of the tail.
1190 *	This will cause them to be moved to the cache more quickly and
1191 *	if not actively re-referenced, freed more quickly.  If we just
1192 *	stick these pages at the end of the inactive queue, heavy filesystem
1193 *	meta-data accesses can cause an unnecessary paging load on memory bound
1194 *	processes.  This optimization causes one-time-use metadata to be
1195 *	reused more quickly.
1196 *
1197 *	BUT, if we are in a low-memory situation we have no choice but to
1198 *	put clean pages on the cache queue.
1199 *
1200 *	A number of routines use vm_page_unwire() to guarantee that the page
1201 *	will go into either the inactive or active queues, and will NEVER
1202 *	be placed in the cache - for example, just after dirtying a page.
1203 *	dirty pages in the cache are not allowed.
1204 *
1205 *	The page queues must be locked.
1206 *	This routine may not block.
1207 */
1208void
1209vm_page_unwire(vm_page_t m, int activate)
1210{
1211	int s;
1212
1213	s = splvm();
1214	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1215	if (m->wire_count > 0) {
1216		m->wire_count--;
1217		if (m->wire_count == 0) {
1218			atomic_subtract_int(&cnt.v_wire_count, 1);
1219			if (m->flags & PG_UNMANAGED) {
1220				;
1221			} else if (activate)
1222				vm_pageq_enqueue(PQ_ACTIVE, m);
1223			else {
1224				vm_page_flag_clear(m, PG_WINATCFLS);
1225				vm_pageq_enqueue(PQ_INACTIVE, m);
1226			}
1227		}
1228	} else {
1229		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1230	}
1231	splx(s);
1232}
1233
1234
1235/*
1236 * Move the specified page to the inactive queue.  If the page has
1237 * any associated swap, the swap is deallocated.
1238 *
1239 * Normally athead is 0 resulting in LRU operation.  athead is set
1240 * to 1 if we want this page to be 'as if it were placed in the cache',
1241 * except without unmapping it from the process address space.
1242 *
1243 * This routine may not block.
1244 */
1245static __inline void
1246_vm_page_deactivate(vm_page_t m, int athead)
1247{
1248	int s;
1249
1250	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1251	/*
1252	 * Ignore if already inactive.
1253	 */
1254	if (m->queue == PQ_INACTIVE)
1255		return;
1256
1257	s = splvm();
1258	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1259		if ((m->queue - m->pc) == PQ_CACHE)
1260			cnt.v_reactivated++;
1261		vm_page_flag_clear(m, PG_WINATCFLS);
1262		vm_pageq_remove(m);
1263		if (athead)
1264			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1265		else
1266			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1267		m->queue = PQ_INACTIVE;
1268		vm_page_queues[PQ_INACTIVE].lcnt++;
1269		cnt.v_inactive_count++;
1270	}
1271	splx(s);
1272}
1273
1274void
1275vm_page_deactivate(vm_page_t m)
1276{
1277    _vm_page_deactivate(m, 0);
1278}
1279
1280/*
1281 * vm_page_try_to_cache:
1282 *
1283 * Returns 0 on failure, 1 on success
1284 */
1285int
1286vm_page_try_to_cache(vm_page_t m)
1287{
1288
1289	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1290	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1291	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1292		return (0);
1293	}
1294	pmap_remove_all(m);
1295	if (m->dirty)
1296		return (0);
1297	vm_page_cache(m);
1298	return (1);
1299}
1300
1301/*
1302 * vm_page_try_to_free()
1303 *
1304 *	Attempt to free the page.  If we cannot free it, we do nothing.
1305 *	1 is returned on success, 0 on failure.
1306 */
1307int
1308vm_page_try_to_free(vm_page_t m)
1309{
1310
1311	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1312	if (m->object != NULL)
1313		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1314	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1315	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1316		return (0);
1317	}
1318	pmap_remove_all(m);
1319	if (m->dirty)
1320		return (0);
1321	vm_page_busy(m);
1322	vm_page_free(m);
1323	return (1);
1324}
1325
1326/*
1327 * vm_page_cache
1328 *
1329 * Put the specified page onto the page cache queue (if appropriate).
1330 *
1331 * This routine may not block.
1332 */
1333void
1334vm_page_cache(vm_page_t m)
1335{
1336	int s;
1337
1338	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1339	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1340	    m->hold_count || m->wire_count) {
1341		printf("vm_page_cache: attempting to cache busy page\n");
1342		return;
1343	}
1344	if ((m->queue - m->pc) == PQ_CACHE)
1345		return;
1346
1347	/*
1348	 * Remove all pmaps and indicate that the page is not
1349	 * writeable or mapped.
1350	 */
1351	pmap_remove_all(m);
1352	if (m->dirty != 0) {
1353		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1354			(long)m->pindex);
1355	}
1356	s = splvm();
1357	vm_pageq_remove_nowakeup(m);
1358	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1359	vm_page_free_wakeup();
1360	splx(s);
1361}
1362
1363/*
1364 * vm_page_dontneed
1365 *
1366 *	Cache, deactivate, or do nothing as appropriate.  This routine
1367 *	is typically used by madvise() MADV_DONTNEED.
1368 *
1369 *	Generally speaking we want to move the page into the cache so
1370 *	it gets reused quickly.  However, this can result in a silly syndrome
1371 *	due to the page recycling too quickly.  Small objects will not be
1372 *	fully cached.  On the otherhand, if we move the page to the inactive
1373 *	queue we wind up with a problem whereby very large objects
1374 *	unnecessarily blow away our inactive and cache queues.
1375 *
1376 *	The solution is to move the pages based on a fixed weighting.  We
1377 *	either leave them alone, deactivate them, or move them to the cache,
1378 *	where moving them to the cache has the highest weighting.
1379 *	By forcing some pages into other queues we eventually force the
1380 *	system to balance the queues, potentially recovering other unrelated
1381 *	space from active.  The idea is to not force this to happen too
1382 *	often.
1383 */
1384void
1385vm_page_dontneed(vm_page_t m)
1386{
1387	static int dnweight;
1388	int dnw;
1389	int head;
1390
1391	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1392	dnw = ++dnweight;
1393
1394	/*
1395	 * occassionally leave the page alone
1396	 */
1397	if ((dnw & 0x01F0) == 0 ||
1398	    m->queue == PQ_INACTIVE ||
1399	    m->queue - m->pc == PQ_CACHE
1400	) {
1401		if (m->act_count >= ACT_INIT)
1402			--m->act_count;
1403		return;
1404	}
1405
1406	if (m->dirty == 0 && pmap_is_modified(m))
1407		vm_page_dirty(m);
1408
1409	if (m->dirty || (dnw & 0x0070) == 0) {
1410		/*
1411		 * Deactivate the page 3 times out of 32.
1412		 */
1413		head = 0;
1414	} else {
1415		/*
1416		 * Cache the page 28 times out of every 32.  Note that
1417		 * the page is deactivated instead of cached, but placed
1418		 * at the head of the queue instead of the tail.
1419		 */
1420		head = 1;
1421	}
1422	_vm_page_deactivate(m, head);
1423}
1424
1425/*
1426 * Grab a page, waiting until we are waken up due to the page
1427 * changing state.  We keep on waiting, if the page continues
1428 * to be in the object.  If the page doesn't exist, first allocate it
1429 * and then conditionally zero it.
1430 *
1431 * This routine may block.
1432 */
1433vm_page_t
1434vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1435{
1436	vm_page_t m;
1437
1438	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1439retrylookup:
1440	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1441		vm_page_lock_queues();
1442		if (m->busy || (m->flags & PG_BUSY)) {
1443			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1444			VM_OBJECT_UNLOCK(object);
1445			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1446			VM_OBJECT_LOCK(object);
1447			if ((allocflags & VM_ALLOC_RETRY) == 0)
1448				return (NULL);
1449			goto retrylookup;
1450		} else {
1451			if (allocflags & VM_ALLOC_WIRED)
1452				vm_page_wire(m);
1453			vm_page_busy(m);
1454			vm_page_unlock_queues();
1455			return (m);
1456		}
1457	}
1458	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1459	if (m == NULL) {
1460		VM_OBJECT_UNLOCK(object);
1461		VM_WAIT;
1462		VM_OBJECT_LOCK(object);
1463		if ((allocflags & VM_ALLOC_RETRY) == 0)
1464			return (NULL);
1465		goto retrylookup;
1466	}
1467	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1468		pmap_zero_page(m);
1469	return (m);
1470}
1471
1472/*
1473 * Mapping function for valid bits or for dirty bits in
1474 * a page.  May not block.
1475 *
1476 * Inputs are required to range within a page.
1477 */
1478__inline int
1479vm_page_bits(int base, int size)
1480{
1481	int first_bit;
1482	int last_bit;
1483
1484	KASSERT(
1485	    base + size <= PAGE_SIZE,
1486	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1487	);
1488
1489	if (size == 0)		/* handle degenerate case */
1490		return (0);
1491
1492	first_bit = base >> DEV_BSHIFT;
1493	last_bit = (base + size - 1) >> DEV_BSHIFT;
1494
1495	return ((2 << last_bit) - (1 << first_bit));
1496}
1497
1498/*
1499 *	vm_page_set_validclean:
1500 *
1501 *	Sets portions of a page valid and clean.  The arguments are expected
1502 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1503 *	of any partial chunks touched by the range.  The invalid portion of
1504 *	such chunks will be zero'd.
1505 *
1506 *	This routine may not block.
1507 *
1508 *	(base + size) must be less then or equal to PAGE_SIZE.
1509 */
1510void
1511vm_page_set_validclean(vm_page_t m, int base, int size)
1512{
1513	int pagebits;
1514	int frag;
1515	int endoff;
1516
1517	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1518	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1519	if (size == 0)	/* handle degenerate case */
1520		return;
1521
1522	/*
1523	 * If the base is not DEV_BSIZE aligned and the valid
1524	 * bit is clear, we have to zero out a portion of the
1525	 * first block.
1526	 */
1527	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1528	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1529		pmap_zero_page_area(m, frag, base - frag);
1530
1531	/*
1532	 * If the ending offset is not DEV_BSIZE aligned and the
1533	 * valid bit is clear, we have to zero out a portion of
1534	 * the last block.
1535	 */
1536	endoff = base + size;
1537	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1538	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1539		pmap_zero_page_area(m, endoff,
1540		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1541
1542	/*
1543	 * Set valid, clear dirty bits.  If validating the entire
1544	 * page we can safely clear the pmap modify bit.  We also
1545	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1546	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1547	 * be set again.
1548	 *
1549	 * We set valid bits inclusive of any overlap, but we can only
1550	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1551	 * the range.
1552	 */
1553	pagebits = vm_page_bits(base, size);
1554	m->valid |= pagebits;
1555#if 0	/* NOT YET */
1556	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1557		frag = DEV_BSIZE - frag;
1558		base += frag;
1559		size -= frag;
1560		if (size < 0)
1561			size = 0;
1562	}
1563	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1564#endif
1565	m->dirty &= ~pagebits;
1566	if (base == 0 && size == PAGE_SIZE) {
1567		pmap_clear_modify(m);
1568		vm_page_flag_clear(m, PG_NOSYNC);
1569	}
1570}
1571
1572void
1573vm_page_clear_dirty(vm_page_t m, int base, int size)
1574{
1575
1576	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1577	m->dirty &= ~vm_page_bits(base, size);
1578}
1579
1580/*
1581 *	vm_page_set_invalid:
1582 *
1583 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1584 *	valid and dirty bits for the effected areas are cleared.
1585 *
1586 *	May not block.
1587 */
1588void
1589vm_page_set_invalid(vm_page_t m, int base, int size)
1590{
1591	int bits;
1592
1593	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1594	bits = vm_page_bits(base, size);
1595	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1596	m->valid &= ~bits;
1597	m->dirty &= ~bits;
1598	m->object->generation++;
1599}
1600
1601/*
1602 * vm_page_zero_invalid()
1603 *
1604 *	The kernel assumes that the invalid portions of a page contain
1605 *	garbage, but such pages can be mapped into memory by user code.
1606 *	When this occurs, we must zero out the non-valid portions of the
1607 *	page so user code sees what it expects.
1608 *
1609 *	Pages are most often semi-valid when the end of a file is mapped
1610 *	into memory and the file's size is not page aligned.
1611 */
1612void
1613vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1614{
1615	int b;
1616	int i;
1617
1618	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1619	/*
1620	 * Scan the valid bits looking for invalid sections that
1621	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1622	 * valid bit may be set ) have already been zerod by
1623	 * vm_page_set_validclean().
1624	 */
1625	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1626		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1627		    (m->valid & (1 << i))
1628		) {
1629			if (i > b) {
1630				pmap_zero_page_area(m,
1631				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1632			}
1633			b = i + 1;
1634		}
1635	}
1636
1637	/*
1638	 * setvalid is TRUE when we can safely set the zero'd areas
1639	 * as being valid.  We can do this if there are no cache consistancy
1640	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1641	 */
1642	if (setvalid)
1643		m->valid = VM_PAGE_BITS_ALL;
1644}
1645
1646/*
1647 *	vm_page_is_valid:
1648 *
1649 *	Is (partial) page valid?  Note that the case where size == 0
1650 *	will return FALSE in the degenerate case where the page is
1651 *	entirely invalid, and TRUE otherwise.
1652 *
1653 *	May not block.
1654 */
1655int
1656vm_page_is_valid(vm_page_t m, int base, int size)
1657{
1658	int bits = vm_page_bits(base, size);
1659
1660	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1661	if (m->valid && ((m->valid & bits) == bits))
1662		return 1;
1663	else
1664		return 0;
1665}
1666
1667/*
1668 * update dirty bits from pmap/mmu.  May not block.
1669 */
1670void
1671vm_page_test_dirty(vm_page_t m)
1672{
1673	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1674		vm_page_dirty(m);
1675	}
1676}
1677
1678int so_zerocp_fullpage = 0;
1679
1680void
1681vm_page_cowfault(vm_page_t m)
1682{
1683	vm_page_t mnew;
1684	vm_object_t object;
1685	vm_pindex_t pindex;
1686
1687	object = m->object;
1688	pindex = m->pindex;
1689	vm_page_busy(m);
1690
1691 retry_alloc:
1692	vm_page_remove(m);
1693	/*
1694	 * An interrupt allocation is requested because the page
1695	 * queues lock is held.
1696	 */
1697	mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT);
1698	if (mnew == NULL) {
1699		vm_page_insert(m, object, pindex);
1700		vm_page_unlock_queues();
1701		VM_OBJECT_UNLOCK(object);
1702		VM_WAIT;
1703		VM_OBJECT_LOCK(object);
1704		vm_page_lock_queues();
1705		goto retry_alloc;
1706	}
1707
1708	if (m->cow == 0) {
1709		/*
1710		 * check to see if we raced with an xmit complete when
1711		 * waiting to allocate a page.  If so, put things back
1712		 * the way they were
1713		 */
1714		vm_page_busy(mnew);
1715		vm_page_free(mnew);
1716		vm_page_insert(m, object, pindex);
1717	} else { /* clear COW & copy page */
1718		if (!so_zerocp_fullpage)
1719			pmap_copy_page(m, mnew);
1720		mnew->valid = VM_PAGE_BITS_ALL;
1721		vm_page_dirty(mnew);
1722		vm_page_flag_clear(mnew, PG_BUSY);
1723	}
1724}
1725
1726void
1727vm_page_cowclear(vm_page_t m)
1728{
1729
1730	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1731	if (m->cow) {
1732		m->cow--;
1733		/*
1734		 * let vm_fault add back write permission  lazily
1735		 */
1736	}
1737	/*
1738	 *  sf_buf_free() will free the page, so we needn't do it here
1739	 */
1740}
1741
1742void
1743vm_page_cowsetup(vm_page_t m)
1744{
1745
1746	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1747	m->cow++;
1748	pmap_page_protect(m, VM_PROT_READ);
1749}
1750
1751#include "opt_ddb.h"
1752#ifdef DDB
1753#include <sys/kernel.h>
1754
1755#include <ddb/ddb.h>
1756
1757DB_SHOW_COMMAND(page, vm_page_print_page_info)
1758{
1759	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1760	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1761	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1762	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1763	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1764	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1765	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1766	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1767	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1768	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1769}
1770
1771DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1772{
1773	int i;
1774	db_printf("PQ_FREE:");
1775	for (i = 0; i < PQ_L2_SIZE; i++) {
1776		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1777	}
1778	db_printf("\n");
1779
1780	db_printf("PQ_CACHE:");
1781	for (i = 0; i < PQ_L2_SIZE; i++) {
1782		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1783	}
1784	db_printf("\n");
1785
1786	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1787		vm_page_queues[PQ_ACTIVE].lcnt,
1788		vm_page_queues[PQ_INACTIVE].lcnt);
1789}
1790#endif /* DDB */
1791