vm_page.c revision 129057
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33 */
34
35/*
36 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37 * All rights reserved.
38 *
39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 *
41 * Permission to use, copy, modify and distribute this software and
42 * its documentation is hereby granted, provided that both the copyright
43 * notice and this permission notice appear in all copies of the
44 * software, derivative works or modified versions, and any portions
45 * thereof, and that both notices appear in supporting documentation.
46 *
47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 *
51 * Carnegie Mellon requests users of this software to return to
52 *
53 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54 *  School of Computer Science
55 *  Carnegie Mellon University
56 *  Pittsburgh PA 15213-3890
57 *
58 * any improvements or extensions that they make and grant Carnegie the
59 * rights to redistribute these changes.
60 */
61
62/*
63 *			GENERAL RULES ON VM_PAGE MANIPULATION
64 *
65 *	- a pageq mutex is required when adding or removing a page from a
66 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67 *	  busy state of a page.
68 *
69 *	- a hash chain mutex is required when associating or disassociating
70 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71 *	  regardless of other mutexes or the busy state of a page.
72 *
73 *	- either a hash chain mutex OR a busied page is required in order
74 *	  to modify the page flags.  A hash chain mutex must be obtained in
75 *	  order to busy a page.  A page's flags cannot be modified by a
76 *	  hash chain mutex if the page is marked busy.
77 *
78 *	- The object memq mutex is held when inserting or removing
79 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80 *	  is different from the object's main mutex.
81 *
82 *	Generally speaking, you have to be aware of side effects when running
83 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85 *	vm_page_cache(), vm_page_activate(), and a number of other routines
86 *	will release the hash chain mutex for you.  Intermediate manipulation
87 *	routines such as vm_page_flag_set() expect the hash chain to be held
88 *	on entry and the hash chain will remain held on return.
89 *
90 *	pageq scanning can only occur with the pageq in question locked.
91 *	We have a known bottleneck with the active queue, but the cache
92 *	and free queues are actually arrays already.
93 */
94
95/*
96 *	Resident memory management module.
97 */
98
99#include <sys/cdefs.h>
100__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 129057 2004-05-09 01:00:15Z alc $");
101
102#include <sys/param.h>
103#include <sys/systm.h>
104#include <sys/lock.h>
105#include <sys/malloc.h>
106#include <sys/mutex.h>
107#include <sys/proc.h>
108#include <sys/vmmeter.h>
109#include <sys/vnode.h>
110
111#include <vm/vm.h>
112#include <vm/vm_param.h>
113#include <vm/vm_kern.h>
114#include <vm/vm_object.h>
115#include <vm/vm_page.h>
116#include <vm/vm_pageout.h>
117#include <vm/vm_pager.h>
118#include <vm/vm_extern.h>
119#include <vm/uma.h>
120#include <vm/uma_int.h>
121
122/*
123 *	Associated with page of user-allocatable memory is a
124 *	page structure.
125 */
126
127struct mtx vm_page_queue_mtx;
128struct mtx vm_page_queue_free_mtx;
129
130vm_page_t vm_page_array = 0;
131int vm_page_array_size = 0;
132long first_page = 0;
133int vm_page_zero_count = 0;
134
135/*
136 *	vm_set_page_size:
137 *
138 *	Sets the page size, perhaps based upon the memory
139 *	size.  Must be called before any use of page-size
140 *	dependent functions.
141 */
142void
143vm_set_page_size(void)
144{
145	if (cnt.v_page_size == 0)
146		cnt.v_page_size = PAGE_SIZE;
147	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
148		panic("vm_set_page_size: page size not a power of two");
149}
150
151/*
152 *	vm_page_startup:
153 *
154 *	Initializes the resident memory module.
155 *
156 *	Allocates memory for the page cells, and
157 *	for the object/offset-to-page hash table headers.
158 *	Each page cell is initialized and placed on the free list.
159 */
160vm_offset_t
161vm_page_startup(vm_offset_t vaddr)
162{
163	vm_offset_t mapped;
164	vm_size_t npages;
165	vm_paddr_t page_range;
166	vm_paddr_t new_end;
167	int i;
168	vm_paddr_t pa;
169	int nblocks;
170	vm_paddr_t last_pa;
171
172	/* the biggest memory array is the second group of pages */
173	vm_paddr_t end;
174	vm_paddr_t biggestsize;
175	int biggestone;
176
177	vm_paddr_t total;
178	vm_size_t bootpages;
179
180	total = 0;
181	biggestsize = 0;
182	biggestone = 0;
183	nblocks = 0;
184	vaddr = round_page(vaddr);
185
186	for (i = 0; phys_avail[i + 1]; i += 2) {
187		phys_avail[i] = round_page(phys_avail[i]);
188		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
189	}
190
191	for (i = 0; phys_avail[i + 1]; i += 2) {
192		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
193
194		if (size > biggestsize) {
195			biggestone = i;
196			biggestsize = size;
197		}
198		++nblocks;
199		total += size;
200	}
201
202	end = phys_avail[biggestone+1];
203
204	/*
205	 * Initialize the locks.
206	 */
207	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
208	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
209	    MTX_SPIN);
210
211	/*
212	 * Initialize the queue headers for the free queue, the active queue
213	 * and the inactive queue.
214	 */
215	vm_pageq_init();
216
217	/*
218	 * Allocate memory for use when boot strapping the kernel memory
219	 * allocator.
220	 */
221	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
222	new_end = end - bootpages;
223	new_end = trunc_page(new_end);
224	mapped = pmap_map(&vaddr, new_end, end,
225	    VM_PROT_READ | VM_PROT_WRITE);
226	bzero((caddr_t) mapped, end - new_end);
227	uma_startup((caddr_t)mapped);
228
229	/*
230	 * Compute the number of pages of memory that will be available for
231	 * use (taking into account the overhead of a page structure per
232	 * page).
233	 */
234	first_page = phys_avail[0] / PAGE_SIZE;
235	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
236	npages = (total - (page_range * sizeof(struct vm_page)) -
237	    (end - new_end)) / PAGE_SIZE;
238	end = new_end;
239
240	/*
241	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
242	 */
243	vaddr += PAGE_SIZE;
244
245	/*
246	 * Initialize the mem entry structures now, and put them in the free
247	 * queue.
248	 */
249	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
250	mapped = pmap_map(&vaddr, new_end, end,
251	    VM_PROT_READ | VM_PROT_WRITE);
252	vm_page_array = (vm_page_t) mapped;
253	phys_avail[biggestone + 1] = new_end;
254
255	/*
256	 * Clear all of the page structures
257	 */
258	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
259	vm_page_array_size = page_range;
260
261	/*
262	 * Construct the free queue(s) in descending order (by physical
263	 * address) so that the first 16MB of physical memory is allocated
264	 * last rather than first.  On large-memory machines, this avoids
265	 * the exhaustion of low physical memory before isa_dmainit has run.
266	 */
267	cnt.v_page_count = 0;
268	cnt.v_free_count = 0;
269	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
270		pa = phys_avail[i];
271		last_pa = phys_avail[i + 1];
272		while (pa < last_pa && npages-- > 0) {
273			vm_pageq_add_new_page(pa);
274			pa += PAGE_SIZE;
275		}
276	}
277	return (vaddr);
278}
279
280void
281vm_page_flag_set(vm_page_t m, unsigned short bits)
282{
283
284	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
285	m->flags |= bits;
286}
287
288void
289vm_page_flag_clear(vm_page_t m, unsigned short bits)
290{
291
292	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
293	m->flags &= ~bits;
294}
295
296void
297vm_page_busy(vm_page_t m)
298{
299	KASSERT((m->flags & PG_BUSY) == 0,
300	    ("vm_page_busy: page already busy!!!"));
301	vm_page_flag_set(m, PG_BUSY);
302}
303
304/*
305 *      vm_page_flash:
306 *
307 *      wakeup anyone waiting for the page.
308 */
309void
310vm_page_flash(vm_page_t m)
311{
312	if (m->flags & PG_WANTED) {
313		vm_page_flag_clear(m, PG_WANTED);
314		wakeup(m);
315	}
316}
317
318/*
319 *      vm_page_wakeup:
320 *
321 *      clear the PG_BUSY flag and wakeup anyone waiting for the
322 *      page.
323 *
324 */
325void
326vm_page_wakeup(vm_page_t m)
327{
328	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
329	vm_page_flag_clear(m, PG_BUSY);
330	vm_page_flash(m);
331}
332
333void
334vm_page_io_start(vm_page_t m)
335{
336
337	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
338	m->busy++;
339}
340
341void
342vm_page_io_finish(vm_page_t m)
343{
344
345	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
346	m->busy--;
347	if (m->busy == 0)
348		vm_page_flash(m);
349}
350
351/*
352 * Keep page from being freed by the page daemon
353 * much of the same effect as wiring, except much lower
354 * overhead and should be used only for *very* temporary
355 * holding ("wiring").
356 */
357void
358vm_page_hold(vm_page_t mem)
359{
360
361	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
362        mem->hold_count++;
363}
364
365void
366vm_page_unhold(vm_page_t mem)
367{
368
369	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
370	--mem->hold_count;
371	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
372	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
373		vm_page_free_toq(mem);
374}
375
376/*
377 *	vm_page_free:
378 *
379 *	Free a page
380 *
381 *	The clearing of PG_ZERO is a temporary safety until the code can be
382 *	reviewed to determine that PG_ZERO is being properly cleared on
383 *	write faults or maps.  PG_ZERO was previously cleared in
384 *	vm_page_alloc().
385 */
386void
387vm_page_free(vm_page_t m)
388{
389	vm_page_flag_clear(m, PG_ZERO);
390	vm_page_free_toq(m);
391	vm_page_zero_idle_wakeup();
392}
393
394/*
395 *	vm_page_free_zero:
396 *
397 *	Free a page to the zerod-pages queue
398 */
399void
400vm_page_free_zero(vm_page_t m)
401{
402	vm_page_flag_set(m, PG_ZERO);
403	vm_page_free_toq(m);
404}
405
406/*
407 *	vm_page_sleep_if_busy:
408 *
409 *	Sleep and release the page queues lock if PG_BUSY is set or,
410 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
411 *	thread slept and the page queues lock was released.
412 *	Otherwise, retains the page queues lock and returns FALSE.
413 */
414int
415vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
416{
417	int is_object_locked;
418
419	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
420	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
421		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
422		/*
423		 * Remove mtx_owned() after vm_object locking is finished.
424		 */
425		if ((is_object_locked = m->object != NULL &&
426		     mtx_owned(&m->object->mtx)))
427			mtx_unlock(&m->object->mtx);
428		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
429		if (is_object_locked)
430			mtx_lock(&m->object->mtx);
431		return (TRUE);
432	}
433	return (FALSE);
434}
435
436/*
437 *	vm_page_dirty:
438 *
439 *	make page all dirty
440 */
441void
442vm_page_dirty(vm_page_t m)
443{
444	KASSERT(m->queue - m->pc != PQ_CACHE,
445	    ("vm_page_dirty: page in cache!"));
446	KASSERT(m->queue - m->pc != PQ_FREE,
447	    ("vm_page_dirty: page is free!"));
448	m->dirty = VM_PAGE_BITS_ALL;
449}
450
451/*
452 *	vm_page_splay:
453 *
454 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
455 *	the vm_page containing the given pindex.  If, however, that
456 *	pindex is not found in the vm_object, returns a vm_page that is
457 *	adjacent to the pindex, coming before or after it.
458 */
459vm_page_t
460vm_page_splay(vm_pindex_t pindex, vm_page_t root)
461{
462	struct vm_page dummy;
463	vm_page_t lefttreemax, righttreemin, y;
464
465	if (root == NULL)
466		return (root);
467	lefttreemax = righttreemin = &dummy;
468	for (;; root = y) {
469		if (pindex < root->pindex) {
470			if ((y = root->left) == NULL)
471				break;
472			if (pindex < y->pindex) {
473				/* Rotate right. */
474				root->left = y->right;
475				y->right = root;
476				root = y;
477				if ((y = root->left) == NULL)
478					break;
479			}
480			/* Link into the new root's right tree. */
481			righttreemin->left = root;
482			righttreemin = root;
483		} else if (pindex > root->pindex) {
484			if ((y = root->right) == NULL)
485				break;
486			if (pindex > y->pindex) {
487				/* Rotate left. */
488				root->right = y->left;
489				y->left = root;
490				root = y;
491				if ((y = root->right) == NULL)
492					break;
493			}
494			/* Link into the new root's left tree. */
495			lefttreemax->right = root;
496			lefttreemax = root;
497		} else
498			break;
499	}
500	/* Assemble the new root. */
501	lefttreemax->right = root->left;
502	righttreemin->left = root->right;
503	root->left = dummy.right;
504	root->right = dummy.left;
505	return (root);
506}
507
508/*
509 *	vm_page_insert:		[ internal use only ]
510 *
511 *	Inserts the given mem entry into the object and object list.
512 *
513 *	The pagetables are not updated but will presumably fault the page
514 *	in if necessary, or if a kernel page the caller will at some point
515 *	enter the page into the kernel's pmap.  We are not allowed to block
516 *	here so we *can't* do this anyway.
517 *
518 *	The object and page must be locked, and must be splhigh.
519 *	This routine may not block.
520 */
521void
522vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
523{
524	vm_page_t root;
525
526	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
527	if (m->object != NULL)
528		panic("vm_page_insert: page already inserted");
529
530	/*
531	 * Record the object/offset pair in this page
532	 */
533	m->object = object;
534	m->pindex = pindex;
535
536	/*
537	 * Now link into the object's ordered list of backed pages.
538	 */
539	root = object->root;
540	if (root == NULL) {
541		m->left = NULL;
542		m->right = NULL;
543		TAILQ_INSERT_TAIL(&object->memq, m, listq);
544	} else {
545		root = vm_page_splay(pindex, root);
546		if (pindex < root->pindex) {
547			m->left = root->left;
548			m->right = root;
549			root->left = NULL;
550			TAILQ_INSERT_BEFORE(root, m, listq);
551		} else if (pindex == root->pindex)
552			panic("vm_page_insert: offset already allocated");
553		else {
554			m->right = root->right;
555			m->left = root;
556			root->right = NULL;
557			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
558		}
559	}
560	object->root = m;
561	object->generation++;
562
563	/*
564	 * show that the object has one more resident page.
565	 */
566	object->resident_page_count++;
567
568	/*
569	 * Since we are inserting a new and possibly dirty page,
570	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
571	 */
572	if (m->flags & PG_WRITEABLE)
573		vm_object_set_writeable_dirty(object);
574}
575
576/*
577 *	vm_page_remove:
578 *				NOTE: used by device pager as well -wfj
579 *
580 *	Removes the given mem entry from the object/offset-page
581 *	table and the object page list, but do not invalidate/terminate
582 *	the backing store.
583 *
584 *	The object and page must be locked, and at splhigh.
585 *	The underlying pmap entry (if any) is NOT removed here.
586 *	This routine may not block.
587 */
588void
589vm_page_remove(vm_page_t m)
590{
591	vm_object_t object;
592	vm_page_t root;
593
594	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
595	if (m->object == NULL)
596		return;
597#ifndef	__alpha__
598	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
599#endif
600	if ((m->flags & PG_BUSY) == 0) {
601		panic("vm_page_remove: page not busy");
602	}
603
604	/*
605	 * Basically destroy the page.
606	 */
607	vm_page_wakeup(m);
608
609	object = m->object;
610
611	/*
612	 * Now remove from the object's list of backed pages.
613	 */
614	if (m != object->root)
615		vm_page_splay(m->pindex, object->root);
616	if (m->left == NULL)
617		root = m->right;
618	else {
619		root = vm_page_splay(m->pindex, m->left);
620		root->right = m->right;
621	}
622	object->root = root;
623	TAILQ_REMOVE(&object->memq, m, listq);
624
625	/*
626	 * And show that the object has one fewer resident page.
627	 */
628	object->resident_page_count--;
629	object->generation++;
630
631	m->object = NULL;
632}
633
634/*
635 *	vm_page_lookup:
636 *
637 *	Returns the page associated with the object/offset
638 *	pair specified; if none is found, NULL is returned.
639 *
640 *	The object must be locked.
641 *	This routine may not block.
642 *	This is a critical path routine
643 */
644vm_page_t
645vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
646{
647	vm_page_t m;
648
649	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
650	if ((m = object->root) != NULL && m->pindex != pindex) {
651		m = vm_page_splay(pindex, m);
652		if ((object->root = m)->pindex != pindex)
653			m = NULL;
654	}
655	return (m);
656}
657
658/*
659 *	vm_page_rename:
660 *
661 *	Move the given memory entry from its
662 *	current object to the specified target object/offset.
663 *
664 *	The object must be locked.
665 *	This routine may not block.
666 *
667 *	Note: this routine will raise itself to splvm(), the caller need not.
668 *
669 *	Note: swap associated with the page must be invalidated by the move.  We
670 *	      have to do this for several reasons:  (1) we aren't freeing the
671 *	      page, (2) we are dirtying the page, (3) the VM system is probably
672 *	      moving the page from object A to B, and will then later move
673 *	      the backing store from A to B and we can't have a conflict.
674 *
675 *	Note: we *always* dirty the page.  It is necessary both for the
676 *	      fact that we moved it, and because we may be invalidating
677 *	      swap.  If the page is on the cache, we have to deactivate it
678 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
679 *	      on the cache.
680 */
681void
682vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
683{
684	int s;
685
686	s = splvm();
687	vm_page_remove(m);
688	vm_page_insert(m, new_object, new_pindex);
689	if (m->queue - m->pc == PQ_CACHE)
690		vm_page_deactivate(m);
691	vm_page_dirty(m);
692	splx(s);
693}
694
695/*
696 *	vm_page_select_cache:
697 *
698 *	Find a page on the cache queue with color optimization.  As pages
699 *	might be found, but not applicable, they are deactivated.  This
700 *	keeps us from using potentially busy cached pages.
701 *
702 *	This routine must be called at splvm().
703 *	This routine may not block.
704 */
705vm_page_t
706vm_page_select_cache(int color)
707{
708	vm_page_t m;
709
710	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
711	while (TRUE) {
712		m = vm_pageq_find(PQ_CACHE, color, FALSE);
713		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
714			       m->hold_count || m->wire_count ||
715			  (!VM_OBJECT_TRYLOCK(m->object) &&
716			   !VM_OBJECT_LOCKED(m->object)))) {
717			vm_page_deactivate(m);
718			continue;
719		}
720		return m;
721	}
722}
723
724/*
725 *	vm_page_alloc:
726 *
727 *	Allocate and return a memory cell associated
728 *	with this VM object/offset pair.
729 *
730 *	page_req classes:
731 *	VM_ALLOC_NORMAL		normal process request
732 *	VM_ALLOC_SYSTEM		system *really* needs a page
733 *	VM_ALLOC_INTERRUPT	interrupt time request
734 *	VM_ALLOC_ZERO		zero page
735 *
736 *	This routine may not block.
737 *
738 *	Additional special handling is required when called from an
739 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
740 *	the page cache in this case.
741 */
742vm_page_t
743vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
744{
745	vm_object_t m_object;
746	vm_page_t m = NULL;
747	int color, flags, page_req, s;
748
749	page_req = req & VM_ALLOC_CLASS_MASK;
750
751	if ((req & VM_ALLOC_NOOBJ) == 0) {
752		KASSERT(object != NULL,
753		    ("vm_page_alloc: NULL object."));
754		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
755		color = (pindex + object->pg_color) & PQ_L2_MASK;
756	} else
757		color = pindex & PQ_L2_MASK;
758
759	/*
760	 * The pager is allowed to eat deeper into the free page list.
761	 */
762	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
763		page_req = VM_ALLOC_SYSTEM;
764	};
765
766	s = splvm();
767loop:
768	mtx_lock_spin(&vm_page_queue_free_mtx);
769	if (cnt.v_free_count > cnt.v_free_reserved ||
770	    (page_req == VM_ALLOC_SYSTEM &&
771	     cnt.v_cache_count == 0 &&
772	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
773	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
774		/*
775		 * Allocate from the free queue if the number of free pages
776		 * exceeds the minimum for the request class.
777		 */
778		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
779	} else if (page_req != VM_ALLOC_INTERRUPT) {
780		mtx_unlock_spin(&vm_page_queue_free_mtx);
781		/*
782		 * Allocatable from cache (non-interrupt only).  On success,
783		 * we must free the page and try again, thus ensuring that
784		 * cnt.v_*_free_min counters are replenished.
785		 */
786		vm_page_lock_queues();
787		if ((m = vm_page_select_cache(color)) == NULL) {
788			vm_page_unlock_queues();
789			splx(s);
790#if defined(DIAGNOSTIC)
791			if (cnt.v_cache_count > 0)
792				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
793#endif
794			atomic_add_int(&vm_pageout_deficit, 1);
795			pagedaemon_wakeup();
796			return (NULL);
797		}
798		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
799		m_object = m->object;
800		VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED);
801		vm_page_busy(m);
802		vm_page_free(m);
803		vm_page_unlock_queues();
804		if (m_object != object)
805			VM_OBJECT_UNLOCK(m_object);
806		goto loop;
807	} else {
808		/*
809		 * Not allocatable from cache from interrupt, give up.
810		 */
811		mtx_unlock_spin(&vm_page_queue_free_mtx);
812		splx(s);
813		atomic_add_int(&vm_pageout_deficit, 1);
814		pagedaemon_wakeup();
815		return (NULL);
816	}
817
818	/*
819	 *  At this point we had better have found a good page.
820	 */
821
822	KASSERT(
823	    m != NULL,
824	    ("vm_page_alloc(): missing page on free queue\n")
825	);
826
827	/*
828	 * Remove from free queue
829	 */
830
831	vm_pageq_remove_nowakeup(m);
832
833	/*
834	 * Initialize structure.  Only the PG_ZERO flag is inherited.
835	 */
836	flags = PG_BUSY;
837	if (m->flags & PG_ZERO) {
838		vm_page_zero_count--;
839		if (req & VM_ALLOC_ZERO)
840			flags = PG_ZERO | PG_BUSY;
841	}
842	m->flags = flags;
843	if (req & VM_ALLOC_WIRED) {
844		atomic_add_int(&cnt.v_wire_count, 1);
845		m->wire_count = 1;
846	} else
847		m->wire_count = 0;
848	m->hold_count = 0;
849	m->act_count = 0;
850	m->busy = 0;
851	m->valid = 0;
852	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
853	mtx_unlock_spin(&vm_page_queue_free_mtx);
854
855	/*
856	 * vm_page_insert() is safe prior to the splx().  Note also that
857	 * inserting a page here does not insert it into the pmap (which
858	 * could cause us to block allocating memory).  We cannot block
859	 * anywhere.
860	 */
861	if ((req & VM_ALLOC_NOOBJ) == 0)
862		vm_page_insert(m, object, pindex);
863	else
864		m->pindex = pindex;
865
866	/*
867	 * Don't wakeup too often - wakeup the pageout daemon when
868	 * we would be nearly out of memory.
869	 */
870	if (vm_paging_needed())
871		pagedaemon_wakeup();
872
873	splx(s);
874	return (m);
875}
876
877/*
878 *	vm_wait:	(also see VM_WAIT macro)
879 *
880 *	Block until free pages are available for allocation
881 *	- Called in various places before memory allocations.
882 */
883void
884vm_wait(void)
885{
886	int s;
887
888	s = splvm();
889	vm_page_lock_queues();
890	if (curproc == pageproc) {
891		vm_pageout_pages_needed = 1;
892		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
893		    PDROP | PSWP, "VMWait", 0);
894	} else {
895		if (!vm_pages_needed) {
896			vm_pages_needed = 1;
897			wakeup(&vm_pages_needed);
898		}
899		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
900		    "vmwait", 0);
901	}
902	splx(s);
903}
904
905/*
906 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
907 *
908 *	Block until free pages are available for allocation
909 *	- Called only in vm_fault so that processes page faulting
910 *	  can be easily tracked.
911 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
912 *	  processes will be able to grab memory first.  Do not change
913 *	  this balance without careful testing first.
914 */
915void
916vm_waitpfault(void)
917{
918	int s;
919
920	s = splvm();
921	vm_page_lock_queues();
922	if (!vm_pages_needed) {
923		vm_pages_needed = 1;
924		wakeup(&vm_pages_needed);
925	}
926	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
927	    "pfault", 0);
928	splx(s);
929}
930
931/*
932 *	vm_page_activate:
933 *
934 *	Put the specified page on the active list (if appropriate).
935 *	Ensure that act_count is at least ACT_INIT but do not otherwise
936 *	mess with it.
937 *
938 *	The page queues must be locked.
939 *	This routine may not block.
940 */
941void
942vm_page_activate(vm_page_t m)
943{
944	int s;
945
946	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
947	s = splvm();
948	if (m->queue != PQ_ACTIVE) {
949		if ((m->queue - m->pc) == PQ_CACHE)
950			cnt.v_reactivated++;
951		vm_pageq_remove(m);
952		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
953			if (m->act_count < ACT_INIT)
954				m->act_count = ACT_INIT;
955			vm_pageq_enqueue(PQ_ACTIVE, m);
956		}
957	} else {
958		if (m->act_count < ACT_INIT)
959			m->act_count = ACT_INIT;
960	}
961	splx(s);
962}
963
964/*
965 *	vm_page_free_wakeup:
966 *
967 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
968 *	routine is called when a page has been added to the cache or free
969 *	queues.
970 *
971 *	This routine may not block.
972 *	This routine must be called at splvm()
973 */
974static __inline void
975vm_page_free_wakeup(void)
976{
977
978	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
979	/*
980	 * if pageout daemon needs pages, then tell it that there are
981	 * some free.
982	 */
983	if (vm_pageout_pages_needed &&
984	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
985		wakeup(&vm_pageout_pages_needed);
986		vm_pageout_pages_needed = 0;
987	}
988	/*
989	 * wakeup processes that are waiting on memory if we hit a
990	 * high water mark. And wakeup scheduler process if we have
991	 * lots of memory. this process will swapin processes.
992	 */
993	if (vm_pages_needed && !vm_page_count_min()) {
994		vm_pages_needed = 0;
995		wakeup(&cnt.v_free_count);
996	}
997}
998
999/*
1000 *	vm_page_free_toq:
1001 *
1002 *	Returns the given page to the PQ_FREE list,
1003 *	disassociating it with any VM object.
1004 *
1005 *	Object and page must be locked prior to entry.
1006 *	This routine may not block.
1007 */
1008
1009void
1010vm_page_free_toq(vm_page_t m)
1011{
1012	int s;
1013	struct vpgqueues *pq;
1014	vm_object_t object = m->object;
1015
1016	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1017	s = splvm();
1018	cnt.v_tfree++;
1019
1020	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1021		printf(
1022		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1023		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1024		    m->hold_count);
1025		if ((m->queue - m->pc) == PQ_FREE)
1026			panic("vm_page_free: freeing free page");
1027		else
1028			panic("vm_page_free: freeing busy page");
1029	}
1030
1031	/*
1032	 * unqueue, then remove page.  Note that we cannot destroy
1033	 * the page here because we do not want to call the pager's
1034	 * callback routine until after we've put the page on the
1035	 * appropriate free queue.
1036	 */
1037	vm_pageq_remove_nowakeup(m);
1038	vm_page_remove(m);
1039
1040	/*
1041	 * If fictitious remove object association and
1042	 * return, otherwise delay object association removal.
1043	 */
1044	if ((m->flags & PG_FICTITIOUS) != 0) {
1045		splx(s);
1046		return;
1047	}
1048
1049	m->valid = 0;
1050	vm_page_undirty(m);
1051
1052	if (m->wire_count != 0) {
1053		if (m->wire_count > 1) {
1054			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1055				m->wire_count, (long)m->pindex);
1056		}
1057		panic("vm_page_free: freeing wired page\n");
1058	}
1059
1060	/*
1061	 * If we've exhausted the object's resident pages we want to free
1062	 * it up.
1063	 */
1064	if (object &&
1065	    (object->type == OBJT_VNODE) &&
1066	    ((object->flags & OBJ_DEAD) == 0)
1067	) {
1068		struct vnode *vp = (struct vnode *)object->handle;
1069
1070		if (vp) {
1071			VI_LOCK(vp);
1072			if (VSHOULDFREE(vp))
1073				vfree(vp);
1074			VI_UNLOCK(vp);
1075		}
1076	}
1077
1078	/*
1079	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1080	 */
1081	if (m->flags & PG_UNMANAGED) {
1082		m->flags &= ~PG_UNMANAGED;
1083	}
1084
1085	if (m->hold_count != 0) {
1086		m->flags &= ~PG_ZERO;
1087		m->queue = PQ_HOLD;
1088	} else
1089		m->queue = PQ_FREE + m->pc;
1090	pq = &vm_page_queues[m->queue];
1091	mtx_lock_spin(&vm_page_queue_free_mtx);
1092	pq->lcnt++;
1093	++(*pq->cnt);
1094
1095	/*
1096	 * Put zero'd pages on the end ( where we look for zero'd pages
1097	 * first ) and non-zerod pages at the head.
1098	 */
1099	if (m->flags & PG_ZERO) {
1100		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1101		++vm_page_zero_count;
1102	} else {
1103		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1104	}
1105	mtx_unlock_spin(&vm_page_queue_free_mtx);
1106	vm_page_free_wakeup();
1107	splx(s);
1108}
1109
1110/*
1111 *	vm_page_unmanage:
1112 *
1113 * 	Prevent PV management from being done on the page.  The page is
1114 *	removed from the paging queues as if it were wired, and as a
1115 *	consequence of no longer being managed the pageout daemon will not
1116 *	touch it (since there is no way to locate the pte mappings for the
1117 *	page).  madvise() calls that mess with the pmap will also no longer
1118 *	operate on the page.
1119 *
1120 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1121 *	will clear the flag.
1122 *
1123 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1124 *	physical memory as backing store rather then swap-backed memory and
1125 *	will eventually be extended to support 4MB unmanaged physical
1126 *	mappings.
1127 */
1128void
1129vm_page_unmanage(vm_page_t m)
1130{
1131	int s;
1132
1133	s = splvm();
1134	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1135	if ((m->flags & PG_UNMANAGED) == 0) {
1136		if (m->wire_count == 0)
1137			vm_pageq_remove(m);
1138	}
1139	vm_page_flag_set(m, PG_UNMANAGED);
1140	splx(s);
1141}
1142
1143/*
1144 *	vm_page_wire:
1145 *
1146 *	Mark this page as wired down by yet
1147 *	another map, removing it from paging queues
1148 *	as necessary.
1149 *
1150 *	The page queues must be locked.
1151 *	This routine may not block.
1152 */
1153void
1154vm_page_wire(vm_page_t m)
1155{
1156	int s;
1157
1158	/*
1159	 * Only bump the wire statistics if the page is not already wired,
1160	 * and only unqueue the page if it is on some queue (if it is unmanaged
1161	 * it is already off the queues).
1162	 */
1163	s = splvm();
1164	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1165	if (m->wire_count == 0) {
1166		if ((m->flags & PG_UNMANAGED) == 0)
1167			vm_pageq_remove(m);
1168		atomic_add_int(&cnt.v_wire_count, 1);
1169	}
1170	m->wire_count++;
1171	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1172	splx(s);
1173}
1174
1175/*
1176 *	vm_page_unwire:
1177 *
1178 *	Release one wiring of this page, potentially
1179 *	enabling it to be paged again.
1180 *
1181 *	Many pages placed on the inactive queue should actually go
1182 *	into the cache, but it is difficult to figure out which.  What
1183 *	we do instead, if the inactive target is well met, is to put
1184 *	clean pages at the head of the inactive queue instead of the tail.
1185 *	This will cause them to be moved to the cache more quickly and
1186 *	if not actively re-referenced, freed more quickly.  If we just
1187 *	stick these pages at the end of the inactive queue, heavy filesystem
1188 *	meta-data accesses can cause an unnecessary paging load on memory bound
1189 *	processes.  This optimization causes one-time-use metadata to be
1190 *	reused more quickly.
1191 *
1192 *	BUT, if we are in a low-memory situation we have no choice but to
1193 *	put clean pages on the cache queue.
1194 *
1195 *	A number of routines use vm_page_unwire() to guarantee that the page
1196 *	will go into either the inactive or active queues, and will NEVER
1197 *	be placed in the cache - for example, just after dirtying a page.
1198 *	dirty pages in the cache are not allowed.
1199 *
1200 *	The page queues must be locked.
1201 *	This routine may not block.
1202 */
1203void
1204vm_page_unwire(vm_page_t m, int activate)
1205{
1206	int s;
1207
1208	s = splvm();
1209	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1210	if (m->wire_count > 0) {
1211		m->wire_count--;
1212		if (m->wire_count == 0) {
1213			atomic_subtract_int(&cnt.v_wire_count, 1);
1214			if (m->flags & PG_UNMANAGED) {
1215				;
1216			} else if (activate)
1217				vm_pageq_enqueue(PQ_ACTIVE, m);
1218			else {
1219				vm_page_flag_clear(m, PG_WINATCFLS);
1220				vm_pageq_enqueue(PQ_INACTIVE, m);
1221			}
1222		}
1223	} else {
1224		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1225	}
1226	splx(s);
1227}
1228
1229
1230/*
1231 * Move the specified page to the inactive queue.  If the page has
1232 * any associated swap, the swap is deallocated.
1233 *
1234 * Normally athead is 0 resulting in LRU operation.  athead is set
1235 * to 1 if we want this page to be 'as if it were placed in the cache',
1236 * except without unmapping it from the process address space.
1237 *
1238 * This routine may not block.
1239 */
1240static __inline void
1241_vm_page_deactivate(vm_page_t m, int athead)
1242{
1243	int s;
1244
1245	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1246	/*
1247	 * Ignore if already inactive.
1248	 */
1249	if (m->queue == PQ_INACTIVE)
1250		return;
1251
1252	s = splvm();
1253	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1254		if ((m->queue - m->pc) == PQ_CACHE)
1255			cnt.v_reactivated++;
1256		vm_page_flag_clear(m, PG_WINATCFLS);
1257		vm_pageq_remove(m);
1258		if (athead)
1259			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1260		else
1261			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1262		m->queue = PQ_INACTIVE;
1263		vm_page_queues[PQ_INACTIVE].lcnt++;
1264		cnt.v_inactive_count++;
1265	}
1266	splx(s);
1267}
1268
1269void
1270vm_page_deactivate(vm_page_t m)
1271{
1272    _vm_page_deactivate(m, 0);
1273}
1274
1275/*
1276 * vm_page_try_to_cache:
1277 *
1278 * Returns 0 on failure, 1 on success
1279 */
1280int
1281vm_page_try_to_cache(vm_page_t m)
1282{
1283
1284	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1285	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1286	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1287		return (0);
1288	}
1289	pmap_remove_all(m);
1290	if (m->dirty)
1291		return (0);
1292	vm_page_cache(m);
1293	return (1);
1294}
1295
1296/*
1297 * vm_page_try_to_free()
1298 *
1299 *	Attempt to free the page.  If we cannot free it, we do nothing.
1300 *	1 is returned on success, 0 on failure.
1301 */
1302int
1303vm_page_try_to_free(vm_page_t m)
1304{
1305
1306	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1307	if (m->object != NULL)
1308		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1309	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1310	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1311		return (0);
1312	}
1313	pmap_remove_all(m);
1314	if (m->dirty)
1315		return (0);
1316	vm_page_busy(m);
1317	vm_page_free(m);
1318	return (1);
1319}
1320
1321/*
1322 * vm_page_cache
1323 *
1324 * Put the specified page onto the page cache queue (if appropriate).
1325 *
1326 * This routine may not block.
1327 */
1328void
1329vm_page_cache(vm_page_t m)
1330{
1331	int s;
1332
1333	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1334	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1335	    m->hold_count || m->wire_count) {
1336		printf("vm_page_cache: attempting to cache busy page\n");
1337		return;
1338	}
1339	if ((m->queue - m->pc) == PQ_CACHE)
1340		return;
1341
1342	/*
1343	 * Remove all pmaps and indicate that the page is not
1344	 * writeable or mapped.
1345	 */
1346	pmap_remove_all(m);
1347	if (m->dirty != 0) {
1348		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1349			(long)m->pindex);
1350	}
1351	s = splvm();
1352	vm_pageq_remove_nowakeup(m);
1353	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1354	vm_page_free_wakeup();
1355	splx(s);
1356}
1357
1358/*
1359 * vm_page_dontneed
1360 *
1361 *	Cache, deactivate, or do nothing as appropriate.  This routine
1362 *	is typically used by madvise() MADV_DONTNEED.
1363 *
1364 *	Generally speaking we want to move the page into the cache so
1365 *	it gets reused quickly.  However, this can result in a silly syndrome
1366 *	due to the page recycling too quickly.  Small objects will not be
1367 *	fully cached.  On the otherhand, if we move the page to the inactive
1368 *	queue we wind up with a problem whereby very large objects
1369 *	unnecessarily blow away our inactive and cache queues.
1370 *
1371 *	The solution is to move the pages based on a fixed weighting.  We
1372 *	either leave them alone, deactivate them, or move them to the cache,
1373 *	where moving them to the cache has the highest weighting.
1374 *	By forcing some pages into other queues we eventually force the
1375 *	system to balance the queues, potentially recovering other unrelated
1376 *	space from active.  The idea is to not force this to happen too
1377 *	often.
1378 */
1379void
1380vm_page_dontneed(vm_page_t m)
1381{
1382	static int dnweight;
1383	int dnw;
1384	int head;
1385
1386	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1387	dnw = ++dnweight;
1388
1389	/*
1390	 * occassionally leave the page alone
1391	 */
1392	if ((dnw & 0x01F0) == 0 ||
1393	    m->queue == PQ_INACTIVE ||
1394	    m->queue - m->pc == PQ_CACHE
1395	) {
1396		if (m->act_count >= ACT_INIT)
1397			--m->act_count;
1398		return;
1399	}
1400
1401	if (m->dirty == 0 && pmap_is_modified(m))
1402		vm_page_dirty(m);
1403
1404	if (m->dirty || (dnw & 0x0070) == 0) {
1405		/*
1406		 * Deactivate the page 3 times out of 32.
1407		 */
1408		head = 0;
1409	} else {
1410		/*
1411		 * Cache the page 28 times out of every 32.  Note that
1412		 * the page is deactivated instead of cached, but placed
1413		 * at the head of the queue instead of the tail.
1414		 */
1415		head = 1;
1416	}
1417	_vm_page_deactivate(m, head);
1418}
1419
1420/*
1421 * Grab a page, waiting until we are waken up due to the page
1422 * changing state.  We keep on waiting, if the page continues
1423 * to be in the object.  If the page doesn't exist, first allocate it
1424 * and then conditionally zero it.
1425 *
1426 * This routine may block.
1427 */
1428vm_page_t
1429vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1430{
1431	vm_page_t m;
1432
1433	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1434retrylookup:
1435	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1436		vm_page_lock_queues();
1437		if (m->busy || (m->flags & PG_BUSY)) {
1438			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1439			VM_OBJECT_UNLOCK(object);
1440			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1441			VM_OBJECT_LOCK(object);
1442			if ((allocflags & VM_ALLOC_RETRY) == 0)
1443				return (NULL);
1444			goto retrylookup;
1445		} else {
1446			if (allocflags & VM_ALLOC_WIRED)
1447				vm_page_wire(m);
1448			vm_page_busy(m);
1449			vm_page_unlock_queues();
1450			return (m);
1451		}
1452	}
1453	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1454	if (m == NULL) {
1455		VM_OBJECT_UNLOCK(object);
1456		VM_WAIT;
1457		VM_OBJECT_LOCK(object);
1458		if ((allocflags & VM_ALLOC_RETRY) == 0)
1459			return (NULL);
1460		goto retrylookup;
1461	}
1462	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1463		pmap_zero_page(m);
1464	return (m);
1465}
1466
1467/*
1468 * Mapping function for valid bits or for dirty bits in
1469 * a page.  May not block.
1470 *
1471 * Inputs are required to range within a page.
1472 */
1473__inline int
1474vm_page_bits(int base, int size)
1475{
1476	int first_bit;
1477	int last_bit;
1478
1479	KASSERT(
1480	    base + size <= PAGE_SIZE,
1481	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1482	);
1483
1484	if (size == 0)		/* handle degenerate case */
1485		return (0);
1486
1487	first_bit = base >> DEV_BSHIFT;
1488	last_bit = (base + size - 1) >> DEV_BSHIFT;
1489
1490	return ((2 << last_bit) - (1 << first_bit));
1491}
1492
1493/*
1494 *	vm_page_set_validclean:
1495 *
1496 *	Sets portions of a page valid and clean.  The arguments are expected
1497 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1498 *	of any partial chunks touched by the range.  The invalid portion of
1499 *	such chunks will be zero'd.
1500 *
1501 *	This routine may not block.
1502 *
1503 *	(base + size) must be less then or equal to PAGE_SIZE.
1504 */
1505void
1506vm_page_set_validclean(vm_page_t m, int base, int size)
1507{
1508	int pagebits;
1509	int frag;
1510	int endoff;
1511
1512	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1513	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1514	if (size == 0)	/* handle degenerate case */
1515		return;
1516
1517	/*
1518	 * If the base is not DEV_BSIZE aligned and the valid
1519	 * bit is clear, we have to zero out a portion of the
1520	 * first block.
1521	 */
1522	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1523	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1524		pmap_zero_page_area(m, frag, base - frag);
1525
1526	/*
1527	 * If the ending offset is not DEV_BSIZE aligned and the
1528	 * valid bit is clear, we have to zero out a portion of
1529	 * the last block.
1530	 */
1531	endoff = base + size;
1532	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1533	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1534		pmap_zero_page_area(m, endoff,
1535		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1536
1537	/*
1538	 * Set valid, clear dirty bits.  If validating the entire
1539	 * page we can safely clear the pmap modify bit.  We also
1540	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1541	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1542	 * be set again.
1543	 *
1544	 * We set valid bits inclusive of any overlap, but we can only
1545	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1546	 * the range.
1547	 */
1548	pagebits = vm_page_bits(base, size);
1549	m->valid |= pagebits;
1550#if 0	/* NOT YET */
1551	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1552		frag = DEV_BSIZE - frag;
1553		base += frag;
1554		size -= frag;
1555		if (size < 0)
1556			size = 0;
1557	}
1558	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1559#endif
1560	m->dirty &= ~pagebits;
1561	if (base == 0 && size == PAGE_SIZE) {
1562		pmap_clear_modify(m);
1563		vm_page_flag_clear(m, PG_NOSYNC);
1564	}
1565}
1566
1567void
1568vm_page_clear_dirty(vm_page_t m, int base, int size)
1569{
1570
1571	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1572	m->dirty &= ~vm_page_bits(base, size);
1573}
1574
1575/*
1576 *	vm_page_set_invalid:
1577 *
1578 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1579 *	valid and dirty bits for the effected areas are cleared.
1580 *
1581 *	May not block.
1582 */
1583void
1584vm_page_set_invalid(vm_page_t m, int base, int size)
1585{
1586	int bits;
1587
1588	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1589	bits = vm_page_bits(base, size);
1590	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1591	m->valid &= ~bits;
1592	m->dirty &= ~bits;
1593	m->object->generation++;
1594}
1595
1596/*
1597 * vm_page_zero_invalid()
1598 *
1599 *	The kernel assumes that the invalid portions of a page contain
1600 *	garbage, but such pages can be mapped into memory by user code.
1601 *	When this occurs, we must zero out the non-valid portions of the
1602 *	page so user code sees what it expects.
1603 *
1604 *	Pages are most often semi-valid when the end of a file is mapped
1605 *	into memory and the file's size is not page aligned.
1606 */
1607void
1608vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1609{
1610	int b;
1611	int i;
1612
1613	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1614	/*
1615	 * Scan the valid bits looking for invalid sections that
1616	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1617	 * valid bit may be set ) have already been zerod by
1618	 * vm_page_set_validclean().
1619	 */
1620	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1621		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1622		    (m->valid & (1 << i))
1623		) {
1624			if (i > b) {
1625				pmap_zero_page_area(m,
1626				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1627			}
1628			b = i + 1;
1629		}
1630	}
1631
1632	/*
1633	 * setvalid is TRUE when we can safely set the zero'd areas
1634	 * as being valid.  We can do this if there are no cache consistancy
1635	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1636	 */
1637	if (setvalid)
1638		m->valid = VM_PAGE_BITS_ALL;
1639}
1640
1641/*
1642 *	vm_page_is_valid:
1643 *
1644 *	Is (partial) page valid?  Note that the case where size == 0
1645 *	will return FALSE in the degenerate case where the page is
1646 *	entirely invalid, and TRUE otherwise.
1647 *
1648 *	May not block.
1649 */
1650int
1651vm_page_is_valid(vm_page_t m, int base, int size)
1652{
1653	int bits = vm_page_bits(base, size);
1654
1655	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1656	if (m->valid && ((m->valid & bits) == bits))
1657		return 1;
1658	else
1659		return 0;
1660}
1661
1662/*
1663 * update dirty bits from pmap/mmu.  May not block.
1664 */
1665void
1666vm_page_test_dirty(vm_page_t m)
1667{
1668	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1669		vm_page_dirty(m);
1670	}
1671}
1672
1673int so_zerocp_fullpage = 0;
1674
1675void
1676vm_page_cowfault(vm_page_t m)
1677{
1678	vm_page_t mnew;
1679	vm_object_t object;
1680	vm_pindex_t pindex;
1681
1682	object = m->object;
1683	pindex = m->pindex;
1684	vm_page_busy(m);
1685
1686 retry_alloc:
1687	vm_page_remove(m);
1688	/*
1689	 * An interrupt allocation is requested because the page
1690	 * queues lock is held.
1691	 */
1692	mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT);
1693	if (mnew == NULL) {
1694		vm_page_insert(m, object, pindex);
1695		vm_page_unlock_queues();
1696		VM_OBJECT_UNLOCK(object);
1697		VM_WAIT;
1698		VM_OBJECT_LOCK(object);
1699		vm_page_lock_queues();
1700		goto retry_alloc;
1701	}
1702
1703	if (m->cow == 0) {
1704		/*
1705		 * check to see if we raced with an xmit complete when
1706		 * waiting to allocate a page.  If so, put things back
1707		 * the way they were
1708		 */
1709		vm_page_busy(mnew);
1710		vm_page_free(mnew);
1711		vm_page_insert(m, object, pindex);
1712	} else { /* clear COW & copy page */
1713		if (!so_zerocp_fullpage)
1714			pmap_copy_page(m, mnew);
1715		mnew->valid = VM_PAGE_BITS_ALL;
1716		vm_page_dirty(mnew);
1717		vm_page_flag_clear(mnew, PG_BUSY);
1718	}
1719}
1720
1721void
1722vm_page_cowclear(vm_page_t m)
1723{
1724
1725	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1726	if (m->cow) {
1727		m->cow--;
1728		/*
1729		 * let vm_fault add back write permission  lazily
1730		 */
1731	}
1732	/*
1733	 *  sf_buf_free() will free the page, so we needn't do it here
1734	 */
1735}
1736
1737void
1738vm_page_cowsetup(vm_page_t m)
1739{
1740
1741	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1742	m->cow++;
1743	pmap_page_protect(m, VM_PROT_READ);
1744}
1745
1746#include "opt_ddb.h"
1747#ifdef DDB
1748#include <sys/kernel.h>
1749
1750#include <ddb/ddb.h>
1751
1752DB_SHOW_COMMAND(page, vm_page_print_page_info)
1753{
1754	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1755	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1756	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1757	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1758	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1759	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1760	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1761	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1762	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1763	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1764}
1765
1766DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1767{
1768	int i;
1769	db_printf("PQ_FREE:");
1770	for (i = 0; i < PQ_L2_SIZE; i++) {
1771		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1772	}
1773	db_printf("\n");
1774
1775	db_printf("PQ_CACHE:");
1776	for (i = 0; i < PQ_L2_SIZE; i++) {
1777		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1778	}
1779	db_printf("\n");
1780
1781	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1782		vm_page_queues[PQ_ACTIVE].lcnt,
1783		vm_page_queues[PQ_INACTIVE].lcnt);
1784}
1785#endif /* DDB */
1786