vm_page.c revision 12662
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37 *	$Id: vm_page.c,v 1.39 1995/12/03 12:18:39 bde Exp $
38 */
39
40/*
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59 *  School of Computer Science
60 *  Carnegie Mellon University
61 *  Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67/*
68 *	Resident memory management module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/proc.h>
74#include <sys/queue.h>
75#include <sys/vmmeter.h>
76
77#include <vm/vm.h>
78#include <vm/vm_param.h>
79#include <vm/vm_prot.h>
80#include <vm/lock.h>
81#include <vm/vm_kern.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_map.h>
85#include <vm/vm_pageout.h>
86#include <vm/vm_extern.h>
87
88#ifdef DDB
89extern void	print_page_info __P((void));
90#endif
91
92/*
93 *	Associated with page of user-allocatable memory is a
94 *	page structure.
95 */
96
97struct pglist *vm_page_buckets;	/* Array of buckets */
98int vm_page_bucket_count;	/* How big is array? */
99static int vm_page_hash_mask;		/* Mask for hash function */
100
101struct pglist vm_page_queue_free;
102struct pglist vm_page_queue_zero;
103struct pglist vm_page_queue_active;
104struct pglist vm_page_queue_inactive;
105struct pglist vm_page_queue_cache;
106
107/* has physical page allocation been initialized? */
108boolean_t vm_page_startup_initialized;
109
110vm_page_t vm_page_array;
111int vm_page_array_size;
112long first_page;
113long last_page;
114vm_offset_t first_phys_addr;
115vm_offset_t last_phys_addr;
116vm_size_t page_mask;
117int page_shift;
118
119/*
120 * map of contiguous valid DEV_BSIZE chunks in a page
121 * (this list is valid for page sizes upto 16*DEV_BSIZE)
122 */
123static u_short vm_page_dev_bsize_chunks[] = {
124	0x0, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f, 0xff,
125	0x1ff, 0x3ff, 0x7ff, 0xfff, 0x1fff, 0x3fff, 0x7fff, 0xffff
126};
127
128static inline __pure int
129		vm_page_hash __P((vm_object_t object, vm_offset_t offset))
130		__pure2;
131static void	vm_page_unqueue __P((vm_page_t ));
132
133/*
134 *	vm_set_page_size:
135 *
136 *	Sets the page size, perhaps based upon the memory
137 *	size.  Must be called before any use of page-size
138 *	dependent functions.
139 *
140 *	Sets page_shift and page_mask from cnt.v_page_size.
141 */
142void
143vm_set_page_size()
144{
145
146	if (cnt.v_page_size == 0)
147		cnt.v_page_size = DEFAULT_PAGE_SIZE;
148	page_mask = cnt.v_page_size - 1;
149	if ((page_mask & cnt.v_page_size) != 0)
150		panic("vm_set_page_size: page size not a power of two");
151	for (page_shift = 0;; page_shift++)
152		if ((1 << page_shift) == cnt.v_page_size)
153			break;
154}
155
156/*
157 *	vm_page_startup:
158 *
159 *	Initializes the resident memory module.
160 *
161 *	Allocates memory for the page cells, and
162 *	for the object/offset-to-page hash table headers.
163 *	Each page cell is initialized and placed on the free list.
164 */
165
166vm_offset_t
167vm_page_startup(starta, enda, vaddr)
168	register vm_offset_t starta;
169	vm_offset_t enda;
170	register vm_offset_t vaddr;
171{
172	register vm_offset_t mapped;
173	register vm_page_t m;
174	register struct pglist *bucket;
175	vm_size_t npages, page_range;
176	register vm_offset_t new_start;
177	int i;
178	vm_offset_t pa;
179	int nblocks;
180	vm_offset_t first_managed_page;
181
182	/* the biggest memory array is the second group of pages */
183	vm_offset_t start;
184	vm_offset_t biggestone, biggestsize;
185
186	vm_offset_t total;
187
188	total = 0;
189	biggestsize = 0;
190	biggestone = 0;
191	nblocks = 0;
192	vaddr = round_page(vaddr);
193
194	for (i = 0; phys_avail[i + 1]; i += 2) {
195		phys_avail[i] = round_page(phys_avail[i]);
196		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
197	}
198
199	for (i = 0; phys_avail[i + 1]; i += 2) {
200		int size = phys_avail[i + 1] - phys_avail[i];
201
202		if (size > biggestsize) {
203			biggestone = i;
204			biggestsize = size;
205		}
206		++nblocks;
207		total += size;
208	}
209
210	start = phys_avail[biggestone];
211
212	/*
213	 * Initialize the queue headers for the free queue, the active queue
214	 * and the inactive queue.
215	 */
216
217	TAILQ_INIT(&vm_page_queue_free);
218	TAILQ_INIT(&vm_page_queue_zero);
219	TAILQ_INIT(&vm_page_queue_active);
220	TAILQ_INIT(&vm_page_queue_inactive);
221	TAILQ_INIT(&vm_page_queue_cache);
222
223	/*
224	 * Allocate (and initialize) the hash table buckets.
225	 *
226	 * The number of buckets MUST BE a power of 2, and the actual value is
227	 * the next power of 2 greater than the number of physical pages in
228	 * the system.
229	 *
230	 * Note: This computation can be tweaked if desired.
231	 */
232	vm_page_buckets = (struct pglist *) vaddr;
233	bucket = vm_page_buckets;
234	if (vm_page_bucket_count == 0) {
235		vm_page_bucket_count = 1;
236		while (vm_page_bucket_count < atop(total))
237			vm_page_bucket_count <<= 1;
238	}
239	vm_page_hash_mask = vm_page_bucket_count - 1;
240
241	/*
242	 * Validate these addresses.
243	 */
244
245	new_start = start + vm_page_bucket_count * sizeof(struct pglist);
246	new_start = round_page(new_start);
247	mapped = vaddr;
248	vaddr = pmap_map(mapped, start, new_start,
249	    VM_PROT_READ | VM_PROT_WRITE);
250	start = new_start;
251	bzero((caddr_t) mapped, vaddr - mapped);
252	mapped = vaddr;
253
254	for (i = 0; i < vm_page_bucket_count; i++) {
255		TAILQ_INIT(bucket);
256		bucket++;
257	}
258
259	/*
260	 * round (or truncate) the addresses to our page size.
261	 */
262
263	/*
264	 * Pre-allocate maps and map entries that cannot be dynamically
265	 * allocated via malloc().  The maps include the kernel_map and
266	 * kmem_map which must be initialized before malloc() will work
267	 * (obviously).  Also could include pager maps which would be
268	 * allocated before kmeminit.
269	 *
270	 * Allow some kernel map entries... this should be plenty since people
271	 * shouldn't be cluttering up the kernel map (they should use their
272	 * own maps).
273	 */
274
275	kentry_data_size = MAX_KMAP * sizeof(struct vm_map) +
276	    MAX_KMAPENT * sizeof(struct vm_map_entry);
277	kentry_data_size = round_page(kentry_data_size);
278	kentry_data = (vm_offset_t) vaddr;
279	vaddr += kentry_data_size;
280
281	/*
282	 * Validate these zone addresses.
283	 */
284
285	new_start = start + (vaddr - mapped);
286	pmap_map(mapped, start, new_start, VM_PROT_READ | VM_PROT_WRITE);
287	bzero((caddr_t) mapped, (vaddr - mapped));
288	start = round_page(new_start);
289
290	/*
291	 * Compute the number of pages of memory that will be available for
292	 * use (taking into account the overhead of a page structure per
293	 * page).
294	 */
295
296	first_page = phys_avail[0] / PAGE_SIZE;
297	last_page = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
298
299	page_range = last_page - (phys_avail[0] / PAGE_SIZE);
300	npages = (total - (page_range * sizeof(struct vm_page)) -
301	    (start - phys_avail[biggestone])) / PAGE_SIZE;
302
303	/*
304	 * Initialize the mem entry structures now, and put them in the free
305	 * queue.
306	 */
307
308	vm_page_array = (vm_page_t) vaddr;
309	mapped = vaddr;
310
311	/*
312	 * Validate these addresses.
313	 */
314
315	new_start = round_page(start + page_range * sizeof(struct vm_page));
316	mapped = pmap_map(mapped, start, new_start,
317	    VM_PROT_READ | VM_PROT_WRITE);
318	start = new_start;
319
320	first_managed_page = start / PAGE_SIZE;
321
322	/*
323	 * Clear all of the page structures
324	 */
325	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
326	vm_page_array_size = page_range;
327
328	cnt.v_page_count = 0;
329	cnt.v_free_count = 0;
330	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
331		if (i == biggestone)
332			pa = ptoa(first_managed_page);
333		else
334			pa = phys_avail[i];
335		while (pa < phys_avail[i + 1] && npages-- > 0) {
336			++cnt.v_page_count;
337			++cnt.v_free_count;
338			m = PHYS_TO_VM_PAGE(pa);
339			m->flags = PG_FREE;
340			m->phys_addr = pa;
341			TAILQ_INSERT_TAIL(&vm_page_queue_free, m, pageq);
342			pa += PAGE_SIZE;
343		}
344	}
345
346	return (mapped);
347}
348
349/*
350 *	vm_page_hash:
351 *
352 *	Distributes the object/offset key pair among hash buckets.
353 *
354 *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
355 */
356static inline __pure int
357vm_page_hash(vm_object_t object, vm_offset_t offset)
358{
359	return ((unsigned) object + (offset >> PAGE_SHIFT)) & vm_page_hash_mask;
360}
361
362/*
363 *	vm_page_insert:		[ internal use only ]
364 *
365 *	Inserts the given mem entry into the object/object-page
366 *	table and object list.
367 *
368 *	The object and page must be locked, and must be splhigh.
369 */
370
371inline void
372vm_page_insert(mem, object, offset)
373	register vm_page_t mem;
374	register vm_object_t object;
375	register vm_offset_t offset;
376{
377	register struct pglist *bucket;
378
379	if (mem->flags & PG_TABLED)
380		panic("vm_page_insert: already inserted");
381
382	/*
383	 * Record the object/offset pair in this page
384	 */
385
386	mem->object = object;
387	mem->offset = offset;
388
389	/*
390	 * Insert it into the object_object/offset hash table
391	 */
392
393	bucket = &vm_page_buckets[vm_page_hash(object, offset)];
394	TAILQ_INSERT_TAIL(bucket, mem, hashq);
395
396	/*
397	 * Now link into the object's list of backed pages.
398	 */
399
400	TAILQ_INSERT_TAIL(&object->memq, mem, listq);
401	mem->flags |= PG_TABLED;
402
403	/*
404	 * And show that the object has one more resident page.
405	 */
406
407	object->resident_page_count++;
408}
409
410/*
411 *	vm_page_remove:		[ internal use only ]
412 *				NOTE: used by device pager as well -wfj
413 *
414 *	Removes the given mem entry from the object/offset-page
415 *	table and the object page list.
416 *
417 *	The object and page must be locked, and at splhigh.
418 */
419
420inline void
421vm_page_remove(mem)
422	register vm_page_t mem;
423{
424	register struct pglist *bucket;
425
426	if (!(mem->flags & PG_TABLED))
427		return;
428
429	/*
430	 * Remove from the object_object/offset hash table
431	 */
432
433	bucket = &vm_page_buckets[vm_page_hash(mem->object, mem->offset)];
434	TAILQ_REMOVE(bucket, mem, hashq);
435
436	/*
437	 * Now remove from the object's list of backed pages.
438	 */
439
440	TAILQ_REMOVE(&mem->object->memq, mem, listq);
441
442	/*
443	 * And show that the object has one fewer resident page.
444	 */
445
446	mem->object->resident_page_count--;
447
448	mem->flags &= ~PG_TABLED;
449}
450
451/*
452 *	vm_page_lookup:
453 *
454 *	Returns the page associated with the object/offset
455 *	pair specified; if none is found, NULL is returned.
456 *
457 *	The object must be locked.  No side effects.
458 */
459
460vm_page_t
461vm_page_lookup(object, offset)
462	register vm_object_t object;
463	register vm_offset_t offset;
464{
465	register vm_page_t mem;
466	register struct pglist *bucket;
467	int s;
468
469	/*
470	 * Search the hash table for this object/offset pair
471	 */
472
473	bucket = &vm_page_buckets[vm_page_hash(object, offset)];
474
475	s = splhigh();
476	for (mem = bucket->tqh_first; mem != NULL; mem = mem->hashq.tqe_next) {
477		if ((mem->object == object) && (mem->offset == offset)) {
478			splx(s);
479			return (mem);
480		}
481	}
482
483	splx(s);
484	return (NULL);
485}
486
487/*
488 *	vm_page_rename:
489 *
490 *	Move the given memory entry from its
491 *	current object to the specified target object/offset.
492 *
493 *	The object must be locked.
494 */
495void
496vm_page_rename(mem, new_object, new_offset)
497	register vm_page_t mem;
498	register vm_object_t new_object;
499	vm_offset_t new_offset;
500{
501	int s;
502
503	if (mem->object == new_object)
504		return;
505
506	s = splhigh();
507	vm_page_remove(mem);
508	vm_page_insert(mem, new_object, new_offset);
509	splx(s);
510}
511
512/*
513 * vm_page_unqueue must be called at splhigh();
514 */
515static inline void
516vm_page_unqueue(vm_page_t mem)
517{
518	int origflags;
519
520	origflags = mem->flags;
521
522	if ((origflags & (PG_ACTIVE|PG_INACTIVE|PG_CACHE)) == 0)
523		return;
524
525	if (origflags & PG_ACTIVE) {
526		TAILQ_REMOVE(&vm_page_queue_active, mem, pageq);
527		cnt.v_active_count--;
528		mem->flags &= ~PG_ACTIVE;
529	} else if (origflags & PG_INACTIVE) {
530		TAILQ_REMOVE(&vm_page_queue_inactive, mem, pageq);
531		cnt.v_inactive_count--;
532		mem->flags &= ~PG_INACTIVE;
533	} else if (origflags & PG_CACHE) {
534		TAILQ_REMOVE(&vm_page_queue_cache, mem, pageq);
535		cnt.v_cache_count--;
536		mem->flags &= ~PG_CACHE;
537		if (cnt.v_cache_count + cnt.v_free_count < cnt.v_free_reserved)
538			pagedaemon_wakeup();
539	}
540	return;
541}
542
543/*
544 *	vm_page_alloc:
545 *
546 *	Allocate and return a memory cell associated
547 *	with this VM object/offset pair.
548 *
549 *	page_req classes:
550 *	VM_ALLOC_NORMAL		normal process request
551 *	VM_ALLOC_SYSTEM		system *really* needs a page
552 *	VM_ALLOC_INTERRUPT	interrupt time request
553 *	or in:
554 *	VM_ALLOC_ZERO		zero page
555 *
556 *	Object must be locked.
557 */
558vm_page_t
559vm_page_alloc(object, offset, page_req)
560	vm_object_t object;
561	vm_offset_t offset;
562	int page_req;
563{
564	register vm_page_t mem;
565	int s;
566
567#ifdef DIAGNOSTIC
568	if (offset != trunc_page(offset))
569		panic("vm_page_alloc: offset not page aligned");
570
571#if 0
572	mem = vm_page_lookup(object, offset);
573	if (mem)
574		panic("vm_page_alloc: page already allocated");
575#endif
576#endif
577
578	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
579		page_req = VM_ALLOC_SYSTEM;
580	};
581
582	s = splhigh();
583
584	switch ((page_req & ~(VM_ALLOC_ZERO))) {
585	case VM_ALLOC_NORMAL:
586		if (cnt.v_free_count >= cnt.v_free_reserved) {
587			if (page_req & VM_ALLOC_ZERO) {
588				mem = vm_page_queue_zero.tqh_first;
589				if (mem) {
590					TAILQ_REMOVE(&vm_page_queue_zero, mem, pageq);
591					mem->flags = PG_BUSY|PG_ZERO;
592				} else {
593					mem = vm_page_queue_free.tqh_first;
594					TAILQ_REMOVE(&vm_page_queue_free, mem, pageq);
595					mem->flags = PG_BUSY;
596				}
597			} else {
598				mem = vm_page_queue_free.tqh_first;
599				if (mem) {
600					TAILQ_REMOVE(&vm_page_queue_free, mem, pageq);
601					mem->flags = PG_BUSY;
602				} else {
603					mem = vm_page_queue_zero.tqh_first;
604					TAILQ_REMOVE(&vm_page_queue_zero, mem, pageq);
605					mem->flags = PG_BUSY|PG_ZERO;
606				}
607			}
608			cnt.v_free_count--;
609		} else {
610			mem = vm_page_queue_cache.tqh_first;
611			if (mem != NULL) {
612				TAILQ_REMOVE(&vm_page_queue_cache, mem, pageq);
613				vm_page_remove(mem);
614				mem->flags = PG_BUSY;
615				cnt.v_cache_count--;
616			} else {
617				splx(s);
618				pagedaemon_wakeup();
619				return (NULL);
620			}
621		}
622		break;
623
624	case VM_ALLOC_SYSTEM:
625		if ((cnt.v_free_count >= cnt.v_free_reserved) ||
626		    ((cnt.v_cache_count == 0) &&
627		    (cnt.v_free_count >= cnt.v_interrupt_free_min))) {
628			if (page_req & VM_ALLOC_ZERO) {
629				mem = vm_page_queue_zero.tqh_first;
630				if (mem) {
631					TAILQ_REMOVE(&vm_page_queue_zero, mem, pageq);
632					mem->flags = PG_BUSY|PG_ZERO;
633				} else {
634					mem = vm_page_queue_free.tqh_first;
635					TAILQ_REMOVE(&vm_page_queue_free, mem, pageq);
636					mem->flags = PG_BUSY;
637				}
638			} else {
639				mem = vm_page_queue_free.tqh_first;
640				if (mem) {
641					TAILQ_REMOVE(&vm_page_queue_free, mem, pageq);
642					mem->flags = PG_BUSY;
643				} else {
644					mem = vm_page_queue_zero.tqh_first;
645					TAILQ_REMOVE(&vm_page_queue_zero, mem, pageq);
646					mem->flags = PG_BUSY|PG_ZERO;
647				}
648			}
649			cnt.v_free_count--;
650		} else {
651			mem = vm_page_queue_cache.tqh_first;
652			if (mem != NULL) {
653				TAILQ_REMOVE(&vm_page_queue_cache, mem, pageq);
654				vm_page_remove(mem);
655				mem->flags = PG_BUSY;
656				cnt.v_cache_count--;
657			} else {
658				splx(s);
659				pagedaemon_wakeup();
660				return (NULL);
661			}
662		}
663		break;
664
665	case VM_ALLOC_INTERRUPT:
666		if (cnt.v_free_count > 0) {
667			mem = vm_page_queue_free.tqh_first;
668			if (mem) {
669				TAILQ_REMOVE(&vm_page_queue_free, mem, pageq);
670				mem->flags = PG_BUSY;
671			} else {
672				mem = vm_page_queue_zero.tqh_first;
673				TAILQ_REMOVE(&vm_page_queue_zero, mem, pageq);
674				mem->flags = PG_BUSY|PG_ZERO;
675			}
676			cnt.v_free_count--;
677		} else {
678			splx(s);
679			pagedaemon_wakeup();
680			return NULL;
681		}
682		break;
683
684	default:
685		panic("vm_page_alloc: invalid allocation class");
686	}
687
688	mem->wire_count = 0;
689	mem->hold_count = 0;
690	mem->act_count = 0;
691	mem->busy = 0;
692	mem->valid = 0;
693	mem->dirty = 0;
694	mem->bmapped = 0;
695
696	/* XXX before splx until vm_page_insert is safe */
697	vm_page_insert(mem, object, offset);
698
699	splx(s);
700
701	/*
702	 * Don't wakeup too often - wakeup the pageout daemon when
703	 * we would be nearly out of memory.
704	 */
705	if (((cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min) ||
706	    (cnt.v_free_count < cnt.v_pageout_free_min))
707		pagedaemon_wakeup();
708
709	return (mem);
710}
711
712vm_offset_t
713vm_page_alloc_contig(size, low, high, alignment)
714	vm_offset_t size;
715	vm_offset_t low;
716	vm_offset_t high;
717	vm_offset_t alignment;
718{
719	int i, s, start;
720	vm_offset_t addr, phys, tmp_addr;
721	vm_page_t pga = vm_page_array;
722
723	if ((alignment & (alignment - 1)) != 0)
724		panic("vm_page_alloc_contig: alignment must be a power of 2");
725
726	start = 0;
727	s = splhigh();
728again:
729	/*
730	 * Find first page in array that is free, within range, and aligned.
731	 */
732	for (i = start; i < cnt.v_page_count; i++) {
733		phys = VM_PAGE_TO_PHYS(&pga[i]);
734		if (((pga[i].flags & PG_FREE) == PG_FREE) &&
735		    (phys >= low) && (phys < high) &&
736		    ((phys & (alignment - 1)) == 0))
737			break;
738	}
739
740	/*
741	 * If the above failed or we will exceed the upper bound, fail.
742	 */
743	if ((i == cnt.v_page_count) || ((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
744		splx(s);
745		return (NULL);
746	}
747	start = i;
748
749	/*
750	 * Check successive pages for contiguous and free.
751	 */
752	for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
753		if ((VM_PAGE_TO_PHYS(&pga[i]) !=
754			(VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
755		    ((pga[i].flags & PG_FREE) != PG_FREE)) {
756			start++;
757			goto again;
758		}
759	}
760
761	/*
762	 * We've found a contiguous chunk that meets are requirements.
763	 * Allocate kernel VM, unfree and assign the physical pages to it and
764	 * return kernel VM pointer.
765	 */
766	tmp_addr = addr = kmem_alloc_pageable(kernel_map, size);
767
768	for (i = start; i < (start + size / PAGE_SIZE); i++) {
769		vm_page_t m = &pga[i];
770
771		TAILQ_REMOVE(&vm_page_queue_free, m, pageq);
772		cnt.v_free_count--;
773		m->valid = VM_PAGE_BITS_ALL;
774		m->flags = 0;
775		m->dirty = 0;
776		m->wire_count = 0;
777		m->act_count = 0;
778		m->bmapped = 0;
779		m->busy = 0;
780		vm_page_insert(m, kernel_object, tmp_addr - VM_MIN_KERNEL_ADDRESS);
781		vm_page_wire(m);
782		pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m));
783		tmp_addr += PAGE_SIZE;
784	}
785
786	splx(s);
787	return (addr);
788}
789
790/*
791 *	vm_page_free:
792 *
793 *	Returns the given page to the free list,
794 *	disassociating it with any VM object.
795 *
796 *	Object and page must be locked prior to entry.
797 */
798void
799vm_page_free(mem)
800	register vm_page_t mem;
801{
802	int s;
803	int flags;
804
805	s = splhigh();
806	vm_page_remove(mem);
807	vm_page_unqueue(mem);
808
809	flags = mem->flags;
810	if (mem->bmapped || mem->busy || flags & (PG_BUSY|PG_FREE)) {
811		if (flags & PG_FREE)
812			panic("vm_page_free: freeing free page");
813		printf("vm_page_free: offset(%ld), bmapped(%d), busy(%d), PG_BUSY(%d)\n",
814		    mem->offset, mem->bmapped, mem->busy, (flags & PG_BUSY) ? 1 : 0);
815		panic("vm_page_free: freeing busy page");
816	}
817
818	if ((flags & PG_WANTED) != 0)
819		wakeup(mem);
820	if ((flags & PG_FICTITIOUS) == 0) {
821		if (mem->wire_count) {
822			if (mem->wire_count > 1) {
823				printf("vm_page_free: wire count > 1 (%d)", mem->wire_count);
824				panic("vm_page_free: invalid wire count");
825			}
826			cnt.v_wire_count--;
827			mem->wire_count = 0;
828		}
829		mem->flags |= PG_FREE;
830		TAILQ_INSERT_TAIL(&vm_page_queue_free, mem, pageq);
831		splx(s);
832		/*
833		 * if pageout daemon needs pages, then tell it that there are
834		 * some free.
835		 */
836		if (vm_pageout_pages_needed) {
837			wakeup(&vm_pageout_pages_needed);
838			vm_pageout_pages_needed = 0;
839		}
840
841		cnt.v_free_count++;
842		/*
843		 * wakeup processes that are waiting on memory if we hit a
844		 * high water mark. And wakeup scheduler process if we have
845		 * lots of memory. this process will swapin processes.
846		 */
847		if ((cnt.v_free_count + cnt.v_cache_count) == cnt.v_free_min) {
848			wakeup(&cnt.v_free_count);
849			wakeup(&proc0);
850		}
851	} else {
852		splx(s);
853	}
854	cnt.v_tfree++;
855}
856
857
858/*
859 *	vm_page_wire:
860 *
861 *	Mark this page as wired down by yet
862 *	another map, removing it from paging queues
863 *	as necessary.
864 *
865 *	The page queues must be locked.
866 */
867void
868vm_page_wire(mem)
869	register vm_page_t mem;
870{
871	int s;
872
873	if (mem->wire_count == 0) {
874		s = splhigh();
875		vm_page_unqueue(mem);
876		splx(s);
877		cnt.v_wire_count++;
878	}
879	mem->flags |= PG_WRITEABLE|PG_MAPPED;
880	mem->wire_count++;
881}
882
883/*
884 *	vm_page_unwire:
885 *
886 *	Release one wiring of this page, potentially
887 *	enabling it to be paged again.
888 *
889 *	The page queues must be locked.
890 */
891void
892vm_page_unwire(mem)
893	register vm_page_t mem;
894{
895	int s;
896
897	s = splhigh();
898
899	if (mem->wire_count)
900		mem->wire_count--;
901	if (mem->wire_count == 0) {
902		TAILQ_INSERT_TAIL(&vm_page_queue_active, mem, pageq);
903		cnt.v_active_count++;
904		mem->flags |= PG_ACTIVE;
905		cnt.v_wire_count--;
906	}
907	splx(s);
908}
909
910/*
911 *	vm_page_activate:
912 *
913 *	Put the specified page on the active list (if appropriate).
914 *
915 *	The page queues must be locked.
916 */
917void
918vm_page_activate(m)
919	register vm_page_t m;
920{
921	int s;
922
923	s = splhigh();
924	if (m->flags & PG_ACTIVE)
925		panic("vm_page_activate: already active");
926
927	if (m->flags & PG_CACHE)
928		cnt.v_reactivated++;
929
930	vm_page_unqueue(m);
931
932	if (m->wire_count == 0) {
933		TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
934		m->flags |= PG_ACTIVE;
935		if (m->act_count < 5)
936			m->act_count = 5;
937		else if( m->act_count < ACT_MAX)
938			m->act_count += 1;
939		cnt.v_active_count++;
940	}
941	splx(s);
942}
943
944/*
945 *	vm_page_deactivate:
946 *
947 *	Returns the given page to the inactive list,
948 *	indicating that no physical maps have access
949 *	to this page.  [Used by the physical mapping system.]
950 *
951 *	The page queues must be locked.
952 */
953void
954vm_page_deactivate(m)
955	register vm_page_t m;
956{
957	int spl;
958
959	/*
960	 * Only move active pages -- ignore locked or already inactive ones.
961	 *
962	 * XXX: sometimes we get pages which aren't wired down or on any queue -
963	 * we need to put them on the inactive queue also, otherwise we lose
964	 * track of them. Paul Mackerras (paulus@cs.anu.edu.au) 9-Jan-93.
965	 */
966
967	spl = splhigh();
968	if (!(m->flags & PG_INACTIVE) && m->wire_count == 0 &&
969	    m->hold_count == 0) {
970		if (m->flags & PG_CACHE)
971			cnt.v_reactivated++;
972		vm_page_unqueue(m);
973		TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
974		m->flags |= PG_INACTIVE;
975		cnt.v_inactive_count++;
976		m->act_count = 0;
977	}
978	splx(spl);
979}
980
981/*
982 * vm_page_cache
983 *
984 * Put the specified page onto the page cache queue (if appropriate).
985 */
986void
987vm_page_cache(m)
988	register vm_page_t m;
989{
990	int s;
991
992	if ((m->flags & (PG_CACHE | PG_BUSY)) || m->busy || m->wire_count ||
993	    m->bmapped)
994		return;
995
996	s = splhigh();
997	vm_page_unqueue(m);
998	vm_page_protect(m, VM_PROT_NONE);
999
1000	TAILQ_INSERT_TAIL(&vm_page_queue_cache, m, pageq);
1001	m->flags |= PG_CACHE;
1002	cnt.v_cache_count++;
1003	if ((cnt.v_free_count + cnt.v_cache_count) == cnt.v_free_min) {
1004		wakeup(&cnt.v_free_count);
1005		wakeup(&proc0);
1006	}
1007	if (vm_pageout_pages_needed) {
1008		wakeup(&vm_pageout_pages_needed);
1009		vm_pageout_pages_needed = 0;
1010	}
1011
1012	splx(s);
1013}
1014
1015/*
1016 *	vm_page_zero_fill:
1017 *
1018 *	Zero-fill the specified page.
1019 *	Written as a standard pagein routine, to
1020 *	be used by the zero-fill object.
1021 */
1022boolean_t
1023vm_page_zero_fill(m)
1024	vm_page_t m;
1025{
1026	pmap_zero_page(VM_PAGE_TO_PHYS(m));
1027	return (TRUE);
1028}
1029
1030/*
1031 *	vm_page_copy:
1032 *
1033 *	Copy one page to another
1034 */
1035void
1036vm_page_copy(src_m, dest_m)
1037	vm_page_t src_m;
1038	vm_page_t dest_m;
1039{
1040	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
1041	dest_m->valid = VM_PAGE_BITS_ALL;
1042}
1043
1044
1045/*
1046 * mapping function for valid bits or for dirty bits in
1047 * a page
1048 */
1049inline int
1050vm_page_bits(int base, int size)
1051{
1052	u_short chunk;
1053
1054	if ((base == 0) && (size >= PAGE_SIZE))
1055		return VM_PAGE_BITS_ALL;
1056	size = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1057	base = (base % PAGE_SIZE) / DEV_BSIZE;
1058	chunk = vm_page_dev_bsize_chunks[size / DEV_BSIZE];
1059	return (chunk << base) & VM_PAGE_BITS_ALL;
1060}
1061
1062/*
1063 * set a page valid and clean
1064 */
1065void
1066vm_page_set_validclean(m, base, size)
1067	vm_page_t m;
1068	int base;
1069	int size;
1070{
1071	int pagebits = vm_page_bits(base, size);
1072	m->valid |= pagebits;
1073	m->dirty &= ~pagebits;
1074	if( base == 0 && size == PAGE_SIZE)
1075		pmap_clear_modify(VM_PAGE_TO_PHYS(m));
1076}
1077
1078/*
1079 * set a page (partially) invalid
1080 */
1081void
1082vm_page_set_invalid(m, base, size)
1083	vm_page_t m;
1084	int base;
1085	int size;
1086{
1087	int bits;
1088
1089	m->valid &= ~(bits = vm_page_bits(base, size));
1090	if (m->valid == 0)
1091		m->dirty &= ~bits;
1092}
1093
1094/*
1095 * is (partial) page valid?
1096 */
1097int
1098vm_page_is_valid(m, base, size)
1099	vm_page_t m;
1100	int base;
1101	int size;
1102{
1103	int bits = vm_page_bits(base, size);
1104
1105	if (m->valid && ((m->valid & bits) == bits))
1106		return 1;
1107	else
1108		return 0;
1109}
1110
1111
1112
1113void
1114vm_page_test_dirty(m)
1115	vm_page_t m;
1116{
1117	if ((m->dirty != VM_PAGE_BITS_ALL) &&
1118	    pmap_is_modified(VM_PAGE_TO_PHYS(m))) {
1119		m->dirty = VM_PAGE_BITS_ALL;
1120	}
1121}
1122
1123#ifdef DDB
1124void
1125print_page_info(void)
1126{
1127	printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1128	printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1129	printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1130	printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1131	printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1132	printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1133	printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1134	printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1135	printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1136	printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1137}
1138#endif
1139