vm_page.c revision 121313
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37 */
38
39/*
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44 *
45 * Permission to use, copy, modify and distribute this software and
46 * its documentation is hereby granted, provided that both the copyright
47 * notice and this permission notice appear in all copies of the
48 * software, derivative works or modified versions, and any portions
49 * thereof, and that both notices appear in supporting documentation.
50 *
51 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
52 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
53 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54 *
55 * Carnegie Mellon requests users of this software to return to
56 *
57 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
58 *  School of Computer Science
59 *  Carnegie Mellon University
60 *  Pittsburgh PA 15213-3890
61 *
62 * any improvements or extensions that they make and grant Carnegie the
63 * rights to redistribute these changes.
64 */
65
66/*
67 *			GENERAL RULES ON VM_PAGE MANIPULATION
68 *
69 *	- a pageq mutex is required when adding or removing a page from a
70 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
71 *	  busy state of a page.
72 *
73 *	- a hash chain mutex is required when associating or disassociating
74 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
75 *	  regardless of other mutexes or the busy state of a page.
76 *
77 *	- either a hash chain mutex OR a busied page is required in order
78 *	  to modify the page flags.  A hash chain mutex must be obtained in
79 *	  order to busy a page.  A page's flags cannot be modified by a
80 *	  hash chain mutex if the page is marked busy.
81 *
82 *	- The object memq mutex is held when inserting or removing
83 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
84 *	  is different from the object's main mutex.
85 *
86 *	Generally speaking, you have to be aware of side effects when running
87 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
88 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
89 *	vm_page_cache(), vm_page_activate(), and a number of other routines
90 *	will release the hash chain mutex for you.  Intermediate manipulation
91 *	routines such as vm_page_flag_set() expect the hash chain to be held
92 *	on entry and the hash chain will remain held on return.
93 *
94 *	pageq scanning can only occur with the pageq in question locked.
95 *	We have a known bottleneck with the active queue, but the cache
96 *	and free queues are actually arrays already.
97 */
98
99/*
100 *	Resident memory management module.
101 */
102
103#include <sys/cdefs.h>
104__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 121313 2003-10-21 19:36:51Z alc $");
105
106#include <sys/param.h>
107#include <sys/systm.h>
108#include <sys/lock.h>
109#include <sys/malloc.h>
110#include <sys/mutex.h>
111#include <sys/proc.h>
112#include <sys/vmmeter.h>
113#include <sys/vnode.h>
114
115#include <vm/vm.h>
116#include <vm/vm_param.h>
117#include <vm/vm_kern.h>
118#include <vm/vm_object.h>
119#include <vm/vm_page.h>
120#include <vm/vm_pageout.h>
121#include <vm/vm_pager.h>
122#include <vm/vm_extern.h>
123#include <vm/uma.h>
124#include <vm/uma_int.h>
125
126/*
127 *	Associated with page of user-allocatable memory is a
128 *	page structure.
129 */
130
131struct mtx vm_page_queue_mtx;
132struct mtx vm_page_queue_free_mtx;
133
134vm_page_t vm_page_array = 0;
135int vm_page_array_size = 0;
136long first_page = 0;
137int vm_page_zero_count = 0;
138
139/*
140 *	vm_set_page_size:
141 *
142 *	Sets the page size, perhaps based upon the memory
143 *	size.  Must be called before any use of page-size
144 *	dependent functions.
145 */
146void
147vm_set_page_size(void)
148{
149	if (cnt.v_page_size == 0)
150		cnt.v_page_size = PAGE_SIZE;
151	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
152		panic("vm_set_page_size: page size not a power of two");
153}
154
155/*
156 *	vm_page_startup:
157 *
158 *	Initializes the resident memory module.
159 *
160 *	Allocates memory for the page cells, and
161 *	for the object/offset-to-page hash table headers.
162 *	Each page cell is initialized and placed on the free list.
163 */
164vm_offset_t
165vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
166{
167	vm_offset_t mapped;
168	vm_size_t npages;
169	vm_paddr_t page_range;
170	vm_paddr_t new_end;
171	int i;
172	vm_paddr_t pa;
173	int nblocks;
174	vm_paddr_t last_pa;
175
176	/* the biggest memory array is the second group of pages */
177	vm_paddr_t end;
178	vm_paddr_t biggestsize;
179	int biggestone;
180
181	vm_paddr_t total;
182	vm_size_t bootpages;
183
184	total = 0;
185	biggestsize = 0;
186	biggestone = 0;
187	nblocks = 0;
188	vaddr = round_page(vaddr);
189
190	for (i = 0; phys_avail[i + 1]; i += 2) {
191		phys_avail[i] = round_page(phys_avail[i]);
192		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
193	}
194
195	for (i = 0; phys_avail[i + 1]; i += 2) {
196		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
197
198		if (size > biggestsize) {
199			biggestone = i;
200			biggestsize = size;
201		}
202		++nblocks;
203		total += size;
204	}
205
206	end = phys_avail[biggestone+1];
207
208	/*
209	 * Initialize the locks.
210	 */
211	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
212	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
213	   MTX_SPIN);
214
215	/*
216	 * Initialize the queue headers for the free queue, the active queue
217	 * and the inactive queue.
218	 */
219	vm_pageq_init();
220
221	/*
222	 * Allocate memory for use when boot strapping the kernel memory
223	 * allocator.
224	 */
225	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
226	new_end = end - bootpages;
227	new_end = trunc_page(new_end);
228	mapped = pmap_map(&vaddr, new_end, end,
229	    VM_PROT_READ | VM_PROT_WRITE);
230	bzero((caddr_t) mapped, end - new_end);
231	uma_startup((caddr_t)mapped);
232
233	/*
234	 * Compute the number of pages of memory that will be available for
235	 * use (taking into account the overhead of a page structure per
236	 * page).
237	 */
238	first_page = phys_avail[0] / PAGE_SIZE;
239	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
240	npages = (total - (page_range * sizeof(struct vm_page)) -
241	    (end - new_end)) / PAGE_SIZE;
242	end = new_end;
243
244	/*
245	 * Initialize the mem entry structures now, and put them in the free
246	 * queue.
247	 */
248	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
249	mapped = pmap_map(&vaddr, new_end, end,
250	    VM_PROT_READ | VM_PROT_WRITE);
251	vm_page_array = (vm_page_t) mapped;
252	phys_avail[biggestone + 1] = new_end;
253
254	/*
255	 * Clear all of the page structures
256	 */
257	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
258	vm_page_array_size = page_range;
259
260	/*
261	 * Construct the free queue(s) in descending order (by physical
262	 * address) so that the first 16MB of physical memory is allocated
263	 * last rather than first.  On large-memory machines, this avoids
264	 * the exhaustion of low physical memory before isa_dmainit has run.
265	 */
266	cnt.v_page_count = 0;
267	cnt.v_free_count = 0;
268	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
269		pa = phys_avail[i];
270		last_pa = phys_avail[i + 1];
271		while (pa < last_pa && npages-- > 0) {
272			vm_pageq_add_new_page(pa);
273			pa += PAGE_SIZE;
274		}
275	}
276	return (vaddr);
277}
278
279void
280vm_page_flag_set(vm_page_t m, unsigned short bits)
281{
282
283	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
284	m->flags |= bits;
285}
286
287void
288vm_page_flag_clear(vm_page_t m, unsigned short bits)
289{
290
291	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
292	m->flags &= ~bits;
293}
294
295void
296vm_page_busy(vm_page_t m)
297{
298	KASSERT((m->flags & PG_BUSY) == 0,
299	    ("vm_page_busy: page already busy!!!"));
300	vm_page_flag_set(m, PG_BUSY);
301}
302
303/*
304 *      vm_page_flash:
305 *
306 *      wakeup anyone waiting for the page.
307 */
308void
309vm_page_flash(vm_page_t m)
310{
311	if (m->flags & PG_WANTED) {
312		vm_page_flag_clear(m, PG_WANTED);
313		wakeup(m);
314	}
315}
316
317/*
318 *      vm_page_wakeup:
319 *
320 *      clear the PG_BUSY flag and wakeup anyone waiting for the
321 *      page.
322 *
323 */
324void
325vm_page_wakeup(vm_page_t m)
326{
327	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
328	vm_page_flag_clear(m, PG_BUSY);
329	vm_page_flash(m);
330}
331
332void
333vm_page_io_start(vm_page_t m)
334{
335
336	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
337	m->busy++;
338}
339
340void
341vm_page_io_finish(vm_page_t m)
342{
343
344	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
345	m->busy--;
346	if (m->busy == 0)
347		vm_page_flash(m);
348}
349
350/*
351 * Keep page from being freed by the page daemon
352 * much of the same effect as wiring, except much lower
353 * overhead and should be used only for *very* temporary
354 * holding ("wiring").
355 */
356void
357vm_page_hold(vm_page_t mem)
358{
359
360	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
361        mem->hold_count++;
362}
363
364void
365vm_page_unhold(vm_page_t mem)
366{
367
368	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
369	--mem->hold_count;
370	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
371	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
372		vm_page_free_toq(mem);
373}
374
375/*
376 *	vm_page_free:
377 *
378 *	Free a page
379 *
380 *	The clearing of PG_ZERO is a temporary safety until the code can be
381 *	reviewed to determine that PG_ZERO is being properly cleared on
382 *	write faults or maps.  PG_ZERO was previously cleared in
383 *	vm_page_alloc().
384 */
385void
386vm_page_free(vm_page_t m)
387{
388	vm_page_flag_clear(m, PG_ZERO);
389	vm_page_free_toq(m);
390	vm_page_zero_idle_wakeup();
391}
392
393/*
394 *	vm_page_free_zero:
395 *
396 *	Free a page to the zerod-pages queue
397 */
398void
399vm_page_free_zero(vm_page_t m)
400{
401	vm_page_flag_set(m, PG_ZERO);
402	vm_page_free_toq(m);
403}
404
405/*
406 *	vm_page_sleep_if_busy:
407 *
408 *	Sleep and release the page queues lock if PG_BUSY is set or,
409 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
410 *	thread slept and the page queues lock was released.
411 *	Otherwise, retains the page queues lock and returns FALSE.
412 */
413int
414vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
415{
416	int is_object_locked;
417
418	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
419	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
420		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
421		/*
422		 * Remove mtx_owned() after vm_object locking is finished.
423		 */
424		if ((is_object_locked = m->object != NULL &&
425		     mtx_owned(&m->object->mtx)))
426			mtx_unlock(&m->object->mtx);
427		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
428		if (is_object_locked)
429			mtx_lock(&m->object->mtx);
430		return (TRUE);
431	}
432	return (FALSE);
433}
434
435/*
436 *	vm_page_dirty:
437 *
438 *	make page all dirty
439 */
440void
441vm_page_dirty(vm_page_t m)
442{
443	KASSERT(m->queue - m->pc != PQ_CACHE,
444	    ("vm_page_dirty: page in cache!"));
445	KASSERT(m->queue - m->pc != PQ_FREE,
446	    ("vm_page_dirty: page is free!"));
447	m->dirty = VM_PAGE_BITS_ALL;
448}
449
450/*
451 *	vm_page_splay:
452 *
453 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
454 *	the vm_page containing the given pindex.  If, however, that
455 *	pindex is not found in the vm_object, returns a vm_page that is
456 *	adjacent to the pindex, coming before or after it.
457 */
458vm_page_t
459vm_page_splay(vm_pindex_t pindex, vm_page_t root)
460{
461	struct vm_page dummy;
462	vm_page_t lefttreemax, righttreemin, y;
463
464	if (root == NULL)
465		return (root);
466	lefttreemax = righttreemin = &dummy;
467	for (;; root = y) {
468		if (pindex < root->pindex) {
469			if ((y = root->left) == NULL)
470				break;
471			if (pindex < y->pindex) {
472				/* Rotate right. */
473				root->left = y->right;
474				y->right = root;
475				root = y;
476				if ((y = root->left) == NULL)
477					break;
478			}
479			/* Link into the new root's right tree. */
480			righttreemin->left = root;
481			righttreemin = root;
482		} else if (pindex > root->pindex) {
483			if ((y = root->right) == NULL)
484				break;
485			if (pindex > y->pindex) {
486				/* Rotate left. */
487				root->right = y->left;
488				y->left = root;
489				root = y;
490				if ((y = root->right) == NULL)
491					break;
492			}
493			/* Link into the new root's left tree. */
494			lefttreemax->right = root;
495			lefttreemax = root;
496		} else
497			break;
498	}
499	/* Assemble the new root. */
500	lefttreemax->right = root->left;
501	righttreemin->left = root->right;
502	root->left = dummy.right;
503	root->right = dummy.left;
504	return (root);
505}
506
507/*
508 *	vm_page_insert:		[ internal use only ]
509 *
510 *	Inserts the given mem entry into the object and object list.
511 *
512 *	The pagetables are not updated but will presumably fault the page
513 *	in if necessary, or if a kernel page the caller will at some point
514 *	enter the page into the kernel's pmap.  We are not allowed to block
515 *	here so we *can't* do this anyway.
516 *
517 *	The object and page must be locked, and must be splhigh.
518 *	This routine may not block.
519 */
520void
521vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
522{
523	vm_page_t root;
524
525	if (!VM_OBJECT_LOCKED(object))
526		GIANT_REQUIRED;
527	if (m->object != NULL)
528		panic("vm_page_insert: already inserted");
529
530	/*
531	 * Record the object/offset pair in this page
532	 */
533	m->object = object;
534	m->pindex = pindex;
535
536	/*
537	 * Now link into the object's ordered list of backed pages.
538	 */
539	root = object->root;
540	if (root == NULL) {
541		m->left = NULL;
542		m->right = NULL;
543		TAILQ_INSERT_TAIL(&object->memq, m, listq);
544	} else {
545		root = vm_page_splay(pindex, root);
546		if (pindex < root->pindex) {
547			m->left = root->left;
548			m->right = root;
549			root->left = NULL;
550			TAILQ_INSERT_BEFORE(root, m, listq);
551		} else {
552			m->right = root->right;
553			m->left = root;
554			root->right = NULL;
555			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
556		}
557	}
558	object->root = m;
559	object->generation++;
560
561	/*
562	 * show that the object has one more resident page.
563	 */
564	object->resident_page_count++;
565
566	/*
567	 * Since we are inserting a new and possibly dirty page,
568	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
569	 */
570	if (m->flags & PG_WRITEABLE)
571		vm_object_set_writeable_dirty(object);
572}
573
574/*
575 *	vm_page_remove:
576 *				NOTE: used by device pager as well -wfj
577 *
578 *	Removes the given mem entry from the object/offset-page
579 *	table and the object page list, but do not invalidate/terminate
580 *	the backing store.
581 *
582 *	The object and page must be locked, and at splhigh.
583 *	The underlying pmap entry (if any) is NOT removed here.
584 *	This routine may not block.
585 */
586void
587vm_page_remove(vm_page_t m)
588{
589	vm_object_t object;
590	vm_page_t root;
591
592	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
593	if (m->object == NULL)
594		return;
595#ifndef	__alpha__
596	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
597#endif
598	if ((m->flags & PG_BUSY) == 0) {
599		panic("vm_page_remove: page not busy");
600	}
601
602	/*
603	 * Basically destroy the page.
604	 */
605	vm_page_wakeup(m);
606
607	object = m->object;
608
609	/*
610	 * Now remove from the object's list of backed pages.
611	 */
612	if (m != object->root)
613		vm_page_splay(m->pindex, object->root);
614	if (m->left == NULL)
615		root = m->right;
616	else {
617		root = vm_page_splay(m->pindex, m->left);
618		root->right = m->right;
619	}
620	object->root = root;
621	TAILQ_REMOVE(&object->memq, m, listq);
622
623	/*
624	 * And show that the object has one fewer resident page.
625	 */
626	object->resident_page_count--;
627	object->generation++;
628
629	m->object = NULL;
630}
631
632/*
633 *	vm_page_lookup:
634 *
635 *	Returns the page associated with the object/offset
636 *	pair specified; if none is found, NULL is returned.
637 *
638 *	The object must be locked.
639 *	This routine may not block.
640 *	This is a critical path routine
641 */
642vm_page_t
643vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
644{
645	vm_page_t m;
646
647	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
648	m = vm_page_splay(pindex, object->root);
649	if ((object->root = m) != NULL && m->pindex != pindex)
650		m = NULL;
651	return (m);
652}
653
654/*
655 *	vm_page_rename:
656 *
657 *	Move the given memory entry from its
658 *	current object to the specified target object/offset.
659 *
660 *	The object must be locked.
661 *	This routine may not block.
662 *
663 *	Note: this routine will raise itself to splvm(), the caller need not.
664 *
665 *	Note: swap associated with the page must be invalidated by the move.  We
666 *	      have to do this for several reasons:  (1) we aren't freeing the
667 *	      page, (2) we are dirtying the page, (3) the VM system is probably
668 *	      moving the page from object A to B, and will then later move
669 *	      the backing store from A to B and we can't have a conflict.
670 *
671 *	Note: we *always* dirty the page.  It is necessary both for the
672 *	      fact that we moved it, and because we may be invalidating
673 *	      swap.  If the page is on the cache, we have to deactivate it
674 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
675 *	      on the cache.
676 */
677void
678vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
679{
680	int s;
681
682	s = splvm();
683	vm_page_remove(m);
684	vm_page_insert(m, new_object, new_pindex);
685	if (m->queue - m->pc == PQ_CACHE)
686		vm_page_deactivate(m);
687	vm_page_dirty(m);
688	splx(s);
689}
690
691/*
692 *	vm_page_select_cache:
693 *
694 *	Find a page on the cache queue with color optimization.  As pages
695 *	might be found, but not applicable, they are deactivated.  This
696 *	keeps us from using potentially busy cached pages.
697 *
698 *	This routine must be called at splvm().
699 *	This routine may not block.
700 */
701static vm_page_t
702vm_page_select_cache(int color)
703{
704	vm_page_t m;
705
706	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
707	while (TRUE) {
708		m = vm_pageq_find(PQ_CACHE, color, FALSE);
709		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
710			       m->hold_count || m->wire_count ||
711			  (!VM_OBJECT_TRYLOCK(m->object) &&
712			   !VM_OBJECT_LOCKED(m->object)))) {
713			vm_page_deactivate(m);
714			continue;
715		}
716		return m;
717	}
718}
719
720/*
721 *	vm_page_alloc:
722 *
723 *	Allocate and return a memory cell associated
724 *	with this VM object/offset pair.
725 *
726 *	page_req classes:
727 *	VM_ALLOC_NORMAL		normal process request
728 *	VM_ALLOC_SYSTEM		system *really* needs a page
729 *	VM_ALLOC_INTERRUPT	interrupt time request
730 *	VM_ALLOC_ZERO		zero page
731 *
732 *	This routine may not block.
733 *
734 *	Additional special handling is required when called from an
735 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
736 *	the page cache in this case.
737 */
738vm_page_t
739vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
740{
741	vm_object_t m_object;
742	vm_page_t m = NULL;
743	int color, flags, page_req, s;
744
745	page_req = req & VM_ALLOC_CLASS_MASK;
746
747	if ((req & VM_ALLOC_NOOBJ) == 0) {
748		KASSERT(object != NULL,
749		    ("vm_page_alloc: NULL object."));
750		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
751		KASSERT(!vm_page_lookup(object, pindex),
752		    ("vm_page_alloc: page already allocated"));
753		color = (pindex + object->pg_color) & PQ_L2_MASK;
754	} else
755		color = pindex & PQ_L2_MASK;
756
757	/*
758	 * The pager is allowed to eat deeper into the free page list.
759	 */
760	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
761		page_req = VM_ALLOC_SYSTEM;
762	};
763
764	s = splvm();
765loop:
766	mtx_lock_spin(&vm_page_queue_free_mtx);
767	if (cnt.v_free_count > cnt.v_free_reserved ||
768	    (page_req == VM_ALLOC_SYSTEM &&
769	     cnt.v_cache_count == 0 &&
770	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
771	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
772		/*
773		 * Allocate from the free queue if the number of free pages
774		 * exceeds the minimum for the request class.
775		 */
776		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
777	} else if (page_req != VM_ALLOC_INTERRUPT) {
778		mtx_unlock_spin(&vm_page_queue_free_mtx);
779		/*
780		 * Allocatable from cache (non-interrupt only).  On success,
781		 * we must free the page and try again, thus ensuring that
782		 * cnt.v_*_free_min counters are replenished.
783		 */
784		vm_page_lock_queues();
785		if ((m = vm_page_select_cache(color)) == NULL) {
786			vm_page_unlock_queues();
787			splx(s);
788#if defined(DIAGNOSTIC)
789			if (cnt.v_cache_count > 0)
790				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
791#endif
792			atomic_add_int(&vm_pageout_deficit, 1);
793			pagedaemon_wakeup();
794			return (NULL);
795		}
796		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
797		m_object = m->object;
798		VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED);
799		vm_page_busy(m);
800		pmap_remove_all(m);
801		vm_page_free(m);
802		vm_page_unlock_queues();
803		if (m_object != object)
804			VM_OBJECT_UNLOCK(m_object);
805		goto loop;
806	} else {
807		/*
808		 * Not allocatable from cache from interrupt, give up.
809		 */
810		mtx_unlock_spin(&vm_page_queue_free_mtx);
811		splx(s);
812		atomic_add_int(&vm_pageout_deficit, 1);
813		pagedaemon_wakeup();
814		return (NULL);
815	}
816
817	/*
818	 *  At this point we had better have found a good page.
819	 */
820
821	KASSERT(
822	    m != NULL,
823	    ("vm_page_alloc(): missing page on free queue\n")
824	);
825
826	/*
827	 * Remove from free queue
828	 */
829
830	vm_pageq_remove_nowakeup(m);
831
832	/*
833	 * Initialize structure.  Only the PG_ZERO flag is inherited.
834	 */
835	flags = PG_BUSY;
836	if (m->flags & PG_ZERO) {
837		vm_page_zero_count--;
838		if (req & VM_ALLOC_ZERO)
839			flags = PG_ZERO | PG_BUSY;
840	}
841	m->flags = flags;
842	if (req & VM_ALLOC_WIRED) {
843		atomic_add_int(&cnt.v_wire_count, 1);
844		m->wire_count = 1;
845	} else
846		m->wire_count = 0;
847	m->hold_count = 0;
848	m->act_count = 0;
849	m->busy = 0;
850	m->valid = 0;
851	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
852	mtx_unlock_spin(&vm_page_queue_free_mtx);
853
854	/*
855	 * vm_page_insert() is safe prior to the splx().  Note also that
856	 * inserting a page here does not insert it into the pmap (which
857	 * could cause us to block allocating memory).  We cannot block
858	 * anywhere.
859	 */
860	if ((req & VM_ALLOC_NOOBJ) == 0)
861		vm_page_insert(m, object, pindex);
862	else
863		m->pindex = pindex;
864
865	/*
866	 * Don't wakeup too often - wakeup the pageout daemon when
867	 * we would be nearly out of memory.
868	 */
869	if (vm_paging_needed())
870		pagedaemon_wakeup();
871
872	splx(s);
873	return (m);
874}
875
876/*
877 *	vm_wait:	(also see VM_WAIT macro)
878 *
879 *	Block until free pages are available for allocation
880 *	- Called in various places before memory allocations.
881 */
882void
883vm_wait(void)
884{
885	int s;
886
887	s = splvm();
888	vm_page_lock_queues();
889	if (curproc == pageproc) {
890		vm_pageout_pages_needed = 1;
891		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
892		    PDROP | PSWP, "VMWait", 0);
893	} else {
894		if (!vm_pages_needed) {
895			vm_pages_needed = 1;
896			wakeup(&vm_pages_needed);
897		}
898		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
899		    "vmwait", 0);
900	}
901	splx(s);
902}
903
904/*
905 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
906 *
907 *	Block until free pages are available for allocation
908 *	- Called only in vm_fault so that processes page faulting
909 *	  can be easily tracked.
910 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
911 *	  processes will be able to grab memory first.  Do not change
912 *	  this balance without careful testing first.
913 */
914void
915vm_waitpfault(void)
916{
917	int s;
918
919	s = splvm();
920	vm_page_lock_queues();
921	if (!vm_pages_needed) {
922		vm_pages_needed = 1;
923		wakeup(&vm_pages_needed);
924	}
925	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
926	    "pfault", 0);
927	splx(s);
928}
929
930/*
931 *	vm_page_activate:
932 *
933 *	Put the specified page on the active list (if appropriate).
934 *	Ensure that act_count is at least ACT_INIT but do not otherwise
935 *	mess with it.
936 *
937 *	The page queues must be locked.
938 *	This routine may not block.
939 */
940void
941vm_page_activate(vm_page_t m)
942{
943	int s;
944
945	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
946	s = splvm();
947	if (m->queue != PQ_ACTIVE) {
948		if ((m->queue - m->pc) == PQ_CACHE)
949			cnt.v_reactivated++;
950		vm_pageq_remove(m);
951		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
952			if (m->act_count < ACT_INIT)
953				m->act_count = ACT_INIT;
954			vm_pageq_enqueue(PQ_ACTIVE, m);
955		}
956	} else {
957		if (m->act_count < ACT_INIT)
958			m->act_count = ACT_INIT;
959	}
960	splx(s);
961}
962
963/*
964 *	vm_page_free_wakeup:
965 *
966 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
967 *	routine is called when a page has been added to the cache or free
968 *	queues.
969 *
970 *	This routine may not block.
971 *	This routine must be called at splvm()
972 */
973static __inline void
974vm_page_free_wakeup(void)
975{
976
977	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
978	/*
979	 * if pageout daemon needs pages, then tell it that there are
980	 * some free.
981	 */
982	if (vm_pageout_pages_needed &&
983	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
984		wakeup(&vm_pageout_pages_needed);
985		vm_pageout_pages_needed = 0;
986	}
987	/*
988	 * wakeup processes that are waiting on memory if we hit a
989	 * high water mark. And wakeup scheduler process if we have
990	 * lots of memory. this process will swapin processes.
991	 */
992	if (vm_pages_needed && !vm_page_count_min()) {
993		vm_pages_needed = 0;
994		wakeup(&cnt.v_free_count);
995	}
996}
997
998/*
999 *	vm_page_free_toq:
1000 *
1001 *	Returns the given page to the PQ_FREE list,
1002 *	disassociating it with any VM object.
1003 *
1004 *	Object and page must be locked prior to entry.
1005 *	This routine may not block.
1006 */
1007
1008void
1009vm_page_free_toq(vm_page_t m)
1010{
1011	int s;
1012	struct vpgqueues *pq;
1013	vm_object_t object = m->object;
1014
1015	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1016	s = splvm();
1017	cnt.v_tfree++;
1018
1019	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1020		printf(
1021		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1022		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1023		    m->hold_count);
1024		if ((m->queue - m->pc) == PQ_FREE)
1025			panic("vm_page_free: freeing free page");
1026		else
1027			panic("vm_page_free: freeing busy page");
1028	}
1029
1030	/*
1031	 * unqueue, then remove page.  Note that we cannot destroy
1032	 * the page here because we do not want to call the pager's
1033	 * callback routine until after we've put the page on the
1034	 * appropriate free queue.
1035	 */
1036	vm_pageq_remove_nowakeup(m);
1037	vm_page_remove(m);
1038
1039	/*
1040	 * If fictitious remove object association and
1041	 * return, otherwise delay object association removal.
1042	 */
1043	if ((m->flags & PG_FICTITIOUS) != 0) {
1044		splx(s);
1045		return;
1046	}
1047
1048	m->valid = 0;
1049	vm_page_undirty(m);
1050
1051	if (m->wire_count != 0) {
1052		if (m->wire_count > 1) {
1053			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1054				m->wire_count, (long)m->pindex);
1055		}
1056		panic("vm_page_free: freeing wired page\n");
1057	}
1058
1059	/*
1060	 * If we've exhausted the object's resident pages we want to free
1061	 * it up.
1062	 */
1063	if (object &&
1064	    (object->type == OBJT_VNODE) &&
1065	    ((object->flags & OBJ_DEAD) == 0)
1066	) {
1067		struct vnode *vp = (struct vnode *)object->handle;
1068
1069		if (vp) {
1070			VI_LOCK(vp);
1071			if (VSHOULDFREE(vp))
1072				vfree(vp);
1073			VI_UNLOCK(vp);
1074		}
1075	}
1076
1077	/*
1078	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1079	 */
1080	if (m->flags & PG_UNMANAGED) {
1081		m->flags &= ~PG_UNMANAGED;
1082	}
1083
1084	if (m->hold_count != 0) {
1085		m->flags &= ~PG_ZERO;
1086		m->queue = PQ_HOLD;
1087	} else
1088		m->queue = PQ_FREE + m->pc;
1089	pq = &vm_page_queues[m->queue];
1090	mtx_lock_spin(&vm_page_queue_free_mtx);
1091	pq->lcnt++;
1092	++(*pq->cnt);
1093
1094	/*
1095	 * Put zero'd pages on the end ( where we look for zero'd pages
1096	 * first ) and non-zerod pages at the head.
1097	 */
1098	if (m->flags & PG_ZERO) {
1099		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1100		++vm_page_zero_count;
1101	} else {
1102		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1103	}
1104	mtx_unlock_spin(&vm_page_queue_free_mtx);
1105	vm_page_free_wakeup();
1106	splx(s);
1107}
1108
1109/*
1110 *	vm_page_unmanage:
1111 *
1112 * 	Prevent PV management from being done on the page.  The page is
1113 *	removed from the paging queues as if it were wired, and as a
1114 *	consequence of no longer being managed the pageout daemon will not
1115 *	touch it (since there is no way to locate the pte mappings for the
1116 *	page).  madvise() calls that mess with the pmap will also no longer
1117 *	operate on the page.
1118 *
1119 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1120 *	will clear the flag.
1121 *
1122 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1123 *	physical memory as backing store rather then swap-backed memory and
1124 *	will eventually be extended to support 4MB unmanaged physical
1125 *	mappings.
1126 */
1127void
1128vm_page_unmanage(vm_page_t m)
1129{
1130	int s;
1131
1132	s = splvm();
1133	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1134	if ((m->flags & PG_UNMANAGED) == 0) {
1135		if (m->wire_count == 0)
1136			vm_pageq_remove(m);
1137	}
1138	vm_page_flag_set(m, PG_UNMANAGED);
1139	splx(s);
1140}
1141
1142/*
1143 *	vm_page_wire:
1144 *
1145 *	Mark this page as wired down by yet
1146 *	another map, removing it from paging queues
1147 *	as necessary.
1148 *
1149 *	The page queues must be locked.
1150 *	This routine may not block.
1151 */
1152void
1153vm_page_wire(vm_page_t m)
1154{
1155	int s;
1156
1157	/*
1158	 * Only bump the wire statistics if the page is not already wired,
1159	 * and only unqueue the page if it is on some queue (if it is unmanaged
1160	 * it is already off the queues).
1161	 */
1162	s = splvm();
1163	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1164	if (m->wire_count == 0) {
1165		if ((m->flags & PG_UNMANAGED) == 0)
1166			vm_pageq_remove(m);
1167		atomic_add_int(&cnt.v_wire_count, 1);
1168	}
1169	m->wire_count++;
1170	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1171	splx(s);
1172}
1173
1174/*
1175 *	vm_page_unwire:
1176 *
1177 *	Release one wiring of this page, potentially
1178 *	enabling it to be paged again.
1179 *
1180 *	Many pages placed on the inactive queue should actually go
1181 *	into the cache, but it is difficult to figure out which.  What
1182 *	we do instead, if the inactive target is well met, is to put
1183 *	clean pages at the head of the inactive queue instead of the tail.
1184 *	This will cause them to be moved to the cache more quickly and
1185 *	if not actively re-referenced, freed more quickly.  If we just
1186 *	stick these pages at the end of the inactive queue, heavy filesystem
1187 *	meta-data accesses can cause an unnecessary paging load on memory bound
1188 *	processes.  This optimization causes one-time-use metadata to be
1189 *	reused more quickly.
1190 *
1191 *	BUT, if we are in a low-memory situation we have no choice but to
1192 *	put clean pages on the cache queue.
1193 *
1194 *	A number of routines use vm_page_unwire() to guarantee that the page
1195 *	will go into either the inactive or active queues, and will NEVER
1196 *	be placed in the cache - for example, just after dirtying a page.
1197 *	dirty pages in the cache are not allowed.
1198 *
1199 *	The page queues must be locked.
1200 *	This routine may not block.
1201 */
1202void
1203vm_page_unwire(vm_page_t m, int activate)
1204{
1205	int s;
1206
1207	s = splvm();
1208	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1209	if (m->wire_count > 0) {
1210		m->wire_count--;
1211		if (m->wire_count == 0) {
1212			atomic_subtract_int(&cnt.v_wire_count, 1);
1213			if (m->flags & PG_UNMANAGED) {
1214				;
1215			} else if (activate)
1216				vm_pageq_enqueue(PQ_ACTIVE, m);
1217			else {
1218				vm_page_flag_clear(m, PG_WINATCFLS);
1219				vm_pageq_enqueue(PQ_INACTIVE, m);
1220			}
1221		}
1222	} else {
1223		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1224	}
1225	splx(s);
1226}
1227
1228
1229/*
1230 * Move the specified page to the inactive queue.  If the page has
1231 * any associated swap, the swap is deallocated.
1232 *
1233 * Normally athead is 0 resulting in LRU operation.  athead is set
1234 * to 1 if we want this page to be 'as if it were placed in the cache',
1235 * except without unmapping it from the process address space.
1236 *
1237 * This routine may not block.
1238 */
1239static __inline void
1240_vm_page_deactivate(vm_page_t m, int athead)
1241{
1242	int s;
1243
1244	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1245	/*
1246	 * Ignore if already inactive.
1247	 */
1248	if (m->queue == PQ_INACTIVE)
1249		return;
1250
1251	s = splvm();
1252	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1253		if ((m->queue - m->pc) == PQ_CACHE)
1254			cnt.v_reactivated++;
1255		vm_page_flag_clear(m, PG_WINATCFLS);
1256		vm_pageq_remove(m);
1257		if (athead)
1258			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1259		else
1260			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1261		m->queue = PQ_INACTIVE;
1262		vm_page_queues[PQ_INACTIVE].lcnt++;
1263		cnt.v_inactive_count++;
1264	}
1265	splx(s);
1266}
1267
1268void
1269vm_page_deactivate(vm_page_t m)
1270{
1271    _vm_page_deactivate(m, 0);
1272}
1273
1274/*
1275 * vm_page_try_to_cache:
1276 *
1277 * Returns 0 on failure, 1 on success
1278 */
1279int
1280vm_page_try_to_cache(vm_page_t m)
1281{
1282
1283	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1284	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1285	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1286		return (0);
1287	}
1288	vm_page_test_dirty(m);
1289	if (m->dirty)
1290		return (0);
1291	vm_page_cache(m);
1292	return (1);
1293}
1294
1295/*
1296 * vm_page_try_to_free()
1297 *
1298 *	Attempt to free the page.  If we cannot free it, we do nothing.
1299 *	1 is returned on success, 0 on failure.
1300 */
1301int
1302vm_page_try_to_free(vm_page_t m)
1303{
1304
1305	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1306	if (m->object != NULL)
1307		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1308	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1309	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1310		return (0);
1311	}
1312	vm_page_test_dirty(m);
1313	if (m->dirty)
1314		return (0);
1315	vm_page_busy(m);
1316	pmap_remove_all(m);
1317	vm_page_free(m);
1318	return (1);
1319}
1320
1321/*
1322 * vm_page_cache
1323 *
1324 * Put the specified page onto the page cache queue (if appropriate).
1325 *
1326 * This routine may not block.
1327 */
1328void
1329vm_page_cache(vm_page_t m)
1330{
1331	int s;
1332
1333	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1334	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1335	    m->hold_count || m->wire_count) {
1336		printf("vm_page_cache: attempting to cache busy page\n");
1337		return;
1338	}
1339	if ((m->queue - m->pc) == PQ_CACHE)
1340		return;
1341
1342	/*
1343	 * Remove all pmaps and indicate that the page is not
1344	 * writeable or mapped.
1345	 */
1346	pmap_remove_all(m);
1347	if (m->dirty != 0) {
1348		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1349			(long)m->pindex);
1350	}
1351	s = splvm();
1352	vm_pageq_remove_nowakeup(m);
1353	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1354	vm_page_free_wakeup();
1355	splx(s);
1356}
1357
1358/*
1359 * vm_page_dontneed
1360 *
1361 *	Cache, deactivate, or do nothing as appropriate.  This routine
1362 *	is typically used by madvise() MADV_DONTNEED.
1363 *
1364 *	Generally speaking we want to move the page into the cache so
1365 *	it gets reused quickly.  However, this can result in a silly syndrome
1366 *	due to the page recycling too quickly.  Small objects will not be
1367 *	fully cached.  On the otherhand, if we move the page to the inactive
1368 *	queue we wind up with a problem whereby very large objects
1369 *	unnecessarily blow away our inactive and cache queues.
1370 *
1371 *	The solution is to move the pages based on a fixed weighting.  We
1372 *	either leave them alone, deactivate them, or move them to the cache,
1373 *	where moving them to the cache has the highest weighting.
1374 *	By forcing some pages into other queues we eventually force the
1375 *	system to balance the queues, potentially recovering other unrelated
1376 *	space from active.  The idea is to not force this to happen too
1377 *	often.
1378 */
1379void
1380vm_page_dontneed(vm_page_t m)
1381{
1382	static int dnweight;
1383	int dnw;
1384	int head;
1385
1386	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1387	dnw = ++dnweight;
1388
1389	/*
1390	 * occassionally leave the page alone
1391	 */
1392	if ((dnw & 0x01F0) == 0 ||
1393	    m->queue == PQ_INACTIVE ||
1394	    m->queue - m->pc == PQ_CACHE
1395	) {
1396		if (m->act_count >= ACT_INIT)
1397			--m->act_count;
1398		return;
1399	}
1400
1401	if (m->dirty == 0)
1402		vm_page_test_dirty(m);
1403
1404	if (m->dirty || (dnw & 0x0070) == 0) {
1405		/*
1406		 * Deactivate the page 3 times out of 32.
1407		 */
1408		head = 0;
1409	} else {
1410		/*
1411		 * Cache the page 28 times out of every 32.  Note that
1412		 * the page is deactivated instead of cached, but placed
1413		 * at the head of the queue instead of the tail.
1414		 */
1415		head = 1;
1416	}
1417	_vm_page_deactivate(m, head);
1418}
1419
1420/*
1421 * Grab a page, waiting until we are waken up due to the page
1422 * changing state.  We keep on waiting, if the page continues
1423 * to be in the object.  If the page doesn't exist, allocate it.
1424 *
1425 * This routine may block.
1426 */
1427vm_page_t
1428vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1429{
1430	vm_page_t m;
1431	int s, generation;
1432
1433	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1434retrylookup:
1435	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1436		vm_page_lock_queues();
1437		if (m->busy || (m->flags & PG_BUSY)) {
1438			generation = object->generation;
1439
1440			s = splvm();
1441			while ((object->generation == generation) &&
1442					(m->busy || (m->flags & PG_BUSY))) {
1443				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1444				VM_OBJECT_UNLOCK(object);
1445				msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1446				VM_OBJECT_LOCK(object);
1447				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1448					splx(s);
1449					return NULL;
1450				}
1451				vm_page_lock_queues();
1452			}
1453			vm_page_unlock_queues();
1454			splx(s);
1455			goto retrylookup;
1456		} else {
1457			if (allocflags & VM_ALLOC_WIRED)
1458				vm_page_wire(m);
1459			vm_page_busy(m);
1460			vm_page_unlock_queues();
1461			return m;
1462		}
1463	}
1464
1465	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1466	if (m == NULL) {
1467		VM_OBJECT_UNLOCK(object);
1468		VM_WAIT;
1469		VM_OBJECT_LOCK(object);
1470		if ((allocflags & VM_ALLOC_RETRY) == 0)
1471			return NULL;
1472		goto retrylookup;
1473	}
1474
1475	return m;
1476}
1477
1478/*
1479 * Mapping function for valid bits or for dirty bits in
1480 * a page.  May not block.
1481 *
1482 * Inputs are required to range within a page.
1483 */
1484__inline int
1485vm_page_bits(int base, int size)
1486{
1487	int first_bit;
1488	int last_bit;
1489
1490	KASSERT(
1491	    base + size <= PAGE_SIZE,
1492	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1493	);
1494
1495	if (size == 0)		/* handle degenerate case */
1496		return (0);
1497
1498	first_bit = base >> DEV_BSHIFT;
1499	last_bit = (base + size - 1) >> DEV_BSHIFT;
1500
1501	return ((2 << last_bit) - (1 << first_bit));
1502}
1503
1504/*
1505 *	vm_page_set_validclean:
1506 *
1507 *	Sets portions of a page valid and clean.  The arguments are expected
1508 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1509 *	of any partial chunks touched by the range.  The invalid portion of
1510 *	such chunks will be zero'd.
1511 *
1512 *	This routine may not block.
1513 *
1514 *	(base + size) must be less then or equal to PAGE_SIZE.
1515 */
1516void
1517vm_page_set_validclean(vm_page_t m, int base, int size)
1518{
1519	int pagebits;
1520	int frag;
1521	int endoff;
1522
1523	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1524	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1525	if (size == 0)	/* handle degenerate case */
1526		return;
1527
1528	/*
1529	 * If the base is not DEV_BSIZE aligned and the valid
1530	 * bit is clear, we have to zero out a portion of the
1531	 * first block.
1532	 */
1533	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1534	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1535		pmap_zero_page_area(m, frag, base - frag);
1536
1537	/*
1538	 * If the ending offset is not DEV_BSIZE aligned and the
1539	 * valid bit is clear, we have to zero out a portion of
1540	 * the last block.
1541	 */
1542	endoff = base + size;
1543	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1544	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1545		pmap_zero_page_area(m, endoff,
1546		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1547
1548	/*
1549	 * Set valid, clear dirty bits.  If validating the entire
1550	 * page we can safely clear the pmap modify bit.  We also
1551	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1552	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1553	 * be set again.
1554	 *
1555	 * We set valid bits inclusive of any overlap, but we can only
1556	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1557	 * the range.
1558	 */
1559	pagebits = vm_page_bits(base, size);
1560	m->valid |= pagebits;
1561#if 0	/* NOT YET */
1562	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1563		frag = DEV_BSIZE - frag;
1564		base += frag;
1565		size -= frag;
1566		if (size < 0)
1567			size = 0;
1568	}
1569	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1570#endif
1571	m->dirty &= ~pagebits;
1572	if (base == 0 && size == PAGE_SIZE) {
1573		pmap_clear_modify(m);
1574		vm_page_flag_clear(m, PG_NOSYNC);
1575	}
1576}
1577
1578void
1579vm_page_clear_dirty(vm_page_t m, int base, int size)
1580{
1581
1582	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1583	m->dirty &= ~vm_page_bits(base, size);
1584}
1585
1586/*
1587 *	vm_page_set_invalid:
1588 *
1589 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1590 *	valid and dirty bits for the effected areas are cleared.
1591 *
1592 *	May not block.
1593 */
1594void
1595vm_page_set_invalid(vm_page_t m, int base, int size)
1596{
1597	int bits;
1598
1599	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1600	bits = vm_page_bits(base, size);
1601	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1602	m->valid &= ~bits;
1603	m->dirty &= ~bits;
1604	m->object->generation++;
1605}
1606
1607/*
1608 * vm_page_zero_invalid()
1609 *
1610 *	The kernel assumes that the invalid portions of a page contain
1611 *	garbage, but such pages can be mapped into memory by user code.
1612 *	When this occurs, we must zero out the non-valid portions of the
1613 *	page so user code sees what it expects.
1614 *
1615 *	Pages are most often semi-valid when the end of a file is mapped
1616 *	into memory and the file's size is not page aligned.
1617 */
1618void
1619vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1620{
1621	int b;
1622	int i;
1623
1624	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1625	/*
1626	 * Scan the valid bits looking for invalid sections that
1627	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1628	 * valid bit may be set ) have already been zerod by
1629	 * vm_page_set_validclean().
1630	 */
1631	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1632		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1633		    (m->valid & (1 << i))
1634		) {
1635			if (i > b) {
1636				pmap_zero_page_area(m,
1637				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1638			}
1639			b = i + 1;
1640		}
1641	}
1642
1643	/*
1644	 * setvalid is TRUE when we can safely set the zero'd areas
1645	 * as being valid.  We can do this if there are no cache consistancy
1646	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1647	 */
1648	if (setvalid)
1649		m->valid = VM_PAGE_BITS_ALL;
1650}
1651
1652/*
1653 *	vm_page_is_valid:
1654 *
1655 *	Is (partial) page valid?  Note that the case where size == 0
1656 *	will return FALSE in the degenerate case where the page is
1657 *	entirely invalid, and TRUE otherwise.
1658 *
1659 *	May not block.
1660 */
1661int
1662vm_page_is_valid(vm_page_t m, int base, int size)
1663{
1664	int bits = vm_page_bits(base, size);
1665
1666	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1667	if (m->valid && ((m->valid & bits) == bits))
1668		return 1;
1669	else
1670		return 0;
1671}
1672
1673/*
1674 * update dirty bits from pmap/mmu.  May not block.
1675 */
1676void
1677vm_page_test_dirty(vm_page_t m)
1678{
1679	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1680		vm_page_dirty(m);
1681	}
1682}
1683
1684int so_zerocp_fullpage = 0;
1685
1686void
1687vm_page_cowfault(vm_page_t m)
1688{
1689	vm_page_t mnew;
1690	vm_object_t object;
1691	vm_pindex_t pindex;
1692
1693	object = m->object;
1694	pindex = m->pindex;
1695	vm_page_busy(m);
1696
1697 retry_alloc:
1698	vm_page_remove(m);
1699	/*
1700	 * An interrupt allocation is requested because the page
1701	 * queues lock is held.
1702	 */
1703	mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT);
1704	if (mnew == NULL) {
1705		vm_page_insert(m, object, pindex);
1706		vm_page_unlock_queues();
1707		VM_OBJECT_UNLOCK(object);
1708		VM_WAIT;
1709		VM_OBJECT_LOCK(object);
1710		vm_page_lock_queues();
1711		goto retry_alloc;
1712	}
1713
1714	if (m->cow == 0) {
1715		/*
1716		 * check to see if we raced with an xmit complete when
1717		 * waiting to allocate a page.  If so, put things back
1718		 * the way they were
1719		 */
1720		vm_page_busy(mnew);
1721		vm_page_free(mnew);
1722		vm_page_insert(m, object, pindex);
1723	} else { /* clear COW & copy page */
1724		if (!so_zerocp_fullpage)
1725			pmap_copy_page(m, mnew);
1726		mnew->valid = VM_PAGE_BITS_ALL;
1727		vm_page_dirty(mnew);
1728		vm_page_flag_clear(mnew, PG_BUSY);
1729	}
1730}
1731
1732void
1733vm_page_cowclear(vm_page_t m)
1734{
1735
1736	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1737	if (m->cow) {
1738		m->cow--;
1739		/*
1740		 * let vm_fault add back write permission  lazily
1741		 */
1742	}
1743	/*
1744	 *  sf_buf_free() will free the page, so we needn't do it here
1745	 */
1746}
1747
1748void
1749vm_page_cowsetup(vm_page_t m)
1750{
1751
1752	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1753	m->cow++;
1754	pmap_page_protect(m, VM_PROT_READ);
1755}
1756
1757#include "opt_ddb.h"
1758#ifdef DDB
1759#include <sys/kernel.h>
1760
1761#include <ddb/ddb.h>
1762
1763DB_SHOW_COMMAND(page, vm_page_print_page_info)
1764{
1765	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1766	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1767	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1768	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1769	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1770	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1771	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1772	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1773	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1774	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1775}
1776
1777DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1778{
1779	int i;
1780	db_printf("PQ_FREE:");
1781	for (i = 0; i < PQ_L2_SIZE; i++) {
1782		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1783	}
1784	db_printf("\n");
1785
1786	db_printf("PQ_CACHE:");
1787	for (i = 0; i < PQ_L2_SIZE; i++) {
1788		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1789	}
1790	db_printf("\n");
1791
1792	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1793		vm_page_queues[PQ_ACTIVE].lcnt,
1794		vm_page_queues[PQ_INACTIVE].lcnt);
1795}
1796#endif /* DDB */
1797