vm_page.c revision 120762
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37 */
38
39/*
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44 *
45 * Permission to use, copy, modify and distribute this software and
46 * its documentation is hereby granted, provided that both the copyright
47 * notice and this permission notice appear in all copies of the
48 * software, derivative works or modified versions, and any portions
49 * thereof, and that both notices appear in supporting documentation.
50 *
51 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
52 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
53 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54 *
55 * Carnegie Mellon requests users of this software to return to
56 *
57 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
58 *  School of Computer Science
59 *  Carnegie Mellon University
60 *  Pittsburgh PA 15213-3890
61 *
62 * any improvements or extensions that they make and grant Carnegie the
63 * rights to redistribute these changes.
64 */
65
66/*
67 *			GENERAL RULES ON VM_PAGE MANIPULATION
68 *
69 *	- a pageq mutex is required when adding or removing a page from a
70 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
71 *	  busy state of a page.
72 *
73 *	- a hash chain mutex is required when associating or disassociating
74 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
75 *	  regardless of other mutexes or the busy state of a page.
76 *
77 *	- either a hash chain mutex OR a busied page is required in order
78 *	  to modify the page flags.  A hash chain mutex must be obtained in
79 *	  order to busy a page.  A page's flags cannot be modified by a
80 *	  hash chain mutex if the page is marked busy.
81 *
82 *	- The object memq mutex is held when inserting or removing
83 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
84 *	  is different from the object's main mutex.
85 *
86 *	Generally speaking, you have to be aware of side effects when running
87 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
88 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
89 *	vm_page_cache(), vm_page_activate(), and a number of other routines
90 *	will release the hash chain mutex for you.  Intermediate manipulation
91 *	routines such as vm_page_flag_set() expect the hash chain to be held
92 *	on entry and the hash chain will remain held on return.
93 *
94 *	pageq scanning can only occur with the pageq in question locked.
95 *	We have a known bottleneck with the active queue, but the cache
96 *	and free queues are actually arrays already.
97 */
98
99/*
100 *	Resident memory management module.
101 */
102
103#include <sys/cdefs.h>
104__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 120762 2003-10-04 19:23:29Z alc $");
105
106#include <sys/param.h>
107#include <sys/systm.h>
108#include <sys/lock.h>
109#include <sys/malloc.h>
110#include <sys/mutex.h>
111#include <sys/proc.h>
112#include <sys/vmmeter.h>
113#include <sys/vnode.h>
114
115#include <vm/vm.h>
116#include <vm/vm_param.h>
117#include <vm/vm_kern.h>
118#include <vm/vm_object.h>
119#include <vm/vm_page.h>
120#include <vm/vm_pageout.h>
121#include <vm/vm_pager.h>
122#include <vm/vm_extern.h>
123#include <vm/uma.h>
124#include <vm/uma_int.h>
125
126/*
127 *	Associated with page of user-allocatable memory is a
128 *	page structure.
129 */
130
131struct mtx vm_page_queue_mtx;
132struct mtx vm_page_queue_free_mtx;
133
134vm_page_t vm_page_array = 0;
135int vm_page_array_size = 0;
136long first_page = 0;
137int vm_page_zero_count = 0;
138
139/*
140 *	vm_set_page_size:
141 *
142 *	Sets the page size, perhaps based upon the memory
143 *	size.  Must be called before any use of page-size
144 *	dependent functions.
145 */
146void
147vm_set_page_size(void)
148{
149	if (cnt.v_page_size == 0)
150		cnt.v_page_size = PAGE_SIZE;
151	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
152		panic("vm_set_page_size: page size not a power of two");
153}
154
155/*
156 *	vm_page_startup:
157 *
158 *	Initializes the resident memory module.
159 *
160 *	Allocates memory for the page cells, and
161 *	for the object/offset-to-page hash table headers.
162 *	Each page cell is initialized and placed on the free list.
163 */
164vm_offset_t
165vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
166{
167	vm_offset_t mapped;
168	vm_size_t npages;
169	vm_paddr_t page_range;
170	vm_paddr_t new_end;
171	int i;
172	vm_paddr_t pa;
173	int nblocks;
174	vm_paddr_t last_pa;
175
176	/* the biggest memory array is the second group of pages */
177	vm_paddr_t end;
178	vm_paddr_t biggestsize;
179	int biggestone;
180
181	vm_paddr_t total;
182	vm_size_t bootpages;
183
184	total = 0;
185	biggestsize = 0;
186	biggestone = 0;
187	nblocks = 0;
188	vaddr = round_page(vaddr);
189
190	for (i = 0; phys_avail[i + 1]; i += 2) {
191		phys_avail[i] = round_page(phys_avail[i]);
192		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
193	}
194
195	for (i = 0; phys_avail[i + 1]; i += 2) {
196		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
197
198		if (size > biggestsize) {
199			biggestone = i;
200			biggestsize = size;
201		}
202		++nblocks;
203		total += size;
204	}
205
206	end = phys_avail[biggestone+1];
207
208	/*
209	 * Initialize the locks.
210	 */
211	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
212	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
213	   MTX_SPIN);
214
215	/*
216	 * Initialize the queue headers for the free queue, the active queue
217	 * and the inactive queue.
218	 */
219	vm_pageq_init();
220
221	/*
222	 * Allocate memory for use when boot strapping the kernel memory
223	 * allocator.
224	 */
225	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
226	new_end = end - bootpages;
227	new_end = trunc_page(new_end);
228	mapped = pmap_map(&vaddr, new_end, end,
229	    VM_PROT_READ | VM_PROT_WRITE);
230	bzero((caddr_t) mapped, end - new_end);
231	uma_startup((caddr_t)mapped);
232
233	/*
234	 * Compute the number of pages of memory that will be available for
235	 * use (taking into account the overhead of a page structure per
236	 * page).
237	 */
238	first_page = phys_avail[0] / PAGE_SIZE;
239	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
240	npages = (total - (page_range * sizeof(struct vm_page)) -
241	    (end - new_end)) / PAGE_SIZE;
242	end = new_end;
243
244	/*
245	 * Initialize the mem entry structures now, and put them in the free
246	 * queue.
247	 */
248	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
249	mapped = pmap_map(&vaddr, new_end, end,
250	    VM_PROT_READ | VM_PROT_WRITE);
251	vm_page_array = (vm_page_t) mapped;
252	phys_avail[biggestone + 1] = new_end;
253
254	/*
255	 * Clear all of the page structures
256	 */
257	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
258	vm_page_array_size = page_range;
259
260	/*
261	 * Construct the free queue(s) in descending order (by physical
262	 * address) so that the first 16MB of physical memory is allocated
263	 * last rather than first.  On large-memory machines, this avoids
264	 * the exhaustion of low physical memory before isa_dmainit has run.
265	 */
266	cnt.v_page_count = 0;
267	cnt.v_free_count = 0;
268	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
269		pa = phys_avail[i];
270		last_pa = phys_avail[i + 1];
271		while (pa < last_pa && npages-- > 0) {
272			vm_pageq_add_new_page(pa);
273			pa += PAGE_SIZE;
274		}
275	}
276	return (vaddr);
277}
278
279void
280vm_page_flag_set(vm_page_t m, unsigned short bits)
281{
282
283	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
284	m->flags |= bits;
285}
286
287void
288vm_page_flag_clear(vm_page_t m, unsigned short bits)
289{
290
291	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
292	m->flags &= ~bits;
293}
294
295void
296vm_page_busy(vm_page_t m)
297{
298	KASSERT((m->flags & PG_BUSY) == 0,
299	    ("vm_page_busy: page already busy!!!"));
300	vm_page_flag_set(m, PG_BUSY);
301}
302
303/*
304 *      vm_page_flash:
305 *
306 *      wakeup anyone waiting for the page.
307 */
308void
309vm_page_flash(vm_page_t m)
310{
311	if (m->flags & PG_WANTED) {
312		vm_page_flag_clear(m, PG_WANTED);
313		wakeup(m);
314	}
315}
316
317/*
318 *      vm_page_wakeup:
319 *
320 *      clear the PG_BUSY flag and wakeup anyone waiting for the
321 *      page.
322 *
323 */
324void
325vm_page_wakeup(vm_page_t m)
326{
327	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
328	vm_page_flag_clear(m, PG_BUSY);
329	vm_page_flash(m);
330}
331
332void
333vm_page_io_start(vm_page_t m)
334{
335
336	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
337	m->busy++;
338}
339
340void
341vm_page_io_finish(vm_page_t m)
342{
343
344	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
345	m->busy--;
346	if (m->busy == 0)
347		vm_page_flash(m);
348}
349
350/*
351 * Keep page from being freed by the page daemon
352 * much of the same effect as wiring, except much lower
353 * overhead and should be used only for *very* temporary
354 * holding ("wiring").
355 */
356void
357vm_page_hold(vm_page_t mem)
358{
359
360	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
361        mem->hold_count++;
362}
363
364void
365vm_page_unhold(vm_page_t mem)
366{
367
368	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
369	--mem->hold_count;
370	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
371	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
372		vm_page_free_toq(mem);
373}
374
375/*
376 *	vm_page_copy:
377 *
378 *	Copy one page to another
379 */
380void
381vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
382{
383	pmap_copy_page(src_m, dest_m);
384	dest_m->valid = VM_PAGE_BITS_ALL;
385}
386
387/*
388 *	vm_page_free:
389 *
390 *	Free a page
391 *
392 *	The clearing of PG_ZERO is a temporary safety until the code can be
393 *	reviewed to determine that PG_ZERO is being properly cleared on
394 *	write faults or maps.  PG_ZERO was previously cleared in
395 *	vm_page_alloc().
396 */
397void
398vm_page_free(vm_page_t m)
399{
400	vm_page_flag_clear(m, PG_ZERO);
401	vm_page_free_toq(m);
402	vm_page_zero_idle_wakeup();
403}
404
405/*
406 *	vm_page_free_zero:
407 *
408 *	Free a page to the zerod-pages queue
409 */
410void
411vm_page_free_zero(vm_page_t m)
412{
413	vm_page_flag_set(m, PG_ZERO);
414	vm_page_free_toq(m);
415}
416
417/*
418 *	vm_page_sleep_if_busy:
419 *
420 *	Sleep and release the page queues lock if PG_BUSY is set or,
421 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
422 *	thread slept and the page queues lock was released.
423 *	Otherwise, retains the page queues lock and returns FALSE.
424 */
425int
426vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
427{
428	int is_object_locked;
429
430	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
431	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
432		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
433		/*
434		 * Remove mtx_owned() after vm_object locking is finished.
435		 */
436		if ((is_object_locked = m->object != NULL &&
437		     mtx_owned(&m->object->mtx)))
438			mtx_unlock(&m->object->mtx);
439		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
440		if (is_object_locked)
441			mtx_lock(&m->object->mtx);
442		return (TRUE);
443	}
444	return (FALSE);
445}
446
447/*
448 *	vm_page_dirty:
449 *
450 *	make page all dirty
451 */
452void
453vm_page_dirty(vm_page_t m)
454{
455	KASSERT(m->queue - m->pc != PQ_CACHE,
456	    ("vm_page_dirty: page in cache!"));
457	KASSERT(m->queue - m->pc != PQ_FREE,
458	    ("vm_page_dirty: page is free!"));
459	m->dirty = VM_PAGE_BITS_ALL;
460}
461
462/*
463 *	vm_page_splay:
464 *
465 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
466 *	the vm_page containing the given pindex.  If, however, that
467 *	pindex is not found in the vm_object, returns a vm_page that is
468 *	adjacent to the pindex, coming before or after it.
469 */
470vm_page_t
471vm_page_splay(vm_pindex_t pindex, vm_page_t root)
472{
473	struct vm_page dummy;
474	vm_page_t lefttreemax, righttreemin, y;
475
476	if (root == NULL)
477		return (root);
478	lefttreemax = righttreemin = &dummy;
479	for (;; root = y) {
480		if (pindex < root->pindex) {
481			if ((y = root->left) == NULL)
482				break;
483			if (pindex < y->pindex) {
484				/* Rotate right. */
485				root->left = y->right;
486				y->right = root;
487				root = y;
488				if ((y = root->left) == NULL)
489					break;
490			}
491			/* Link into the new root's right tree. */
492			righttreemin->left = root;
493			righttreemin = root;
494		} else if (pindex > root->pindex) {
495			if ((y = root->right) == NULL)
496				break;
497			if (pindex > y->pindex) {
498				/* Rotate left. */
499				root->right = y->left;
500				y->left = root;
501				root = y;
502				if ((y = root->right) == NULL)
503					break;
504			}
505			/* Link into the new root's left tree. */
506			lefttreemax->right = root;
507			lefttreemax = root;
508		} else
509			break;
510	}
511	/* Assemble the new root. */
512	lefttreemax->right = root->left;
513	righttreemin->left = root->right;
514	root->left = dummy.right;
515	root->right = dummy.left;
516	return (root);
517}
518
519/*
520 *	vm_page_insert:		[ internal use only ]
521 *
522 *	Inserts the given mem entry into the object and object list.
523 *
524 *	The pagetables are not updated but will presumably fault the page
525 *	in if necessary, or if a kernel page the caller will at some point
526 *	enter the page into the kernel's pmap.  We are not allowed to block
527 *	here so we *can't* do this anyway.
528 *
529 *	The object and page must be locked, and must be splhigh.
530 *	This routine may not block.
531 */
532void
533vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
534{
535	vm_page_t root;
536
537	if (!VM_OBJECT_LOCKED(object))
538		GIANT_REQUIRED;
539	if (m->object != NULL)
540		panic("vm_page_insert: already inserted");
541
542	/*
543	 * Record the object/offset pair in this page
544	 */
545	m->object = object;
546	m->pindex = pindex;
547
548	/*
549	 * Now link into the object's ordered list of backed pages.
550	 */
551	root = object->root;
552	if (root == NULL) {
553		m->left = NULL;
554		m->right = NULL;
555		TAILQ_INSERT_TAIL(&object->memq, m, listq);
556	} else {
557		root = vm_page_splay(pindex, root);
558		if (pindex < root->pindex) {
559			m->left = root->left;
560			m->right = root;
561			root->left = NULL;
562			TAILQ_INSERT_BEFORE(root, m, listq);
563		} else {
564			m->right = root->right;
565			m->left = root;
566			root->right = NULL;
567			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
568		}
569	}
570	object->root = m;
571	object->generation++;
572
573	/*
574	 * show that the object has one more resident page.
575	 */
576	object->resident_page_count++;
577
578	/*
579	 * Since we are inserting a new and possibly dirty page,
580	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
581	 */
582	if (m->flags & PG_WRITEABLE)
583		vm_object_set_writeable_dirty(object);
584}
585
586/*
587 *	vm_page_remove:
588 *				NOTE: used by device pager as well -wfj
589 *
590 *	Removes the given mem entry from the object/offset-page
591 *	table and the object page list, but do not invalidate/terminate
592 *	the backing store.
593 *
594 *	The object and page must be locked, and at splhigh.
595 *	The underlying pmap entry (if any) is NOT removed here.
596 *	This routine may not block.
597 */
598void
599vm_page_remove(vm_page_t m)
600{
601	vm_object_t object;
602	vm_page_t root;
603
604	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
605	if (m->object == NULL)
606		return;
607#ifndef	__alpha__
608	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
609#endif
610	if ((m->flags & PG_BUSY) == 0) {
611		panic("vm_page_remove: page not busy");
612	}
613
614	/*
615	 * Basically destroy the page.
616	 */
617	vm_page_wakeup(m);
618
619	object = m->object;
620
621	/*
622	 * Now remove from the object's list of backed pages.
623	 */
624	if (m != object->root)
625		vm_page_splay(m->pindex, object->root);
626	if (m->left == NULL)
627		root = m->right;
628	else {
629		root = vm_page_splay(m->pindex, m->left);
630		root->right = m->right;
631	}
632	object->root = root;
633	TAILQ_REMOVE(&object->memq, m, listq);
634
635	/*
636	 * And show that the object has one fewer resident page.
637	 */
638	object->resident_page_count--;
639	object->generation++;
640
641	m->object = NULL;
642}
643
644/*
645 *	vm_page_lookup:
646 *
647 *	Returns the page associated with the object/offset
648 *	pair specified; if none is found, NULL is returned.
649 *
650 *	The object must be locked.
651 *	This routine may not block.
652 *	This is a critical path routine
653 */
654vm_page_t
655vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
656{
657	vm_page_t m;
658
659	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
660	m = vm_page_splay(pindex, object->root);
661	if ((object->root = m) != NULL && m->pindex != pindex)
662		m = NULL;
663	return (m);
664}
665
666/*
667 *	vm_page_rename:
668 *
669 *	Move the given memory entry from its
670 *	current object to the specified target object/offset.
671 *
672 *	The object must be locked.
673 *	This routine may not block.
674 *
675 *	Note: this routine will raise itself to splvm(), the caller need not.
676 *
677 *	Note: swap associated with the page must be invalidated by the move.  We
678 *	      have to do this for several reasons:  (1) we aren't freeing the
679 *	      page, (2) we are dirtying the page, (3) the VM system is probably
680 *	      moving the page from object A to B, and will then later move
681 *	      the backing store from A to B and we can't have a conflict.
682 *
683 *	Note: we *always* dirty the page.  It is necessary both for the
684 *	      fact that we moved it, and because we may be invalidating
685 *	      swap.  If the page is on the cache, we have to deactivate it
686 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
687 *	      on the cache.
688 */
689void
690vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
691{
692	int s;
693
694	s = splvm();
695	vm_page_remove(m);
696	vm_page_insert(m, new_object, new_pindex);
697	if (m->queue - m->pc == PQ_CACHE)
698		vm_page_deactivate(m);
699	vm_page_dirty(m);
700	splx(s);
701}
702
703/*
704 *	vm_page_select_cache:
705 *
706 *	Find a page on the cache queue with color optimization.  As pages
707 *	might be found, but not applicable, they are deactivated.  This
708 *	keeps us from using potentially busy cached pages.
709 *
710 *	This routine must be called at splvm().
711 *	This routine may not block.
712 */
713static vm_page_t
714vm_page_select_cache(int color)
715{
716	vm_page_t m;
717
718	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
719	while (TRUE) {
720		m = vm_pageq_find(PQ_CACHE, color, FALSE);
721		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
722			       m->hold_count || m->wire_count ||
723			  (!VM_OBJECT_TRYLOCK(m->object) &&
724			   !VM_OBJECT_LOCKED(m->object)))) {
725			vm_page_deactivate(m);
726			continue;
727		}
728		return m;
729	}
730}
731
732/*
733 *	vm_page_alloc:
734 *
735 *	Allocate and return a memory cell associated
736 *	with this VM object/offset pair.
737 *
738 *	page_req classes:
739 *	VM_ALLOC_NORMAL		normal process request
740 *	VM_ALLOC_SYSTEM		system *really* needs a page
741 *	VM_ALLOC_INTERRUPT	interrupt time request
742 *	VM_ALLOC_ZERO		zero page
743 *
744 *	This routine may not block.
745 *
746 *	Additional special handling is required when called from an
747 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
748 *	the page cache in this case.
749 */
750vm_page_t
751vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
752{
753	vm_object_t m_object;
754	vm_page_t m = NULL;
755	int color, flags, page_req, s;
756
757	page_req = req & VM_ALLOC_CLASS_MASK;
758
759	if ((req & VM_ALLOC_NOOBJ) == 0) {
760		KASSERT(object != NULL,
761		    ("vm_page_alloc: NULL object."));
762		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
763		KASSERT(!vm_page_lookup(object, pindex),
764		    ("vm_page_alloc: page already allocated"));
765		color = (pindex + object->pg_color) & PQ_L2_MASK;
766	} else
767		color = pindex & PQ_L2_MASK;
768
769	/*
770	 * The pager is allowed to eat deeper into the free page list.
771	 */
772	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
773		page_req = VM_ALLOC_SYSTEM;
774	};
775
776	s = splvm();
777loop:
778	mtx_lock_spin(&vm_page_queue_free_mtx);
779	if (cnt.v_free_count > cnt.v_free_reserved ||
780	    (page_req == VM_ALLOC_SYSTEM &&
781	     cnt.v_cache_count == 0 &&
782	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
783	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
784		/*
785		 * Allocate from the free queue if the number of free pages
786		 * exceeds the minimum for the request class.
787		 */
788		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
789	} else if (page_req != VM_ALLOC_INTERRUPT) {
790		mtx_unlock_spin(&vm_page_queue_free_mtx);
791		/*
792		 * Allocatable from cache (non-interrupt only).  On success,
793		 * we must free the page and try again, thus ensuring that
794		 * cnt.v_*_free_min counters are replenished.
795		 */
796		vm_page_lock_queues();
797		if ((m = vm_page_select_cache(color)) == NULL) {
798			vm_page_unlock_queues();
799			splx(s);
800#if defined(DIAGNOSTIC)
801			if (cnt.v_cache_count > 0)
802				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
803#endif
804			atomic_add_int(&vm_pageout_deficit, 1);
805			pagedaemon_wakeup();
806			return (NULL);
807		}
808		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
809		m_object = m->object;
810		VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED);
811		vm_page_busy(m);
812		pmap_remove_all(m);
813		vm_page_free(m);
814		vm_page_unlock_queues();
815		if (m_object != object)
816			VM_OBJECT_UNLOCK(m_object);
817		goto loop;
818	} else {
819		/*
820		 * Not allocatable from cache from interrupt, give up.
821		 */
822		mtx_unlock_spin(&vm_page_queue_free_mtx);
823		splx(s);
824		atomic_add_int(&vm_pageout_deficit, 1);
825		pagedaemon_wakeup();
826		return (NULL);
827	}
828
829	/*
830	 *  At this point we had better have found a good page.
831	 */
832
833	KASSERT(
834	    m != NULL,
835	    ("vm_page_alloc(): missing page on free queue\n")
836	);
837
838	/*
839	 * Remove from free queue
840	 */
841
842	vm_pageq_remove_nowakeup(m);
843
844	/*
845	 * Initialize structure.  Only the PG_ZERO flag is inherited.
846	 */
847	flags = PG_BUSY;
848	if (m->flags & PG_ZERO) {
849		vm_page_zero_count--;
850		if (req & VM_ALLOC_ZERO)
851			flags = PG_ZERO | PG_BUSY;
852	}
853	m->flags = flags;
854	if (req & VM_ALLOC_WIRED) {
855		atomic_add_int(&cnt.v_wire_count, 1);
856		m->wire_count = 1;
857	} else
858		m->wire_count = 0;
859	m->hold_count = 0;
860	m->act_count = 0;
861	m->busy = 0;
862	m->valid = 0;
863	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
864	mtx_unlock_spin(&vm_page_queue_free_mtx);
865
866	/*
867	 * vm_page_insert() is safe prior to the splx().  Note also that
868	 * inserting a page here does not insert it into the pmap (which
869	 * could cause us to block allocating memory).  We cannot block
870	 * anywhere.
871	 */
872	if ((req & VM_ALLOC_NOOBJ) == 0)
873		vm_page_insert(m, object, pindex);
874	else
875		m->pindex = pindex;
876
877	/*
878	 * Don't wakeup too often - wakeup the pageout daemon when
879	 * we would be nearly out of memory.
880	 */
881	if (vm_paging_needed())
882		pagedaemon_wakeup();
883
884	splx(s);
885	return (m);
886}
887
888/*
889 *	vm_wait:	(also see VM_WAIT macro)
890 *
891 *	Block until free pages are available for allocation
892 *	- Called in various places before memory allocations.
893 */
894void
895vm_wait(void)
896{
897	int s;
898
899	s = splvm();
900	vm_page_lock_queues();
901	if (curproc == pageproc) {
902		vm_pageout_pages_needed = 1;
903		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
904		    PDROP | PSWP, "VMWait", 0);
905	} else {
906		if (!vm_pages_needed) {
907			vm_pages_needed = 1;
908			wakeup(&vm_pages_needed);
909		}
910		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
911		    "vmwait", 0);
912	}
913	splx(s);
914}
915
916/*
917 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
918 *
919 *	Block until free pages are available for allocation
920 *	- Called only in vm_fault so that processes page faulting
921 *	  can be easily tracked.
922 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
923 *	  processes will be able to grab memory first.  Do not change
924 *	  this balance without careful testing first.
925 */
926void
927vm_waitpfault(void)
928{
929	int s;
930
931	s = splvm();
932	vm_page_lock_queues();
933	if (!vm_pages_needed) {
934		vm_pages_needed = 1;
935		wakeup(&vm_pages_needed);
936	}
937	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
938	    "pfault", 0);
939	splx(s);
940}
941
942/*
943 *	vm_page_activate:
944 *
945 *	Put the specified page on the active list (if appropriate).
946 *	Ensure that act_count is at least ACT_INIT but do not otherwise
947 *	mess with it.
948 *
949 *	The page queues must be locked.
950 *	This routine may not block.
951 */
952void
953vm_page_activate(vm_page_t m)
954{
955	int s;
956
957	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
958	s = splvm();
959	if (m->queue != PQ_ACTIVE) {
960		if ((m->queue - m->pc) == PQ_CACHE)
961			cnt.v_reactivated++;
962		vm_pageq_remove(m);
963		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
964			if (m->act_count < ACT_INIT)
965				m->act_count = ACT_INIT;
966			vm_pageq_enqueue(PQ_ACTIVE, m);
967		}
968	} else {
969		if (m->act_count < ACT_INIT)
970			m->act_count = ACT_INIT;
971	}
972	splx(s);
973}
974
975/*
976 *	vm_page_free_wakeup:
977 *
978 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
979 *	routine is called when a page has been added to the cache or free
980 *	queues.
981 *
982 *	This routine may not block.
983 *	This routine must be called at splvm()
984 */
985static __inline void
986vm_page_free_wakeup(void)
987{
988
989	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
990	/*
991	 * if pageout daemon needs pages, then tell it that there are
992	 * some free.
993	 */
994	if (vm_pageout_pages_needed &&
995	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
996		wakeup(&vm_pageout_pages_needed);
997		vm_pageout_pages_needed = 0;
998	}
999	/*
1000	 * wakeup processes that are waiting on memory if we hit a
1001	 * high water mark. And wakeup scheduler process if we have
1002	 * lots of memory. this process will swapin processes.
1003	 */
1004	if (vm_pages_needed && !vm_page_count_min()) {
1005		vm_pages_needed = 0;
1006		wakeup(&cnt.v_free_count);
1007	}
1008}
1009
1010/*
1011 *	vm_page_free_toq:
1012 *
1013 *	Returns the given page to the PQ_FREE list,
1014 *	disassociating it with any VM object.
1015 *
1016 *	Object and page must be locked prior to entry.
1017 *	This routine may not block.
1018 */
1019
1020void
1021vm_page_free_toq(vm_page_t m)
1022{
1023	int s;
1024	struct vpgqueues *pq;
1025	vm_object_t object = m->object;
1026
1027	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1028	s = splvm();
1029	cnt.v_tfree++;
1030
1031	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1032		printf(
1033		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1034		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1035		    m->hold_count);
1036		if ((m->queue - m->pc) == PQ_FREE)
1037			panic("vm_page_free: freeing free page");
1038		else
1039			panic("vm_page_free: freeing busy page");
1040	}
1041
1042	/*
1043	 * unqueue, then remove page.  Note that we cannot destroy
1044	 * the page here because we do not want to call the pager's
1045	 * callback routine until after we've put the page on the
1046	 * appropriate free queue.
1047	 */
1048	vm_pageq_remove_nowakeup(m);
1049	vm_page_remove(m);
1050
1051	/*
1052	 * If fictitious remove object association and
1053	 * return, otherwise delay object association removal.
1054	 */
1055	if ((m->flags & PG_FICTITIOUS) != 0) {
1056		splx(s);
1057		return;
1058	}
1059
1060	m->valid = 0;
1061	vm_page_undirty(m);
1062
1063	if (m->wire_count != 0) {
1064		if (m->wire_count > 1) {
1065			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1066				m->wire_count, (long)m->pindex);
1067		}
1068		panic("vm_page_free: freeing wired page\n");
1069	}
1070
1071	/*
1072	 * If we've exhausted the object's resident pages we want to free
1073	 * it up.
1074	 */
1075	if (object &&
1076	    (object->type == OBJT_VNODE) &&
1077	    ((object->flags & OBJ_DEAD) == 0)
1078	) {
1079		struct vnode *vp = (struct vnode *)object->handle;
1080
1081		if (vp) {
1082			VI_LOCK(vp);
1083			if (VSHOULDFREE(vp))
1084				vfree(vp);
1085			VI_UNLOCK(vp);
1086		}
1087	}
1088
1089	/*
1090	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1091	 */
1092	if (m->flags & PG_UNMANAGED) {
1093		m->flags &= ~PG_UNMANAGED;
1094	}
1095
1096	if (m->hold_count != 0) {
1097		m->flags &= ~PG_ZERO;
1098		m->queue = PQ_HOLD;
1099	} else
1100		m->queue = PQ_FREE + m->pc;
1101	pq = &vm_page_queues[m->queue];
1102	mtx_lock_spin(&vm_page_queue_free_mtx);
1103	pq->lcnt++;
1104	++(*pq->cnt);
1105
1106	/*
1107	 * Put zero'd pages on the end ( where we look for zero'd pages
1108	 * first ) and non-zerod pages at the head.
1109	 */
1110	if (m->flags & PG_ZERO) {
1111		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1112		++vm_page_zero_count;
1113	} else {
1114		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1115	}
1116	mtx_unlock_spin(&vm_page_queue_free_mtx);
1117	vm_page_free_wakeup();
1118	splx(s);
1119}
1120
1121/*
1122 *	vm_page_unmanage:
1123 *
1124 * 	Prevent PV management from being done on the page.  The page is
1125 *	removed from the paging queues as if it were wired, and as a
1126 *	consequence of no longer being managed the pageout daemon will not
1127 *	touch it (since there is no way to locate the pte mappings for the
1128 *	page).  madvise() calls that mess with the pmap will also no longer
1129 *	operate on the page.
1130 *
1131 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1132 *	will clear the flag.
1133 *
1134 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1135 *	physical memory as backing store rather then swap-backed memory and
1136 *	will eventually be extended to support 4MB unmanaged physical
1137 *	mappings.
1138 */
1139void
1140vm_page_unmanage(vm_page_t m)
1141{
1142	int s;
1143
1144	s = splvm();
1145	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1146	if ((m->flags & PG_UNMANAGED) == 0) {
1147		if (m->wire_count == 0)
1148			vm_pageq_remove(m);
1149	}
1150	vm_page_flag_set(m, PG_UNMANAGED);
1151	splx(s);
1152}
1153
1154/*
1155 *	vm_page_wire:
1156 *
1157 *	Mark this page as wired down by yet
1158 *	another map, removing it from paging queues
1159 *	as necessary.
1160 *
1161 *	The page queues must be locked.
1162 *	This routine may not block.
1163 */
1164void
1165vm_page_wire(vm_page_t m)
1166{
1167	int s;
1168
1169	/*
1170	 * Only bump the wire statistics if the page is not already wired,
1171	 * and only unqueue the page if it is on some queue (if it is unmanaged
1172	 * it is already off the queues).
1173	 */
1174	s = splvm();
1175	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1176	if (m->wire_count == 0) {
1177		if ((m->flags & PG_UNMANAGED) == 0)
1178			vm_pageq_remove(m);
1179		atomic_add_int(&cnt.v_wire_count, 1);
1180	}
1181	m->wire_count++;
1182	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1183	splx(s);
1184}
1185
1186/*
1187 *	vm_page_unwire:
1188 *
1189 *	Release one wiring of this page, potentially
1190 *	enabling it to be paged again.
1191 *
1192 *	Many pages placed on the inactive queue should actually go
1193 *	into the cache, but it is difficult to figure out which.  What
1194 *	we do instead, if the inactive target is well met, is to put
1195 *	clean pages at the head of the inactive queue instead of the tail.
1196 *	This will cause them to be moved to the cache more quickly and
1197 *	if not actively re-referenced, freed more quickly.  If we just
1198 *	stick these pages at the end of the inactive queue, heavy filesystem
1199 *	meta-data accesses can cause an unnecessary paging load on memory bound
1200 *	processes.  This optimization causes one-time-use metadata to be
1201 *	reused more quickly.
1202 *
1203 *	BUT, if we are in a low-memory situation we have no choice but to
1204 *	put clean pages on the cache queue.
1205 *
1206 *	A number of routines use vm_page_unwire() to guarantee that the page
1207 *	will go into either the inactive or active queues, and will NEVER
1208 *	be placed in the cache - for example, just after dirtying a page.
1209 *	dirty pages in the cache are not allowed.
1210 *
1211 *	The page queues must be locked.
1212 *	This routine may not block.
1213 */
1214void
1215vm_page_unwire(vm_page_t m, int activate)
1216{
1217	int s;
1218
1219	s = splvm();
1220	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1221	if (m->wire_count > 0) {
1222		m->wire_count--;
1223		if (m->wire_count == 0) {
1224			atomic_subtract_int(&cnt.v_wire_count, 1);
1225			if (m->flags & PG_UNMANAGED) {
1226				;
1227			} else if (activate)
1228				vm_pageq_enqueue(PQ_ACTIVE, m);
1229			else {
1230				vm_page_flag_clear(m, PG_WINATCFLS);
1231				vm_pageq_enqueue(PQ_INACTIVE, m);
1232			}
1233		}
1234	} else {
1235		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1236	}
1237	splx(s);
1238}
1239
1240
1241/*
1242 * Move the specified page to the inactive queue.  If the page has
1243 * any associated swap, the swap is deallocated.
1244 *
1245 * Normally athead is 0 resulting in LRU operation.  athead is set
1246 * to 1 if we want this page to be 'as if it were placed in the cache',
1247 * except without unmapping it from the process address space.
1248 *
1249 * This routine may not block.
1250 */
1251static __inline void
1252_vm_page_deactivate(vm_page_t m, int athead)
1253{
1254	int s;
1255
1256	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1257	/*
1258	 * Ignore if already inactive.
1259	 */
1260	if (m->queue == PQ_INACTIVE)
1261		return;
1262
1263	s = splvm();
1264	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1265		if ((m->queue - m->pc) == PQ_CACHE)
1266			cnt.v_reactivated++;
1267		vm_page_flag_clear(m, PG_WINATCFLS);
1268		vm_pageq_remove(m);
1269		if (athead)
1270			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1271		else
1272			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1273		m->queue = PQ_INACTIVE;
1274		vm_page_queues[PQ_INACTIVE].lcnt++;
1275		cnt.v_inactive_count++;
1276	}
1277	splx(s);
1278}
1279
1280void
1281vm_page_deactivate(vm_page_t m)
1282{
1283    _vm_page_deactivate(m, 0);
1284}
1285
1286/*
1287 * vm_page_try_to_cache:
1288 *
1289 * Returns 0 on failure, 1 on success
1290 */
1291int
1292vm_page_try_to_cache(vm_page_t m)
1293{
1294
1295	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1296	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1297	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1298		return (0);
1299	}
1300	vm_page_test_dirty(m);
1301	if (m->dirty)
1302		return (0);
1303	vm_page_cache(m);
1304	return (1);
1305}
1306
1307/*
1308 * vm_page_try_to_free()
1309 *
1310 *	Attempt to free the page.  If we cannot free it, we do nothing.
1311 *	1 is returned on success, 0 on failure.
1312 */
1313int
1314vm_page_try_to_free(vm_page_t m)
1315{
1316
1317	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1318	if (m->object != NULL)
1319		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1320	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1321	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1322		return (0);
1323	}
1324	vm_page_test_dirty(m);
1325	if (m->dirty)
1326		return (0);
1327	vm_page_busy(m);
1328	pmap_remove_all(m);
1329	vm_page_free(m);
1330	return (1);
1331}
1332
1333/*
1334 * vm_page_cache
1335 *
1336 * Put the specified page onto the page cache queue (if appropriate).
1337 *
1338 * This routine may not block.
1339 */
1340void
1341vm_page_cache(vm_page_t m)
1342{
1343	int s;
1344
1345	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1346	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1347	    m->hold_count || m->wire_count) {
1348		printf("vm_page_cache: attempting to cache busy page\n");
1349		return;
1350	}
1351	if ((m->queue - m->pc) == PQ_CACHE)
1352		return;
1353
1354	/*
1355	 * Remove all pmaps and indicate that the page is not
1356	 * writeable or mapped.
1357	 */
1358	pmap_remove_all(m);
1359	if (m->dirty != 0) {
1360		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1361			(long)m->pindex);
1362	}
1363	s = splvm();
1364	vm_pageq_remove_nowakeup(m);
1365	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1366	vm_page_free_wakeup();
1367	splx(s);
1368}
1369
1370/*
1371 * vm_page_dontneed
1372 *
1373 *	Cache, deactivate, or do nothing as appropriate.  This routine
1374 *	is typically used by madvise() MADV_DONTNEED.
1375 *
1376 *	Generally speaking we want to move the page into the cache so
1377 *	it gets reused quickly.  However, this can result in a silly syndrome
1378 *	due to the page recycling too quickly.  Small objects will not be
1379 *	fully cached.  On the otherhand, if we move the page to the inactive
1380 *	queue we wind up with a problem whereby very large objects
1381 *	unnecessarily blow away our inactive and cache queues.
1382 *
1383 *	The solution is to move the pages based on a fixed weighting.  We
1384 *	either leave them alone, deactivate them, or move them to the cache,
1385 *	where moving them to the cache has the highest weighting.
1386 *	By forcing some pages into other queues we eventually force the
1387 *	system to balance the queues, potentially recovering other unrelated
1388 *	space from active.  The idea is to not force this to happen too
1389 *	often.
1390 */
1391void
1392vm_page_dontneed(vm_page_t m)
1393{
1394	static int dnweight;
1395	int dnw;
1396	int head;
1397
1398	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1399	dnw = ++dnweight;
1400
1401	/*
1402	 * occassionally leave the page alone
1403	 */
1404	if ((dnw & 0x01F0) == 0 ||
1405	    m->queue == PQ_INACTIVE ||
1406	    m->queue - m->pc == PQ_CACHE
1407	) {
1408		if (m->act_count >= ACT_INIT)
1409			--m->act_count;
1410		return;
1411	}
1412
1413	if (m->dirty == 0)
1414		vm_page_test_dirty(m);
1415
1416	if (m->dirty || (dnw & 0x0070) == 0) {
1417		/*
1418		 * Deactivate the page 3 times out of 32.
1419		 */
1420		head = 0;
1421	} else {
1422		/*
1423		 * Cache the page 28 times out of every 32.  Note that
1424		 * the page is deactivated instead of cached, but placed
1425		 * at the head of the queue instead of the tail.
1426		 */
1427		head = 1;
1428	}
1429	_vm_page_deactivate(m, head);
1430}
1431
1432/*
1433 * Grab a page, waiting until we are waken up due to the page
1434 * changing state.  We keep on waiting, if the page continues
1435 * to be in the object.  If the page doesn't exist, allocate it.
1436 *
1437 * This routine may block.
1438 */
1439vm_page_t
1440vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1441{
1442	vm_page_t m;
1443	int s, generation;
1444
1445	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1446retrylookup:
1447	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1448		vm_page_lock_queues();
1449		if (m->busy || (m->flags & PG_BUSY)) {
1450			generation = object->generation;
1451
1452			s = splvm();
1453			while ((object->generation == generation) &&
1454					(m->busy || (m->flags & PG_BUSY))) {
1455				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1456				VM_OBJECT_UNLOCK(object);
1457				msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1458				VM_OBJECT_LOCK(object);
1459				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1460					splx(s);
1461					return NULL;
1462				}
1463				vm_page_lock_queues();
1464			}
1465			vm_page_unlock_queues();
1466			splx(s);
1467			goto retrylookup;
1468		} else {
1469			if (allocflags & VM_ALLOC_WIRED)
1470				vm_page_wire(m);
1471			vm_page_busy(m);
1472			vm_page_unlock_queues();
1473			return m;
1474		}
1475	}
1476
1477	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1478	if (m == NULL) {
1479		VM_OBJECT_UNLOCK(object);
1480		VM_WAIT;
1481		VM_OBJECT_LOCK(object);
1482		if ((allocflags & VM_ALLOC_RETRY) == 0)
1483			return NULL;
1484		goto retrylookup;
1485	}
1486
1487	return m;
1488}
1489
1490/*
1491 * Mapping function for valid bits or for dirty bits in
1492 * a page.  May not block.
1493 *
1494 * Inputs are required to range within a page.
1495 */
1496__inline int
1497vm_page_bits(int base, int size)
1498{
1499	int first_bit;
1500	int last_bit;
1501
1502	KASSERT(
1503	    base + size <= PAGE_SIZE,
1504	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1505	);
1506
1507	if (size == 0)		/* handle degenerate case */
1508		return (0);
1509
1510	first_bit = base >> DEV_BSHIFT;
1511	last_bit = (base + size - 1) >> DEV_BSHIFT;
1512
1513	return ((2 << last_bit) - (1 << first_bit));
1514}
1515
1516/*
1517 *	vm_page_set_validclean:
1518 *
1519 *	Sets portions of a page valid and clean.  The arguments are expected
1520 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1521 *	of any partial chunks touched by the range.  The invalid portion of
1522 *	such chunks will be zero'd.
1523 *
1524 *	This routine may not block.
1525 *
1526 *	(base + size) must be less then or equal to PAGE_SIZE.
1527 */
1528void
1529vm_page_set_validclean(vm_page_t m, int base, int size)
1530{
1531	int pagebits;
1532	int frag;
1533	int endoff;
1534
1535	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1536	if (size == 0)	/* handle degenerate case */
1537		return;
1538
1539	/*
1540	 * If the base is not DEV_BSIZE aligned and the valid
1541	 * bit is clear, we have to zero out a portion of the
1542	 * first block.
1543	 */
1544	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1545	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1546		pmap_zero_page_area(m, frag, base - frag);
1547
1548	/*
1549	 * If the ending offset is not DEV_BSIZE aligned and the
1550	 * valid bit is clear, we have to zero out a portion of
1551	 * the last block.
1552	 */
1553	endoff = base + size;
1554	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1555	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1556		pmap_zero_page_area(m, endoff,
1557		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1558
1559	/*
1560	 * Set valid, clear dirty bits.  If validating the entire
1561	 * page we can safely clear the pmap modify bit.  We also
1562	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1563	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1564	 * be set again.
1565	 *
1566	 * We set valid bits inclusive of any overlap, but we can only
1567	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1568	 * the range.
1569	 */
1570	pagebits = vm_page_bits(base, size);
1571	m->valid |= pagebits;
1572#if 0	/* NOT YET */
1573	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1574		frag = DEV_BSIZE - frag;
1575		base += frag;
1576		size -= frag;
1577		if (size < 0)
1578			size = 0;
1579	}
1580	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1581#endif
1582	m->dirty &= ~pagebits;
1583	if (base == 0 && size == PAGE_SIZE) {
1584		pmap_clear_modify(m);
1585		vm_page_flag_clear(m, PG_NOSYNC);
1586	}
1587}
1588
1589#if 0
1590
1591void
1592vm_page_set_dirty(vm_page_t m, int base, int size)
1593{
1594	m->dirty |= vm_page_bits(base, size);
1595}
1596
1597#endif
1598
1599void
1600vm_page_clear_dirty(vm_page_t m, int base, int size)
1601{
1602
1603	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1604	m->dirty &= ~vm_page_bits(base, size);
1605}
1606
1607/*
1608 *	vm_page_set_invalid:
1609 *
1610 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1611 *	valid and dirty bits for the effected areas are cleared.
1612 *
1613 *	May not block.
1614 */
1615void
1616vm_page_set_invalid(vm_page_t m, int base, int size)
1617{
1618	int bits;
1619
1620	bits = vm_page_bits(base, size);
1621	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1622	m->valid &= ~bits;
1623	m->dirty &= ~bits;
1624	m->object->generation++;
1625}
1626
1627/*
1628 * vm_page_zero_invalid()
1629 *
1630 *	The kernel assumes that the invalid portions of a page contain
1631 *	garbage, but such pages can be mapped into memory by user code.
1632 *	When this occurs, we must zero out the non-valid portions of the
1633 *	page so user code sees what it expects.
1634 *
1635 *	Pages are most often semi-valid when the end of a file is mapped
1636 *	into memory and the file's size is not page aligned.
1637 */
1638void
1639vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1640{
1641	int b;
1642	int i;
1643
1644	/*
1645	 * Scan the valid bits looking for invalid sections that
1646	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1647	 * valid bit may be set ) have already been zerod by
1648	 * vm_page_set_validclean().
1649	 */
1650	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1651		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1652		    (m->valid & (1 << i))
1653		) {
1654			if (i > b) {
1655				pmap_zero_page_area(m,
1656				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1657			}
1658			b = i + 1;
1659		}
1660	}
1661
1662	/*
1663	 * setvalid is TRUE when we can safely set the zero'd areas
1664	 * as being valid.  We can do this if there are no cache consistancy
1665	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1666	 */
1667	if (setvalid)
1668		m->valid = VM_PAGE_BITS_ALL;
1669}
1670
1671/*
1672 *	vm_page_is_valid:
1673 *
1674 *	Is (partial) page valid?  Note that the case where size == 0
1675 *	will return FALSE in the degenerate case where the page is
1676 *	entirely invalid, and TRUE otherwise.
1677 *
1678 *	May not block.
1679 */
1680int
1681vm_page_is_valid(vm_page_t m, int base, int size)
1682{
1683	int bits = vm_page_bits(base, size);
1684
1685	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1686	if (m->valid && ((m->valid & bits) == bits))
1687		return 1;
1688	else
1689		return 0;
1690}
1691
1692/*
1693 * update dirty bits from pmap/mmu.  May not block.
1694 */
1695void
1696vm_page_test_dirty(vm_page_t m)
1697{
1698	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1699		vm_page_dirty(m);
1700	}
1701}
1702
1703int so_zerocp_fullpage = 0;
1704
1705void
1706vm_page_cowfault(vm_page_t m)
1707{
1708	vm_page_t mnew;
1709	vm_object_t object;
1710	vm_pindex_t pindex;
1711
1712	object = m->object;
1713	pindex = m->pindex;
1714	vm_page_busy(m);
1715
1716 retry_alloc:
1717	vm_page_remove(m);
1718	/*
1719	 * An interrupt allocation is requested because the page
1720	 * queues lock is held.
1721	 */
1722	mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT);
1723	if (mnew == NULL) {
1724		vm_page_insert(m, object, pindex);
1725		vm_page_unlock_queues();
1726		VM_OBJECT_UNLOCK(object);
1727		VM_WAIT;
1728		VM_OBJECT_LOCK(object);
1729		vm_page_lock_queues();
1730		goto retry_alloc;
1731	}
1732
1733	if (m->cow == 0) {
1734		/*
1735		 * check to see if we raced with an xmit complete when
1736		 * waiting to allocate a page.  If so, put things back
1737		 * the way they were
1738		 */
1739		vm_page_busy(mnew);
1740		vm_page_free(mnew);
1741		vm_page_insert(m, object, pindex);
1742	} else { /* clear COW & copy page */
1743		if (so_zerocp_fullpage) {
1744			mnew->valid = VM_PAGE_BITS_ALL;
1745		} else {
1746			vm_page_copy(m, mnew);
1747		}
1748		vm_page_dirty(mnew);
1749		vm_page_flag_clear(mnew, PG_BUSY);
1750	}
1751}
1752
1753void
1754vm_page_cowclear(vm_page_t m)
1755{
1756
1757	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1758	if (m->cow) {
1759		m->cow--;
1760		/*
1761		 * let vm_fault add back write permission  lazily
1762		 */
1763	}
1764	/*
1765	 *  sf_buf_free() will free the page, so we needn't do it here
1766	 */
1767}
1768
1769void
1770vm_page_cowsetup(vm_page_t m)
1771{
1772
1773	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1774	m->cow++;
1775	pmap_page_protect(m, VM_PROT_READ);
1776}
1777
1778#include "opt_ddb.h"
1779#ifdef DDB
1780#include <sys/kernel.h>
1781
1782#include <ddb/ddb.h>
1783
1784DB_SHOW_COMMAND(page, vm_page_print_page_info)
1785{
1786	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1787	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1788	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1789	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1790	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1791	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1792	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1793	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1794	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1795	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1796}
1797
1798DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1799{
1800	int i;
1801	db_printf("PQ_FREE:");
1802	for (i = 0; i < PQ_L2_SIZE; i++) {
1803		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1804	}
1805	db_printf("\n");
1806
1807	db_printf("PQ_CACHE:");
1808	for (i = 0; i < PQ_L2_SIZE; i++) {
1809		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1810	}
1811	db_printf("\n");
1812
1813	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1814		vm_page_queues[PQ_ACTIVE].lcnt,
1815		vm_page_queues[PQ_INACTIVE].lcnt);
1816}
1817#endif /* DDB */
1818