vm_page.c revision 120326
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37 */
38
39/*
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44 *
45 * Permission to use, copy, modify and distribute this software and
46 * its documentation is hereby granted, provided that both the copyright
47 * notice and this permission notice appear in all copies of the
48 * software, derivative works or modified versions, and any portions
49 * thereof, and that both notices appear in supporting documentation.
50 *
51 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
52 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
53 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54 *
55 * Carnegie Mellon requests users of this software to return to
56 *
57 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
58 *  School of Computer Science
59 *  Carnegie Mellon University
60 *  Pittsburgh PA 15213-3890
61 *
62 * any improvements or extensions that they make and grant Carnegie the
63 * rights to redistribute these changes.
64 */
65
66/*
67 *			GENERAL RULES ON VM_PAGE MANIPULATION
68 *
69 *	- a pageq mutex is required when adding or removing a page from a
70 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
71 *	  busy state of a page.
72 *
73 *	- a hash chain mutex is required when associating or disassociating
74 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
75 *	  regardless of other mutexes or the busy state of a page.
76 *
77 *	- either a hash chain mutex OR a busied page is required in order
78 *	  to modify the page flags.  A hash chain mutex must be obtained in
79 *	  order to busy a page.  A page's flags cannot be modified by a
80 *	  hash chain mutex if the page is marked busy.
81 *
82 *	- The object memq mutex is held when inserting or removing
83 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
84 *	  is different from the object's main mutex.
85 *
86 *	Generally speaking, you have to be aware of side effects when running
87 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
88 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
89 *	vm_page_cache(), vm_page_activate(), and a number of other routines
90 *	will release the hash chain mutex for you.  Intermediate manipulation
91 *	routines such as vm_page_flag_set() expect the hash chain to be held
92 *	on entry and the hash chain will remain held on return.
93 *
94 *	pageq scanning can only occur with the pageq in question locked.
95 *	We have a known bottleneck with the active queue, but the cache
96 *	and free queues are actually arrays already.
97 */
98
99/*
100 *	Resident memory management module.
101 */
102
103#include <sys/cdefs.h>
104__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 120326 2003-09-22 00:56:13Z alc $");
105
106#include <sys/param.h>
107#include <sys/systm.h>
108#include <sys/lock.h>
109#include <sys/malloc.h>
110#include <sys/mutex.h>
111#include <sys/proc.h>
112#include <sys/vmmeter.h>
113#include <sys/vnode.h>
114
115#include <vm/vm.h>
116#include <vm/vm_param.h>
117#include <vm/vm_kern.h>
118#include <vm/vm_object.h>
119#include <vm/vm_page.h>
120#include <vm/vm_pageout.h>
121#include <vm/vm_pager.h>
122#include <vm/vm_extern.h>
123#include <vm/uma.h>
124#include <vm/uma_int.h>
125
126/*
127 *	Associated with page of user-allocatable memory is a
128 *	page structure.
129 */
130
131struct mtx vm_page_queue_mtx;
132struct mtx vm_page_queue_free_mtx;
133
134vm_page_t vm_page_array = 0;
135int vm_page_array_size = 0;
136long first_page = 0;
137int vm_page_zero_count = 0;
138
139/*
140 *	vm_set_page_size:
141 *
142 *	Sets the page size, perhaps based upon the memory
143 *	size.  Must be called before any use of page-size
144 *	dependent functions.
145 */
146void
147vm_set_page_size(void)
148{
149	if (cnt.v_page_size == 0)
150		cnt.v_page_size = PAGE_SIZE;
151	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
152		panic("vm_set_page_size: page size not a power of two");
153}
154
155/*
156 *	vm_page_startup:
157 *
158 *	Initializes the resident memory module.
159 *
160 *	Allocates memory for the page cells, and
161 *	for the object/offset-to-page hash table headers.
162 *	Each page cell is initialized and placed on the free list.
163 */
164vm_offset_t
165vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
166{
167	vm_offset_t mapped;
168	vm_size_t npages;
169	vm_paddr_t page_range;
170	vm_paddr_t new_end;
171	int i;
172	vm_paddr_t pa;
173	int nblocks;
174	vm_paddr_t last_pa;
175
176	/* the biggest memory array is the second group of pages */
177	vm_paddr_t end;
178	vm_paddr_t biggestsize;
179	int biggestone;
180
181	vm_paddr_t total;
182	vm_size_t bootpages;
183
184	total = 0;
185	biggestsize = 0;
186	biggestone = 0;
187	nblocks = 0;
188	vaddr = round_page(vaddr);
189
190	for (i = 0; phys_avail[i + 1]; i += 2) {
191		phys_avail[i] = round_page(phys_avail[i]);
192		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
193	}
194
195	for (i = 0; phys_avail[i + 1]; i += 2) {
196		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
197
198		if (size > biggestsize) {
199			biggestone = i;
200			biggestsize = size;
201		}
202		++nblocks;
203		total += size;
204	}
205
206	end = phys_avail[biggestone+1];
207
208	/*
209	 * Initialize the locks.
210	 */
211	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
212	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
213	   MTX_SPIN);
214
215	/*
216	 * Initialize the queue headers for the free queue, the active queue
217	 * and the inactive queue.
218	 */
219	vm_pageq_init();
220
221	/*
222	 * Allocate memory for use when boot strapping the kernel memory
223	 * allocator.
224	 */
225	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
226	new_end = end - bootpages;
227	new_end = trunc_page(new_end);
228	mapped = pmap_map(&vaddr, new_end, end,
229	    VM_PROT_READ | VM_PROT_WRITE);
230	bzero((caddr_t) mapped, end - new_end);
231	uma_startup((caddr_t)mapped);
232
233	/*
234	 * Compute the number of pages of memory that will be available for
235	 * use (taking into account the overhead of a page structure per
236	 * page).
237	 */
238	first_page = phys_avail[0] / PAGE_SIZE;
239	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
240	npages = (total - (page_range * sizeof(struct vm_page)) -
241	    (end - new_end)) / PAGE_SIZE;
242	end = new_end;
243
244	/*
245	 * Initialize the mem entry structures now, and put them in the free
246	 * queue.
247	 */
248	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
249	mapped = pmap_map(&vaddr, new_end, end,
250	    VM_PROT_READ | VM_PROT_WRITE);
251	vm_page_array = (vm_page_t) mapped;
252	phys_avail[biggestone + 1] = new_end;
253
254	/*
255	 * Clear all of the page structures
256	 */
257	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
258	vm_page_array_size = page_range;
259
260	/*
261	 * Construct the free queue(s) in descending order (by physical
262	 * address) so that the first 16MB of physical memory is allocated
263	 * last rather than first.  On large-memory machines, this avoids
264	 * the exhaustion of low physical memory before isa_dmainit has run.
265	 */
266	cnt.v_page_count = 0;
267	cnt.v_free_count = 0;
268	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
269		pa = phys_avail[i];
270		last_pa = phys_avail[i + 1];
271		while (pa < last_pa && npages-- > 0) {
272			vm_pageq_add_new_page(pa);
273			pa += PAGE_SIZE;
274		}
275	}
276	return (vaddr);
277}
278
279void
280vm_page_flag_set(vm_page_t m, unsigned short bits)
281{
282
283	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
284	m->flags |= bits;
285}
286
287void
288vm_page_flag_clear(vm_page_t m, unsigned short bits)
289{
290
291	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
292	m->flags &= ~bits;
293}
294
295void
296vm_page_busy(vm_page_t m)
297{
298	KASSERT((m->flags & PG_BUSY) == 0,
299	    ("vm_page_busy: page already busy!!!"));
300	vm_page_flag_set(m, PG_BUSY);
301}
302
303/*
304 *      vm_page_flash:
305 *
306 *      wakeup anyone waiting for the page.
307 */
308void
309vm_page_flash(vm_page_t m)
310{
311	if (m->flags & PG_WANTED) {
312		vm_page_flag_clear(m, PG_WANTED);
313		wakeup(m);
314	}
315}
316
317/*
318 *      vm_page_wakeup:
319 *
320 *      clear the PG_BUSY flag and wakeup anyone waiting for the
321 *      page.
322 *
323 */
324void
325vm_page_wakeup(vm_page_t m)
326{
327	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
328	vm_page_flag_clear(m, PG_BUSY);
329	vm_page_flash(m);
330}
331
332void
333vm_page_io_start(vm_page_t m)
334{
335
336	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
337	m->busy++;
338}
339
340void
341vm_page_io_finish(vm_page_t m)
342{
343
344	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
345	m->busy--;
346	if (m->busy == 0)
347		vm_page_flash(m);
348}
349
350/*
351 * Keep page from being freed by the page daemon
352 * much of the same effect as wiring, except much lower
353 * overhead and should be used only for *very* temporary
354 * holding ("wiring").
355 */
356void
357vm_page_hold(vm_page_t mem)
358{
359
360	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
361        mem->hold_count++;
362}
363
364void
365vm_page_unhold(vm_page_t mem)
366{
367
368	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
369	--mem->hold_count;
370	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
371	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
372		vm_page_free_toq(mem);
373}
374
375/*
376 *	vm_page_copy:
377 *
378 *	Copy one page to another
379 */
380void
381vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
382{
383	pmap_copy_page(src_m, dest_m);
384	dest_m->valid = VM_PAGE_BITS_ALL;
385}
386
387/*
388 *	vm_page_free:
389 *
390 *	Free a page
391 *
392 *	The clearing of PG_ZERO is a temporary safety until the code can be
393 *	reviewed to determine that PG_ZERO is being properly cleared on
394 *	write faults or maps.  PG_ZERO was previously cleared in
395 *	vm_page_alloc().
396 */
397void
398vm_page_free(vm_page_t m)
399{
400	vm_page_flag_clear(m, PG_ZERO);
401	vm_page_free_toq(m);
402	vm_page_zero_idle_wakeup();
403}
404
405/*
406 *	vm_page_free_zero:
407 *
408 *	Free a page to the zerod-pages queue
409 */
410void
411vm_page_free_zero(vm_page_t m)
412{
413	vm_page_flag_set(m, PG_ZERO);
414	vm_page_free_toq(m);
415}
416
417/*
418 *	vm_page_sleep_if_busy:
419 *
420 *	Sleep and release the page queues lock if PG_BUSY is set or,
421 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
422 *	thread slept and the page queues lock was released.
423 *	Otherwise, retains the page queues lock and returns FALSE.
424 */
425int
426vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
427{
428	int is_object_locked;
429
430	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
431	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
432		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
433		/*
434		 * Remove mtx_owned() after vm_object locking is finished.
435		 */
436		if ((is_object_locked = m->object != NULL &&
437		     mtx_owned(&m->object->mtx)))
438			mtx_unlock(&m->object->mtx);
439		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
440		if (is_object_locked)
441			mtx_lock(&m->object->mtx);
442		return (TRUE);
443	}
444	return (FALSE);
445}
446
447/*
448 *	vm_page_dirty:
449 *
450 *	make page all dirty
451 */
452void
453vm_page_dirty(vm_page_t m)
454{
455	KASSERT(m->queue - m->pc != PQ_CACHE,
456	    ("vm_page_dirty: page in cache!"));
457	KASSERT(m->queue - m->pc != PQ_FREE,
458	    ("vm_page_dirty: page is free!"));
459	m->dirty = VM_PAGE_BITS_ALL;
460}
461
462/*
463 *	vm_page_splay:
464 *
465 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
466 *	the vm_page containing the given pindex.  If, however, that
467 *	pindex is not found in the vm_object, returns a vm_page that is
468 *	adjacent to the pindex, coming before or after it.
469 */
470vm_page_t
471vm_page_splay(vm_pindex_t pindex, vm_page_t root)
472{
473	struct vm_page dummy;
474	vm_page_t lefttreemax, righttreemin, y;
475
476	if (root == NULL)
477		return (root);
478	lefttreemax = righttreemin = &dummy;
479	for (;; root = y) {
480		if (pindex < root->pindex) {
481			if ((y = root->left) == NULL)
482				break;
483			if (pindex < y->pindex) {
484				/* Rotate right. */
485				root->left = y->right;
486				y->right = root;
487				root = y;
488				if ((y = root->left) == NULL)
489					break;
490			}
491			/* Link into the new root's right tree. */
492			righttreemin->left = root;
493			righttreemin = root;
494		} else if (pindex > root->pindex) {
495			if ((y = root->right) == NULL)
496				break;
497			if (pindex > y->pindex) {
498				/* Rotate left. */
499				root->right = y->left;
500				y->left = root;
501				root = y;
502				if ((y = root->right) == NULL)
503					break;
504			}
505			/* Link into the new root's left tree. */
506			lefttreemax->right = root;
507			lefttreemax = root;
508		} else
509			break;
510	}
511	/* Assemble the new root. */
512	lefttreemax->right = root->left;
513	righttreemin->left = root->right;
514	root->left = dummy.right;
515	root->right = dummy.left;
516	return (root);
517}
518
519/*
520 *	vm_page_insert:		[ internal use only ]
521 *
522 *	Inserts the given mem entry into the object and object list.
523 *
524 *	The pagetables are not updated but will presumably fault the page
525 *	in if necessary, or if a kernel page the caller will at some point
526 *	enter the page into the kernel's pmap.  We are not allowed to block
527 *	here so we *can't* do this anyway.
528 *
529 *	The object and page must be locked, and must be splhigh.
530 *	This routine may not block.
531 */
532void
533vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
534{
535	vm_page_t root;
536
537	if (!VM_OBJECT_LOCKED(object))
538		GIANT_REQUIRED;
539	if (m->object != NULL)
540		panic("vm_page_insert: already inserted");
541
542	/*
543	 * Record the object/offset pair in this page
544	 */
545	m->object = object;
546	m->pindex = pindex;
547
548	/*
549	 * Now link into the object's ordered list of backed pages.
550	 */
551	root = object->root;
552	if (root == NULL) {
553		m->left = NULL;
554		m->right = NULL;
555		TAILQ_INSERT_TAIL(&object->memq, m, listq);
556	} else {
557		root = vm_page_splay(pindex, root);
558		if (pindex < root->pindex) {
559			m->left = root->left;
560			m->right = root;
561			root->left = NULL;
562			TAILQ_INSERT_BEFORE(root, m, listq);
563		} else {
564			m->right = root->right;
565			m->left = root;
566			root->right = NULL;
567			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
568		}
569	}
570	object->root = m;
571	object->generation++;
572
573	/*
574	 * show that the object has one more resident page.
575	 */
576	object->resident_page_count++;
577
578	/*
579	 * Since we are inserting a new and possibly dirty page,
580	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
581	 */
582	if (m->flags & PG_WRITEABLE)
583		vm_object_set_writeable_dirty(object);
584}
585
586/*
587 *	vm_page_remove:
588 *				NOTE: used by device pager as well -wfj
589 *
590 *	Removes the given mem entry from the object/offset-page
591 *	table and the object page list, but do not invalidate/terminate
592 *	the backing store.
593 *
594 *	The object and page must be locked, and at splhigh.
595 *	The underlying pmap entry (if any) is NOT removed here.
596 *	This routine may not block.
597 */
598void
599vm_page_remove(vm_page_t m)
600{
601	vm_object_t object;
602	vm_page_t root;
603
604	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
605	if (m->object == NULL)
606		return;
607	if (!VM_OBJECT_LOCKED(m->object))
608		GIANT_REQUIRED;
609	if ((m->flags & PG_BUSY) == 0) {
610		panic("vm_page_remove: page not busy");
611	}
612
613	/*
614	 * Basically destroy the page.
615	 */
616	vm_page_wakeup(m);
617
618	object = m->object;
619
620	/*
621	 * Now remove from the object's list of backed pages.
622	 */
623	if (m != object->root)
624		vm_page_splay(m->pindex, object->root);
625	if (m->left == NULL)
626		root = m->right;
627	else {
628		root = vm_page_splay(m->pindex, m->left);
629		root->right = m->right;
630	}
631	object->root = root;
632	TAILQ_REMOVE(&object->memq, m, listq);
633
634	/*
635	 * And show that the object has one fewer resident page.
636	 */
637	object->resident_page_count--;
638	object->generation++;
639
640	m->object = NULL;
641}
642
643/*
644 *	vm_page_lookup:
645 *
646 *	Returns the page associated with the object/offset
647 *	pair specified; if none is found, NULL is returned.
648 *
649 *	The object must be locked.
650 *	This routine may not block.
651 *	This is a critical path routine
652 */
653vm_page_t
654vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
655{
656	vm_page_t m;
657
658	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
659	m = vm_page_splay(pindex, object->root);
660	if ((object->root = m) != NULL && m->pindex != pindex)
661		m = NULL;
662	return (m);
663}
664
665/*
666 *	vm_page_rename:
667 *
668 *	Move the given memory entry from its
669 *	current object to the specified target object/offset.
670 *
671 *	The object must be locked.
672 *	This routine may not block.
673 *
674 *	Note: this routine will raise itself to splvm(), the caller need not.
675 *
676 *	Note: swap associated with the page must be invalidated by the move.  We
677 *	      have to do this for several reasons:  (1) we aren't freeing the
678 *	      page, (2) we are dirtying the page, (3) the VM system is probably
679 *	      moving the page from object A to B, and will then later move
680 *	      the backing store from A to B and we can't have a conflict.
681 *
682 *	Note: we *always* dirty the page.  It is necessary both for the
683 *	      fact that we moved it, and because we may be invalidating
684 *	      swap.  If the page is on the cache, we have to deactivate it
685 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
686 *	      on the cache.
687 */
688void
689vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
690{
691	int s;
692
693	s = splvm();
694	vm_page_remove(m);
695	vm_page_insert(m, new_object, new_pindex);
696	if (m->queue - m->pc == PQ_CACHE)
697		vm_page_deactivate(m);
698	vm_page_dirty(m);
699	splx(s);
700}
701
702/*
703 *	vm_page_select_cache:
704 *
705 *	Find a page on the cache queue with color optimization.  As pages
706 *	might be found, but not applicable, they are deactivated.  This
707 *	keeps us from using potentially busy cached pages.
708 *
709 *	This routine must be called at splvm().
710 *	This routine may not block.
711 */
712static vm_page_t
713vm_page_select_cache(int color)
714{
715	vm_page_t m;
716
717	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
718	while (TRUE) {
719		m = vm_pageq_find(PQ_CACHE, color, FALSE);
720		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
721			       m->hold_count || m->wire_count ||
722			  (!VM_OBJECT_TRYLOCK(m->object) &&
723			   !VM_OBJECT_LOCKED(m->object)))) {
724			vm_page_deactivate(m);
725			continue;
726		}
727		return m;
728	}
729}
730
731/*
732 *	vm_page_alloc:
733 *
734 *	Allocate and return a memory cell associated
735 *	with this VM object/offset pair.
736 *
737 *	page_req classes:
738 *	VM_ALLOC_NORMAL		normal process request
739 *	VM_ALLOC_SYSTEM		system *really* needs a page
740 *	VM_ALLOC_INTERRUPT	interrupt time request
741 *	VM_ALLOC_ZERO		zero page
742 *
743 *	This routine may not block.
744 *
745 *	Additional special handling is required when called from an
746 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
747 *	the page cache in this case.
748 */
749vm_page_t
750vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
751{
752	vm_object_t m_object;
753	vm_page_t m = NULL;
754	int color, flags, page_req, s;
755
756	page_req = req & VM_ALLOC_CLASS_MASK;
757
758	if ((req & VM_ALLOC_NOOBJ) == 0) {
759		KASSERT(object != NULL,
760		    ("vm_page_alloc: NULL object."));
761		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
762		KASSERT(!vm_page_lookup(object, pindex),
763		    ("vm_page_alloc: page already allocated"));
764		color = (pindex + object->pg_color) & PQ_L2_MASK;
765	} else
766		color = pindex & PQ_L2_MASK;
767
768	/*
769	 * The pager is allowed to eat deeper into the free page list.
770	 */
771	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
772		page_req = VM_ALLOC_SYSTEM;
773	};
774
775	s = splvm();
776loop:
777	mtx_lock_spin(&vm_page_queue_free_mtx);
778	if (cnt.v_free_count > cnt.v_free_reserved ||
779	    (page_req == VM_ALLOC_SYSTEM &&
780	     cnt.v_cache_count == 0 &&
781	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
782	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
783		/*
784		 * Allocate from the free queue if the number of free pages
785		 * exceeds the minimum for the request class.
786		 */
787		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
788	} else if (page_req != VM_ALLOC_INTERRUPT) {
789		mtx_unlock_spin(&vm_page_queue_free_mtx);
790		/*
791		 * Allocatable from cache (non-interrupt only).  On success,
792		 * we must free the page and try again, thus ensuring that
793		 * cnt.v_*_free_min counters are replenished.
794		 */
795		vm_page_lock_queues();
796		if ((m = vm_page_select_cache(color)) == NULL) {
797			vm_page_unlock_queues();
798			splx(s);
799#if defined(DIAGNOSTIC)
800			if (cnt.v_cache_count > 0)
801				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
802#endif
803			atomic_add_int(&vm_pageout_deficit, 1);
804			pagedaemon_wakeup();
805			return (NULL);
806		}
807		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
808		m_object = m->object;
809		VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED);
810		vm_page_busy(m);
811		pmap_remove_all(m);
812		vm_page_free(m);
813		vm_page_unlock_queues();
814		if (m_object != object)
815			VM_OBJECT_UNLOCK(m_object);
816		goto loop;
817	} else {
818		/*
819		 * Not allocatable from cache from interrupt, give up.
820		 */
821		mtx_unlock_spin(&vm_page_queue_free_mtx);
822		splx(s);
823		atomic_add_int(&vm_pageout_deficit, 1);
824		pagedaemon_wakeup();
825		return (NULL);
826	}
827
828	/*
829	 *  At this point we had better have found a good page.
830	 */
831
832	KASSERT(
833	    m != NULL,
834	    ("vm_page_alloc(): missing page on free queue\n")
835	);
836
837	/*
838	 * Remove from free queue
839	 */
840
841	vm_pageq_remove_nowakeup(m);
842
843	/*
844	 * Initialize structure.  Only the PG_ZERO flag is inherited.
845	 */
846	flags = PG_BUSY;
847	if (m->flags & PG_ZERO) {
848		vm_page_zero_count--;
849		if (req & VM_ALLOC_ZERO)
850			flags = PG_ZERO | PG_BUSY;
851	}
852	m->flags = flags;
853	if (req & VM_ALLOC_WIRED) {
854		atomic_add_int(&cnt.v_wire_count, 1);
855		m->wire_count = 1;
856	} else
857		m->wire_count = 0;
858	m->hold_count = 0;
859	m->act_count = 0;
860	m->busy = 0;
861	m->valid = 0;
862	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
863	mtx_unlock_spin(&vm_page_queue_free_mtx);
864
865	/*
866	 * vm_page_insert() is safe prior to the splx().  Note also that
867	 * inserting a page here does not insert it into the pmap (which
868	 * could cause us to block allocating memory).  We cannot block
869	 * anywhere.
870	 */
871	if ((req & VM_ALLOC_NOOBJ) == 0)
872		vm_page_insert(m, object, pindex);
873	else
874		m->pindex = pindex;
875
876	/*
877	 * Don't wakeup too often - wakeup the pageout daemon when
878	 * we would be nearly out of memory.
879	 */
880	if (vm_paging_needed())
881		pagedaemon_wakeup();
882
883	splx(s);
884	return (m);
885}
886
887/*
888 *	vm_wait:	(also see VM_WAIT macro)
889 *
890 *	Block until free pages are available for allocation
891 *	- Called in various places before memory allocations.
892 */
893void
894vm_wait(void)
895{
896	int s;
897
898	s = splvm();
899	vm_page_lock_queues();
900	if (curproc == pageproc) {
901		vm_pageout_pages_needed = 1;
902		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
903		    PDROP | PSWP, "VMWait", 0);
904	} else {
905		if (!vm_pages_needed) {
906			vm_pages_needed = 1;
907			wakeup(&vm_pages_needed);
908		}
909		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
910		    "vmwait", 0);
911	}
912	splx(s);
913}
914
915/*
916 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
917 *
918 *	Block until free pages are available for allocation
919 *	- Called only in vm_fault so that processes page faulting
920 *	  can be easily tracked.
921 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
922 *	  processes will be able to grab memory first.  Do not change
923 *	  this balance without careful testing first.
924 */
925void
926vm_waitpfault(void)
927{
928	int s;
929
930	s = splvm();
931	vm_page_lock_queues();
932	if (!vm_pages_needed) {
933		vm_pages_needed = 1;
934		wakeup(&vm_pages_needed);
935	}
936	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
937	    "pfault", 0);
938	splx(s);
939}
940
941/*
942 *	vm_page_activate:
943 *
944 *	Put the specified page on the active list (if appropriate).
945 *	Ensure that act_count is at least ACT_INIT but do not otherwise
946 *	mess with it.
947 *
948 *	The page queues must be locked.
949 *	This routine may not block.
950 */
951void
952vm_page_activate(vm_page_t m)
953{
954	int s;
955
956	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
957	s = splvm();
958	if (m->queue != PQ_ACTIVE) {
959		if ((m->queue - m->pc) == PQ_CACHE)
960			cnt.v_reactivated++;
961		vm_pageq_remove(m);
962		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
963			if (m->act_count < ACT_INIT)
964				m->act_count = ACT_INIT;
965			vm_pageq_enqueue(PQ_ACTIVE, m);
966		}
967	} else {
968		if (m->act_count < ACT_INIT)
969			m->act_count = ACT_INIT;
970	}
971	splx(s);
972}
973
974/*
975 *	vm_page_free_wakeup:
976 *
977 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
978 *	routine is called when a page has been added to the cache or free
979 *	queues.
980 *
981 *	This routine may not block.
982 *	This routine must be called at splvm()
983 */
984static __inline void
985vm_page_free_wakeup(void)
986{
987
988	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
989	/*
990	 * if pageout daemon needs pages, then tell it that there are
991	 * some free.
992	 */
993	if (vm_pageout_pages_needed &&
994	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
995		wakeup(&vm_pageout_pages_needed);
996		vm_pageout_pages_needed = 0;
997	}
998	/*
999	 * wakeup processes that are waiting on memory if we hit a
1000	 * high water mark. And wakeup scheduler process if we have
1001	 * lots of memory. this process will swapin processes.
1002	 */
1003	if (vm_pages_needed && !vm_page_count_min()) {
1004		vm_pages_needed = 0;
1005		wakeup(&cnt.v_free_count);
1006	}
1007}
1008
1009/*
1010 *	vm_page_free_toq:
1011 *
1012 *	Returns the given page to the PQ_FREE list,
1013 *	disassociating it with any VM object.
1014 *
1015 *	Object and page must be locked prior to entry.
1016 *	This routine may not block.
1017 */
1018
1019void
1020vm_page_free_toq(vm_page_t m)
1021{
1022	int s;
1023	struct vpgqueues *pq;
1024	vm_object_t object = m->object;
1025
1026	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1027	s = splvm();
1028	cnt.v_tfree++;
1029
1030	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1031		printf(
1032		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1033		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1034		    m->hold_count);
1035		if ((m->queue - m->pc) == PQ_FREE)
1036			panic("vm_page_free: freeing free page");
1037		else
1038			panic("vm_page_free: freeing busy page");
1039	}
1040
1041	/*
1042	 * unqueue, then remove page.  Note that we cannot destroy
1043	 * the page here because we do not want to call the pager's
1044	 * callback routine until after we've put the page on the
1045	 * appropriate free queue.
1046	 */
1047	vm_pageq_remove_nowakeup(m);
1048	vm_page_remove(m);
1049
1050	/*
1051	 * If fictitious remove object association and
1052	 * return, otherwise delay object association removal.
1053	 */
1054	if ((m->flags & PG_FICTITIOUS) != 0) {
1055		splx(s);
1056		return;
1057	}
1058
1059	m->valid = 0;
1060	vm_page_undirty(m);
1061
1062	if (m->wire_count != 0) {
1063		if (m->wire_count > 1) {
1064			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1065				m->wire_count, (long)m->pindex);
1066		}
1067		panic("vm_page_free: freeing wired page\n");
1068	}
1069
1070	/*
1071	 * If we've exhausted the object's resident pages we want to free
1072	 * it up.
1073	 */
1074	if (object &&
1075	    (object->type == OBJT_VNODE) &&
1076	    ((object->flags & OBJ_DEAD) == 0)
1077	) {
1078		struct vnode *vp = (struct vnode *)object->handle;
1079
1080		if (vp) {
1081			VI_LOCK(vp);
1082			if (VSHOULDFREE(vp))
1083				vfree(vp);
1084			VI_UNLOCK(vp);
1085		}
1086	}
1087
1088	/*
1089	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1090	 */
1091	if (m->flags & PG_UNMANAGED) {
1092		m->flags &= ~PG_UNMANAGED;
1093	}
1094
1095	if (m->hold_count != 0) {
1096		m->flags &= ~PG_ZERO;
1097		m->queue = PQ_HOLD;
1098	} else
1099		m->queue = PQ_FREE + m->pc;
1100	pq = &vm_page_queues[m->queue];
1101	mtx_lock_spin(&vm_page_queue_free_mtx);
1102	pq->lcnt++;
1103	++(*pq->cnt);
1104
1105	/*
1106	 * Put zero'd pages on the end ( where we look for zero'd pages
1107	 * first ) and non-zerod pages at the head.
1108	 */
1109	if (m->flags & PG_ZERO) {
1110		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1111		++vm_page_zero_count;
1112	} else {
1113		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1114	}
1115	mtx_unlock_spin(&vm_page_queue_free_mtx);
1116	vm_page_free_wakeup();
1117	splx(s);
1118}
1119
1120/*
1121 *	vm_page_unmanage:
1122 *
1123 * 	Prevent PV management from being done on the page.  The page is
1124 *	removed from the paging queues as if it were wired, and as a
1125 *	consequence of no longer being managed the pageout daemon will not
1126 *	touch it (since there is no way to locate the pte mappings for the
1127 *	page).  madvise() calls that mess with the pmap will also no longer
1128 *	operate on the page.
1129 *
1130 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1131 *	will clear the flag.
1132 *
1133 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1134 *	physical memory as backing store rather then swap-backed memory and
1135 *	will eventually be extended to support 4MB unmanaged physical
1136 *	mappings.
1137 */
1138void
1139vm_page_unmanage(vm_page_t m)
1140{
1141	int s;
1142
1143	s = splvm();
1144	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1145	if ((m->flags & PG_UNMANAGED) == 0) {
1146		if (m->wire_count == 0)
1147			vm_pageq_remove(m);
1148	}
1149	vm_page_flag_set(m, PG_UNMANAGED);
1150	splx(s);
1151}
1152
1153/*
1154 *	vm_page_wire:
1155 *
1156 *	Mark this page as wired down by yet
1157 *	another map, removing it from paging queues
1158 *	as necessary.
1159 *
1160 *	The page queues must be locked.
1161 *	This routine may not block.
1162 */
1163void
1164vm_page_wire(vm_page_t m)
1165{
1166	int s;
1167
1168	/*
1169	 * Only bump the wire statistics if the page is not already wired,
1170	 * and only unqueue the page if it is on some queue (if it is unmanaged
1171	 * it is already off the queues).
1172	 */
1173	s = splvm();
1174	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1175	if (m->wire_count == 0) {
1176		if ((m->flags & PG_UNMANAGED) == 0)
1177			vm_pageq_remove(m);
1178		atomic_add_int(&cnt.v_wire_count, 1);
1179	}
1180	m->wire_count++;
1181	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1182	splx(s);
1183}
1184
1185/*
1186 *	vm_page_unwire:
1187 *
1188 *	Release one wiring of this page, potentially
1189 *	enabling it to be paged again.
1190 *
1191 *	Many pages placed on the inactive queue should actually go
1192 *	into the cache, but it is difficult to figure out which.  What
1193 *	we do instead, if the inactive target is well met, is to put
1194 *	clean pages at the head of the inactive queue instead of the tail.
1195 *	This will cause them to be moved to the cache more quickly and
1196 *	if not actively re-referenced, freed more quickly.  If we just
1197 *	stick these pages at the end of the inactive queue, heavy filesystem
1198 *	meta-data accesses can cause an unnecessary paging load on memory bound
1199 *	processes.  This optimization causes one-time-use metadata to be
1200 *	reused more quickly.
1201 *
1202 *	BUT, if we are in a low-memory situation we have no choice but to
1203 *	put clean pages on the cache queue.
1204 *
1205 *	A number of routines use vm_page_unwire() to guarantee that the page
1206 *	will go into either the inactive or active queues, and will NEVER
1207 *	be placed in the cache - for example, just after dirtying a page.
1208 *	dirty pages in the cache are not allowed.
1209 *
1210 *	The page queues must be locked.
1211 *	This routine may not block.
1212 */
1213void
1214vm_page_unwire(vm_page_t m, int activate)
1215{
1216	int s;
1217
1218	s = splvm();
1219	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1220	if (m->wire_count > 0) {
1221		m->wire_count--;
1222		if (m->wire_count == 0) {
1223			atomic_subtract_int(&cnt.v_wire_count, 1);
1224			if (m->flags & PG_UNMANAGED) {
1225				;
1226			} else if (activate)
1227				vm_pageq_enqueue(PQ_ACTIVE, m);
1228			else {
1229				vm_page_flag_clear(m, PG_WINATCFLS);
1230				vm_pageq_enqueue(PQ_INACTIVE, m);
1231			}
1232		}
1233	} else {
1234		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1235	}
1236	splx(s);
1237}
1238
1239
1240/*
1241 * Move the specified page to the inactive queue.  If the page has
1242 * any associated swap, the swap is deallocated.
1243 *
1244 * Normally athead is 0 resulting in LRU operation.  athead is set
1245 * to 1 if we want this page to be 'as if it were placed in the cache',
1246 * except without unmapping it from the process address space.
1247 *
1248 * This routine may not block.
1249 */
1250static __inline void
1251_vm_page_deactivate(vm_page_t m, int athead)
1252{
1253	int s;
1254
1255	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1256	/*
1257	 * Ignore if already inactive.
1258	 */
1259	if (m->queue == PQ_INACTIVE)
1260		return;
1261
1262	s = splvm();
1263	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1264		if ((m->queue - m->pc) == PQ_CACHE)
1265			cnt.v_reactivated++;
1266		vm_page_flag_clear(m, PG_WINATCFLS);
1267		vm_pageq_remove(m);
1268		if (athead)
1269			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1270		else
1271			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1272		m->queue = PQ_INACTIVE;
1273		vm_page_queues[PQ_INACTIVE].lcnt++;
1274		cnt.v_inactive_count++;
1275	}
1276	splx(s);
1277}
1278
1279void
1280vm_page_deactivate(vm_page_t m)
1281{
1282    _vm_page_deactivate(m, 0);
1283}
1284
1285/*
1286 * vm_page_try_to_cache:
1287 *
1288 * Returns 0 on failure, 1 on success
1289 */
1290int
1291vm_page_try_to_cache(vm_page_t m)
1292{
1293
1294	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1295	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1296	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1297		return (0);
1298	}
1299	vm_page_test_dirty(m);
1300	if (m->dirty)
1301		return (0);
1302	vm_page_cache(m);
1303	return (1);
1304}
1305
1306/*
1307 * vm_page_try_to_free()
1308 *
1309 *	Attempt to free the page.  If we cannot free it, we do nothing.
1310 *	1 is returned on success, 0 on failure.
1311 */
1312int
1313vm_page_try_to_free(vm_page_t m)
1314{
1315
1316	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1317	if (m->object != NULL)
1318		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1319	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1320	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1321		return (0);
1322	}
1323	vm_page_test_dirty(m);
1324	if (m->dirty)
1325		return (0);
1326	vm_page_busy(m);
1327	pmap_remove_all(m);
1328	vm_page_free(m);
1329	return (1);
1330}
1331
1332/*
1333 * vm_page_cache
1334 *
1335 * Put the specified page onto the page cache queue (if appropriate).
1336 *
1337 * This routine may not block.
1338 */
1339void
1340vm_page_cache(vm_page_t m)
1341{
1342	int s;
1343
1344	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1345	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1346	    m->hold_count || m->wire_count) {
1347		printf("vm_page_cache: attempting to cache busy page\n");
1348		return;
1349	}
1350	if ((m->queue - m->pc) == PQ_CACHE)
1351		return;
1352
1353	/*
1354	 * Remove all pmaps and indicate that the page is not
1355	 * writeable or mapped.
1356	 */
1357	pmap_remove_all(m);
1358	if (m->dirty != 0) {
1359		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1360			(long)m->pindex);
1361	}
1362	s = splvm();
1363	vm_pageq_remove_nowakeup(m);
1364	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1365	vm_page_free_wakeup();
1366	splx(s);
1367}
1368
1369/*
1370 * vm_page_dontneed
1371 *
1372 *	Cache, deactivate, or do nothing as appropriate.  This routine
1373 *	is typically used by madvise() MADV_DONTNEED.
1374 *
1375 *	Generally speaking we want to move the page into the cache so
1376 *	it gets reused quickly.  However, this can result in a silly syndrome
1377 *	due to the page recycling too quickly.  Small objects will not be
1378 *	fully cached.  On the otherhand, if we move the page to the inactive
1379 *	queue we wind up with a problem whereby very large objects
1380 *	unnecessarily blow away our inactive and cache queues.
1381 *
1382 *	The solution is to move the pages based on a fixed weighting.  We
1383 *	either leave them alone, deactivate them, or move them to the cache,
1384 *	where moving them to the cache has the highest weighting.
1385 *	By forcing some pages into other queues we eventually force the
1386 *	system to balance the queues, potentially recovering other unrelated
1387 *	space from active.  The idea is to not force this to happen too
1388 *	often.
1389 */
1390void
1391vm_page_dontneed(vm_page_t m)
1392{
1393	static int dnweight;
1394	int dnw;
1395	int head;
1396
1397	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1398	dnw = ++dnweight;
1399
1400	/*
1401	 * occassionally leave the page alone
1402	 */
1403	if ((dnw & 0x01F0) == 0 ||
1404	    m->queue == PQ_INACTIVE ||
1405	    m->queue - m->pc == PQ_CACHE
1406	) {
1407		if (m->act_count >= ACT_INIT)
1408			--m->act_count;
1409		return;
1410	}
1411
1412	if (m->dirty == 0)
1413		vm_page_test_dirty(m);
1414
1415	if (m->dirty || (dnw & 0x0070) == 0) {
1416		/*
1417		 * Deactivate the page 3 times out of 32.
1418		 */
1419		head = 0;
1420	} else {
1421		/*
1422		 * Cache the page 28 times out of every 32.  Note that
1423		 * the page is deactivated instead of cached, but placed
1424		 * at the head of the queue instead of the tail.
1425		 */
1426		head = 1;
1427	}
1428	_vm_page_deactivate(m, head);
1429}
1430
1431/*
1432 * Grab a page, waiting until we are waken up due to the page
1433 * changing state.  We keep on waiting, if the page continues
1434 * to be in the object.  If the page doesn't exist, allocate it.
1435 *
1436 * This routine may block.
1437 */
1438vm_page_t
1439vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1440{
1441	vm_page_t m;
1442	int s, generation;
1443
1444	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1445retrylookup:
1446	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1447		vm_page_lock_queues();
1448		if (m->busy || (m->flags & PG_BUSY)) {
1449			generation = object->generation;
1450
1451			s = splvm();
1452			while ((object->generation == generation) &&
1453					(m->busy || (m->flags & PG_BUSY))) {
1454				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1455				VM_OBJECT_UNLOCK(object);
1456				msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1457				VM_OBJECT_LOCK(object);
1458				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1459					splx(s);
1460					return NULL;
1461				}
1462				vm_page_lock_queues();
1463			}
1464			vm_page_unlock_queues();
1465			splx(s);
1466			goto retrylookup;
1467		} else {
1468			if (allocflags & VM_ALLOC_WIRED)
1469				vm_page_wire(m);
1470			vm_page_busy(m);
1471			vm_page_unlock_queues();
1472			return m;
1473		}
1474	}
1475
1476	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1477	if (m == NULL) {
1478		VM_OBJECT_UNLOCK(object);
1479		VM_WAIT;
1480		VM_OBJECT_LOCK(object);
1481		if ((allocflags & VM_ALLOC_RETRY) == 0)
1482			return NULL;
1483		goto retrylookup;
1484	}
1485
1486	return m;
1487}
1488
1489/*
1490 * Mapping function for valid bits or for dirty bits in
1491 * a page.  May not block.
1492 *
1493 * Inputs are required to range within a page.
1494 */
1495__inline int
1496vm_page_bits(int base, int size)
1497{
1498	int first_bit;
1499	int last_bit;
1500
1501	KASSERT(
1502	    base + size <= PAGE_SIZE,
1503	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1504	);
1505
1506	if (size == 0)		/* handle degenerate case */
1507		return (0);
1508
1509	first_bit = base >> DEV_BSHIFT;
1510	last_bit = (base + size - 1) >> DEV_BSHIFT;
1511
1512	return ((2 << last_bit) - (1 << first_bit));
1513}
1514
1515/*
1516 *	vm_page_set_validclean:
1517 *
1518 *	Sets portions of a page valid and clean.  The arguments are expected
1519 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1520 *	of any partial chunks touched by the range.  The invalid portion of
1521 *	such chunks will be zero'd.
1522 *
1523 *	This routine may not block.
1524 *
1525 *	(base + size) must be less then or equal to PAGE_SIZE.
1526 */
1527void
1528vm_page_set_validclean(vm_page_t m, int base, int size)
1529{
1530	int pagebits;
1531	int frag;
1532	int endoff;
1533
1534	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1535	if (size == 0)	/* handle degenerate case */
1536		return;
1537
1538	/*
1539	 * If the base is not DEV_BSIZE aligned and the valid
1540	 * bit is clear, we have to zero out a portion of the
1541	 * first block.
1542	 */
1543	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1544	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1545		pmap_zero_page_area(m, frag, base - frag);
1546
1547	/*
1548	 * If the ending offset is not DEV_BSIZE aligned and the
1549	 * valid bit is clear, we have to zero out a portion of
1550	 * the last block.
1551	 */
1552	endoff = base + size;
1553	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1554	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1555		pmap_zero_page_area(m, endoff,
1556		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1557
1558	/*
1559	 * Set valid, clear dirty bits.  If validating the entire
1560	 * page we can safely clear the pmap modify bit.  We also
1561	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1562	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1563	 * be set again.
1564	 *
1565	 * We set valid bits inclusive of any overlap, but we can only
1566	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1567	 * the range.
1568	 */
1569	pagebits = vm_page_bits(base, size);
1570	m->valid |= pagebits;
1571#if 0	/* NOT YET */
1572	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1573		frag = DEV_BSIZE - frag;
1574		base += frag;
1575		size -= frag;
1576		if (size < 0)
1577			size = 0;
1578	}
1579	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1580#endif
1581	m->dirty &= ~pagebits;
1582	if (base == 0 && size == PAGE_SIZE) {
1583		pmap_clear_modify(m);
1584		vm_page_flag_clear(m, PG_NOSYNC);
1585	}
1586}
1587
1588#if 0
1589
1590void
1591vm_page_set_dirty(vm_page_t m, int base, int size)
1592{
1593	m->dirty |= vm_page_bits(base, size);
1594}
1595
1596#endif
1597
1598void
1599vm_page_clear_dirty(vm_page_t m, int base, int size)
1600{
1601
1602	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1603	m->dirty &= ~vm_page_bits(base, size);
1604}
1605
1606/*
1607 *	vm_page_set_invalid:
1608 *
1609 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1610 *	valid and dirty bits for the effected areas are cleared.
1611 *
1612 *	May not block.
1613 */
1614void
1615vm_page_set_invalid(vm_page_t m, int base, int size)
1616{
1617	int bits;
1618
1619	bits = vm_page_bits(base, size);
1620	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1621	m->valid &= ~bits;
1622	m->dirty &= ~bits;
1623	m->object->generation++;
1624}
1625
1626/*
1627 * vm_page_zero_invalid()
1628 *
1629 *	The kernel assumes that the invalid portions of a page contain
1630 *	garbage, but such pages can be mapped into memory by user code.
1631 *	When this occurs, we must zero out the non-valid portions of the
1632 *	page so user code sees what it expects.
1633 *
1634 *	Pages are most often semi-valid when the end of a file is mapped
1635 *	into memory and the file's size is not page aligned.
1636 */
1637void
1638vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1639{
1640	int b;
1641	int i;
1642
1643	/*
1644	 * Scan the valid bits looking for invalid sections that
1645	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1646	 * valid bit may be set ) have already been zerod by
1647	 * vm_page_set_validclean().
1648	 */
1649	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1650		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1651		    (m->valid & (1 << i))
1652		) {
1653			if (i > b) {
1654				pmap_zero_page_area(m,
1655				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1656			}
1657			b = i + 1;
1658		}
1659	}
1660
1661	/*
1662	 * setvalid is TRUE when we can safely set the zero'd areas
1663	 * as being valid.  We can do this if there are no cache consistancy
1664	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1665	 */
1666	if (setvalid)
1667		m->valid = VM_PAGE_BITS_ALL;
1668}
1669
1670/*
1671 *	vm_page_is_valid:
1672 *
1673 *	Is (partial) page valid?  Note that the case where size == 0
1674 *	will return FALSE in the degenerate case where the page is
1675 *	entirely invalid, and TRUE otherwise.
1676 *
1677 *	May not block.
1678 */
1679int
1680vm_page_is_valid(vm_page_t m, int base, int size)
1681{
1682	int bits = vm_page_bits(base, size);
1683
1684	if (m->valid && ((m->valid & bits) == bits))
1685		return 1;
1686	else
1687		return 0;
1688}
1689
1690/*
1691 * update dirty bits from pmap/mmu.  May not block.
1692 */
1693void
1694vm_page_test_dirty(vm_page_t m)
1695{
1696	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1697		vm_page_dirty(m);
1698	}
1699}
1700
1701int so_zerocp_fullpage = 0;
1702
1703void
1704vm_page_cowfault(vm_page_t m)
1705{
1706	vm_page_t mnew;
1707	vm_object_t object;
1708	vm_pindex_t pindex;
1709
1710	object = m->object;
1711	pindex = m->pindex;
1712	vm_page_busy(m);
1713
1714 retry_alloc:
1715	vm_page_remove(m);
1716	/*
1717	 * An interrupt allocation is requested because the page
1718	 * queues lock is held.
1719	 */
1720	mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT);
1721	if (mnew == NULL) {
1722		vm_page_insert(m, object, pindex);
1723		vm_page_unlock_queues();
1724		VM_OBJECT_UNLOCK(object);
1725		VM_WAIT;
1726		VM_OBJECT_LOCK(object);
1727		vm_page_lock_queues();
1728		goto retry_alloc;
1729	}
1730
1731	if (m->cow == 0) {
1732		/*
1733		 * check to see if we raced with an xmit complete when
1734		 * waiting to allocate a page.  If so, put things back
1735		 * the way they were
1736		 */
1737		vm_page_busy(mnew);
1738		vm_page_free(mnew);
1739		vm_page_insert(m, object, pindex);
1740	} else { /* clear COW & copy page */
1741		if (so_zerocp_fullpage) {
1742			mnew->valid = VM_PAGE_BITS_ALL;
1743		} else {
1744			vm_page_copy(m, mnew);
1745		}
1746		vm_page_dirty(mnew);
1747		vm_page_flag_clear(mnew, PG_BUSY);
1748	}
1749}
1750
1751void
1752vm_page_cowclear(vm_page_t m)
1753{
1754
1755	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1756	if (m->cow) {
1757		m->cow--;
1758		/*
1759		 * let vm_fault add back write permission  lazily
1760		 */
1761	}
1762	/*
1763	 *  sf_buf_free() will free the page, so we needn't do it here
1764	 */
1765}
1766
1767void
1768vm_page_cowsetup(vm_page_t m)
1769{
1770
1771	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1772	m->cow++;
1773	pmap_page_protect(m, VM_PROT_READ);
1774}
1775
1776#include "opt_ddb.h"
1777#ifdef DDB
1778#include <sys/kernel.h>
1779
1780#include <ddb/ddb.h>
1781
1782DB_SHOW_COMMAND(page, vm_page_print_page_info)
1783{
1784	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1785	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1786	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1787	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1788	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1789	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1790	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1791	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1792	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1793	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1794}
1795
1796DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1797{
1798	int i;
1799	db_printf("PQ_FREE:");
1800	for (i = 0; i < PQ_L2_SIZE; i++) {
1801		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1802	}
1803	db_printf("\n");
1804
1805	db_printf("PQ_CACHE:");
1806	for (i = 0; i < PQ_L2_SIZE; i++) {
1807		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1808	}
1809	db_printf("\n");
1810
1811	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1812		vm_page_queues[PQ_ACTIVE].lcnt,
1813		vm_page_queues[PQ_INACTIVE].lcnt);
1814}
1815#endif /* DDB */
1816