vm_page.c revision 116226
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37 */
38
39/*
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44 *
45 * Permission to use, copy, modify and distribute this software and
46 * its documentation is hereby granted, provided that both the copyright
47 * notice and this permission notice appear in all copies of the
48 * software, derivative works or modified versions, and any portions
49 * thereof, and that both notices appear in supporting documentation.
50 *
51 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
52 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
53 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54 *
55 * Carnegie Mellon requests users of this software to return to
56 *
57 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
58 *  School of Computer Science
59 *  Carnegie Mellon University
60 *  Pittsburgh PA 15213-3890
61 *
62 * any improvements or extensions that they make and grant Carnegie the
63 * rights to redistribute these changes.
64 */
65
66/*
67 *			GENERAL RULES ON VM_PAGE MANIPULATION
68 *
69 *	- a pageq mutex is required when adding or removing a page from a
70 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
71 *	  busy state of a page.
72 *
73 *	- a hash chain mutex is required when associating or disassociating
74 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
75 *	  regardless of other mutexes or the busy state of a page.
76 *
77 *	- either a hash chain mutex OR a busied page is required in order
78 *	  to modify the page flags.  A hash chain mutex must be obtained in
79 *	  order to busy a page.  A page's flags cannot be modified by a
80 *	  hash chain mutex if the page is marked busy.
81 *
82 *	- The object memq mutex is held when inserting or removing
83 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
84 *	  is different from the object's main mutex.
85 *
86 *	Generally speaking, you have to be aware of side effects when running
87 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
88 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
89 *	vm_page_cache(), vm_page_activate(), and a number of other routines
90 *	will release the hash chain mutex for you.  Intermediate manipulation
91 *	routines such as vm_page_flag_set() expect the hash chain to be held
92 *	on entry and the hash chain will remain held on return.
93 *
94 *	pageq scanning can only occur with the pageq in question locked.
95 *	We have a known bottleneck with the active queue, but the cache
96 *	and free queues are actually arrays already.
97 */
98
99/*
100 *	Resident memory management module.
101 */
102
103#include <sys/cdefs.h>
104__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 116226 2003-06-11 23:50:51Z obrien $");
105
106#include <sys/param.h>
107#include <sys/systm.h>
108#include <sys/lock.h>
109#include <sys/malloc.h>
110#include <sys/mutex.h>
111#include <sys/proc.h>
112#include <sys/vmmeter.h>
113#include <sys/vnode.h>
114
115#include <vm/vm.h>
116#include <vm/vm_param.h>
117#include <vm/vm_kern.h>
118#include <vm/vm_object.h>
119#include <vm/vm_page.h>
120#include <vm/vm_pageout.h>
121#include <vm/vm_pager.h>
122#include <vm/vm_extern.h>
123#include <vm/uma.h>
124#include <vm/uma_int.h>
125
126/*
127 *	Associated with page of user-allocatable memory is a
128 *	page structure.
129 */
130
131struct mtx vm_page_queue_mtx;
132struct mtx vm_page_queue_free_mtx;
133
134vm_page_t vm_page_array = 0;
135int vm_page_array_size = 0;
136long first_page = 0;
137int vm_page_zero_count = 0;
138
139/*
140 *	vm_set_page_size:
141 *
142 *	Sets the page size, perhaps based upon the memory
143 *	size.  Must be called before any use of page-size
144 *	dependent functions.
145 */
146void
147vm_set_page_size(void)
148{
149	if (cnt.v_page_size == 0)
150		cnt.v_page_size = PAGE_SIZE;
151	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
152		panic("vm_set_page_size: page size not a power of two");
153}
154
155/*
156 *	vm_page_startup:
157 *
158 *	Initializes the resident memory module.
159 *
160 *	Allocates memory for the page cells, and
161 *	for the object/offset-to-page hash table headers.
162 *	Each page cell is initialized and placed on the free list.
163 */
164vm_offset_t
165vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
166{
167	vm_offset_t mapped;
168	vm_size_t npages;
169	vm_paddr_t page_range;
170	vm_paddr_t new_end;
171	int i;
172	vm_paddr_t pa;
173	int nblocks;
174	vm_paddr_t last_pa;
175
176	/* the biggest memory array is the second group of pages */
177	vm_paddr_t end;
178	vm_paddr_t biggestsize;
179	int biggestone;
180
181	vm_paddr_t total;
182	vm_size_t bootpages;
183
184	total = 0;
185	biggestsize = 0;
186	biggestone = 0;
187	nblocks = 0;
188	vaddr = round_page(vaddr);
189
190	for (i = 0; phys_avail[i + 1]; i += 2) {
191		phys_avail[i] = round_page(phys_avail[i]);
192		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
193	}
194
195	for (i = 0; phys_avail[i + 1]; i += 2) {
196		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
197
198		if (size > biggestsize) {
199			biggestone = i;
200			biggestsize = size;
201		}
202		++nblocks;
203		total += size;
204	}
205
206	end = phys_avail[biggestone+1];
207
208	/*
209	 * Initialize the locks.
210	 */
211	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
212	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
213	   MTX_SPIN);
214
215	/*
216	 * Initialize the queue headers for the free queue, the active queue
217	 * and the inactive queue.
218	 */
219	vm_pageq_init();
220
221	/*
222	 * Allocate memory for use when boot strapping the kernel memory
223	 * allocator.
224	 */
225	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
226	new_end = end - bootpages;
227	new_end = trunc_page(new_end);
228	mapped = pmap_map(&vaddr, new_end, end,
229	    VM_PROT_READ | VM_PROT_WRITE);
230	bzero((caddr_t) mapped, end - new_end);
231	uma_startup((caddr_t)mapped);
232
233	/*
234	 * Compute the number of pages of memory that will be available for
235	 * use (taking into account the overhead of a page structure per
236	 * page).
237	 */
238	first_page = phys_avail[0] / PAGE_SIZE;
239	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
240	npages = (total - (page_range * sizeof(struct vm_page)) -
241	    (end - new_end)) / PAGE_SIZE;
242	end = new_end;
243
244	/*
245	 * Initialize the mem entry structures now, and put them in the free
246	 * queue.
247	 */
248	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
249	mapped = pmap_map(&vaddr, new_end, end,
250	    VM_PROT_READ | VM_PROT_WRITE);
251	vm_page_array = (vm_page_t) mapped;
252	phys_avail[biggestone + 1] = new_end;
253
254	/*
255	 * Clear all of the page structures
256	 */
257	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
258	vm_page_array_size = page_range;
259
260	/*
261	 * Construct the free queue(s) in descending order (by physical
262	 * address) so that the first 16MB of physical memory is allocated
263	 * last rather than first.  On large-memory machines, this avoids
264	 * the exhaustion of low physical memory before isa_dmainit has run.
265	 */
266	cnt.v_page_count = 0;
267	cnt.v_free_count = 0;
268	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
269		pa = phys_avail[i];
270		last_pa = phys_avail[i + 1];
271		while (pa < last_pa && npages-- > 0) {
272			vm_pageq_add_new_page(pa);
273			pa += PAGE_SIZE;
274		}
275	}
276	return (vaddr);
277}
278
279void
280vm_page_flag_set(vm_page_t m, unsigned short bits)
281{
282
283	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
284	m->flags |= bits;
285}
286
287void
288vm_page_flag_clear(vm_page_t m, unsigned short bits)
289{
290
291	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
292	m->flags &= ~bits;
293}
294
295void
296vm_page_busy(vm_page_t m)
297{
298	KASSERT((m->flags & PG_BUSY) == 0,
299	    ("vm_page_busy: page already busy!!!"));
300	vm_page_flag_set(m, PG_BUSY);
301}
302
303/*
304 *      vm_page_flash:
305 *
306 *      wakeup anyone waiting for the page.
307 */
308void
309vm_page_flash(vm_page_t m)
310{
311	if (m->flags & PG_WANTED) {
312		vm_page_flag_clear(m, PG_WANTED);
313		wakeup(m);
314	}
315}
316
317/*
318 *      vm_page_wakeup:
319 *
320 *      clear the PG_BUSY flag and wakeup anyone waiting for the
321 *      page.
322 *
323 */
324void
325vm_page_wakeup(vm_page_t m)
326{
327	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
328	vm_page_flag_clear(m, PG_BUSY);
329	vm_page_flash(m);
330}
331
332void
333vm_page_io_start(vm_page_t m)
334{
335
336	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
337	m->busy++;
338}
339
340void
341vm_page_io_finish(vm_page_t m)
342{
343
344	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
345	m->busy--;
346	if (m->busy == 0)
347		vm_page_flash(m);
348}
349
350/*
351 * Keep page from being freed by the page daemon
352 * much of the same effect as wiring, except much lower
353 * overhead and should be used only for *very* temporary
354 * holding ("wiring").
355 */
356void
357vm_page_hold(vm_page_t mem)
358{
359
360	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
361        mem->hold_count++;
362}
363
364void
365vm_page_unhold(vm_page_t mem)
366{
367
368	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
369	--mem->hold_count;
370	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
371	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
372		vm_page_free_toq(mem);
373}
374
375/*
376 *	vm_page_copy:
377 *
378 *	Copy one page to another
379 */
380void
381vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
382{
383	pmap_copy_page(src_m, dest_m);
384	dest_m->valid = VM_PAGE_BITS_ALL;
385}
386
387/*
388 *	vm_page_free:
389 *
390 *	Free a page
391 *
392 *	The clearing of PG_ZERO is a temporary safety until the code can be
393 *	reviewed to determine that PG_ZERO is being properly cleared on
394 *	write faults or maps.  PG_ZERO was previously cleared in
395 *	vm_page_alloc().
396 */
397void
398vm_page_free(vm_page_t m)
399{
400	vm_page_flag_clear(m, PG_ZERO);
401	vm_page_free_toq(m);
402	vm_page_zero_idle_wakeup();
403}
404
405/*
406 *	vm_page_free_zero:
407 *
408 *	Free a page to the zerod-pages queue
409 */
410void
411vm_page_free_zero(vm_page_t m)
412{
413	vm_page_flag_set(m, PG_ZERO);
414	vm_page_free_toq(m);
415}
416
417/*
418 *	vm_page_sleep_if_busy:
419 *
420 *	Sleep and release the page queues lock if PG_BUSY is set or,
421 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
422 *	thread slept and the page queues lock was released.
423 *	Otherwise, retains the page queues lock and returns FALSE.
424 */
425int
426vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
427{
428	int is_object_locked;
429
430	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
431	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
432		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
433		/*
434		 * Remove mtx_owned() after vm_object locking is finished.
435		 */
436		if ((is_object_locked = m->object != NULL &&
437		     mtx_owned(&m->object->mtx)))
438			mtx_unlock(&m->object->mtx);
439		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
440		if (is_object_locked)
441			mtx_lock(&m->object->mtx);
442		return (TRUE);
443	}
444	return (FALSE);
445}
446
447/*
448 *	vm_page_dirty:
449 *
450 *	make page all dirty
451 */
452void
453vm_page_dirty(vm_page_t m)
454{
455	KASSERT(m->queue - m->pc != PQ_CACHE,
456	    ("vm_page_dirty: page in cache!"));
457	KASSERT(m->queue - m->pc != PQ_FREE,
458	    ("vm_page_dirty: page is free!"));
459	m->dirty = VM_PAGE_BITS_ALL;
460}
461
462/*
463 *	vm_page_splay:
464 *
465 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
466 *	the vm_page containing the given pindex.  If, however, that
467 *	pindex is not found in the vm_object, returns a vm_page that is
468 *	adjacent to the pindex, coming before or after it.
469 */
470vm_page_t
471vm_page_splay(vm_pindex_t pindex, vm_page_t root)
472{
473	struct vm_page dummy;
474	vm_page_t lefttreemax, righttreemin, y;
475
476	if (root == NULL)
477		return (root);
478	lefttreemax = righttreemin = &dummy;
479	for (;; root = y) {
480		if (pindex < root->pindex) {
481			if ((y = root->left) == NULL)
482				break;
483			if (pindex < y->pindex) {
484				/* Rotate right. */
485				root->left = y->right;
486				y->right = root;
487				root = y;
488				if ((y = root->left) == NULL)
489					break;
490			}
491			/* Link into the new root's right tree. */
492			righttreemin->left = root;
493			righttreemin = root;
494		} else if (pindex > root->pindex) {
495			if ((y = root->right) == NULL)
496				break;
497			if (pindex > y->pindex) {
498				/* Rotate left. */
499				root->right = y->left;
500				y->left = root;
501				root = y;
502				if ((y = root->right) == NULL)
503					break;
504			}
505			/* Link into the new root's left tree. */
506			lefttreemax->right = root;
507			lefttreemax = root;
508		} else
509			break;
510	}
511	/* Assemble the new root. */
512	lefttreemax->right = root->left;
513	righttreemin->left = root->right;
514	root->left = dummy.right;
515	root->right = dummy.left;
516	return (root);
517}
518
519/*
520 *	vm_page_insert:		[ internal use only ]
521 *
522 *	Inserts the given mem entry into the object and object list.
523 *
524 *	The pagetables are not updated but will presumably fault the page
525 *	in if necessary, or if a kernel page the caller will at some point
526 *	enter the page into the kernel's pmap.  We are not allowed to block
527 *	here so we *can't* do this anyway.
528 *
529 *	The object and page must be locked, and must be splhigh.
530 *	This routine may not block.
531 */
532void
533vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
534{
535	vm_page_t root;
536
537	if (!VM_OBJECT_LOCKED(object))
538		GIANT_REQUIRED;
539	if (m->object != NULL)
540		panic("vm_page_insert: already inserted");
541
542	/*
543	 * Record the object/offset pair in this page
544	 */
545	m->object = object;
546	m->pindex = pindex;
547
548	/*
549	 * Now link into the object's ordered list of backed pages.
550	 */
551	root = object->root;
552	if (root == NULL) {
553		m->left = NULL;
554		m->right = NULL;
555		TAILQ_INSERT_TAIL(&object->memq, m, listq);
556	} else {
557		root = vm_page_splay(pindex, root);
558		if (pindex < root->pindex) {
559			m->left = root->left;
560			m->right = root;
561			root->left = NULL;
562			TAILQ_INSERT_BEFORE(root, m, listq);
563		} else {
564			m->right = root->right;
565			m->left = root;
566			root->right = NULL;
567			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
568		}
569	}
570	object->root = m;
571	object->generation++;
572
573	/*
574	 * show that the object has one more resident page.
575	 */
576	object->resident_page_count++;
577
578	/*
579	 * Since we are inserting a new and possibly dirty page,
580	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
581	 */
582	if (m->flags & PG_WRITEABLE)
583		vm_object_set_writeable_dirty(object);
584}
585
586/*
587 *	vm_page_remove:
588 *				NOTE: used by device pager as well -wfj
589 *
590 *	Removes the given mem entry from the object/offset-page
591 *	table and the object page list, but do not invalidate/terminate
592 *	the backing store.
593 *
594 *	The object and page must be locked, and at splhigh.
595 *	The underlying pmap entry (if any) is NOT removed here.
596 *	This routine may not block.
597 */
598void
599vm_page_remove(vm_page_t m)
600{
601	vm_object_t object;
602	vm_page_t root;
603
604	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
605	if (m->object == NULL)
606		return;
607	if (!VM_OBJECT_LOCKED(m->object))
608		GIANT_REQUIRED;
609	if ((m->flags & PG_BUSY) == 0) {
610		panic("vm_page_remove: page not busy");
611	}
612
613	/*
614	 * Basically destroy the page.
615	 */
616	vm_page_wakeup(m);
617
618	object = m->object;
619
620	/*
621	 * Now remove from the object's list of backed pages.
622	 */
623	if (m != object->root)
624		vm_page_splay(m->pindex, object->root);
625	if (m->left == NULL)
626		root = m->right;
627	else {
628		root = vm_page_splay(m->pindex, m->left);
629		root->right = m->right;
630	}
631	object->root = root;
632	TAILQ_REMOVE(&object->memq, m, listq);
633
634	/*
635	 * And show that the object has one fewer resident page.
636	 */
637	object->resident_page_count--;
638	object->generation++;
639
640	m->object = NULL;
641}
642
643/*
644 *	vm_page_lookup:
645 *
646 *	Returns the page associated with the object/offset
647 *	pair specified; if none is found, NULL is returned.
648 *
649 *	The object must be locked.
650 *	This routine may not block.
651 *	This is a critical path routine
652 */
653vm_page_t
654vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
655{
656	vm_page_t m;
657
658	if (!VM_OBJECT_LOCKED(object))
659		GIANT_REQUIRED;
660	m = vm_page_splay(pindex, object->root);
661	if ((object->root = m) != NULL && m->pindex != pindex)
662		m = NULL;
663	return (m);
664}
665
666/*
667 *	vm_page_rename:
668 *
669 *	Move the given memory entry from its
670 *	current object to the specified target object/offset.
671 *
672 *	The object must be locked.
673 *	This routine may not block.
674 *
675 *	Note: this routine will raise itself to splvm(), the caller need not.
676 *
677 *	Note: swap associated with the page must be invalidated by the move.  We
678 *	      have to do this for several reasons:  (1) we aren't freeing the
679 *	      page, (2) we are dirtying the page, (3) the VM system is probably
680 *	      moving the page from object A to B, and will then later move
681 *	      the backing store from A to B and we can't have a conflict.
682 *
683 *	Note: we *always* dirty the page.  It is necessary both for the
684 *	      fact that we moved it, and because we may be invalidating
685 *	      swap.  If the page is on the cache, we have to deactivate it
686 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
687 *	      on the cache.
688 */
689void
690vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
691{
692	int s;
693
694	s = splvm();
695	vm_page_remove(m);
696	vm_page_insert(m, new_object, new_pindex);
697	if (m->queue - m->pc == PQ_CACHE)
698		vm_page_deactivate(m);
699	vm_page_dirty(m);
700	splx(s);
701}
702
703/*
704 *	vm_page_select_cache:
705 *
706 *	Find a page on the cache queue with color optimization.  As pages
707 *	might be found, but not applicable, they are deactivated.  This
708 *	keeps us from using potentially busy cached pages.
709 *
710 *	This routine must be called at splvm().
711 *	This routine may not block.
712 */
713static vm_page_t
714vm_page_select_cache(vm_pindex_t color)
715{
716	vm_page_t m;
717
718	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
719	while (TRUE) {
720		m = vm_pageq_find(PQ_CACHE, color & PQ_L2_MASK, FALSE);
721		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
722			       m->hold_count || m->wire_count)) {
723			vm_page_deactivate(m);
724			continue;
725		}
726		return m;
727	}
728}
729
730/*
731 *	vm_page_select_free:
732 *
733 *	Find a free or zero page, with specified preference.
734 *
735 *	This routine must be called at splvm().
736 *	This routine may not block.
737 */
738static __inline vm_page_t
739vm_page_select_free(vm_pindex_t color, boolean_t prefer_zero)
740{
741	vm_page_t m;
742
743	m = vm_pageq_find(PQ_FREE, color & PQ_L2_MASK, prefer_zero);
744	return (m);
745}
746
747/*
748 *	vm_page_alloc:
749 *
750 *	Allocate and return a memory cell associated
751 *	with this VM object/offset pair.
752 *
753 *	page_req classes:
754 *	VM_ALLOC_NORMAL		normal process request
755 *	VM_ALLOC_SYSTEM		system *really* needs a page
756 *	VM_ALLOC_INTERRUPT	interrupt time request
757 *	VM_ALLOC_ZERO		zero page
758 *
759 *	This routine may not block.
760 *
761 *	Additional special handling is required when called from an
762 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
763 *	the page cache in this case.
764 */
765vm_page_t
766vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
767{
768	vm_page_t m = NULL;
769	vm_pindex_t color;
770	int flags, page_req, s;
771
772	page_req = req & VM_ALLOC_CLASS_MASK;
773
774	if ((req & VM_ALLOC_NOOBJ) == 0) {
775		KASSERT(object != NULL,
776		    ("vm_page_alloc: NULL object."));
777		KASSERT(!vm_page_lookup(object, pindex),
778		    ("vm_page_alloc: page already allocated"));
779		color = pindex + object->pg_color;
780	} else
781		color = pindex;
782
783	/*
784	 * The pager is allowed to eat deeper into the free page list.
785	 */
786	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
787		page_req = VM_ALLOC_SYSTEM;
788	};
789
790	s = splvm();
791loop:
792	mtx_lock_spin(&vm_page_queue_free_mtx);
793	if (cnt.v_free_count > cnt.v_free_reserved ||
794	    (page_req == VM_ALLOC_SYSTEM &&
795	     cnt.v_cache_count == 0 &&
796	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
797	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
798		/*
799		 * Allocate from the free queue if the number of free pages
800		 * exceeds the minimum for the request class.
801		 */
802		m = vm_page_select_free(color, (req & VM_ALLOC_ZERO) != 0);
803	} else if (page_req != VM_ALLOC_INTERRUPT) {
804		mtx_unlock_spin(&vm_page_queue_free_mtx);
805		/*
806		 * Allocatable from cache (non-interrupt only).  On success,
807		 * we must free the page and try again, thus ensuring that
808		 * cnt.v_*_free_min counters are replenished.
809		 */
810		vm_page_lock_queues();
811		if ((m = vm_page_select_cache(color)) == NULL) {
812			vm_page_unlock_queues();
813			splx(s);
814#if defined(DIAGNOSTIC)
815			if (cnt.v_cache_count > 0)
816				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
817#endif
818			atomic_add_int(&vm_pageout_deficit, 1);
819			pagedaemon_wakeup();
820			return (NULL);
821		}
822		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
823		vm_page_busy(m);
824		pmap_remove_all(m);
825		vm_page_free(m);
826		vm_page_unlock_queues();
827		goto loop;
828	} else {
829		/*
830		 * Not allocatable from cache from interrupt, give up.
831		 */
832		mtx_unlock_spin(&vm_page_queue_free_mtx);
833		splx(s);
834		atomic_add_int(&vm_pageout_deficit, 1);
835		pagedaemon_wakeup();
836		return (NULL);
837	}
838
839	/*
840	 *  At this point we had better have found a good page.
841	 */
842
843	KASSERT(
844	    m != NULL,
845	    ("vm_page_alloc(): missing page on free queue\n")
846	);
847
848	/*
849	 * Remove from free queue
850	 */
851
852	vm_pageq_remove_nowakeup(m);
853
854	/*
855	 * Initialize structure.  Only the PG_ZERO flag is inherited.
856	 */
857	flags = PG_BUSY;
858	if (m->flags & PG_ZERO) {
859		vm_page_zero_count--;
860		if (req & VM_ALLOC_ZERO)
861			flags = PG_ZERO | PG_BUSY;
862	}
863	m->flags = flags;
864	if (req & VM_ALLOC_WIRED) {
865		atomic_add_int(&cnt.v_wire_count, 1);
866		m->wire_count = 1;
867	} else
868		m->wire_count = 0;
869	m->hold_count = 0;
870	m->act_count = 0;
871	m->busy = 0;
872	m->valid = 0;
873	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
874	mtx_unlock_spin(&vm_page_queue_free_mtx);
875
876	/*
877	 * vm_page_insert() is safe prior to the splx().  Note also that
878	 * inserting a page here does not insert it into the pmap (which
879	 * could cause us to block allocating memory).  We cannot block
880	 * anywhere.
881	 */
882	if ((req & VM_ALLOC_NOOBJ) == 0)
883		vm_page_insert(m, object, pindex);
884
885	/*
886	 * Don't wakeup too often - wakeup the pageout daemon when
887	 * we would be nearly out of memory.
888	 */
889	if (vm_paging_needed())
890		pagedaemon_wakeup();
891
892	splx(s);
893	return (m);
894}
895
896/*
897 *	vm_wait:	(also see VM_WAIT macro)
898 *
899 *	Block until free pages are available for allocation
900 *	- Called in various places before memory allocations.
901 */
902void
903vm_wait(void)
904{
905	int s;
906
907	s = splvm();
908	vm_page_lock_queues();
909	if (curproc == pageproc) {
910		vm_pageout_pages_needed = 1;
911		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
912		    PDROP | PSWP, "VMWait", 0);
913	} else {
914		if (!vm_pages_needed) {
915			vm_pages_needed = 1;
916			wakeup(&vm_pages_needed);
917		}
918		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
919		    "vmwait", 0);
920	}
921	splx(s);
922}
923
924/*
925 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
926 *
927 *	Block until free pages are available for allocation
928 *	- Called only in vm_fault so that processes page faulting
929 *	  can be easily tracked.
930 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
931 *	  processes will be able to grab memory first.  Do not change
932 *	  this balance without careful testing first.
933 */
934void
935vm_waitpfault(void)
936{
937	int s;
938
939	s = splvm();
940	vm_page_lock_queues();
941	if (!vm_pages_needed) {
942		vm_pages_needed = 1;
943		wakeup(&vm_pages_needed);
944	}
945	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
946	    "pfault", 0);
947	splx(s);
948}
949
950/*
951 *	vm_page_activate:
952 *
953 *	Put the specified page on the active list (if appropriate).
954 *	Ensure that act_count is at least ACT_INIT but do not otherwise
955 *	mess with it.
956 *
957 *	The page queues must be locked.
958 *	This routine may not block.
959 */
960void
961vm_page_activate(vm_page_t m)
962{
963	int s;
964
965	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
966	s = splvm();
967	if (m->queue != PQ_ACTIVE) {
968		if ((m->queue - m->pc) == PQ_CACHE)
969			cnt.v_reactivated++;
970		vm_pageq_remove(m);
971		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
972			if (m->act_count < ACT_INIT)
973				m->act_count = ACT_INIT;
974			vm_pageq_enqueue(PQ_ACTIVE, m);
975		}
976	} else {
977		if (m->act_count < ACT_INIT)
978			m->act_count = ACT_INIT;
979	}
980	splx(s);
981}
982
983/*
984 *	vm_page_free_wakeup:
985 *
986 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
987 *	routine is called when a page has been added to the cache or free
988 *	queues.
989 *
990 *	This routine may not block.
991 *	This routine must be called at splvm()
992 */
993static __inline void
994vm_page_free_wakeup(void)
995{
996
997	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
998	/*
999	 * if pageout daemon needs pages, then tell it that there are
1000	 * some free.
1001	 */
1002	if (vm_pageout_pages_needed &&
1003	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1004		wakeup(&vm_pageout_pages_needed);
1005		vm_pageout_pages_needed = 0;
1006	}
1007	/*
1008	 * wakeup processes that are waiting on memory if we hit a
1009	 * high water mark. And wakeup scheduler process if we have
1010	 * lots of memory. this process will swapin processes.
1011	 */
1012	if (vm_pages_needed && !vm_page_count_min()) {
1013		vm_pages_needed = 0;
1014		wakeup(&cnt.v_free_count);
1015	}
1016}
1017
1018/*
1019 *	vm_page_free_toq:
1020 *
1021 *	Returns the given page to the PQ_FREE list,
1022 *	disassociating it with any VM object.
1023 *
1024 *	Object and page must be locked prior to entry.
1025 *	This routine may not block.
1026 */
1027
1028void
1029vm_page_free_toq(vm_page_t m)
1030{
1031	int s;
1032	struct vpgqueues *pq;
1033	vm_object_t object = m->object;
1034
1035	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1036	s = splvm();
1037	cnt.v_tfree++;
1038
1039	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1040		printf(
1041		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1042		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1043		    m->hold_count);
1044		if ((m->queue - m->pc) == PQ_FREE)
1045			panic("vm_page_free: freeing free page");
1046		else
1047			panic("vm_page_free: freeing busy page");
1048	}
1049
1050	/*
1051	 * unqueue, then remove page.  Note that we cannot destroy
1052	 * the page here because we do not want to call the pager's
1053	 * callback routine until after we've put the page on the
1054	 * appropriate free queue.
1055	 */
1056	vm_pageq_remove_nowakeup(m);
1057	vm_page_remove(m);
1058
1059	/*
1060	 * If fictitious remove object association and
1061	 * return, otherwise delay object association removal.
1062	 */
1063	if ((m->flags & PG_FICTITIOUS) != 0) {
1064		splx(s);
1065		return;
1066	}
1067
1068	m->valid = 0;
1069	vm_page_undirty(m);
1070
1071	if (m->wire_count != 0) {
1072		if (m->wire_count > 1) {
1073			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1074				m->wire_count, (long)m->pindex);
1075		}
1076		panic("vm_page_free: freeing wired page\n");
1077	}
1078
1079	/*
1080	 * If we've exhausted the object's resident pages we want to free
1081	 * it up.
1082	 */
1083	if (object &&
1084	    (object->type == OBJT_VNODE) &&
1085	    ((object->flags & OBJ_DEAD) == 0)
1086	) {
1087		struct vnode *vp = (struct vnode *)object->handle;
1088
1089		if (vp) {
1090			VI_LOCK(vp);
1091			if (VSHOULDFREE(vp))
1092				vfree(vp);
1093			VI_UNLOCK(vp);
1094		}
1095	}
1096
1097	/*
1098	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1099	 */
1100	if (m->flags & PG_UNMANAGED) {
1101		m->flags &= ~PG_UNMANAGED;
1102	}
1103
1104	if (m->hold_count != 0) {
1105		m->flags &= ~PG_ZERO;
1106		m->queue = PQ_HOLD;
1107	} else
1108		m->queue = PQ_FREE + m->pc;
1109	pq = &vm_page_queues[m->queue];
1110	mtx_lock_spin(&vm_page_queue_free_mtx);
1111	pq->lcnt++;
1112	++(*pq->cnt);
1113
1114	/*
1115	 * Put zero'd pages on the end ( where we look for zero'd pages
1116	 * first ) and non-zerod pages at the head.
1117	 */
1118	if (m->flags & PG_ZERO) {
1119		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1120		++vm_page_zero_count;
1121	} else {
1122		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1123	}
1124	mtx_unlock_spin(&vm_page_queue_free_mtx);
1125	vm_page_free_wakeup();
1126	splx(s);
1127}
1128
1129/*
1130 *	vm_page_unmanage:
1131 *
1132 * 	Prevent PV management from being done on the page.  The page is
1133 *	removed from the paging queues as if it were wired, and as a
1134 *	consequence of no longer being managed the pageout daemon will not
1135 *	touch it (since there is no way to locate the pte mappings for the
1136 *	page).  madvise() calls that mess with the pmap will also no longer
1137 *	operate on the page.
1138 *
1139 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1140 *	will clear the flag.
1141 *
1142 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1143 *	physical memory as backing store rather then swap-backed memory and
1144 *	will eventually be extended to support 4MB unmanaged physical
1145 *	mappings.
1146 */
1147void
1148vm_page_unmanage(vm_page_t m)
1149{
1150	int s;
1151
1152	s = splvm();
1153	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1154	if ((m->flags & PG_UNMANAGED) == 0) {
1155		if (m->wire_count == 0)
1156			vm_pageq_remove(m);
1157	}
1158	vm_page_flag_set(m, PG_UNMANAGED);
1159	splx(s);
1160}
1161
1162/*
1163 *	vm_page_wire:
1164 *
1165 *	Mark this page as wired down by yet
1166 *	another map, removing it from paging queues
1167 *	as necessary.
1168 *
1169 *	The page queues must be locked.
1170 *	This routine may not block.
1171 */
1172void
1173vm_page_wire(vm_page_t m)
1174{
1175	int s;
1176
1177	/*
1178	 * Only bump the wire statistics if the page is not already wired,
1179	 * and only unqueue the page if it is on some queue (if it is unmanaged
1180	 * it is already off the queues).
1181	 */
1182	s = splvm();
1183	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1184	if (m->wire_count == 0) {
1185		if ((m->flags & PG_UNMANAGED) == 0)
1186			vm_pageq_remove(m);
1187		atomic_add_int(&cnt.v_wire_count, 1);
1188	}
1189	m->wire_count++;
1190	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1191	splx(s);
1192}
1193
1194/*
1195 *	vm_page_unwire:
1196 *
1197 *	Release one wiring of this page, potentially
1198 *	enabling it to be paged again.
1199 *
1200 *	Many pages placed on the inactive queue should actually go
1201 *	into the cache, but it is difficult to figure out which.  What
1202 *	we do instead, if the inactive target is well met, is to put
1203 *	clean pages at the head of the inactive queue instead of the tail.
1204 *	This will cause them to be moved to the cache more quickly and
1205 *	if not actively re-referenced, freed more quickly.  If we just
1206 *	stick these pages at the end of the inactive queue, heavy filesystem
1207 *	meta-data accesses can cause an unnecessary paging load on memory bound
1208 *	processes.  This optimization causes one-time-use metadata to be
1209 *	reused more quickly.
1210 *
1211 *	BUT, if we are in a low-memory situation we have no choice but to
1212 *	put clean pages on the cache queue.
1213 *
1214 *	A number of routines use vm_page_unwire() to guarantee that the page
1215 *	will go into either the inactive or active queues, and will NEVER
1216 *	be placed in the cache - for example, just after dirtying a page.
1217 *	dirty pages in the cache are not allowed.
1218 *
1219 *	The page queues must be locked.
1220 *	This routine may not block.
1221 */
1222void
1223vm_page_unwire(vm_page_t m, int activate)
1224{
1225	int s;
1226
1227	s = splvm();
1228	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1229	if (m->wire_count > 0) {
1230		m->wire_count--;
1231		if (m->wire_count == 0) {
1232			atomic_subtract_int(&cnt.v_wire_count, 1);
1233			if (m->flags & PG_UNMANAGED) {
1234				;
1235			} else if (activate)
1236				vm_pageq_enqueue(PQ_ACTIVE, m);
1237			else {
1238				vm_page_flag_clear(m, PG_WINATCFLS);
1239				vm_pageq_enqueue(PQ_INACTIVE, m);
1240			}
1241		}
1242	} else {
1243		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1244	}
1245	splx(s);
1246}
1247
1248
1249/*
1250 * Move the specified page to the inactive queue.  If the page has
1251 * any associated swap, the swap is deallocated.
1252 *
1253 * Normally athead is 0 resulting in LRU operation.  athead is set
1254 * to 1 if we want this page to be 'as if it were placed in the cache',
1255 * except without unmapping it from the process address space.
1256 *
1257 * This routine may not block.
1258 */
1259static __inline void
1260_vm_page_deactivate(vm_page_t m, int athead)
1261{
1262	int s;
1263
1264	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1265	/*
1266	 * Ignore if already inactive.
1267	 */
1268	if (m->queue == PQ_INACTIVE)
1269		return;
1270
1271	s = splvm();
1272	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1273		if ((m->queue - m->pc) == PQ_CACHE)
1274			cnt.v_reactivated++;
1275		vm_page_flag_clear(m, PG_WINATCFLS);
1276		vm_pageq_remove(m);
1277		if (athead)
1278			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1279		else
1280			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1281		m->queue = PQ_INACTIVE;
1282		vm_page_queues[PQ_INACTIVE].lcnt++;
1283		cnt.v_inactive_count++;
1284	}
1285	splx(s);
1286}
1287
1288void
1289vm_page_deactivate(vm_page_t m)
1290{
1291    _vm_page_deactivate(m, 0);
1292}
1293
1294/*
1295 * vm_page_try_to_cache:
1296 *
1297 * Returns 0 on failure, 1 on success
1298 */
1299int
1300vm_page_try_to_cache(vm_page_t m)
1301{
1302
1303	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1304	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1305	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1306		return (0);
1307	}
1308	vm_page_test_dirty(m);
1309	if (m->dirty)
1310		return (0);
1311	vm_page_cache(m);
1312	return (1);
1313}
1314
1315/*
1316 * vm_page_try_to_free()
1317 *
1318 *	Attempt to free the page.  If we cannot free it, we do nothing.
1319 *	1 is returned on success, 0 on failure.
1320 */
1321int
1322vm_page_try_to_free(vm_page_t m)
1323{
1324
1325	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1326	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1327	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1328		return (0);
1329	}
1330	vm_page_test_dirty(m);
1331	if (m->dirty)
1332		return (0);
1333	vm_page_busy(m);
1334	pmap_remove_all(m);
1335	vm_page_free(m);
1336	return (1);
1337}
1338
1339/*
1340 * vm_page_cache
1341 *
1342 * Put the specified page onto the page cache queue (if appropriate).
1343 *
1344 * This routine may not block.
1345 */
1346void
1347vm_page_cache(vm_page_t m)
1348{
1349	int s;
1350
1351	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1352	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1353		printf("vm_page_cache: attempting to cache busy page\n");
1354		return;
1355	}
1356	if ((m->queue - m->pc) == PQ_CACHE)
1357		return;
1358
1359	/*
1360	 * Remove all pmaps and indicate that the page is not
1361	 * writeable or mapped.
1362	 */
1363	pmap_remove_all(m);
1364	if (m->dirty != 0) {
1365		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1366			(long)m->pindex);
1367	}
1368	s = splvm();
1369	vm_pageq_remove_nowakeup(m);
1370	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1371	vm_page_free_wakeup();
1372	splx(s);
1373}
1374
1375/*
1376 * vm_page_dontneed
1377 *
1378 *	Cache, deactivate, or do nothing as appropriate.  This routine
1379 *	is typically used by madvise() MADV_DONTNEED.
1380 *
1381 *	Generally speaking we want to move the page into the cache so
1382 *	it gets reused quickly.  However, this can result in a silly syndrome
1383 *	due to the page recycling too quickly.  Small objects will not be
1384 *	fully cached.  On the otherhand, if we move the page to the inactive
1385 *	queue we wind up with a problem whereby very large objects
1386 *	unnecessarily blow away our inactive and cache queues.
1387 *
1388 *	The solution is to move the pages based on a fixed weighting.  We
1389 *	either leave them alone, deactivate them, or move them to the cache,
1390 *	where moving them to the cache has the highest weighting.
1391 *	By forcing some pages into other queues we eventually force the
1392 *	system to balance the queues, potentially recovering other unrelated
1393 *	space from active.  The idea is to not force this to happen too
1394 *	often.
1395 */
1396void
1397vm_page_dontneed(vm_page_t m)
1398{
1399	static int dnweight;
1400	int dnw;
1401	int head;
1402
1403	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1404	dnw = ++dnweight;
1405
1406	/*
1407	 * occassionally leave the page alone
1408	 */
1409	if ((dnw & 0x01F0) == 0 ||
1410	    m->queue == PQ_INACTIVE ||
1411	    m->queue - m->pc == PQ_CACHE
1412	) {
1413		if (m->act_count >= ACT_INIT)
1414			--m->act_count;
1415		return;
1416	}
1417
1418	if (m->dirty == 0)
1419		vm_page_test_dirty(m);
1420
1421	if (m->dirty || (dnw & 0x0070) == 0) {
1422		/*
1423		 * Deactivate the page 3 times out of 32.
1424		 */
1425		head = 0;
1426	} else {
1427		/*
1428		 * Cache the page 28 times out of every 32.  Note that
1429		 * the page is deactivated instead of cached, but placed
1430		 * at the head of the queue instead of the tail.
1431		 */
1432		head = 1;
1433	}
1434	_vm_page_deactivate(m, head);
1435}
1436
1437/*
1438 * Grab a page, waiting until we are waken up due to the page
1439 * changing state.  We keep on waiting, if the page continues
1440 * to be in the object.  If the page doesn't exist, allocate it.
1441 *
1442 * This routine may block.
1443 */
1444vm_page_t
1445vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1446{
1447	vm_page_t m;
1448	int s, generation, is_object_locked;
1449
1450	/*
1451	 * Remove is_object_locked after vm_object locking is finished.
1452	 */
1453	if (!(is_object_locked = VM_OBJECT_LOCKED(object)))
1454		GIANT_REQUIRED;
1455retrylookup:
1456	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1457		vm_page_lock_queues();
1458		if (m->busy || (m->flags & PG_BUSY)) {
1459			generation = object->generation;
1460
1461			s = splvm();
1462			while ((object->generation == generation) &&
1463					(m->busy || (m->flags & PG_BUSY))) {
1464				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1465				if (is_object_locked)
1466					VM_OBJECT_UNLOCK(object);
1467				msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1468				if (is_object_locked)
1469					VM_OBJECT_LOCK(object);
1470				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1471					splx(s);
1472					return NULL;
1473				}
1474				vm_page_lock_queues();
1475			}
1476			vm_page_unlock_queues();
1477			splx(s);
1478			goto retrylookup;
1479		} else {
1480			if (allocflags & VM_ALLOC_WIRED)
1481				vm_page_wire(m);
1482			vm_page_busy(m);
1483			vm_page_unlock_queues();
1484			return m;
1485		}
1486	}
1487
1488	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1489	if (m == NULL) {
1490		if (is_object_locked)
1491			VM_OBJECT_UNLOCK(object);
1492		VM_WAIT;
1493		if (is_object_locked)
1494			VM_OBJECT_LOCK(object);
1495		if ((allocflags & VM_ALLOC_RETRY) == 0)
1496			return NULL;
1497		goto retrylookup;
1498	}
1499
1500	return m;
1501}
1502
1503/*
1504 * Mapping function for valid bits or for dirty bits in
1505 * a page.  May not block.
1506 *
1507 * Inputs are required to range within a page.
1508 */
1509__inline int
1510vm_page_bits(int base, int size)
1511{
1512	int first_bit;
1513	int last_bit;
1514
1515	KASSERT(
1516	    base + size <= PAGE_SIZE,
1517	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1518	);
1519
1520	if (size == 0)		/* handle degenerate case */
1521		return (0);
1522
1523	first_bit = base >> DEV_BSHIFT;
1524	last_bit = (base + size - 1) >> DEV_BSHIFT;
1525
1526	return ((2 << last_bit) - (1 << first_bit));
1527}
1528
1529/*
1530 *	vm_page_set_validclean:
1531 *
1532 *	Sets portions of a page valid and clean.  The arguments are expected
1533 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1534 *	of any partial chunks touched by the range.  The invalid portion of
1535 *	such chunks will be zero'd.
1536 *
1537 *	This routine may not block.
1538 *
1539 *	(base + size) must be less then or equal to PAGE_SIZE.
1540 */
1541void
1542vm_page_set_validclean(vm_page_t m, int base, int size)
1543{
1544	int pagebits;
1545	int frag;
1546	int endoff;
1547
1548	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1549	if (size == 0)	/* handle degenerate case */
1550		return;
1551
1552	/*
1553	 * If the base is not DEV_BSIZE aligned and the valid
1554	 * bit is clear, we have to zero out a portion of the
1555	 * first block.
1556	 */
1557	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1558	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1559		pmap_zero_page_area(m, frag, base - frag);
1560
1561	/*
1562	 * If the ending offset is not DEV_BSIZE aligned and the
1563	 * valid bit is clear, we have to zero out a portion of
1564	 * the last block.
1565	 */
1566	endoff = base + size;
1567	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1568	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1569		pmap_zero_page_area(m, endoff,
1570		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1571
1572	/*
1573	 * Set valid, clear dirty bits.  If validating the entire
1574	 * page we can safely clear the pmap modify bit.  We also
1575	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1576	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1577	 * be set again.
1578	 *
1579	 * We set valid bits inclusive of any overlap, but we can only
1580	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1581	 * the range.
1582	 */
1583	pagebits = vm_page_bits(base, size);
1584	m->valid |= pagebits;
1585#if 0	/* NOT YET */
1586	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1587		frag = DEV_BSIZE - frag;
1588		base += frag;
1589		size -= frag;
1590		if (size < 0)
1591			size = 0;
1592	}
1593	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1594#endif
1595	m->dirty &= ~pagebits;
1596	if (base == 0 && size == PAGE_SIZE) {
1597		pmap_clear_modify(m);
1598		vm_page_flag_clear(m, PG_NOSYNC);
1599	}
1600}
1601
1602#if 0
1603
1604void
1605vm_page_set_dirty(vm_page_t m, int base, int size)
1606{
1607	m->dirty |= vm_page_bits(base, size);
1608}
1609
1610#endif
1611
1612void
1613vm_page_clear_dirty(vm_page_t m, int base, int size)
1614{
1615	GIANT_REQUIRED;
1616	m->dirty &= ~vm_page_bits(base, size);
1617}
1618
1619/*
1620 *	vm_page_set_invalid:
1621 *
1622 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1623 *	valid and dirty bits for the effected areas are cleared.
1624 *
1625 *	May not block.
1626 */
1627void
1628vm_page_set_invalid(vm_page_t m, int base, int size)
1629{
1630	int bits;
1631
1632	GIANT_REQUIRED;
1633	bits = vm_page_bits(base, size);
1634	m->valid &= ~bits;
1635	m->dirty &= ~bits;
1636	m->object->generation++;
1637}
1638
1639/*
1640 * vm_page_zero_invalid()
1641 *
1642 *	The kernel assumes that the invalid portions of a page contain
1643 *	garbage, but such pages can be mapped into memory by user code.
1644 *	When this occurs, we must zero out the non-valid portions of the
1645 *	page so user code sees what it expects.
1646 *
1647 *	Pages are most often semi-valid when the end of a file is mapped
1648 *	into memory and the file's size is not page aligned.
1649 */
1650void
1651vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1652{
1653	int b;
1654	int i;
1655
1656	/*
1657	 * Scan the valid bits looking for invalid sections that
1658	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1659	 * valid bit may be set ) have already been zerod by
1660	 * vm_page_set_validclean().
1661	 */
1662	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1663		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1664		    (m->valid & (1 << i))
1665		) {
1666			if (i > b) {
1667				pmap_zero_page_area(m,
1668				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1669			}
1670			b = i + 1;
1671		}
1672	}
1673
1674	/*
1675	 * setvalid is TRUE when we can safely set the zero'd areas
1676	 * as being valid.  We can do this if there are no cache consistancy
1677	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1678	 */
1679	if (setvalid)
1680		m->valid = VM_PAGE_BITS_ALL;
1681}
1682
1683/*
1684 *	vm_page_is_valid:
1685 *
1686 *	Is (partial) page valid?  Note that the case where size == 0
1687 *	will return FALSE in the degenerate case where the page is
1688 *	entirely invalid, and TRUE otherwise.
1689 *
1690 *	May not block.
1691 */
1692int
1693vm_page_is_valid(vm_page_t m, int base, int size)
1694{
1695	int bits = vm_page_bits(base, size);
1696
1697	if (m->valid && ((m->valid & bits) == bits))
1698		return 1;
1699	else
1700		return 0;
1701}
1702
1703/*
1704 * update dirty bits from pmap/mmu.  May not block.
1705 */
1706void
1707vm_page_test_dirty(vm_page_t m)
1708{
1709	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1710		vm_page_dirty(m);
1711	}
1712}
1713
1714int so_zerocp_fullpage = 0;
1715
1716void
1717vm_page_cowfault(vm_page_t m)
1718{
1719	vm_page_t mnew;
1720	vm_object_t object;
1721	vm_pindex_t pindex;
1722
1723	object = m->object;
1724	pindex = m->pindex;
1725	vm_page_busy(m);
1726
1727 retry_alloc:
1728	vm_page_remove(m);
1729	/*
1730	 * An interrupt allocation is requested because the page
1731	 * queues lock is held.
1732	 */
1733	mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT);
1734	if (mnew == NULL) {
1735		vm_page_insert(m, object, pindex);
1736		vm_page_unlock_queues();
1737		VM_WAIT;
1738		vm_page_lock_queues();
1739		goto retry_alloc;
1740	}
1741
1742	if (m->cow == 0) {
1743		/*
1744		 * check to see if we raced with an xmit complete when
1745		 * waiting to allocate a page.  If so, put things back
1746		 * the way they were
1747		 */
1748		vm_page_busy(mnew);
1749		vm_page_free(mnew);
1750		vm_page_insert(m, object, pindex);
1751	} else { /* clear COW & copy page */
1752		if (so_zerocp_fullpage) {
1753			mnew->valid = VM_PAGE_BITS_ALL;
1754		} else {
1755			vm_page_copy(m, mnew);
1756		}
1757		vm_page_dirty(mnew);
1758		vm_page_flag_clear(mnew, PG_BUSY);
1759	}
1760}
1761
1762void
1763vm_page_cowclear(vm_page_t m)
1764{
1765
1766	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1767	if (m->cow) {
1768		m->cow--;
1769		/*
1770		 * let vm_fault add back write permission  lazily
1771		 */
1772	}
1773	/*
1774	 *  sf_buf_free() will free the page, so we needn't do it here
1775	 */
1776}
1777
1778void
1779vm_page_cowsetup(vm_page_t m)
1780{
1781
1782	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1783	m->cow++;
1784	pmap_page_protect(m, VM_PROT_READ);
1785}
1786
1787#include "opt_ddb.h"
1788#ifdef DDB
1789#include <sys/kernel.h>
1790
1791#include <ddb/ddb.h>
1792
1793DB_SHOW_COMMAND(page, vm_page_print_page_info)
1794{
1795	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1796	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1797	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1798	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1799	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1800	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1801	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1802	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1803	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1804	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1805}
1806
1807DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1808{
1809	int i;
1810	db_printf("PQ_FREE:");
1811	for (i = 0; i < PQ_L2_SIZE; i++) {
1812		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1813	}
1814	db_printf("\n");
1815
1816	db_printf("PQ_CACHE:");
1817	for (i = 0; i < PQ_L2_SIZE; i++) {
1818		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1819	}
1820	db_printf("\n");
1821
1822	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1823		vm_page_queues[PQ_ACTIVE].lcnt,
1824		vm_page_queues[PQ_INACTIVE].lcnt);
1825}
1826#endif /* DDB */
1827