vm_page.c revision 107039
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37 * $FreeBSD: head/sys/vm/vm_page.c 107039 2002-11-18 04:05:22Z alc $
38 */
39
40/*
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59 *  School of Computer Science
60 *  Carnegie Mellon University
61 *  Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67/*
68 *			GENERAL RULES ON VM_PAGE MANIPULATION
69 *
70 *	- a pageq mutex is required when adding or removing a page from a
71 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72 *	  busy state of a page.
73 *
74 *	- a hash chain mutex is required when associating or disassociating
75 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76 *	  regardless of other mutexes or the busy state of a page.
77 *
78 *	- either a hash chain mutex OR a busied page is required in order
79 *	  to modify the page flags.  A hash chain mutex must be obtained in
80 *	  order to busy a page.  A page's flags cannot be modified by a
81 *	  hash chain mutex if the page is marked busy.
82 *
83 *	- The object memq mutex is held when inserting or removing
84 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85 *	  is different from the object's main mutex.
86 *
87 *	Generally speaking, you have to be aware of side effects when running
88 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90 *	vm_page_cache(), vm_page_activate(), and a number of other routines
91 *	will release the hash chain mutex for you.  Intermediate manipulation
92 *	routines such as vm_page_flag_set() expect the hash chain to be held
93 *	on entry and the hash chain will remain held on return.
94 *
95 *	pageq scanning can only occur with the pageq in question locked.
96 *	We have a known bottleneck with the active queue, but the cache
97 *	and free queues are actually arrays already.
98 */
99
100/*
101 *	Resident memory management module.
102 */
103
104#include <sys/param.h>
105#include <sys/systm.h>
106#include <sys/lock.h>
107#include <sys/malloc.h>
108#include <sys/mutex.h>
109#include <sys/proc.h>
110#include <sys/vmmeter.h>
111#include <sys/vnode.h>
112
113#include <vm/vm.h>
114#include <vm/vm_param.h>
115#include <vm/vm_kern.h>
116#include <vm/vm_object.h>
117#include <vm/vm_page.h>
118#include <vm/vm_pageout.h>
119#include <vm/vm_pager.h>
120#include <vm/vm_extern.h>
121#include <vm/uma.h>
122#include <vm/uma_int.h>
123
124/*
125 *	Associated with page of user-allocatable memory is a
126 *	page structure.
127 */
128
129struct mtx vm_page_queue_mtx;
130struct mtx vm_page_queue_free_mtx;
131
132vm_page_t vm_page_array = 0;
133int vm_page_array_size = 0;
134long first_page = 0;
135int vm_page_zero_count = 0;
136
137/*
138 *	vm_set_page_size:
139 *
140 *	Sets the page size, perhaps based upon the memory
141 *	size.  Must be called before any use of page-size
142 *	dependent functions.
143 */
144void
145vm_set_page_size(void)
146{
147	if (cnt.v_page_size == 0)
148		cnt.v_page_size = PAGE_SIZE;
149	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
150		panic("vm_set_page_size: page size not a power of two");
151}
152
153/*
154 *	vm_page_startup:
155 *
156 *	Initializes the resident memory module.
157 *
158 *	Allocates memory for the page cells, and
159 *	for the object/offset-to-page hash table headers.
160 *	Each page cell is initialized and placed on the free list.
161 */
162vm_offset_t
163vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
164{
165	vm_offset_t mapped;
166	vm_size_t npages, page_range;
167	vm_offset_t new_end;
168	int i;
169	vm_offset_t pa;
170	int nblocks;
171	vm_offset_t last_pa;
172
173	/* the biggest memory array is the second group of pages */
174	vm_offset_t end;
175	vm_offset_t biggestone, biggestsize;
176
177	vm_offset_t total;
178	vm_size_t bootpages;
179
180	total = 0;
181	biggestsize = 0;
182	biggestone = 0;
183	nblocks = 0;
184	vaddr = round_page(vaddr);
185
186	for (i = 0; phys_avail[i + 1]; i += 2) {
187		phys_avail[i] = round_page(phys_avail[i]);
188		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
189	}
190
191	for (i = 0; phys_avail[i + 1]; i += 2) {
192		vm_size_t size = phys_avail[i + 1] - phys_avail[i];
193
194		if (size > biggestsize) {
195			biggestone = i;
196			biggestsize = size;
197		}
198		++nblocks;
199		total += size;
200	}
201
202	end = phys_avail[biggestone+1];
203
204	/*
205	 * Initialize the locks.
206	 */
207	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
208	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
209	   MTX_SPIN);
210
211	/*
212	 * Initialize the queue headers for the free queue, the active queue
213	 * and the inactive queue.
214	 */
215	vm_pageq_init();
216
217	/*
218	 * Allocate memory for use when boot strapping the kernel memory
219	 * allocator.
220	 */
221	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
222	new_end = end - bootpages;
223	new_end = trunc_page(new_end);
224	mapped = pmap_map(&vaddr, new_end, end,
225	    VM_PROT_READ | VM_PROT_WRITE);
226	bzero((caddr_t) mapped, end - new_end);
227	uma_startup((caddr_t)mapped);
228
229	/*
230	 * Compute the number of pages of memory that will be available for
231	 * use (taking into account the overhead of a page structure per
232	 * page).
233	 */
234	first_page = phys_avail[0] / PAGE_SIZE;
235	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
236	npages = (total - (page_range * sizeof(struct vm_page)) -
237	    (end - new_end)) / PAGE_SIZE;
238	end = new_end;
239
240	/*
241	 * Initialize the mem entry structures now, and put them in the free
242	 * queue.
243	 */
244	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
245	mapped = pmap_map(&vaddr, new_end, end,
246	    VM_PROT_READ | VM_PROT_WRITE);
247	vm_page_array = (vm_page_t) mapped;
248
249	/*
250	 * Clear all of the page structures
251	 */
252	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
253	vm_page_array_size = page_range;
254
255	/*
256	 * Construct the free queue(s) in descending order (by physical
257	 * address) so that the first 16MB of physical memory is allocated
258	 * last rather than first.  On large-memory machines, this avoids
259	 * the exhaustion of low physical memory before isa_dmainit has run.
260	 */
261	cnt.v_page_count = 0;
262	cnt.v_free_count = 0;
263	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
264		pa = phys_avail[i];
265		if (i == biggestone)
266			last_pa = new_end;
267		else
268			last_pa = phys_avail[i + 1];
269		while (pa < last_pa && npages-- > 0) {
270			vm_pageq_add_new_page(pa);
271			pa += PAGE_SIZE;
272		}
273	}
274	return (vaddr);
275}
276
277void
278vm_page_flag_set(vm_page_t m, unsigned short bits)
279{
280	GIANT_REQUIRED;
281	m->flags |= bits;
282}
283
284void
285vm_page_flag_clear(vm_page_t m, unsigned short bits)
286{
287	GIANT_REQUIRED;
288	m->flags &= ~bits;
289}
290
291void
292vm_page_busy(vm_page_t m)
293{
294	KASSERT((m->flags & PG_BUSY) == 0,
295	    ("vm_page_busy: page already busy!!!"));
296	vm_page_flag_set(m, PG_BUSY);
297}
298
299/*
300 *      vm_page_flash:
301 *
302 *      wakeup anyone waiting for the page.
303 */
304void
305vm_page_flash(vm_page_t m)
306{
307	if (m->flags & PG_WANTED) {
308		vm_page_flag_clear(m, PG_WANTED);
309		wakeup(m);
310	}
311}
312
313/*
314 *      vm_page_wakeup:
315 *
316 *      clear the PG_BUSY flag and wakeup anyone waiting for the
317 *      page.
318 *
319 */
320void
321vm_page_wakeup(vm_page_t m)
322{
323	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
324	vm_page_flag_clear(m, PG_BUSY);
325	vm_page_flash(m);
326}
327
328/*
329 *
330 *
331 */
332void
333vm_page_io_start(vm_page_t m)
334{
335
336	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
337	m->busy++;
338}
339
340void
341vm_page_io_finish(vm_page_t m)
342{
343
344	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
345	m->busy--;
346	if (m->busy == 0)
347		vm_page_flash(m);
348}
349
350/*
351 * Keep page from being freed by the page daemon
352 * much of the same effect as wiring, except much lower
353 * overhead and should be used only for *very* temporary
354 * holding ("wiring").
355 */
356void
357vm_page_hold(vm_page_t mem)
358{
359        GIANT_REQUIRED;
360        mem->hold_count++;
361}
362
363void
364vm_page_unhold(vm_page_t mem)
365{
366	GIANT_REQUIRED;
367	--mem->hold_count;
368	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
369	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
370		vm_page_free_toq(mem);
371}
372
373/*
374 *	vm_page_copy:
375 *
376 *	Copy one page to another
377 */
378void
379vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
380{
381	pmap_copy_page(src_m, dest_m);
382	dest_m->valid = VM_PAGE_BITS_ALL;
383}
384
385/*
386 *	vm_page_free:
387 *
388 *	Free a page
389 *
390 *	The clearing of PG_ZERO is a temporary safety until the code can be
391 *	reviewed to determine that PG_ZERO is being properly cleared on
392 *	write faults or maps.  PG_ZERO was previously cleared in
393 *	vm_page_alloc().
394 */
395void
396vm_page_free(vm_page_t m)
397{
398	vm_page_flag_clear(m, PG_ZERO);
399	vm_page_free_toq(m);
400	vm_page_zero_idle_wakeup();
401}
402
403/*
404 *	vm_page_free_zero:
405 *
406 *	Free a page to the zerod-pages queue
407 */
408void
409vm_page_free_zero(vm_page_t m)
410{
411	vm_page_flag_set(m, PG_ZERO);
412	vm_page_free_toq(m);
413}
414
415/*
416 *	vm_page_sleep_busy:
417 *
418 *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
419 *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
420 *	it almost had to sleep and made temporary spl*() mods), FALSE
421 *	otherwise.
422 *
423 *	This routine assumes that interrupts can only remove the busy
424 *	status from a page, not set the busy status or change it from
425 *	PG_BUSY to m->busy or vise versa (which would create a timing
426 *	window).
427 */
428int
429vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
430{
431	GIANT_REQUIRED;
432	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
433		int s = splvm();
434		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
435			/*
436			 * Page is busy. Wait and retry.
437			 */
438			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
439			tsleep(m, PVM, msg, 0);
440		}
441		splx(s);
442		return (TRUE);
443		/* not reached */
444	}
445	return (FALSE);
446}
447
448/*
449 *	vm_page_sleep_if_busy:
450 *
451 *	Sleep and release the page queues lock if PG_BUSY is set or,
452 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
453 *	thread slept and the page queues lock was released.
454 *	Otherwise, retains the page queues lock and returns FALSE.
455 */
456int
457vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
458{
459
460	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
461	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
462		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
463		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
464		return (TRUE);
465	}
466	return (FALSE);
467}
468
469/*
470 *	vm_page_dirty:
471 *
472 *	make page all dirty
473 */
474void
475vm_page_dirty(vm_page_t m)
476{
477	KASSERT(m->queue - m->pc != PQ_CACHE,
478	    ("vm_page_dirty: page in cache!"));
479	m->dirty = VM_PAGE_BITS_ALL;
480}
481
482/*
483 *	vm_page_splay:
484 *
485 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
486 *	the vm_page containing the given pindex.  If, however, that
487 *	pindex is not found in the vm_object, returns a vm_page that is
488 *	adjacent to the pindex, coming before or after it.
489 */
490vm_page_t
491vm_page_splay(vm_pindex_t pindex, vm_page_t root)
492{
493	struct vm_page dummy;
494	vm_page_t lefttreemax, righttreemin, y;
495
496	if (root == NULL)
497		return (root);
498	lefttreemax = righttreemin = &dummy;
499	for (;; root = y) {
500		if (pindex < root->pindex) {
501			if ((y = root->left) == NULL)
502				break;
503			if (pindex < y->pindex) {
504				/* Rotate right. */
505				root->left = y->right;
506				y->right = root;
507				root = y;
508				if ((y = root->left) == NULL)
509					break;
510			}
511			/* Link into the new root's right tree. */
512			righttreemin->left = root;
513			righttreemin = root;
514		} else if (pindex > root->pindex) {
515			if ((y = root->right) == NULL)
516				break;
517			if (pindex > y->pindex) {
518				/* Rotate left. */
519				root->right = y->left;
520				y->left = root;
521				root = y;
522				if ((y = root->right) == NULL)
523					break;
524			}
525			/* Link into the new root's left tree. */
526			lefttreemax->right = root;
527			lefttreemax = root;
528		} else
529			break;
530	}
531	/* Assemble the new root. */
532	lefttreemax->right = root->left;
533	righttreemin->left = root->right;
534	root->left = dummy.right;
535	root->right = dummy.left;
536	return (root);
537}
538
539/*
540 *	vm_page_insert:		[ internal use only ]
541 *
542 *	Inserts the given mem entry into the object and object list.
543 *
544 *	The pagetables are not updated but will presumably fault the page
545 *	in if necessary, or if a kernel page the caller will at some point
546 *	enter the page into the kernel's pmap.  We are not allowed to block
547 *	here so we *can't* do this anyway.
548 *
549 *	The object and page must be locked, and must be splhigh.
550 *	This routine may not block.
551 */
552void
553vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
554{
555	vm_page_t root;
556
557	GIANT_REQUIRED;
558
559	if (m->object != NULL)
560		panic("vm_page_insert: already inserted");
561
562	/*
563	 * Record the object/offset pair in this page
564	 */
565	m->object = object;
566	m->pindex = pindex;
567
568	/*
569	 * Now link into the object's ordered list of backed pages.
570	 */
571	root = object->root;
572	if (root == NULL) {
573		m->left = NULL;
574		m->right = NULL;
575		TAILQ_INSERT_TAIL(&object->memq, m, listq);
576	} else {
577		root = vm_page_splay(pindex, root);
578		if (pindex < root->pindex) {
579			m->left = root->left;
580			m->right = root;
581			root->left = NULL;
582			TAILQ_INSERT_BEFORE(root, m, listq);
583		} else {
584			m->right = root->right;
585			m->left = root;
586			root->right = NULL;
587			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
588		}
589	}
590	object->root = m;
591	object->generation++;
592
593	/*
594	 * show that the object has one more resident page.
595	 */
596	object->resident_page_count++;
597
598	/*
599	 * Since we are inserting a new and possibly dirty page,
600	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
601	 */
602	if (m->flags & PG_WRITEABLE)
603		vm_object_set_writeable_dirty(object);
604}
605
606/*
607 *	vm_page_remove:
608 *				NOTE: used by device pager as well -wfj
609 *
610 *	Removes the given mem entry from the object/offset-page
611 *	table and the object page list, but do not invalidate/terminate
612 *	the backing store.
613 *
614 *	The object and page must be locked, and at splhigh.
615 *	The underlying pmap entry (if any) is NOT removed here.
616 *	This routine may not block.
617 */
618void
619vm_page_remove(vm_page_t m)
620{
621	vm_object_t object;
622	vm_page_t root;
623
624	GIANT_REQUIRED;
625
626	if (m->object == NULL)
627		return;
628
629	if ((m->flags & PG_BUSY) == 0) {
630		panic("vm_page_remove: page not busy");
631	}
632
633	/*
634	 * Basically destroy the page.
635	 */
636	vm_page_wakeup(m);
637
638	object = m->object;
639
640	/*
641	 * Now remove from the object's list of backed pages.
642	 */
643	if (m != object->root)
644		vm_page_splay(m->pindex, object->root);
645	if (m->left == NULL)
646		root = m->right;
647	else {
648		root = vm_page_splay(m->pindex, m->left);
649		root->right = m->right;
650	}
651	object->root = root;
652	TAILQ_REMOVE(&object->memq, m, listq);
653
654	/*
655	 * And show that the object has one fewer resident page.
656	 */
657	object->resident_page_count--;
658	object->generation++;
659
660	m->object = NULL;
661}
662
663/*
664 *	vm_page_lookup:
665 *
666 *	Returns the page associated with the object/offset
667 *	pair specified; if none is found, NULL is returned.
668 *
669 *	The object must be locked.
670 *	This routine may not block.
671 *	This is a critical path routine
672 */
673vm_page_t
674vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
675{
676	vm_page_t m;
677
678	GIANT_REQUIRED;
679
680	m = vm_page_splay(pindex, object->root);
681	if ((object->root = m) != NULL && m->pindex != pindex)
682		m = NULL;
683	return (m);
684}
685
686/*
687 *	vm_page_rename:
688 *
689 *	Move the given memory entry from its
690 *	current object to the specified target object/offset.
691 *
692 *	The object must be locked.
693 *	This routine may not block.
694 *
695 *	Note: this routine will raise itself to splvm(), the caller need not.
696 *
697 *	Note: swap associated with the page must be invalidated by the move.  We
698 *	      have to do this for several reasons:  (1) we aren't freeing the
699 *	      page, (2) we are dirtying the page, (3) the VM system is probably
700 *	      moving the page from object A to B, and will then later move
701 *	      the backing store from A to B and we can't have a conflict.
702 *
703 *	Note: we *always* dirty the page.  It is necessary both for the
704 *	      fact that we moved it, and because we may be invalidating
705 *	      swap.  If the page is on the cache, we have to deactivate it
706 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
707 *	      on the cache.
708 */
709void
710vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
711{
712	int s;
713
714	s = splvm();
715	vm_page_lock_queues();
716	vm_page_remove(m);
717	vm_page_insert(m, new_object, new_pindex);
718	if (m->queue - m->pc == PQ_CACHE)
719		vm_page_deactivate(m);
720	vm_page_dirty(m);
721	vm_page_unlock_queues();
722	splx(s);
723}
724
725/*
726 *	vm_page_select_cache:
727 *
728 *	Find a page on the cache queue with color optimization.  As pages
729 *	might be found, but not applicable, they are deactivated.  This
730 *	keeps us from using potentially busy cached pages.
731 *
732 *	This routine must be called at splvm().
733 *	This routine may not block.
734 */
735static vm_page_t
736vm_page_select_cache(vm_pindex_t color)
737{
738	vm_page_t m;
739
740	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
741	while (TRUE) {
742		m = vm_pageq_find(PQ_CACHE, color & PQ_L2_MASK, FALSE);
743		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
744			       m->hold_count || m->wire_count)) {
745			vm_page_deactivate(m);
746			continue;
747		}
748		return m;
749	}
750}
751
752/*
753 *	vm_page_select_free:
754 *
755 *	Find a free or zero page, with specified preference.
756 *
757 *	This routine must be called at splvm().
758 *	This routine may not block.
759 */
760static __inline vm_page_t
761vm_page_select_free(vm_pindex_t color, boolean_t prefer_zero)
762{
763	vm_page_t m;
764
765	m = vm_pageq_find(PQ_FREE, color & PQ_L2_MASK, prefer_zero);
766	return (m);
767}
768
769/*
770 *	vm_page_alloc:
771 *
772 *	Allocate and return a memory cell associated
773 *	with this VM object/offset pair.
774 *
775 *	page_req classes:
776 *	VM_ALLOC_NORMAL		normal process request
777 *	VM_ALLOC_SYSTEM		system *really* needs a page
778 *	VM_ALLOC_INTERRUPT	interrupt time request
779 *	VM_ALLOC_ZERO		zero page
780 *
781 *	This routine may not block.
782 *
783 *	Additional special handling is required when called from an
784 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
785 *	the page cache in this case.
786 */
787vm_page_t
788vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
789{
790	vm_page_t m = NULL;
791	vm_pindex_t color;
792	int page_req, s;
793
794	GIANT_REQUIRED;
795
796#ifdef INVARIANTS
797	if ((req & VM_ALLOC_NOOBJ) == 0) {
798		KASSERT(object != NULL,
799		    ("vm_page_alloc: NULL object."));
800		KASSERT(!vm_page_lookup(object, pindex),
801		    ("vm_page_alloc: page already allocated"));
802	}
803#endif
804
805	page_req = req & VM_ALLOC_CLASS_MASK;
806
807	if ((req & VM_ALLOC_NOOBJ) == 0)
808		color = pindex + object->pg_color;
809	else
810		color = pindex;
811
812	/*
813	 * The pager is allowed to eat deeper into the free page list.
814	 */
815	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
816		page_req = VM_ALLOC_SYSTEM;
817	};
818
819	s = splvm();
820loop:
821	mtx_lock_spin(&vm_page_queue_free_mtx);
822	if (cnt.v_free_count > cnt.v_free_reserved) {
823		/*
824		 * Allocate from the free queue if there are plenty of pages
825		 * in it.
826		 */
827		m = vm_page_select_free(color, (req & VM_ALLOC_ZERO) != 0);
828
829	} else if (
830	    (page_req == VM_ALLOC_SYSTEM &&
831	     cnt.v_cache_count == 0 &&
832	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
833	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
834	) {
835		/*
836		 * Interrupt or system, dig deeper into the free list.
837		 */
838		m = vm_page_select_free(color, FALSE);
839	} else if (page_req != VM_ALLOC_INTERRUPT) {
840		mtx_unlock_spin(&vm_page_queue_free_mtx);
841		/*
842		 * Allocatable from cache (non-interrupt only).  On success,
843		 * we must free the page and try again, thus ensuring that
844		 * cnt.v_*_free_min counters are replenished.
845		 */
846		vm_page_lock_queues();
847		if ((m = vm_page_select_cache(color)) == NULL) {
848			vm_page_unlock_queues();
849			splx(s);
850#if defined(DIAGNOSTIC)
851			if (cnt.v_cache_count > 0)
852				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
853#endif
854			vm_pageout_deficit++;
855			pagedaemon_wakeup();
856			return (NULL);
857		}
858		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
859		vm_page_busy(m);
860		pmap_remove_all(m);
861		vm_page_free(m);
862		vm_page_unlock_queues();
863		goto loop;
864	} else {
865		/*
866		 * Not allocatable from cache from interrupt, give up.
867		 */
868		mtx_unlock_spin(&vm_page_queue_free_mtx);
869		splx(s);
870		vm_pageout_deficit++;
871		pagedaemon_wakeup();
872		return (NULL);
873	}
874
875	/*
876	 *  At this point we had better have found a good page.
877	 */
878
879	KASSERT(
880	    m != NULL,
881	    ("vm_page_alloc(): missing page on free queue\n")
882	);
883
884	/*
885	 * Remove from free queue
886	 */
887
888	vm_pageq_remove_nowakeup(m);
889
890	/*
891	 * Initialize structure.  Only the PG_ZERO flag is inherited.
892	 */
893	if (m->flags & PG_ZERO) {
894		vm_page_zero_count--;
895		m->flags = PG_ZERO | PG_BUSY;
896	} else {
897		m->flags = PG_BUSY;
898	}
899	if (req & VM_ALLOC_WIRED) {
900		cnt.v_wire_count++;
901		m->wire_count = 1;
902	} else
903		m->wire_count = 0;
904	m->hold_count = 0;
905	m->act_count = 0;
906	m->busy = 0;
907	m->valid = 0;
908	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
909	mtx_unlock_spin(&vm_page_queue_free_mtx);
910
911	/*
912	 * vm_page_insert() is safe prior to the splx().  Note also that
913	 * inserting a page here does not insert it into the pmap (which
914	 * could cause us to block allocating memory).  We cannot block
915	 * anywhere.
916	 */
917	if ((req & VM_ALLOC_NOOBJ) == 0)
918		vm_page_insert(m, object, pindex);
919
920	/*
921	 * Don't wakeup too often - wakeup the pageout daemon when
922	 * we would be nearly out of memory.
923	 */
924	if (vm_paging_needed())
925		pagedaemon_wakeup();
926
927	splx(s);
928	return (m);
929}
930
931/*
932 *	vm_wait:	(also see VM_WAIT macro)
933 *
934 *	Block until free pages are available for allocation
935 *	- Called in various places before memory allocations.
936 */
937void
938vm_wait(void)
939{
940	int s;
941
942	s = splvm();
943	if (curproc == pageproc) {
944		vm_pageout_pages_needed = 1;
945		tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
946	} else {
947		if (!vm_pages_needed) {
948			vm_pages_needed = 1;
949			wakeup(&vm_pages_needed);
950		}
951		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
952	}
953	splx(s);
954}
955
956/*
957 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
958 *
959 *	Block until free pages are available for allocation
960 *	- Called only in vm_fault so that processes page faulting
961 *	  can be easily tracked.
962 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
963 *	  processes will be able to grab memory first.  Do not change
964 *	  this balance without careful testing first.
965 */
966void
967vm_waitpfault(void)
968{
969	int s;
970
971	s = splvm();
972	if (!vm_pages_needed) {
973		vm_pages_needed = 1;
974		wakeup(&vm_pages_needed);
975	}
976	tsleep(&cnt.v_free_count, PUSER, "pfault", 0);
977	splx(s);
978}
979
980/*
981 *	vm_page_activate:
982 *
983 *	Put the specified page on the active list (if appropriate).
984 *	Ensure that act_count is at least ACT_INIT but do not otherwise
985 *	mess with it.
986 *
987 *	The page queues must be locked.
988 *	This routine may not block.
989 */
990void
991vm_page_activate(vm_page_t m)
992{
993	int s;
994
995	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
996	s = splvm();
997	if (m->queue != PQ_ACTIVE) {
998		if ((m->queue - m->pc) == PQ_CACHE)
999			cnt.v_reactivated++;
1000		vm_pageq_remove(m);
1001		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1002			if (m->act_count < ACT_INIT)
1003				m->act_count = ACT_INIT;
1004			vm_pageq_enqueue(PQ_ACTIVE, m);
1005		}
1006	} else {
1007		if (m->act_count < ACT_INIT)
1008			m->act_count = ACT_INIT;
1009	}
1010	splx(s);
1011}
1012
1013/*
1014 *	vm_page_free_wakeup:
1015 *
1016 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1017 *	routine is called when a page has been added to the cache or free
1018 *	queues.
1019 *
1020 *	This routine may not block.
1021 *	This routine must be called at splvm()
1022 */
1023static __inline void
1024vm_page_free_wakeup(void)
1025{
1026	/*
1027	 * if pageout daemon needs pages, then tell it that there are
1028	 * some free.
1029	 */
1030	if (vm_pageout_pages_needed &&
1031	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1032		wakeup(&vm_pageout_pages_needed);
1033		vm_pageout_pages_needed = 0;
1034	}
1035	/*
1036	 * wakeup processes that are waiting on memory if we hit a
1037	 * high water mark. And wakeup scheduler process if we have
1038	 * lots of memory. this process will swapin processes.
1039	 */
1040	if (vm_pages_needed && !vm_page_count_min()) {
1041		vm_pages_needed = 0;
1042		wakeup(&cnt.v_free_count);
1043	}
1044}
1045
1046/*
1047 *	vm_page_free_toq:
1048 *
1049 *	Returns the given page to the PQ_FREE list,
1050 *	disassociating it with any VM object.
1051 *
1052 *	Object and page must be locked prior to entry.
1053 *	This routine may not block.
1054 */
1055
1056void
1057vm_page_free_toq(vm_page_t m)
1058{
1059	int s;
1060	struct vpgqueues *pq;
1061	vm_object_t object = m->object;
1062
1063	GIANT_REQUIRED;
1064	s = splvm();
1065	cnt.v_tfree++;
1066
1067	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1068		printf(
1069		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1070		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1071		    m->hold_count);
1072		if ((m->queue - m->pc) == PQ_FREE)
1073			panic("vm_page_free: freeing free page");
1074		else
1075			panic("vm_page_free: freeing busy page");
1076	}
1077
1078	/*
1079	 * unqueue, then remove page.  Note that we cannot destroy
1080	 * the page here because we do not want to call the pager's
1081	 * callback routine until after we've put the page on the
1082	 * appropriate free queue.
1083	 */
1084	vm_pageq_remove_nowakeup(m);
1085	vm_page_remove(m);
1086
1087	/*
1088	 * If fictitious remove object association and
1089	 * return, otherwise delay object association removal.
1090	 */
1091	if ((m->flags & PG_FICTITIOUS) != 0) {
1092		splx(s);
1093		return;
1094	}
1095
1096	m->valid = 0;
1097	vm_page_undirty(m);
1098
1099	if (m->wire_count != 0) {
1100		if (m->wire_count > 1) {
1101			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1102				m->wire_count, (long)m->pindex);
1103		}
1104		panic("vm_page_free: freeing wired page\n");
1105	}
1106
1107	/*
1108	 * If we've exhausted the object's resident pages we want to free
1109	 * it up.
1110	 */
1111	if (object &&
1112	    (object->type == OBJT_VNODE) &&
1113	    ((object->flags & OBJ_DEAD) == 0)
1114	) {
1115		struct vnode *vp = (struct vnode *)object->handle;
1116
1117		if (vp) {
1118			VI_LOCK(vp);
1119			if (VSHOULDFREE(vp))
1120				vfree(vp);
1121			VI_UNLOCK(vp);
1122		}
1123	}
1124
1125	/*
1126	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1127	 */
1128	if (m->flags & PG_UNMANAGED) {
1129		m->flags &= ~PG_UNMANAGED;
1130	} else {
1131#ifdef __alpha__
1132		pmap_page_is_free(m);
1133#endif
1134	}
1135
1136	if (m->hold_count != 0) {
1137		m->flags &= ~PG_ZERO;
1138		m->queue = PQ_HOLD;
1139	} else
1140		m->queue = PQ_FREE + m->pc;
1141	pq = &vm_page_queues[m->queue];
1142	mtx_lock_spin(&vm_page_queue_free_mtx);
1143	pq->lcnt++;
1144	++(*pq->cnt);
1145
1146	/*
1147	 * Put zero'd pages on the end ( where we look for zero'd pages
1148	 * first ) and non-zerod pages at the head.
1149	 */
1150	if (m->flags & PG_ZERO) {
1151		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1152		++vm_page_zero_count;
1153	} else {
1154		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1155	}
1156	mtx_unlock_spin(&vm_page_queue_free_mtx);
1157	vm_page_free_wakeup();
1158	splx(s);
1159}
1160
1161/*
1162 *	vm_page_unmanage:
1163 *
1164 * 	Prevent PV management from being done on the page.  The page is
1165 *	removed from the paging queues as if it were wired, and as a
1166 *	consequence of no longer being managed the pageout daemon will not
1167 *	touch it (since there is no way to locate the pte mappings for the
1168 *	page).  madvise() calls that mess with the pmap will also no longer
1169 *	operate on the page.
1170 *
1171 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1172 *	will clear the flag.
1173 *
1174 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1175 *	physical memory as backing store rather then swap-backed memory and
1176 *	will eventually be extended to support 4MB unmanaged physical
1177 *	mappings.
1178 */
1179void
1180vm_page_unmanage(vm_page_t m)
1181{
1182	int s;
1183
1184	s = splvm();
1185	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1186	if ((m->flags & PG_UNMANAGED) == 0) {
1187		if (m->wire_count == 0)
1188			vm_pageq_remove(m);
1189	}
1190	vm_page_flag_set(m, PG_UNMANAGED);
1191	splx(s);
1192}
1193
1194/*
1195 *	vm_page_wire:
1196 *
1197 *	Mark this page as wired down by yet
1198 *	another map, removing it from paging queues
1199 *	as necessary.
1200 *
1201 *	The page queues must be locked.
1202 *	This routine may not block.
1203 */
1204void
1205vm_page_wire(vm_page_t m)
1206{
1207	int s;
1208
1209	/*
1210	 * Only bump the wire statistics if the page is not already wired,
1211	 * and only unqueue the page if it is on some queue (if it is unmanaged
1212	 * it is already off the queues).
1213	 */
1214	s = splvm();
1215	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1216	if (m->wire_count == 0) {
1217		if ((m->flags & PG_UNMANAGED) == 0)
1218			vm_pageq_remove(m);
1219		cnt.v_wire_count++;
1220	}
1221	m->wire_count++;
1222	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1223	splx(s);
1224}
1225
1226/*
1227 *	vm_page_unwire:
1228 *
1229 *	Release one wiring of this page, potentially
1230 *	enabling it to be paged again.
1231 *
1232 *	Many pages placed on the inactive queue should actually go
1233 *	into the cache, but it is difficult to figure out which.  What
1234 *	we do instead, if the inactive target is well met, is to put
1235 *	clean pages at the head of the inactive queue instead of the tail.
1236 *	This will cause them to be moved to the cache more quickly and
1237 *	if not actively re-referenced, freed more quickly.  If we just
1238 *	stick these pages at the end of the inactive queue, heavy filesystem
1239 *	meta-data accesses can cause an unnecessary paging load on memory bound
1240 *	processes.  This optimization causes one-time-use metadata to be
1241 *	reused more quickly.
1242 *
1243 *	BUT, if we are in a low-memory situation we have no choice but to
1244 *	put clean pages on the cache queue.
1245 *
1246 *	A number of routines use vm_page_unwire() to guarantee that the page
1247 *	will go into either the inactive or active queues, and will NEVER
1248 *	be placed in the cache - for example, just after dirtying a page.
1249 *	dirty pages in the cache are not allowed.
1250 *
1251 *	The page queues must be locked.
1252 *	This routine may not block.
1253 */
1254void
1255vm_page_unwire(vm_page_t m, int activate)
1256{
1257	int s;
1258
1259	s = splvm();
1260	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1261	if (m->wire_count > 0) {
1262		m->wire_count--;
1263		if (m->wire_count == 0) {
1264			cnt.v_wire_count--;
1265			if (m->flags & PG_UNMANAGED) {
1266				;
1267			} else if (activate)
1268				vm_pageq_enqueue(PQ_ACTIVE, m);
1269			else {
1270				vm_page_flag_clear(m, PG_WINATCFLS);
1271				vm_pageq_enqueue(PQ_INACTIVE, m);
1272			}
1273		}
1274	} else {
1275		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1276	}
1277	splx(s);
1278}
1279
1280
1281/*
1282 * Move the specified page to the inactive queue.  If the page has
1283 * any associated swap, the swap is deallocated.
1284 *
1285 * Normally athead is 0 resulting in LRU operation.  athead is set
1286 * to 1 if we want this page to be 'as if it were placed in the cache',
1287 * except without unmapping it from the process address space.
1288 *
1289 * This routine may not block.
1290 */
1291static __inline void
1292_vm_page_deactivate(vm_page_t m, int athead)
1293{
1294	int s;
1295
1296	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1297	/*
1298	 * Ignore if already inactive.
1299	 */
1300	if (m->queue == PQ_INACTIVE)
1301		return;
1302
1303	s = splvm();
1304	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1305		if ((m->queue - m->pc) == PQ_CACHE)
1306			cnt.v_reactivated++;
1307		vm_page_flag_clear(m, PG_WINATCFLS);
1308		vm_pageq_remove(m);
1309		if (athead)
1310			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1311		else
1312			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1313		m->queue = PQ_INACTIVE;
1314		vm_page_queues[PQ_INACTIVE].lcnt++;
1315		cnt.v_inactive_count++;
1316	}
1317	splx(s);
1318}
1319
1320void
1321vm_page_deactivate(vm_page_t m)
1322{
1323    _vm_page_deactivate(m, 0);
1324}
1325
1326/*
1327 * vm_page_try_to_cache:
1328 *
1329 * Returns 0 on failure, 1 on success
1330 */
1331int
1332vm_page_try_to_cache(vm_page_t m)
1333{
1334
1335	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1336	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1337	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1338		return (0);
1339	}
1340	vm_page_test_dirty(m);
1341	if (m->dirty)
1342		return (0);
1343	vm_page_cache(m);
1344	return (1);
1345}
1346
1347/*
1348 * vm_page_try_to_free()
1349 *
1350 *	Attempt to free the page.  If we cannot free it, we do nothing.
1351 *	1 is returned on success, 0 on failure.
1352 */
1353int
1354vm_page_try_to_free(vm_page_t m)
1355{
1356
1357	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1358	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1359	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1360		return (0);
1361	}
1362	vm_page_test_dirty(m);
1363	if (m->dirty)
1364		return (0);
1365	vm_page_busy(m);
1366	pmap_remove_all(m);
1367	vm_page_free(m);
1368	return (1);
1369}
1370
1371/*
1372 * vm_page_cache
1373 *
1374 * Put the specified page onto the page cache queue (if appropriate).
1375 *
1376 * This routine may not block.
1377 */
1378void
1379vm_page_cache(vm_page_t m)
1380{
1381	int s;
1382
1383	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1384	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1385		printf("vm_page_cache: attempting to cache busy page\n");
1386		return;
1387	}
1388	if ((m->queue - m->pc) == PQ_CACHE)
1389		return;
1390
1391	/*
1392	 * Remove all pmaps and indicate that the page is not
1393	 * writeable or mapped.
1394	 */
1395	pmap_remove_all(m);
1396	if (m->dirty != 0) {
1397		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1398			(long)m->pindex);
1399	}
1400	s = splvm();
1401	vm_pageq_remove_nowakeup(m);
1402	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1403	vm_page_free_wakeup();
1404	splx(s);
1405}
1406
1407/*
1408 * vm_page_dontneed
1409 *
1410 *	Cache, deactivate, or do nothing as appropriate.  This routine
1411 *	is typically used by madvise() MADV_DONTNEED.
1412 *
1413 *	Generally speaking we want to move the page into the cache so
1414 *	it gets reused quickly.  However, this can result in a silly syndrome
1415 *	due to the page recycling too quickly.  Small objects will not be
1416 *	fully cached.  On the otherhand, if we move the page to the inactive
1417 *	queue we wind up with a problem whereby very large objects
1418 *	unnecessarily blow away our inactive and cache queues.
1419 *
1420 *	The solution is to move the pages based on a fixed weighting.  We
1421 *	either leave them alone, deactivate them, or move them to the cache,
1422 *	where moving them to the cache has the highest weighting.
1423 *	By forcing some pages into other queues we eventually force the
1424 *	system to balance the queues, potentially recovering other unrelated
1425 *	space from active.  The idea is to not force this to happen too
1426 *	often.
1427 */
1428void
1429vm_page_dontneed(vm_page_t m)
1430{
1431	static int dnweight;
1432	int dnw;
1433	int head;
1434
1435	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1436	dnw = ++dnweight;
1437
1438	/*
1439	 * occassionally leave the page alone
1440	 */
1441	if ((dnw & 0x01F0) == 0 ||
1442	    m->queue == PQ_INACTIVE ||
1443	    m->queue - m->pc == PQ_CACHE
1444	) {
1445		if (m->act_count >= ACT_INIT)
1446			--m->act_count;
1447		return;
1448	}
1449
1450	if (m->dirty == 0)
1451		vm_page_test_dirty(m);
1452
1453	if (m->dirty || (dnw & 0x0070) == 0) {
1454		/*
1455		 * Deactivate the page 3 times out of 32.
1456		 */
1457		head = 0;
1458	} else {
1459		/*
1460		 * Cache the page 28 times out of every 32.  Note that
1461		 * the page is deactivated instead of cached, but placed
1462		 * at the head of the queue instead of the tail.
1463		 */
1464		head = 1;
1465	}
1466	_vm_page_deactivate(m, head);
1467}
1468
1469/*
1470 * Grab a page, waiting until we are waken up due to the page
1471 * changing state.  We keep on waiting, if the page continues
1472 * to be in the object.  If the page doesn't exist, allocate it.
1473 *
1474 * This routine may block.
1475 */
1476vm_page_t
1477vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1478{
1479	vm_page_t m;
1480	int s, generation;
1481
1482	GIANT_REQUIRED;
1483retrylookup:
1484	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1485		vm_page_lock_queues();
1486		if (m->busy || (m->flags & PG_BUSY)) {
1487			generation = object->generation;
1488
1489			s = splvm();
1490			while ((object->generation == generation) &&
1491					(m->busy || (m->flags & PG_BUSY))) {
1492				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1493				msleep(m, &vm_page_queue_mtx, PVM, "pgrbwt", 0);
1494				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1495					vm_page_unlock_queues();
1496					splx(s);
1497					return NULL;
1498				}
1499			}
1500			vm_page_unlock_queues();
1501			splx(s);
1502			goto retrylookup;
1503		} else {
1504			if (allocflags & VM_ALLOC_WIRED)
1505				vm_page_wire(m);
1506			vm_page_busy(m);
1507			vm_page_unlock_queues();
1508			return m;
1509		}
1510	}
1511
1512	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1513	if (m == NULL) {
1514		VM_WAIT;
1515		if ((allocflags & VM_ALLOC_RETRY) == 0)
1516			return NULL;
1517		goto retrylookup;
1518	}
1519
1520	return m;
1521}
1522
1523/*
1524 * Mapping function for valid bits or for dirty bits in
1525 * a page.  May not block.
1526 *
1527 * Inputs are required to range within a page.
1528 */
1529__inline int
1530vm_page_bits(int base, int size)
1531{
1532	int first_bit;
1533	int last_bit;
1534
1535	KASSERT(
1536	    base + size <= PAGE_SIZE,
1537	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1538	);
1539
1540	if (size == 0)		/* handle degenerate case */
1541		return (0);
1542
1543	first_bit = base >> DEV_BSHIFT;
1544	last_bit = (base + size - 1) >> DEV_BSHIFT;
1545
1546	return ((2 << last_bit) - (1 << first_bit));
1547}
1548
1549/*
1550 *	vm_page_set_validclean:
1551 *
1552 *	Sets portions of a page valid and clean.  The arguments are expected
1553 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1554 *	of any partial chunks touched by the range.  The invalid portion of
1555 *	such chunks will be zero'd.
1556 *
1557 *	This routine may not block.
1558 *
1559 *	(base + size) must be less then or equal to PAGE_SIZE.
1560 */
1561void
1562vm_page_set_validclean(vm_page_t m, int base, int size)
1563{
1564	int pagebits;
1565	int frag;
1566	int endoff;
1567
1568	GIANT_REQUIRED;
1569	if (size == 0)	/* handle degenerate case */
1570		return;
1571
1572	/*
1573	 * If the base is not DEV_BSIZE aligned and the valid
1574	 * bit is clear, we have to zero out a portion of the
1575	 * first block.
1576	 */
1577	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1578	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1579		pmap_zero_page_area(m, frag, base - frag);
1580
1581	/*
1582	 * If the ending offset is not DEV_BSIZE aligned and the
1583	 * valid bit is clear, we have to zero out a portion of
1584	 * the last block.
1585	 */
1586	endoff = base + size;
1587	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1588	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1589		pmap_zero_page_area(m, endoff,
1590		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1591
1592	/*
1593	 * Set valid, clear dirty bits.  If validating the entire
1594	 * page we can safely clear the pmap modify bit.  We also
1595	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1596	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1597	 * be set again.
1598	 *
1599	 * We set valid bits inclusive of any overlap, but we can only
1600	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1601	 * the range.
1602	 */
1603	pagebits = vm_page_bits(base, size);
1604	m->valid |= pagebits;
1605#if 0	/* NOT YET */
1606	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1607		frag = DEV_BSIZE - frag;
1608		base += frag;
1609		size -= frag;
1610		if (size < 0)
1611			size = 0;
1612	}
1613	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1614#endif
1615	m->dirty &= ~pagebits;
1616	if (base == 0 && size == PAGE_SIZE) {
1617		pmap_clear_modify(m);
1618		vm_page_flag_clear(m, PG_NOSYNC);
1619	}
1620}
1621
1622#if 0
1623
1624void
1625vm_page_set_dirty(vm_page_t m, int base, int size)
1626{
1627	m->dirty |= vm_page_bits(base, size);
1628}
1629
1630#endif
1631
1632void
1633vm_page_clear_dirty(vm_page_t m, int base, int size)
1634{
1635	GIANT_REQUIRED;
1636	m->dirty &= ~vm_page_bits(base, size);
1637}
1638
1639/*
1640 *	vm_page_set_invalid:
1641 *
1642 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1643 *	valid and dirty bits for the effected areas are cleared.
1644 *
1645 *	May not block.
1646 */
1647void
1648vm_page_set_invalid(vm_page_t m, int base, int size)
1649{
1650	int bits;
1651
1652	GIANT_REQUIRED;
1653	bits = vm_page_bits(base, size);
1654	m->valid &= ~bits;
1655	m->dirty &= ~bits;
1656	m->object->generation++;
1657}
1658
1659/*
1660 * vm_page_zero_invalid()
1661 *
1662 *	The kernel assumes that the invalid portions of a page contain
1663 *	garbage, but such pages can be mapped into memory by user code.
1664 *	When this occurs, we must zero out the non-valid portions of the
1665 *	page so user code sees what it expects.
1666 *
1667 *	Pages are most often semi-valid when the end of a file is mapped
1668 *	into memory and the file's size is not page aligned.
1669 */
1670void
1671vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1672{
1673	int b;
1674	int i;
1675
1676	/*
1677	 * Scan the valid bits looking for invalid sections that
1678	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1679	 * valid bit may be set ) have already been zerod by
1680	 * vm_page_set_validclean().
1681	 */
1682	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1683		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1684		    (m->valid & (1 << i))
1685		) {
1686			if (i > b) {
1687				pmap_zero_page_area(m,
1688				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1689			}
1690			b = i + 1;
1691		}
1692	}
1693
1694	/*
1695	 * setvalid is TRUE when we can safely set the zero'd areas
1696	 * as being valid.  We can do this if there are no cache consistancy
1697	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1698	 */
1699	if (setvalid)
1700		m->valid = VM_PAGE_BITS_ALL;
1701}
1702
1703/*
1704 *	vm_page_is_valid:
1705 *
1706 *	Is (partial) page valid?  Note that the case where size == 0
1707 *	will return FALSE in the degenerate case where the page is
1708 *	entirely invalid, and TRUE otherwise.
1709 *
1710 *	May not block.
1711 */
1712int
1713vm_page_is_valid(vm_page_t m, int base, int size)
1714{
1715	int bits = vm_page_bits(base, size);
1716
1717	if (m->valid && ((m->valid & bits) == bits))
1718		return 1;
1719	else
1720		return 0;
1721}
1722
1723/*
1724 * update dirty bits from pmap/mmu.  May not block.
1725 */
1726void
1727vm_page_test_dirty(vm_page_t m)
1728{
1729	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1730		vm_page_dirty(m);
1731	}
1732}
1733
1734int so_zerocp_fullpage = 0;
1735
1736void
1737vm_page_cowfault(vm_page_t m)
1738{
1739	vm_page_t mnew;
1740	vm_object_t object;
1741	vm_pindex_t pindex;
1742
1743	object = m->object;
1744	pindex = m->pindex;
1745	vm_page_busy(m);
1746
1747 retry_alloc:
1748	vm_page_remove(m);
1749	/*
1750	 * An interrupt allocation is requested because the page
1751	 * queues lock is held.
1752	 */
1753	mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT);
1754	if (mnew == NULL) {
1755		vm_page_insert(m, object, pindex);
1756		vm_page_unlock_queues();
1757		VM_WAIT;
1758		vm_page_lock_queues();
1759		goto retry_alloc;
1760	}
1761
1762	if (m->cow == 0) {
1763		/*
1764		 * check to see if we raced with an xmit complete when
1765		 * waiting to allocate a page.  If so, put things back
1766		 * the way they were
1767		 */
1768		vm_page_busy(mnew);
1769		vm_page_free(mnew);
1770		vm_page_insert(m, object, pindex);
1771	} else { /* clear COW & copy page */
1772		if (so_zerocp_fullpage) {
1773			mnew->valid = VM_PAGE_BITS_ALL;
1774		} else {
1775			vm_page_copy(m, mnew);
1776		}
1777		vm_page_dirty(mnew);
1778		vm_page_flag_clear(mnew, PG_BUSY);
1779	}
1780}
1781
1782void
1783vm_page_cowclear(vm_page_t m)
1784{
1785
1786	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1787	if (m->cow) {
1788		m->cow--;
1789		/*
1790		 * let vm_fault add back write permission  lazily
1791		 */
1792	}
1793	/*
1794	 *  sf_buf_free() will free the page, so we needn't do it here
1795	 */
1796}
1797
1798void
1799vm_page_cowsetup(vm_page_t m)
1800{
1801
1802	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1803	m->cow++;
1804	pmap_page_protect(m, VM_PROT_READ);
1805}
1806
1807#include "opt_ddb.h"
1808#ifdef DDB
1809#include <sys/kernel.h>
1810
1811#include <ddb/ddb.h>
1812
1813DB_SHOW_COMMAND(page, vm_page_print_page_info)
1814{
1815	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1816	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1817	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1818	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1819	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1820	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1821	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1822	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1823	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1824	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1825}
1826
1827DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1828{
1829	int i;
1830	db_printf("PQ_FREE:");
1831	for (i = 0; i < PQ_L2_SIZE; i++) {
1832		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1833	}
1834	db_printf("\n");
1835
1836	db_printf("PQ_CACHE:");
1837	for (i = 0; i < PQ_L2_SIZE; i++) {
1838		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1839	}
1840	db_printf("\n");
1841
1842	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1843		vm_page_queues[PQ_ACTIVE].lcnt,
1844		vm_page_queues[PQ_INACTIVE].lcnt);
1845}
1846#endif /* DDB */
1847