vm_page.c revision 106691
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37 * $FreeBSD: head/sys/vm/vm_page.c 106691 2002-11-09 08:27:42Z alc $
38 */
39
40/*
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59 *  School of Computer Science
60 *  Carnegie Mellon University
61 *  Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67/*
68 *			GENERAL RULES ON VM_PAGE MANIPULATION
69 *
70 *	- a pageq mutex is required when adding or removing a page from a
71 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72 *	  busy state of a page.
73 *
74 *	- a hash chain mutex is required when associating or disassociating
75 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76 *	  regardless of other mutexes or the busy state of a page.
77 *
78 *	- either a hash chain mutex OR a busied page is required in order
79 *	  to modify the page flags.  A hash chain mutex must be obtained in
80 *	  order to busy a page.  A page's flags cannot be modified by a
81 *	  hash chain mutex if the page is marked busy.
82 *
83 *	- The object memq mutex is held when inserting or removing
84 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85 *	  is different from the object's main mutex.
86 *
87 *	Generally speaking, you have to be aware of side effects when running
88 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90 *	vm_page_cache(), vm_page_activate(), and a number of other routines
91 *	will release the hash chain mutex for you.  Intermediate manipulation
92 *	routines such as vm_page_flag_set() expect the hash chain to be held
93 *	on entry and the hash chain will remain held on return.
94 *
95 *	pageq scanning can only occur with the pageq in question locked.
96 *	We have a known bottleneck with the active queue, but the cache
97 *	and free queues are actually arrays already.
98 */
99
100/*
101 *	Resident memory management module.
102 */
103
104#include <sys/param.h>
105#include <sys/systm.h>
106#include <sys/lock.h>
107#include <sys/malloc.h>
108#include <sys/mutex.h>
109#include <sys/proc.h>
110#include <sys/vmmeter.h>
111#include <sys/vnode.h>
112
113#include <vm/vm.h>
114#include <vm/vm_param.h>
115#include <vm/vm_kern.h>
116#include <vm/vm_object.h>
117#include <vm/vm_page.h>
118#include <vm/vm_pageout.h>
119#include <vm/vm_pager.h>
120#include <vm/vm_extern.h>
121#include <vm/uma.h>
122#include <vm/uma_int.h>
123
124/*
125 *	Associated with page of user-allocatable memory is a
126 *	page structure.
127 */
128
129struct mtx vm_page_queue_mtx;
130struct mtx vm_page_queue_free_mtx;
131
132vm_page_t vm_page_array = 0;
133int vm_page_array_size = 0;
134long first_page = 0;
135int vm_page_zero_count = 0;
136
137/*
138 *	vm_set_page_size:
139 *
140 *	Sets the page size, perhaps based upon the memory
141 *	size.  Must be called before any use of page-size
142 *	dependent functions.
143 */
144void
145vm_set_page_size(void)
146{
147	if (cnt.v_page_size == 0)
148		cnt.v_page_size = PAGE_SIZE;
149	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
150		panic("vm_set_page_size: page size not a power of two");
151}
152
153/*
154 *	vm_page_startup:
155 *
156 *	Initializes the resident memory module.
157 *
158 *	Allocates memory for the page cells, and
159 *	for the object/offset-to-page hash table headers.
160 *	Each page cell is initialized and placed on the free list.
161 */
162vm_offset_t
163vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
164{
165	vm_offset_t mapped;
166	vm_size_t npages, page_range;
167	vm_offset_t new_end;
168	int i;
169	vm_offset_t pa;
170	int nblocks;
171	vm_offset_t last_pa;
172
173	/* the biggest memory array is the second group of pages */
174	vm_offset_t end;
175	vm_offset_t biggestone, biggestsize;
176
177	vm_offset_t total;
178	vm_size_t bootpages;
179
180	total = 0;
181	biggestsize = 0;
182	biggestone = 0;
183	nblocks = 0;
184	vaddr = round_page(vaddr);
185
186	for (i = 0; phys_avail[i + 1]; i += 2) {
187		phys_avail[i] = round_page(phys_avail[i]);
188		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
189	}
190
191	for (i = 0; phys_avail[i + 1]; i += 2) {
192		vm_size_t size = phys_avail[i + 1] - phys_avail[i];
193
194		if (size > biggestsize) {
195			biggestone = i;
196			biggestsize = size;
197		}
198		++nblocks;
199		total += size;
200	}
201
202	end = phys_avail[biggestone+1];
203
204	/*
205	 * Initialize the locks.
206	 */
207	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
208	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
209	   MTX_SPIN);
210
211	/*
212	 * Initialize the queue headers for the free queue, the active queue
213	 * and the inactive queue.
214	 */
215	vm_pageq_init();
216
217	/*
218	 * Allocate memory for use when boot strapping the kernel memory
219	 * allocator.
220	 */
221	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
222	new_end = end - bootpages;
223	new_end = trunc_page(new_end);
224	mapped = pmap_map(&vaddr, new_end, end,
225	    VM_PROT_READ | VM_PROT_WRITE);
226	bzero((caddr_t) mapped, end - new_end);
227	uma_startup((caddr_t)mapped);
228
229	/*
230	 * Compute the number of pages of memory that will be available for
231	 * use (taking into account the overhead of a page structure per
232	 * page).
233	 */
234	first_page = phys_avail[0] / PAGE_SIZE;
235	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
236	npages = (total - (page_range * sizeof(struct vm_page)) -
237	    (end - new_end)) / PAGE_SIZE;
238	end = new_end;
239
240	/*
241	 * Initialize the mem entry structures now, and put them in the free
242	 * queue.
243	 */
244	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
245	mapped = pmap_map(&vaddr, new_end, end,
246	    VM_PROT_READ | VM_PROT_WRITE);
247	vm_page_array = (vm_page_t) mapped;
248
249	/*
250	 * Clear all of the page structures
251	 */
252	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
253	vm_page_array_size = page_range;
254
255	/*
256	 * Construct the free queue(s) in descending order (by physical
257	 * address) so that the first 16MB of physical memory is allocated
258	 * last rather than first.  On large-memory machines, this avoids
259	 * the exhaustion of low physical memory before isa_dmainit has run.
260	 */
261	cnt.v_page_count = 0;
262	cnt.v_free_count = 0;
263	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
264		pa = phys_avail[i];
265		if (i == biggestone)
266			last_pa = new_end;
267		else
268			last_pa = phys_avail[i + 1];
269		while (pa < last_pa && npages-- > 0) {
270			vm_pageq_add_new_page(pa);
271			pa += PAGE_SIZE;
272		}
273	}
274	return (vaddr);
275}
276
277void
278vm_page_flag_set(vm_page_t m, unsigned short bits)
279{
280	GIANT_REQUIRED;
281	m->flags |= bits;
282}
283
284void
285vm_page_flag_clear(vm_page_t m, unsigned short bits)
286{
287	GIANT_REQUIRED;
288	m->flags &= ~bits;
289}
290
291void
292vm_page_busy(vm_page_t m)
293{
294	KASSERT((m->flags & PG_BUSY) == 0,
295	    ("vm_page_busy: page already busy!!!"));
296	vm_page_flag_set(m, PG_BUSY);
297}
298
299/*
300 *      vm_page_flash:
301 *
302 *      wakeup anyone waiting for the page.
303 */
304void
305vm_page_flash(vm_page_t m)
306{
307	if (m->flags & PG_WANTED) {
308		vm_page_flag_clear(m, PG_WANTED);
309		wakeup(m);
310	}
311}
312
313/*
314 *      vm_page_wakeup:
315 *
316 *      clear the PG_BUSY flag and wakeup anyone waiting for the
317 *      page.
318 *
319 */
320void
321vm_page_wakeup(vm_page_t m)
322{
323	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
324	vm_page_flag_clear(m, PG_BUSY);
325	vm_page_flash(m);
326}
327
328/*
329 *
330 *
331 */
332void
333vm_page_io_start(vm_page_t m)
334{
335
336	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
337	m->busy++;
338}
339
340void
341vm_page_io_finish(vm_page_t m)
342{
343
344	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
345	m->busy--;
346	if (m->busy == 0)
347		vm_page_flash(m);
348}
349
350/*
351 * Keep page from being freed by the page daemon
352 * much of the same effect as wiring, except much lower
353 * overhead and should be used only for *very* temporary
354 * holding ("wiring").
355 */
356void
357vm_page_hold(vm_page_t mem)
358{
359        GIANT_REQUIRED;
360        mem->hold_count++;
361}
362
363void
364vm_page_unhold(vm_page_t mem)
365{
366	GIANT_REQUIRED;
367	--mem->hold_count;
368	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
369	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
370		vm_page_free_toq(mem);
371}
372
373/*
374 *	vm_page_protect:
375 *
376 *	Reduce the protection of a page.  This routine never raises the
377 *	protection and therefore can be safely called if the page is already
378 *	at VM_PROT_NONE (it will be a NOP effectively ).
379 */
380void
381vm_page_protect(vm_page_t mem, int prot)
382{
383	if (prot == VM_PROT_NONE) {
384		if (pmap_page_is_mapped(mem) || (mem->flags & PG_WRITEABLE)) {
385			pmap_page_protect(mem, VM_PROT_NONE);
386			vm_page_flag_clear(mem, PG_WRITEABLE);
387		}
388	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
389		pmap_page_protect(mem, VM_PROT_READ);
390		vm_page_flag_clear(mem, PG_WRITEABLE);
391	}
392}
393
394/*
395 *	vm_page_copy:
396 *
397 *	Copy one page to another
398 */
399void
400vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
401{
402	pmap_copy_page(src_m, dest_m);
403	dest_m->valid = VM_PAGE_BITS_ALL;
404}
405
406/*
407 *	vm_page_free:
408 *
409 *	Free a page
410 *
411 *	The clearing of PG_ZERO is a temporary safety until the code can be
412 *	reviewed to determine that PG_ZERO is being properly cleared on
413 *	write faults or maps.  PG_ZERO was previously cleared in
414 *	vm_page_alloc().
415 */
416void
417vm_page_free(vm_page_t m)
418{
419	vm_page_flag_clear(m, PG_ZERO);
420	vm_page_free_toq(m);
421	vm_page_zero_idle_wakeup();
422}
423
424/*
425 *	vm_page_free_zero:
426 *
427 *	Free a page to the zerod-pages queue
428 */
429void
430vm_page_free_zero(vm_page_t m)
431{
432	vm_page_flag_set(m, PG_ZERO);
433	vm_page_free_toq(m);
434}
435
436/*
437 *	vm_page_sleep_busy:
438 *
439 *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
440 *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
441 *	it almost had to sleep and made temporary spl*() mods), FALSE
442 *	otherwise.
443 *
444 *	This routine assumes that interrupts can only remove the busy
445 *	status from a page, not set the busy status or change it from
446 *	PG_BUSY to m->busy or vise versa (which would create a timing
447 *	window).
448 */
449int
450vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
451{
452	GIANT_REQUIRED;
453	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
454		int s = splvm();
455		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
456			/*
457			 * Page is busy. Wait and retry.
458			 */
459			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
460			tsleep(m, PVM, msg, 0);
461		}
462		splx(s);
463		return (TRUE);
464		/* not reached */
465	}
466	return (FALSE);
467}
468
469/*
470 *	vm_page_sleep_if_busy:
471 *
472 *	Sleep and release the page queues lock if PG_BUSY is set or,
473 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
474 *	thread slept and the page queues lock was released.
475 *	Otherwise, retains the page queues lock and returns FALSE.
476 */
477int
478vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
479{
480
481	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
482	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
483		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
484		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
485		return (TRUE);
486	}
487	return (FALSE);
488}
489
490/*
491 *	vm_page_dirty:
492 *
493 *	make page all dirty
494 */
495void
496vm_page_dirty(vm_page_t m)
497{
498	KASSERT(m->queue - m->pc != PQ_CACHE,
499	    ("vm_page_dirty: page in cache!"));
500	m->dirty = VM_PAGE_BITS_ALL;
501}
502
503/*
504 *	vm_page_splay:
505 *
506 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
507 *	the vm_page containing the given pindex.  If, however, that
508 *	pindex is not found in the vm_object, returns a vm_page that is
509 *	adjacent to the pindex, coming before or after it.
510 */
511vm_page_t
512vm_page_splay(vm_pindex_t pindex, vm_page_t root)
513{
514	struct vm_page dummy;
515	vm_page_t lefttreemax, righttreemin, y;
516
517	if (root == NULL)
518		return (root);
519	lefttreemax = righttreemin = &dummy;
520	for (;; root = y) {
521		if (pindex < root->pindex) {
522			if ((y = root->left) == NULL)
523				break;
524			if (pindex < y->pindex) {
525				/* Rotate right. */
526				root->left = y->right;
527				y->right = root;
528				root = y;
529				if ((y = root->left) == NULL)
530					break;
531			}
532			/* Link into the new root's right tree. */
533			righttreemin->left = root;
534			righttreemin = root;
535		} else if (pindex > root->pindex) {
536			if ((y = root->right) == NULL)
537				break;
538			if (pindex > y->pindex) {
539				/* Rotate left. */
540				root->right = y->left;
541				y->left = root;
542				root = y;
543				if ((y = root->right) == NULL)
544					break;
545			}
546			/* Link into the new root's left tree. */
547			lefttreemax->right = root;
548			lefttreemax = root;
549		} else
550			break;
551	}
552	/* Assemble the new root. */
553	lefttreemax->right = root->left;
554	righttreemin->left = root->right;
555	root->left = dummy.right;
556	root->right = dummy.left;
557	return (root);
558}
559
560/*
561 *	vm_page_insert:		[ internal use only ]
562 *
563 *	Inserts the given mem entry into the object and object list.
564 *
565 *	The pagetables are not updated but will presumably fault the page
566 *	in if necessary, or if a kernel page the caller will at some point
567 *	enter the page into the kernel's pmap.  We are not allowed to block
568 *	here so we *can't* do this anyway.
569 *
570 *	The object and page must be locked, and must be splhigh.
571 *	This routine may not block.
572 */
573void
574vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
575{
576	vm_page_t root;
577
578	GIANT_REQUIRED;
579
580	if (m->object != NULL)
581		panic("vm_page_insert: already inserted");
582
583	/*
584	 * Record the object/offset pair in this page
585	 */
586	m->object = object;
587	m->pindex = pindex;
588
589	/*
590	 * Now link into the object's ordered list of backed pages.
591	 */
592	root = object->root;
593	if (root == NULL) {
594		m->left = NULL;
595		m->right = NULL;
596		TAILQ_INSERT_TAIL(&object->memq, m, listq);
597	} else {
598		root = vm_page_splay(pindex, root);
599		if (pindex < root->pindex) {
600			m->left = root->left;
601			m->right = root;
602			root->left = NULL;
603			TAILQ_INSERT_BEFORE(root, m, listq);
604		} else {
605			m->right = root->right;
606			m->left = root;
607			root->right = NULL;
608			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
609		}
610	}
611	object->root = m;
612	object->generation++;
613
614	/*
615	 * show that the object has one more resident page.
616	 */
617	object->resident_page_count++;
618
619	/*
620	 * Since we are inserting a new and possibly dirty page,
621	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
622	 */
623	if (m->flags & PG_WRITEABLE)
624		vm_object_set_writeable_dirty(object);
625}
626
627/*
628 *	vm_page_remove:
629 *				NOTE: used by device pager as well -wfj
630 *
631 *	Removes the given mem entry from the object/offset-page
632 *	table and the object page list, but do not invalidate/terminate
633 *	the backing store.
634 *
635 *	The object and page must be locked, and at splhigh.
636 *	The underlying pmap entry (if any) is NOT removed here.
637 *	This routine may not block.
638 */
639void
640vm_page_remove(vm_page_t m)
641{
642	vm_object_t object;
643	vm_page_t root;
644
645	GIANT_REQUIRED;
646
647	if (m->object == NULL)
648		return;
649
650	if ((m->flags & PG_BUSY) == 0) {
651		panic("vm_page_remove: page not busy");
652	}
653
654	/*
655	 * Basically destroy the page.
656	 */
657	vm_page_wakeup(m);
658
659	object = m->object;
660
661	/*
662	 * Now remove from the object's list of backed pages.
663	 */
664	if (m != object->root)
665		vm_page_splay(m->pindex, object->root);
666	if (m->left == NULL)
667		root = m->right;
668	else {
669		root = vm_page_splay(m->pindex, m->left);
670		root->right = m->right;
671	}
672	object->root = root;
673	TAILQ_REMOVE(&object->memq, m, listq);
674
675	/*
676	 * And show that the object has one fewer resident page.
677	 */
678	object->resident_page_count--;
679	object->generation++;
680
681	m->object = NULL;
682}
683
684/*
685 *	vm_page_lookup:
686 *
687 *	Returns the page associated with the object/offset
688 *	pair specified; if none is found, NULL is returned.
689 *
690 *	The object must be locked.
691 *	This routine may not block.
692 *	This is a critical path routine
693 */
694vm_page_t
695vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
696{
697	vm_page_t m;
698
699	GIANT_REQUIRED;
700
701	m = vm_page_splay(pindex, object->root);
702	if ((object->root = m) != NULL && m->pindex != pindex)
703		m = NULL;
704	return (m);
705}
706
707/*
708 *	vm_page_rename:
709 *
710 *	Move the given memory entry from its
711 *	current object to the specified target object/offset.
712 *
713 *	The object must be locked.
714 *	This routine may not block.
715 *
716 *	Note: this routine will raise itself to splvm(), the caller need not.
717 *
718 *	Note: swap associated with the page must be invalidated by the move.  We
719 *	      have to do this for several reasons:  (1) we aren't freeing the
720 *	      page, (2) we are dirtying the page, (3) the VM system is probably
721 *	      moving the page from object A to B, and will then later move
722 *	      the backing store from A to B and we can't have a conflict.
723 *
724 *	Note: we *always* dirty the page.  It is necessary both for the
725 *	      fact that we moved it, and because we may be invalidating
726 *	      swap.  If the page is on the cache, we have to deactivate it
727 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
728 *	      on the cache.
729 */
730void
731vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
732{
733	int s;
734
735	s = splvm();
736	vm_page_lock_queues();
737	vm_page_remove(m);
738	vm_page_insert(m, new_object, new_pindex);
739	if (m->queue - m->pc == PQ_CACHE)
740		vm_page_deactivate(m);
741	vm_page_dirty(m);
742	vm_page_unlock_queues();
743	splx(s);
744}
745
746/*
747 *	vm_page_select_cache:
748 *
749 *	Find a page on the cache queue with color optimization.  As pages
750 *	might be found, but not applicable, they are deactivated.  This
751 *	keeps us from using potentially busy cached pages.
752 *
753 *	This routine must be called at splvm().
754 *	This routine may not block.
755 */
756static vm_page_t
757vm_page_select_cache(vm_pindex_t color)
758{
759	vm_page_t m;
760
761	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
762	while (TRUE) {
763		m = vm_pageq_find(PQ_CACHE, color & PQ_L2_MASK, FALSE);
764		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
765			       m->hold_count || m->wire_count)) {
766			vm_page_deactivate(m);
767			continue;
768		}
769		return m;
770	}
771}
772
773/*
774 *	vm_page_select_free:
775 *
776 *	Find a free or zero page, with specified preference.
777 *
778 *	This routine must be called at splvm().
779 *	This routine may not block.
780 */
781static __inline vm_page_t
782vm_page_select_free(vm_pindex_t color, boolean_t prefer_zero)
783{
784	vm_page_t m;
785
786	m = vm_pageq_find(PQ_FREE, color & PQ_L2_MASK, prefer_zero);
787	return (m);
788}
789
790/*
791 *	vm_page_alloc:
792 *
793 *	Allocate and return a memory cell associated
794 *	with this VM object/offset pair.
795 *
796 *	page_req classes:
797 *	VM_ALLOC_NORMAL		normal process request
798 *	VM_ALLOC_SYSTEM		system *really* needs a page
799 *	VM_ALLOC_INTERRUPT	interrupt time request
800 *	VM_ALLOC_ZERO		zero page
801 *
802 *	This routine may not block.
803 *
804 *	Additional special handling is required when called from an
805 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
806 *	the page cache in this case.
807 */
808vm_page_t
809vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
810{
811	vm_page_t m = NULL;
812	vm_pindex_t color;
813	int page_req, s;
814
815	GIANT_REQUIRED;
816
817#ifdef INVARIANTS
818	if ((req & VM_ALLOC_NOOBJ) == 0) {
819		KASSERT(object != NULL,
820		    ("vm_page_alloc: NULL object."));
821		KASSERT(!vm_page_lookup(object, pindex),
822		    ("vm_page_alloc: page already allocated"));
823	}
824#endif
825
826	page_req = req & VM_ALLOC_CLASS_MASK;
827
828	if ((req & VM_ALLOC_NOOBJ) == 0)
829		color = pindex + object->pg_color;
830	else
831		color = pindex;
832
833	/*
834	 * The pager is allowed to eat deeper into the free page list.
835	 */
836	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
837		page_req = VM_ALLOC_SYSTEM;
838	};
839
840	s = splvm();
841loop:
842	mtx_lock_spin(&vm_page_queue_free_mtx);
843	if (cnt.v_free_count > cnt.v_free_reserved) {
844		/*
845		 * Allocate from the free queue if there are plenty of pages
846		 * in it.
847		 */
848		m = vm_page_select_free(color, (req & VM_ALLOC_ZERO) != 0);
849
850	} else if (
851	    (page_req == VM_ALLOC_SYSTEM &&
852	     cnt.v_cache_count == 0 &&
853	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
854	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
855	) {
856		/*
857		 * Interrupt or system, dig deeper into the free list.
858		 */
859		m = vm_page_select_free(color, FALSE);
860	} else if (page_req != VM_ALLOC_INTERRUPT) {
861		mtx_unlock_spin(&vm_page_queue_free_mtx);
862		/*
863		 * Allocatable from cache (non-interrupt only).  On success,
864		 * we must free the page and try again, thus ensuring that
865		 * cnt.v_*_free_min counters are replenished.
866		 */
867		vm_page_lock_queues();
868		if ((m = vm_page_select_cache(color)) == NULL) {
869			vm_page_unlock_queues();
870			splx(s);
871#if defined(DIAGNOSTIC)
872			if (cnt.v_cache_count > 0)
873				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
874#endif
875			vm_pageout_deficit++;
876			pagedaemon_wakeup();
877			return (NULL);
878		}
879		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
880		vm_page_busy(m);
881		vm_page_protect(m, VM_PROT_NONE);
882		vm_page_free(m);
883		vm_page_unlock_queues();
884		goto loop;
885	} else {
886		/*
887		 * Not allocatable from cache from interrupt, give up.
888		 */
889		mtx_unlock_spin(&vm_page_queue_free_mtx);
890		splx(s);
891		vm_pageout_deficit++;
892		pagedaemon_wakeup();
893		return (NULL);
894	}
895
896	/*
897	 *  At this point we had better have found a good page.
898	 */
899
900	KASSERT(
901	    m != NULL,
902	    ("vm_page_alloc(): missing page on free queue\n")
903	);
904
905	/*
906	 * Remove from free queue
907	 */
908
909	vm_pageq_remove_nowakeup(m);
910
911	/*
912	 * Initialize structure.  Only the PG_ZERO flag is inherited.
913	 */
914	if (m->flags & PG_ZERO) {
915		vm_page_zero_count--;
916		m->flags = PG_ZERO | PG_BUSY;
917	} else {
918		m->flags = PG_BUSY;
919	}
920	if (req & VM_ALLOC_WIRED) {
921		cnt.v_wire_count++;
922		m->wire_count = 1;
923	} else
924		m->wire_count = 0;
925	m->hold_count = 0;
926	m->act_count = 0;
927	m->busy = 0;
928	m->valid = 0;
929	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
930	mtx_unlock_spin(&vm_page_queue_free_mtx);
931
932	/*
933	 * vm_page_insert() is safe prior to the splx().  Note also that
934	 * inserting a page here does not insert it into the pmap (which
935	 * could cause us to block allocating memory).  We cannot block
936	 * anywhere.
937	 */
938	if ((req & VM_ALLOC_NOOBJ) == 0)
939		vm_page_insert(m, object, pindex);
940
941	/*
942	 * Don't wakeup too often - wakeup the pageout daemon when
943	 * we would be nearly out of memory.
944	 */
945	if (vm_paging_needed())
946		pagedaemon_wakeup();
947
948	splx(s);
949	return (m);
950}
951
952/*
953 *	vm_wait:	(also see VM_WAIT macro)
954 *
955 *	Block until free pages are available for allocation
956 *	- Called in various places before memory allocations.
957 */
958void
959vm_wait(void)
960{
961	int s;
962
963	s = splvm();
964	if (curproc == pageproc) {
965		vm_pageout_pages_needed = 1;
966		tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
967	} else {
968		if (!vm_pages_needed) {
969			vm_pages_needed = 1;
970			wakeup(&vm_pages_needed);
971		}
972		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
973	}
974	splx(s);
975}
976
977/*
978 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
979 *
980 *	Block until free pages are available for allocation
981 *	- Called only in vm_fault so that processes page faulting
982 *	  can be easily tracked.
983 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
984 *	  processes will be able to grab memory first.  Do not change
985 *	  this balance without careful testing first.
986 */
987void
988vm_waitpfault(void)
989{
990	int s;
991
992	s = splvm();
993	if (!vm_pages_needed) {
994		vm_pages_needed = 1;
995		wakeup(&vm_pages_needed);
996	}
997	tsleep(&cnt.v_free_count, PUSER, "pfault", 0);
998	splx(s);
999}
1000
1001/*
1002 *	vm_page_activate:
1003 *
1004 *	Put the specified page on the active list (if appropriate).
1005 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1006 *	mess with it.
1007 *
1008 *	The page queues must be locked.
1009 *	This routine may not block.
1010 */
1011void
1012vm_page_activate(vm_page_t m)
1013{
1014	int s;
1015
1016	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1017	s = splvm();
1018	if (m->queue != PQ_ACTIVE) {
1019		if ((m->queue - m->pc) == PQ_CACHE)
1020			cnt.v_reactivated++;
1021		vm_pageq_remove(m);
1022		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1023			if (m->act_count < ACT_INIT)
1024				m->act_count = ACT_INIT;
1025			vm_pageq_enqueue(PQ_ACTIVE, m);
1026		}
1027	} else {
1028		if (m->act_count < ACT_INIT)
1029			m->act_count = ACT_INIT;
1030	}
1031	splx(s);
1032}
1033
1034/*
1035 *	vm_page_free_wakeup:
1036 *
1037 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1038 *	routine is called when a page has been added to the cache or free
1039 *	queues.
1040 *
1041 *	This routine may not block.
1042 *	This routine must be called at splvm()
1043 */
1044static __inline void
1045vm_page_free_wakeup(void)
1046{
1047	/*
1048	 * if pageout daemon needs pages, then tell it that there are
1049	 * some free.
1050	 */
1051	if (vm_pageout_pages_needed &&
1052	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1053		wakeup(&vm_pageout_pages_needed);
1054		vm_pageout_pages_needed = 0;
1055	}
1056	/*
1057	 * wakeup processes that are waiting on memory if we hit a
1058	 * high water mark. And wakeup scheduler process if we have
1059	 * lots of memory. this process will swapin processes.
1060	 */
1061	if (vm_pages_needed && !vm_page_count_min()) {
1062		vm_pages_needed = 0;
1063		wakeup(&cnt.v_free_count);
1064	}
1065}
1066
1067/*
1068 *	vm_page_free_toq:
1069 *
1070 *	Returns the given page to the PQ_FREE list,
1071 *	disassociating it with any VM object.
1072 *
1073 *	Object and page must be locked prior to entry.
1074 *	This routine may not block.
1075 */
1076
1077void
1078vm_page_free_toq(vm_page_t m)
1079{
1080	int s;
1081	struct vpgqueues *pq;
1082	vm_object_t object = m->object;
1083
1084	GIANT_REQUIRED;
1085	s = splvm();
1086	cnt.v_tfree++;
1087
1088	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1089		printf(
1090		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1091		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1092		    m->hold_count);
1093		if ((m->queue - m->pc) == PQ_FREE)
1094			panic("vm_page_free: freeing free page");
1095		else
1096			panic("vm_page_free: freeing busy page");
1097	}
1098
1099	/*
1100	 * unqueue, then remove page.  Note that we cannot destroy
1101	 * the page here because we do not want to call the pager's
1102	 * callback routine until after we've put the page on the
1103	 * appropriate free queue.
1104	 */
1105	vm_pageq_remove_nowakeup(m);
1106	vm_page_remove(m);
1107
1108	/*
1109	 * If fictitious remove object association and
1110	 * return, otherwise delay object association removal.
1111	 */
1112	if ((m->flags & PG_FICTITIOUS) != 0) {
1113		splx(s);
1114		return;
1115	}
1116
1117	m->valid = 0;
1118	vm_page_undirty(m);
1119
1120	if (m->wire_count != 0) {
1121		if (m->wire_count > 1) {
1122			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1123				m->wire_count, (long)m->pindex);
1124		}
1125		panic("vm_page_free: freeing wired page\n");
1126	}
1127
1128	/*
1129	 * If we've exhausted the object's resident pages we want to free
1130	 * it up.
1131	 */
1132	if (object &&
1133	    (object->type == OBJT_VNODE) &&
1134	    ((object->flags & OBJ_DEAD) == 0)
1135	) {
1136		struct vnode *vp = (struct vnode *)object->handle;
1137
1138		if (vp) {
1139			VI_LOCK(vp);
1140			if (VSHOULDFREE(vp))
1141				vfree(vp);
1142			VI_UNLOCK(vp);
1143		}
1144	}
1145
1146	/*
1147	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1148	 */
1149	if (m->flags & PG_UNMANAGED) {
1150		m->flags &= ~PG_UNMANAGED;
1151	} else {
1152#ifdef __alpha__
1153		pmap_page_is_free(m);
1154#endif
1155	}
1156
1157	if (m->hold_count != 0) {
1158		m->flags &= ~PG_ZERO;
1159		m->queue = PQ_HOLD;
1160	} else
1161		m->queue = PQ_FREE + m->pc;
1162	pq = &vm_page_queues[m->queue];
1163	mtx_lock_spin(&vm_page_queue_free_mtx);
1164	pq->lcnt++;
1165	++(*pq->cnt);
1166
1167	/*
1168	 * Put zero'd pages on the end ( where we look for zero'd pages
1169	 * first ) and non-zerod pages at the head.
1170	 */
1171	if (m->flags & PG_ZERO) {
1172		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1173		++vm_page_zero_count;
1174	} else {
1175		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1176	}
1177	mtx_unlock_spin(&vm_page_queue_free_mtx);
1178	vm_page_free_wakeup();
1179	splx(s);
1180}
1181
1182/*
1183 *	vm_page_unmanage:
1184 *
1185 * 	Prevent PV management from being done on the page.  The page is
1186 *	removed from the paging queues as if it were wired, and as a
1187 *	consequence of no longer being managed the pageout daemon will not
1188 *	touch it (since there is no way to locate the pte mappings for the
1189 *	page).  madvise() calls that mess with the pmap will also no longer
1190 *	operate on the page.
1191 *
1192 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1193 *	will clear the flag.
1194 *
1195 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1196 *	physical memory as backing store rather then swap-backed memory and
1197 *	will eventually be extended to support 4MB unmanaged physical
1198 *	mappings.
1199 */
1200void
1201vm_page_unmanage(vm_page_t m)
1202{
1203	int s;
1204
1205	s = splvm();
1206	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1207	if ((m->flags & PG_UNMANAGED) == 0) {
1208		if (m->wire_count == 0)
1209			vm_pageq_remove(m);
1210	}
1211	vm_page_flag_set(m, PG_UNMANAGED);
1212	splx(s);
1213}
1214
1215/*
1216 *	vm_page_wire:
1217 *
1218 *	Mark this page as wired down by yet
1219 *	another map, removing it from paging queues
1220 *	as necessary.
1221 *
1222 *	The page queues must be locked.
1223 *	This routine may not block.
1224 */
1225void
1226vm_page_wire(vm_page_t m)
1227{
1228	int s;
1229
1230	/*
1231	 * Only bump the wire statistics if the page is not already wired,
1232	 * and only unqueue the page if it is on some queue (if it is unmanaged
1233	 * it is already off the queues).
1234	 */
1235	s = splvm();
1236	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1237	if (m->wire_count == 0) {
1238		if ((m->flags & PG_UNMANAGED) == 0)
1239			vm_pageq_remove(m);
1240		cnt.v_wire_count++;
1241	}
1242	m->wire_count++;
1243	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1244	splx(s);
1245}
1246
1247/*
1248 *	vm_page_unwire:
1249 *
1250 *	Release one wiring of this page, potentially
1251 *	enabling it to be paged again.
1252 *
1253 *	Many pages placed on the inactive queue should actually go
1254 *	into the cache, but it is difficult to figure out which.  What
1255 *	we do instead, if the inactive target is well met, is to put
1256 *	clean pages at the head of the inactive queue instead of the tail.
1257 *	This will cause them to be moved to the cache more quickly and
1258 *	if not actively re-referenced, freed more quickly.  If we just
1259 *	stick these pages at the end of the inactive queue, heavy filesystem
1260 *	meta-data accesses can cause an unnecessary paging load on memory bound
1261 *	processes.  This optimization causes one-time-use metadata to be
1262 *	reused more quickly.
1263 *
1264 *	BUT, if we are in a low-memory situation we have no choice but to
1265 *	put clean pages on the cache queue.
1266 *
1267 *	A number of routines use vm_page_unwire() to guarantee that the page
1268 *	will go into either the inactive or active queues, and will NEVER
1269 *	be placed in the cache - for example, just after dirtying a page.
1270 *	dirty pages in the cache are not allowed.
1271 *
1272 *	The page queues must be locked.
1273 *	This routine may not block.
1274 */
1275void
1276vm_page_unwire(vm_page_t m, int activate)
1277{
1278	int s;
1279
1280	s = splvm();
1281	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1282	if (m->wire_count > 0) {
1283		m->wire_count--;
1284		if (m->wire_count == 0) {
1285			cnt.v_wire_count--;
1286			if (m->flags & PG_UNMANAGED) {
1287				;
1288			} else if (activate)
1289				vm_pageq_enqueue(PQ_ACTIVE, m);
1290			else {
1291				vm_page_flag_clear(m, PG_WINATCFLS);
1292				vm_pageq_enqueue(PQ_INACTIVE, m);
1293			}
1294		}
1295	} else {
1296		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1297	}
1298	splx(s);
1299}
1300
1301
1302/*
1303 * Move the specified page to the inactive queue.  If the page has
1304 * any associated swap, the swap is deallocated.
1305 *
1306 * Normally athead is 0 resulting in LRU operation.  athead is set
1307 * to 1 if we want this page to be 'as if it were placed in the cache',
1308 * except without unmapping it from the process address space.
1309 *
1310 * This routine may not block.
1311 */
1312static __inline void
1313_vm_page_deactivate(vm_page_t m, int athead)
1314{
1315	int s;
1316
1317	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1318	/*
1319	 * Ignore if already inactive.
1320	 */
1321	if (m->queue == PQ_INACTIVE)
1322		return;
1323
1324	s = splvm();
1325	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1326		if ((m->queue - m->pc) == PQ_CACHE)
1327			cnt.v_reactivated++;
1328		vm_page_flag_clear(m, PG_WINATCFLS);
1329		vm_pageq_remove(m);
1330		if (athead)
1331			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1332		else
1333			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1334		m->queue = PQ_INACTIVE;
1335		vm_page_queues[PQ_INACTIVE].lcnt++;
1336		cnt.v_inactive_count++;
1337	}
1338	splx(s);
1339}
1340
1341void
1342vm_page_deactivate(vm_page_t m)
1343{
1344    _vm_page_deactivate(m, 0);
1345}
1346
1347/*
1348 * vm_page_try_to_cache:
1349 *
1350 * Returns 0 on failure, 1 on success
1351 */
1352int
1353vm_page_try_to_cache(vm_page_t m)
1354{
1355
1356	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1357	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1358	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1359		return (0);
1360	}
1361	vm_page_test_dirty(m);
1362	if (m->dirty)
1363		return (0);
1364	vm_page_cache(m);
1365	return (1);
1366}
1367
1368/*
1369 * vm_page_try_to_free()
1370 *
1371 *	Attempt to free the page.  If we cannot free it, we do nothing.
1372 *	1 is returned on success, 0 on failure.
1373 */
1374int
1375vm_page_try_to_free(vm_page_t m)
1376{
1377
1378	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1379	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1380	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1381		return (0);
1382	}
1383	vm_page_test_dirty(m);
1384	if (m->dirty)
1385		return (0);
1386	vm_page_busy(m);
1387	vm_page_protect(m, VM_PROT_NONE);
1388	vm_page_free(m);
1389	return (1);
1390}
1391
1392/*
1393 * vm_page_cache
1394 *
1395 * Put the specified page onto the page cache queue (if appropriate).
1396 *
1397 * This routine may not block.
1398 */
1399void
1400vm_page_cache(vm_page_t m)
1401{
1402	int s;
1403
1404	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1405	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1406		printf("vm_page_cache: attempting to cache busy page\n");
1407		return;
1408	}
1409	if ((m->queue - m->pc) == PQ_CACHE)
1410		return;
1411
1412	/*
1413	 * Remove all pmaps and indicate that the page is not
1414	 * writeable or mapped.
1415	 */
1416	vm_page_protect(m, VM_PROT_NONE);
1417	if (m->dirty != 0) {
1418		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1419			(long)m->pindex);
1420	}
1421	s = splvm();
1422	vm_pageq_remove_nowakeup(m);
1423	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1424	vm_page_free_wakeup();
1425	splx(s);
1426}
1427
1428/*
1429 * vm_page_dontneed
1430 *
1431 *	Cache, deactivate, or do nothing as appropriate.  This routine
1432 *	is typically used by madvise() MADV_DONTNEED.
1433 *
1434 *	Generally speaking we want to move the page into the cache so
1435 *	it gets reused quickly.  However, this can result in a silly syndrome
1436 *	due to the page recycling too quickly.  Small objects will not be
1437 *	fully cached.  On the otherhand, if we move the page to the inactive
1438 *	queue we wind up with a problem whereby very large objects
1439 *	unnecessarily blow away our inactive and cache queues.
1440 *
1441 *	The solution is to move the pages based on a fixed weighting.  We
1442 *	either leave them alone, deactivate them, or move them to the cache,
1443 *	where moving them to the cache has the highest weighting.
1444 *	By forcing some pages into other queues we eventually force the
1445 *	system to balance the queues, potentially recovering other unrelated
1446 *	space from active.  The idea is to not force this to happen too
1447 *	often.
1448 */
1449void
1450vm_page_dontneed(vm_page_t m)
1451{
1452	static int dnweight;
1453	int dnw;
1454	int head;
1455
1456	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1457	dnw = ++dnweight;
1458
1459	/*
1460	 * occassionally leave the page alone
1461	 */
1462	if ((dnw & 0x01F0) == 0 ||
1463	    m->queue == PQ_INACTIVE ||
1464	    m->queue - m->pc == PQ_CACHE
1465	) {
1466		if (m->act_count >= ACT_INIT)
1467			--m->act_count;
1468		return;
1469	}
1470
1471	if (m->dirty == 0)
1472		vm_page_test_dirty(m);
1473
1474	if (m->dirty || (dnw & 0x0070) == 0) {
1475		/*
1476		 * Deactivate the page 3 times out of 32.
1477		 */
1478		head = 0;
1479	} else {
1480		/*
1481		 * Cache the page 28 times out of every 32.  Note that
1482		 * the page is deactivated instead of cached, but placed
1483		 * at the head of the queue instead of the tail.
1484		 */
1485		head = 1;
1486	}
1487	_vm_page_deactivate(m, head);
1488}
1489
1490/*
1491 * Grab a page, waiting until we are waken up due to the page
1492 * changing state.  We keep on waiting, if the page continues
1493 * to be in the object.  If the page doesn't exist, allocate it.
1494 *
1495 * This routine may block.
1496 */
1497vm_page_t
1498vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1499{
1500	vm_page_t m;
1501	int s, generation;
1502
1503	GIANT_REQUIRED;
1504retrylookup:
1505	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1506		vm_page_lock_queues();
1507		if (m->busy || (m->flags & PG_BUSY)) {
1508			generation = object->generation;
1509
1510			s = splvm();
1511			while ((object->generation == generation) &&
1512					(m->busy || (m->flags & PG_BUSY))) {
1513				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1514				msleep(m, &vm_page_queue_mtx, PVM, "pgrbwt", 0);
1515				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1516					vm_page_unlock_queues();
1517					splx(s);
1518					return NULL;
1519				}
1520			}
1521			vm_page_unlock_queues();
1522			splx(s);
1523			goto retrylookup;
1524		} else {
1525			if (allocflags & VM_ALLOC_WIRED)
1526				vm_page_wire(m);
1527			vm_page_busy(m);
1528			vm_page_unlock_queues();
1529			return m;
1530		}
1531	}
1532
1533	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1534	if (m == NULL) {
1535		VM_WAIT;
1536		if ((allocflags & VM_ALLOC_RETRY) == 0)
1537			return NULL;
1538		goto retrylookup;
1539	}
1540
1541	return m;
1542}
1543
1544/*
1545 * Mapping function for valid bits or for dirty bits in
1546 * a page.  May not block.
1547 *
1548 * Inputs are required to range within a page.
1549 */
1550__inline int
1551vm_page_bits(int base, int size)
1552{
1553	int first_bit;
1554	int last_bit;
1555
1556	KASSERT(
1557	    base + size <= PAGE_SIZE,
1558	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1559	);
1560
1561	if (size == 0)		/* handle degenerate case */
1562		return (0);
1563
1564	first_bit = base >> DEV_BSHIFT;
1565	last_bit = (base + size - 1) >> DEV_BSHIFT;
1566
1567	return ((2 << last_bit) - (1 << first_bit));
1568}
1569
1570/*
1571 *	vm_page_set_validclean:
1572 *
1573 *	Sets portions of a page valid and clean.  The arguments are expected
1574 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1575 *	of any partial chunks touched by the range.  The invalid portion of
1576 *	such chunks will be zero'd.
1577 *
1578 *	This routine may not block.
1579 *
1580 *	(base + size) must be less then or equal to PAGE_SIZE.
1581 */
1582void
1583vm_page_set_validclean(vm_page_t m, int base, int size)
1584{
1585	int pagebits;
1586	int frag;
1587	int endoff;
1588
1589	GIANT_REQUIRED;
1590	if (size == 0)	/* handle degenerate case */
1591		return;
1592
1593	/*
1594	 * If the base is not DEV_BSIZE aligned and the valid
1595	 * bit is clear, we have to zero out a portion of the
1596	 * first block.
1597	 */
1598	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1599	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1600		pmap_zero_page_area(m, frag, base - frag);
1601
1602	/*
1603	 * If the ending offset is not DEV_BSIZE aligned and the
1604	 * valid bit is clear, we have to zero out a portion of
1605	 * the last block.
1606	 */
1607	endoff = base + size;
1608	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1609	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1610		pmap_zero_page_area(m, endoff,
1611		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1612
1613	/*
1614	 * Set valid, clear dirty bits.  If validating the entire
1615	 * page we can safely clear the pmap modify bit.  We also
1616	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1617	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1618	 * be set again.
1619	 *
1620	 * We set valid bits inclusive of any overlap, but we can only
1621	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1622	 * the range.
1623	 */
1624	pagebits = vm_page_bits(base, size);
1625	m->valid |= pagebits;
1626#if 0	/* NOT YET */
1627	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1628		frag = DEV_BSIZE - frag;
1629		base += frag;
1630		size -= frag;
1631		if (size < 0)
1632			size = 0;
1633	}
1634	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1635#endif
1636	m->dirty &= ~pagebits;
1637	if (base == 0 && size == PAGE_SIZE) {
1638		pmap_clear_modify(m);
1639		vm_page_flag_clear(m, PG_NOSYNC);
1640	}
1641}
1642
1643#if 0
1644
1645void
1646vm_page_set_dirty(vm_page_t m, int base, int size)
1647{
1648	m->dirty |= vm_page_bits(base, size);
1649}
1650
1651#endif
1652
1653void
1654vm_page_clear_dirty(vm_page_t m, int base, int size)
1655{
1656	GIANT_REQUIRED;
1657	m->dirty &= ~vm_page_bits(base, size);
1658}
1659
1660/*
1661 *	vm_page_set_invalid:
1662 *
1663 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1664 *	valid and dirty bits for the effected areas are cleared.
1665 *
1666 *	May not block.
1667 */
1668void
1669vm_page_set_invalid(vm_page_t m, int base, int size)
1670{
1671	int bits;
1672
1673	GIANT_REQUIRED;
1674	bits = vm_page_bits(base, size);
1675	m->valid &= ~bits;
1676	m->dirty &= ~bits;
1677	m->object->generation++;
1678}
1679
1680/*
1681 * vm_page_zero_invalid()
1682 *
1683 *	The kernel assumes that the invalid portions of a page contain
1684 *	garbage, but such pages can be mapped into memory by user code.
1685 *	When this occurs, we must zero out the non-valid portions of the
1686 *	page so user code sees what it expects.
1687 *
1688 *	Pages are most often semi-valid when the end of a file is mapped
1689 *	into memory and the file's size is not page aligned.
1690 */
1691void
1692vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1693{
1694	int b;
1695	int i;
1696
1697	/*
1698	 * Scan the valid bits looking for invalid sections that
1699	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1700	 * valid bit may be set ) have already been zerod by
1701	 * vm_page_set_validclean().
1702	 */
1703	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1704		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1705		    (m->valid & (1 << i))
1706		) {
1707			if (i > b) {
1708				pmap_zero_page_area(m,
1709				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1710			}
1711			b = i + 1;
1712		}
1713	}
1714
1715	/*
1716	 * setvalid is TRUE when we can safely set the zero'd areas
1717	 * as being valid.  We can do this if there are no cache consistancy
1718	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1719	 */
1720	if (setvalid)
1721		m->valid = VM_PAGE_BITS_ALL;
1722}
1723
1724/*
1725 *	vm_page_is_valid:
1726 *
1727 *	Is (partial) page valid?  Note that the case where size == 0
1728 *	will return FALSE in the degenerate case where the page is
1729 *	entirely invalid, and TRUE otherwise.
1730 *
1731 *	May not block.
1732 */
1733int
1734vm_page_is_valid(vm_page_t m, int base, int size)
1735{
1736	int bits = vm_page_bits(base, size);
1737
1738	if (m->valid && ((m->valid & bits) == bits))
1739		return 1;
1740	else
1741		return 0;
1742}
1743
1744/*
1745 * update dirty bits from pmap/mmu.  May not block.
1746 */
1747void
1748vm_page_test_dirty(vm_page_t m)
1749{
1750	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1751		vm_page_dirty(m);
1752	}
1753}
1754
1755int so_zerocp_fullpage = 0;
1756
1757void
1758vm_page_cowfault(vm_page_t m)
1759{
1760	vm_page_t mnew;
1761	vm_object_t object;
1762	vm_pindex_t pindex;
1763
1764	object = m->object;
1765	pindex = m->pindex;
1766	vm_page_busy(m);
1767
1768 retry_alloc:
1769	vm_page_remove(m);
1770	/*
1771	 * An interrupt allocation is requested because the page
1772	 * queues lock is held.
1773	 */
1774	mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT);
1775	if (mnew == NULL) {
1776		vm_page_insert(m, object, pindex);
1777		vm_page_unlock_queues();
1778		VM_WAIT;
1779		vm_page_lock_queues();
1780		goto retry_alloc;
1781	}
1782
1783	if (m->cow == 0) {
1784		/*
1785		 * check to see if we raced with an xmit complete when
1786		 * waiting to allocate a page.  If so, put things back
1787		 * the way they were
1788		 */
1789		vm_page_busy(mnew);
1790		vm_page_free(mnew);
1791		vm_page_insert(m, object, pindex);
1792	} else { /* clear COW & copy page */
1793		if (so_zerocp_fullpage) {
1794			mnew->valid = VM_PAGE_BITS_ALL;
1795		} else {
1796			vm_page_copy(m, mnew);
1797		}
1798		vm_page_dirty(mnew);
1799		vm_page_flag_clear(mnew, PG_BUSY);
1800	}
1801}
1802
1803void
1804vm_page_cowclear(vm_page_t m)
1805{
1806
1807	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1808	if (m->cow) {
1809		m->cow--;
1810		/*
1811		 * let vm_fault add back write permission  lazily
1812		 */
1813	}
1814	/*
1815	 *  sf_buf_free() will free the page, so we needn't do it here
1816	 */
1817}
1818
1819void
1820vm_page_cowsetup(vm_page_t m)
1821{
1822
1823	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1824	m->cow++;
1825	vm_page_protect(m, VM_PROT_READ);
1826}
1827
1828#include "opt_ddb.h"
1829#ifdef DDB
1830#include <sys/kernel.h>
1831
1832#include <ddb/ddb.h>
1833
1834DB_SHOW_COMMAND(page, vm_page_print_page_info)
1835{
1836	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1837	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1838	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1839	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1840	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1841	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1842	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1843	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1844	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1845	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1846}
1847
1848DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1849{
1850	int i;
1851	db_printf("PQ_FREE:");
1852	for (i = 0; i < PQ_L2_SIZE; i++) {
1853		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1854	}
1855	db_printf("\n");
1856
1857	db_printf("PQ_CACHE:");
1858	for (i = 0; i < PQ_L2_SIZE; i++) {
1859		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1860	}
1861	db_printf("\n");
1862
1863	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1864		vm_page_queues[PQ_ACTIVE].lcnt,
1865		vm_page_queues[PQ_INACTIVE].lcnt);
1866}
1867#endif /* DDB */
1868