vm_page.c revision 101543
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37 * $FreeBSD: head/sys/vm/vm_page.c 101543 2002-08-08 19:12:36Z alc $
38 */
39
40/*
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59 *  School of Computer Science
60 *  Carnegie Mellon University
61 *  Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67/*
68 *			GENERAL RULES ON VM_PAGE MANIPULATION
69 *
70 *	- a pageq mutex is required when adding or removing a page from a
71 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72 *	  busy state of a page.
73 *
74 *	- a hash chain mutex is required when associating or disassociating
75 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76 *	  regardless of other mutexes or the busy state of a page.
77 *
78 *	- either a hash chain mutex OR a busied page is required in order
79 *	  to modify the page flags.  A hash chain mutex must be obtained in
80 *	  order to busy a page.  A page's flags cannot be modified by a
81 *	  hash chain mutex if the page is marked busy.
82 *
83 *	- The object memq mutex is held when inserting or removing
84 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85 *	  is different from the object's main mutex.
86 *
87 *	Generally speaking, you have to be aware of side effects when running
88 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90 *	vm_page_cache(), vm_page_activate(), and a number of other routines
91 *	will release the hash chain mutex for you.  Intermediate manipulation
92 *	routines such as vm_page_flag_set() expect the hash chain to be held
93 *	on entry and the hash chain will remain held on return.
94 *
95 *	pageq scanning can only occur with the pageq in question locked.
96 *	We have a known bottleneck with the active queue, but the cache
97 *	and free queues are actually arrays already.
98 */
99
100/*
101 *	Resident memory management module.
102 */
103
104#include <sys/param.h>
105#include <sys/systm.h>
106#include <sys/lock.h>
107#include <sys/malloc.h>
108#include <sys/mutex.h>
109#include <sys/proc.h>
110#include <sys/vmmeter.h>
111#include <sys/vnode.h>
112
113#include <vm/vm.h>
114#include <vm/vm_param.h>
115#include <vm/vm_kern.h>
116#include <vm/vm_object.h>
117#include <vm/vm_page.h>
118#include <vm/vm_pageout.h>
119#include <vm/vm_pager.h>
120#include <vm/vm_extern.h>
121#include <vm/uma.h>
122#include <vm/uma_int.h>
123
124/*
125 *	Associated with page of user-allocatable memory is a
126 *	page structure.
127 */
128static struct mtx vm_page_buckets_mtx;
129static struct vm_page **vm_page_buckets; /* Array of buckets */
130static int vm_page_bucket_count;	/* How big is array? */
131static int vm_page_hash_mask;		/* Mask for hash function */
132
133struct mtx vm_page_queue_mtx;
134struct mtx vm_page_queue_free_mtx;
135
136vm_page_t vm_page_array = 0;
137int vm_page_array_size = 0;
138long first_page = 0;
139int vm_page_zero_count = 0;
140
141/*
142 *	vm_set_page_size:
143 *
144 *	Sets the page size, perhaps based upon the memory
145 *	size.  Must be called before any use of page-size
146 *	dependent functions.
147 */
148void
149vm_set_page_size(void)
150{
151	if (cnt.v_page_size == 0)
152		cnt.v_page_size = PAGE_SIZE;
153	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
154		panic("vm_set_page_size: page size not a power of two");
155}
156
157/*
158 *	vm_page_startup:
159 *
160 *	Initializes the resident memory module.
161 *
162 *	Allocates memory for the page cells, and
163 *	for the object/offset-to-page hash table headers.
164 *	Each page cell is initialized and placed on the free list.
165 */
166vm_offset_t
167vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
168{
169	vm_offset_t mapped;
170	struct vm_page **bucket;
171	vm_size_t npages, page_range;
172	vm_offset_t new_end;
173	int i;
174	vm_offset_t pa;
175	int nblocks;
176	vm_offset_t last_pa;
177
178	/* the biggest memory array is the second group of pages */
179	vm_offset_t end;
180	vm_offset_t biggestone, biggestsize;
181
182	vm_offset_t total;
183	vm_size_t bootpages;
184
185	total = 0;
186	biggestsize = 0;
187	biggestone = 0;
188	nblocks = 0;
189	vaddr = round_page(vaddr);
190
191	for (i = 0; phys_avail[i + 1]; i += 2) {
192		phys_avail[i] = round_page(phys_avail[i]);
193		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
194	}
195
196	for (i = 0; phys_avail[i + 1]; i += 2) {
197		vm_size_t size = phys_avail[i + 1] - phys_avail[i];
198
199		if (size > biggestsize) {
200			biggestone = i;
201			biggestsize = size;
202		}
203		++nblocks;
204		total += size;
205	}
206
207	end = phys_avail[biggestone+1];
208
209	/*
210	 * Initialize the locks.
211	 */
212	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
213	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
214	   MTX_SPIN);
215
216	/*
217	 * Initialize the queue headers for the free queue, the active queue
218	 * and the inactive queue.
219	 */
220	vm_pageq_init();
221
222	/*
223	 * Allocate memory for use when boot strapping the kernel memory allocator
224	 */
225	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
226	new_end = end - bootpages;
227	new_end = trunc_page(new_end);
228	mapped = pmap_map(&vaddr, new_end, end,
229	    VM_PROT_READ | VM_PROT_WRITE);
230	bzero((caddr_t) mapped, end - new_end);
231	uma_startup((caddr_t)mapped);
232
233	end = new_end;
234
235	/*
236	 * Allocate (and initialize) the hash table buckets.
237	 *
238	 * The number of buckets MUST BE a power of 2, and the actual value is
239	 * the next power of 2 greater than the number of physical pages in
240	 * the system.
241	 *
242	 * We make the hash table approximately 2x the number of pages to
243	 * reduce the chain length.  This is about the same size using the
244	 * singly-linked list as the 1x hash table we were using before
245	 * using TAILQ but the chain length will be smaller.
246	 *
247	 * Note: This computation can be tweaked if desired.
248	 */
249	if (vm_page_bucket_count == 0) {
250		vm_page_bucket_count = 1;
251		while (vm_page_bucket_count < atop(total))
252			vm_page_bucket_count <<= 1;
253	}
254	vm_page_bucket_count <<= 1;
255	vm_page_hash_mask = vm_page_bucket_count - 1;
256
257	/*
258	 * Validate these addresses.
259	 */
260	new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
261	new_end = trunc_page(new_end);
262	mapped = pmap_map(&vaddr, new_end, end,
263	    VM_PROT_READ | VM_PROT_WRITE);
264	bzero((caddr_t) mapped, end - new_end);
265
266	mtx_init(&vm_page_buckets_mtx, "vm page buckets mutex", NULL, MTX_SPIN);
267	vm_page_buckets = (struct vm_page **)mapped;
268	bucket = vm_page_buckets;
269	for (i = 0; i < vm_page_bucket_count; i++) {
270		*bucket = NULL;
271		bucket++;
272	}
273
274	/*
275	 * Compute the number of pages of memory that will be available for
276	 * use (taking into account the overhead of a page structure per
277	 * page).
278	 */
279	first_page = phys_avail[0] / PAGE_SIZE;
280	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
281	npages = (total - (page_range * sizeof(struct vm_page)) -
282	    (end - new_end)) / PAGE_SIZE;
283	end = new_end;
284
285	/*
286	 * Initialize the mem entry structures now, and put them in the free
287	 * queue.
288	 */
289	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
290	mapped = pmap_map(&vaddr, new_end, end,
291	    VM_PROT_READ | VM_PROT_WRITE);
292	vm_page_array = (vm_page_t) mapped;
293
294	/*
295	 * Clear all of the page structures
296	 */
297	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
298	vm_page_array_size = page_range;
299
300	/*
301	 * Construct the free queue(s) in descending order (by physical
302	 * address) so that the first 16MB of physical memory is allocated
303	 * last rather than first.  On large-memory machines, this avoids
304	 * the exhaustion of low physical memory before isa_dmainit has run.
305	 */
306	cnt.v_page_count = 0;
307	cnt.v_free_count = 0;
308	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
309		pa = phys_avail[i];
310		if (i == biggestone)
311			last_pa = new_end;
312		else
313			last_pa = phys_avail[i + 1];
314		while (pa < last_pa && npages-- > 0) {
315			vm_pageq_add_new_page(pa);
316			pa += PAGE_SIZE;
317		}
318	}
319	return (vaddr);
320}
321
322/*
323 *	vm_page_hash:
324 *
325 *	Distributes the object/offset key pair among hash buckets.
326 *
327 *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
328 *	This routine may not block.
329 *
330 *	We try to randomize the hash based on the object to spread the pages
331 *	out in the hash table without it costing us too much.
332 */
333static __inline int
334vm_page_hash(vm_object_t object, vm_pindex_t pindex)
335{
336	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
337
338	return (i & vm_page_hash_mask);
339}
340
341void
342vm_page_flag_set(vm_page_t m, unsigned short bits)
343{
344	GIANT_REQUIRED;
345	m->flags |= bits;
346}
347
348void
349vm_page_flag_clear(vm_page_t m, unsigned short bits)
350{
351	GIANT_REQUIRED;
352	m->flags &= ~bits;
353}
354
355void
356vm_page_busy(vm_page_t m)
357{
358	KASSERT((m->flags & PG_BUSY) == 0,
359	    ("vm_page_busy: page already busy!!!"));
360	vm_page_flag_set(m, PG_BUSY);
361}
362
363/*
364 *      vm_page_flash:
365 *
366 *      wakeup anyone waiting for the page.
367 */
368void
369vm_page_flash(vm_page_t m)
370{
371	if (m->flags & PG_WANTED) {
372		vm_page_flag_clear(m, PG_WANTED);
373		wakeup(m);
374	}
375}
376
377/*
378 *      vm_page_wakeup:
379 *
380 *      clear the PG_BUSY flag and wakeup anyone waiting for the
381 *      page.
382 *
383 */
384void
385vm_page_wakeup(vm_page_t m)
386{
387	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
388	vm_page_flag_clear(m, PG_BUSY);
389	vm_page_flash(m);
390}
391
392/*
393 *
394 *
395 */
396void
397vm_page_io_start(vm_page_t m)
398{
399
400	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
401	m->busy++;
402}
403
404void
405vm_page_io_finish(vm_page_t m)
406{
407
408	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
409	m->busy--;
410	if (m->busy == 0)
411		vm_page_flash(m);
412}
413
414/*
415 * Keep page from being freed by the page daemon
416 * much of the same effect as wiring, except much lower
417 * overhead and should be used only for *very* temporary
418 * holding ("wiring").
419 */
420void
421vm_page_hold(vm_page_t mem)
422{
423        GIANT_REQUIRED;
424        mem->hold_count++;
425}
426
427void
428vm_page_unhold(vm_page_t mem)
429{
430	GIANT_REQUIRED;
431	--mem->hold_count;
432	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
433	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
434		vm_page_free_toq(mem);
435}
436
437/*
438 *	vm_page_protect:
439 *
440 *	Reduce the protection of a page.  This routine never raises the
441 *	protection and therefore can be safely called if the page is already
442 *	at VM_PROT_NONE (it will be a NOP effectively ).
443 */
444void
445vm_page_protect(vm_page_t mem, int prot)
446{
447	if (prot == VM_PROT_NONE) {
448		if (pmap_page_is_mapped(mem) || (mem->flags & PG_WRITEABLE)) {
449			pmap_page_protect(mem, VM_PROT_NONE);
450			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
451		}
452	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
453		pmap_page_protect(mem, VM_PROT_READ);
454		vm_page_flag_clear(mem, PG_WRITEABLE);
455	}
456}
457/*
458 *	vm_page_zero_fill:
459 *
460 *	Zero-fill the specified page.
461 *	Written as a standard pagein routine, to
462 *	be used by the zero-fill object.
463 */
464boolean_t
465vm_page_zero_fill(vm_page_t m)
466{
467	pmap_zero_page(m);
468	return (TRUE);
469}
470
471/*
472 *	vm_page_zero_fill_area:
473 *
474 *	Like vm_page_zero_fill but only fill the specified area.
475 */
476boolean_t
477vm_page_zero_fill_area(vm_page_t m, int off, int size)
478{
479	pmap_zero_page_area(m, off, size);
480	return (TRUE);
481}
482
483/*
484 *	vm_page_copy:
485 *
486 *	Copy one page to another
487 */
488void
489vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
490{
491	pmap_copy_page(src_m, dest_m);
492	dest_m->valid = VM_PAGE_BITS_ALL;
493}
494
495/*
496 *	vm_page_free:
497 *
498 *	Free a page
499 *
500 *	The clearing of PG_ZERO is a temporary safety until the code can be
501 *	reviewed to determine that PG_ZERO is being properly cleared on
502 *	write faults or maps.  PG_ZERO was previously cleared in
503 *	vm_page_alloc().
504 */
505void
506vm_page_free(vm_page_t m)
507{
508	vm_page_flag_clear(m, PG_ZERO);
509	vm_page_free_toq(m);
510	vm_page_zero_idle_wakeup();
511}
512
513/*
514 *	vm_page_free_zero:
515 *
516 *	Free a page to the zerod-pages queue
517 */
518void
519vm_page_free_zero(vm_page_t m)
520{
521	vm_page_flag_set(m, PG_ZERO);
522	vm_page_free_toq(m);
523}
524
525/*
526 *	vm_page_sleep_busy:
527 *
528 *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
529 *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
530 *	it almost had to sleep and made temporary spl*() mods), FALSE
531 *	otherwise.
532 *
533 *	This routine assumes that interrupts can only remove the busy
534 *	status from a page, not set the busy status or change it from
535 *	PG_BUSY to m->busy or vise versa (which would create a timing
536 *	window).
537 */
538int
539vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
540{
541	GIANT_REQUIRED;
542	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
543		int s = splvm();
544		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
545			/*
546			 * Page is busy. Wait and retry.
547			 */
548			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
549			tsleep(m, PVM, msg, 0);
550		}
551		splx(s);
552		return (TRUE);
553		/* not reached */
554	}
555	return (FALSE);
556}
557
558/*
559 *	vm_page_sleep_if_busy:
560 *
561 *	Sleep and release the page queues lock if PG_BUSY is set or,
562 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
563 *	thread slept and the page queues lock was released.
564 *	Otherwise, retains the page queues lock and returns FALSE.
565 */
566int
567vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
568{
569
570	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
571	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
572		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
573		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
574		return (TRUE);
575	}
576	return (FALSE);
577}
578
579/*
580 *	vm_page_dirty:
581 *
582 *	make page all dirty
583 */
584void
585vm_page_dirty(vm_page_t m)
586{
587	KASSERT(m->queue - m->pc != PQ_CACHE,
588	    ("vm_page_dirty: page in cache!"));
589	m->dirty = VM_PAGE_BITS_ALL;
590}
591
592/*
593 *	vm_page_undirty:
594 *
595 *	Set page to not be dirty.  Note: does not clear pmap modify bits
596 */
597void
598vm_page_undirty(vm_page_t m)
599{
600	m->dirty = 0;
601}
602
603/*
604 *	vm_page_insert:		[ internal use only ]
605 *
606 *	Inserts the given mem entry into the object and object list.
607 *
608 *	The pagetables are not updated but will presumably fault the page
609 *	in if necessary, or if a kernel page the caller will at some point
610 *	enter the page into the kernel's pmap.  We are not allowed to block
611 *	here so we *can't* do this anyway.
612 *
613 *	The object and page must be locked, and must be splhigh.
614 *	This routine may not block.
615 */
616void
617vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
618{
619	struct vm_page **bucket;
620
621	GIANT_REQUIRED;
622
623	if (m->object != NULL)
624		panic("vm_page_insert: already inserted");
625
626	/*
627	 * Record the object/offset pair in this page
628	 */
629	m->object = object;
630	m->pindex = pindex;
631
632	/*
633	 * Insert it into the object_object/offset hash table
634	 */
635	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
636	mtx_lock_spin(&vm_page_buckets_mtx);
637	m->hnext = *bucket;
638	*bucket = m;
639	mtx_unlock_spin(&vm_page_buckets_mtx);
640
641	/*
642	 * Now link into the object's list of backed pages.
643	 */
644	TAILQ_INSERT_TAIL(&object->memq, m, listq);
645	object->generation++;
646
647	/*
648	 * show that the object has one more resident page.
649	 */
650	object->resident_page_count++;
651
652	/*
653	 * Since we are inserting a new and possibly dirty page,
654	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
655	 */
656	if (m->flags & PG_WRITEABLE)
657		vm_object_set_writeable_dirty(object);
658}
659
660/*
661 *	vm_page_remove:
662 *				NOTE: used by device pager as well -wfj
663 *
664 *	Removes the given mem entry from the object/offset-page
665 *	table and the object page list, but do not invalidate/terminate
666 *	the backing store.
667 *
668 *	The object and page must be locked, and at splhigh.
669 *	The underlying pmap entry (if any) is NOT removed here.
670 *	This routine may not block.
671 */
672void
673vm_page_remove(vm_page_t m)
674{
675	vm_object_t object;
676	vm_page_t *bucket;
677
678	GIANT_REQUIRED;
679
680	if (m->object == NULL)
681		return;
682
683	if ((m->flags & PG_BUSY) == 0) {
684		panic("vm_page_remove: page not busy");
685	}
686
687	/*
688	 * Basically destroy the page.
689	 */
690	vm_page_wakeup(m);
691
692	object = m->object;
693
694	/*
695	 * Remove from the object_object/offset hash table.  The object
696	 * must be on the hash queue, we will panic if it isn't
697	 */
698	bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
699	mtx_lock_spin(&vm_page_buckets_mtx);
700	while (*bucket != m) {
701		if (*bucket == NULL)
702			panic("vm_page_remove(): page not found in hash");
703		bucket = &(*bucket)->hnext;
704	}
705	*bucket = m->hnext;
706	m->hnext = NULL;
707	mtx_unlock_spin(&vm_page_buckets_mtx);
708
709	/*
710	 * Now remove from the object's list of backed pages.
711	 */
712	TAILQ_REMOVE(&object->memq, m, listq);
713
714	/*
715	 * And show that the object has one fewer resident page.
716	 */
717	object->resident_page_count--;
718	object->generation++;
719
720	m->object = NULL;
721}
722
723/*
724 *	vm_page_lookup:
725 *
726 *	Returns the page associated with the object/offset
727 *	pair specified; if none is found, NULL is returned.
728 *
729 *	The object must be locked.  No side effects.
730 *	This routine may not block.
731 *	This is a critical path routine
732 */
733vm_page_t
734vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
735{
736	vm_page_t m;
737	struct vm_page **bucket;
738
739	/*
740	 * Search the hash table for this object/offset pair
741	 */
742	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
743	mtx_lock_spin(&vm_page_buckets_mtx);
744	for (m = *bucket; m != NULL; m = m->hnext)
745		if (m->object == object && m->pindex == pindex)
746			break;
747	mtx_unlock_spin(&vm_page_buckets_mtx);
748	return (m);
749}
750
751/*
752 *	vm_page_rename:
753 *
754 *	Move the given memory entry from its
755 *	current object to the specified target object/offset.
756 *
757 *	The object must be locked.
758 *	This routine may not block.
759 *
760 *	Note: this routine will raise itself to splvm(), the caller need not.
761 *
762 *	Note: swap associated with the page must be invalidated by the move.  We
763 *	      have to do this for several reasons:  (1) we aren't freeing the
764 *	      page, (2) we are dirtying the page, (3) the VM system is probably
765 *	      moving the page from object A to B, and will then later move
766 *	      the backing store from A to B and we can't have a conflict.
767 *
768 *	Note: we *always* dirty the page.  It is necessary both for the
769 *	      fact that we moved it, and because we may be invalidating
770 *	      swap.  If the page is on the cache, we have to deactivate it
771 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
772 *	      on the cache.
773 */
774void
775vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
776{
777	int s;
778
779	s = splvm();
780	vm_page_lock_queues();
781	vm_page_remove(m);
782	vm_page_insert(m, new_object, new_pindex);
783	if (m->queue - m->pc == PQ_CACHE)
784		vm_page_deactivate(m);
785	vm_page_dirty(m);
786	vm_page_unlock_queues();
787	splx(s);
788}
789
790/*
791 *	vm_page_select_cache:
792 *
793 *	Find a page on the cache queue with color optimization.  As pages
794 *	might be found, but not applicable, they are deactivated.  This
795 *	keeps us from using potentially busy cached pages.
796 *
797 *	This routine must be called at splvm().
798 *	This routine may not block.
799 */
800static vm_page_t
801vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
802{
803	vm_page_t m;
804
805	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
806	while (TRUE) {
807		m = vm_pageq_find(
808		    PQ_CACHE,
809		    (pindex + object->pg_color) & PQ_L2_MASK,
810		    FALSE
811		);
812		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
813			       m->hold_count || m->wire_count)) {
814			vm_page_deactivate(m);
815			continue;
816		}
817		return m;
818	}
819}
820
821/*
822 *	vm_page_select_free:
823 *
824 *	Find a free or zero page, with specified preference.
825 *
826 *	This routine must be called at splvm().
827 *	This routine may not block.
828 */
829static __inline vm_page_t
830vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
831{
832	vm_page_t m;
833
834	m = vm_pageq_find(
835		PQ_FREE,
836		(pindex + object->pg_color) & PQ_L2_MASK,
837		prefer_zero
838	);
839	return (m);
840}
841
842/*
843 *	vm_page_alloc:
844 *
845 *	Allocate and return a memory cell associated
846 *	with this VM object/offset pair.
847 *
848 *	page_req classes:
849 *	VM_ALLOC_NORMAL		normal process request
850 *	VM_ALLOC_SYSTEM		system *really* needs a page
851 *	VM_ALLOC_INTERRUPT	interrupt time request
852 *	VM_ALLOC_ZERO		zero page
853 *
854 *	This routine may not block.
855 *
856 *	Additional special handling is required when called from an
857 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
858 *	the page cache in this case.
859 */
860vm_page_t
861vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
862{
863	vm_page_t m = NULL;
864	int page_req, s;
865
866	GIANT_REQUIRED;
867
868	KASSERT(!vm_page_lookup(object, pindex),
869		("vm_page_alloc: page already allocated"));
870
871	page_req = req & VM_ALLOC_CLASS_MASK;
872
873	/*
874	 * The pager is allowed to eat deeper into the free page list.
875	 */
876	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
877		page_req = VM_ALLOC_SYSTEM;
878	};
879
880	s = splvm();
881loop:
882	mtx_lock_spin(&vm_page_queue_free_mtx);
883	if (cnt.v_free_count > cnt.v_free_reserved) {
884		/*
885		 * Allocate from the free queue if there are plenty of pages
886		 * in it.
887		 */
888		m = vm_page_select_free(object, pindex,
889					(req & VM_ALLOC_ZERO) != 0);
890	} else if (
891	    (page_req == VM_ALLOC_SYSTEM &&
892	     cnt.v_cache_count == 0 &&
893	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
894	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
895	) {
896		/*
897		 * Interrupt or system, dig deeper into the free list.
898		 */
899		m = vm_page_select_free(object, pindex, FALSE);
900	} else if (page_req != VM_ALLOC_INTERRUPT) {
901		mtx_unlock_spin(&vm_page_queue_free_mtx);
902		/*
903		 * Allocatable from cache (non-interrupt only).  On success,
904		 * we must free the page and try again, thus ensuring that
905		 * cnt.v_*_free_min counters are replenished.
906		 */
907		vm_page_lock_queues();
908		if ((m = vm_page_select_cache(object, pindex)) == NULL) {
909			vm_page_unlock_queues();
910			splx(s);
911#if defined(DIAGNOSTIC)
912			if (cnt.v_cache_count > 0)
913				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
914#endif
915			vm_pageout_deficit++;
916			pagedaemon_wakeup();
917			return (NULL);
918		}
919		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
920		vm_page_busy(m);
921		vm_page_protect(m, VM_PROT_NONE);
922		vm_page_free(m);
923		vm_page_unlock_queues();
924		goto loop;
925	} else {
926		/*
927		 * Not allocatable from cache from interrupt, give up.
928		 */
929		mtx_unlock_spin(&vm_page_queue_free_mtx);
930		splx(s);
931		vm_pageout_deficit++;
932		pagedaemon_wakeup();
933		return (NULL);
934	}
935
936	/*
937	 *  At this point we had better have found a good page.
938	 */
939
940	KASSERT(
941	    m != NULL,
942	    ("vm_page_alloc(): missing page on free queue\n")
943	);
944
945	/*
946	 * Remove from free queue
947	 */
948
949	vm_pageq_remove_nowakeup(m);
950
951	/*
952	 * Initialize structure.  Only the PG_ZERO flag is inherited.
953	 */
954	if (m->flags & PG_ZERO) {
955		vm_page_zero_count--;
956		m->flags = PG_ZERO | PG_BUSY;
957	} else {
958		m->flags = PG_BUSY;
959	}
960	if (req & VM_ALLOC_WIRED) {
961		cnt.v_wire_count++;
962		m->wire_count = 1;
963	} else
964		m->wire_count = 0;
965	m->hold_count = 0;
966	m->act_count = 0;
967	m->busy = 0;
968	m->valid = 0;
969	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
970	mtx_unlock_spin(&vm_page_queue_free_mtx);
971
972	/*
973	 * vm_page_insert() is safe prior to the splx().  Note also that
974	 * inserting a page here does not insert it into the pmap (which
975	 * could cause us to block allocating memory).  We cannot block
976	 * anywhere.
977	 */
978	vm_page_insert(m, object, pindex);
979
980	/*
981	 * Don't wakeup too often - wakeup the pageout daemon when
982	 * we would be nearly out of memory.
983	 */
984	if (vm_paging_needed())
985		pagedaemon_wakeup();
986
987	splx(s);
988	return (m);
989}
990
991/*
992 *	vm_wait:	(also see VM_WAIT macro)
993 *
994 *	Block until free pages are available for allocation
995 *	- Called in various places before memory allocations.
996 */
997void
998vm_wait(void)
999{
1000	int s;
1001
1002	s = splvm();
1003	if (curproc == pageproc) {
1004		vm_pageout_pages_needed = 1;
1005		tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
1006	} else {
1007		if (!vm_pages_needed) {
1008			vm_pages_needed = 1;
1009			wakeup(&vm_pages_needed);
1010		}
1011		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
1012	}
1013	splx(s);
1014}
1015
1016/*
1017 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1018 *
1019 *	Block until free pages are available for allocation
1020 *	- Called only in vm_fault so that processes page faulting
1021 *	  can be easily tracked.
1022 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1023 *	  processes will be able to grab memory first.  Do not change
1024 *	  this balance without careful testing first.
1025 */
1026void
1027vm_waitpfault(void)
1028{
1029	int s;
1030
1031	s = splvm();
1032	if (!vm_pages_needed) {
1033		vm_pages_needed = 1;
1034		wakeup(&vm_pages_needed);
1035	}
1036	tsleep(&cnt.v_free_count, PUSER, "pfault", 0);
1037	splx(s);
1038}
1039
1040/*
1041 *	vm_page_activate:
1042 *
1043 *	Put the specified page on the active list (if appropriate).
1044 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1045 *	mess with it.
1046 *
1047 *	The page queues must be locked.
1048 *	This routine may not block.
1049 */
1050void
1051vm_page_activate(vm_page_t m)
1052{
1053	int s;
1054
1055	GIANT_REQUIRED;
1056	s = splvm();
1057	if (m->queue != PQ_ACTIVE) {
1058		if ((m->queue - m->pc) == PQ_CACHE)
1059			cnt.v_reactivated++;
1060		vm_pageq_remove(m);
1061		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1062			if (m->act_count < ACT_INIT)
1063				m->act_count = ACT_INIT;
1064			vm_pageq_enqueue(PQ_ACTIVE, m);
1065		}
1066	} else {
1067		if (m->act_count < ACT_INIT)
1068			m->act_count = ACT_INIT;
1069	}
1070	splx(s);
1071}
1072
1073/*
1074 *	vm_page_free_wakeup:
1075 *
1076 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1077 *	routine is called when a page has been added to the cache or free
1078 *	queues.
1079 *
1080 *	This routine may not block.
1081 *	This routine must be called at splvm()
1082 */
1083static __inline void
1084vm_page_free_wakeup(void)
1085{
1086	/*
1087	 * if pageout daemon needs pages, then tell it that there are
1088	 * some free.
1089	 */
1090	if (vm_pageout_pages_needed &&
1091	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1092		wakeup(&vm_pageout_pages_needed);
1093		vm_pageout_pages_needed = 0;
1094	}
1095	/*
1096	 * wakeup processes that are waiting on memory if we hit a
1097	 * high water mark. And wakeup scheduler process if we have
1098	 * lots of memory. this process will swapin processes.
1099	 */
1100	if (vm_pages_needed && !vm_page_count_min()) {
1101		vm_pages_needed = 0;
1102		wakeup(&cnt.v_free_count);
1103	}
1104}
1105
1106/*
1107 *	vm_page_free_toq:
1108 *
1109 *	Returns the given page to the PQ_FREE list,
1110 *	disassociating it with any VM object.
1111 *
1112 *	Object and page must be locked prior to entry.
1113 *	This routine may not block.
1114 */
1115
1116void
1117vm_page_free_toq(vm_page_t m)
1118{
1119	int s;
1120	struct vpgqueues *pq;
1121	vm_object_t object = m->object;
1122
1123	GIANT_REQUIRED;
1124	s = splvm();
1125	cnt.v_tfree++;
1126
1127	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1128		printf(
1129		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1130		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1131		    m->hold_count);
1132		if ((m->queue - m->pc) == PQ_FREE)
1133			panic("vm_page_free: freeing free page");
1134		else
1135			panic("vm_page_free: freeing busy page");
1136	}
1137
1138	/*
1139	 * unqueue, then remove page.  Note that we cannot destroy
1140	 * the page here because we do not want to call the pager's
1141	 * callback routine until after we've put the page on the
1142	 * appropriate free queue.
1143	 */
1144	vm_pageq_remove_nowakeup(m);
1145	vm_page_remove(m);
1146
1147	/*
1148	 * If fictitious remove object association and
1149	 * return, otherwise delay object association removal.
1150	 */
1151	if ((m->flags & PG_FICTITIOUS) != 0) {
1152		splx(s);
1153		return;
1154	}
1155
1156	m->valid = 0;
1157	vm_page_undirty(m);
1158
1159	if (m->wire_count != 0) {
1160		if (m->wire_count > 1) {
1161			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1162				m->wire_count, (long)m->pindex);
1163		}
1164		panic("vm_page_free: freeing wired page\n");
1165	}
1166
1167	/*
1168	 * If we've exhausted the object's resident pages we want to free
1169	 * it up.
1170	 */
1171	if (object &&
1172	    (object->type == OBJT_VNODE) &&
1173	    ((object->flags & OBJ_DEAD) == 0)
1174	) {
1175		struct vnode *vp = (struct vnode *)object->handle;
1176
1177		if (vp) {
1178			VI_LOCK(vp);
1179			if (VSHOULDFREE(vp))
1180				vfree(vp);
1181			VI_UNLOCK(vp);
1182		}
1183	}
1184
1185	/*
1186	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1187	 */
1188	if (m->flags & PG_UNMANAGED) {
1189		m->flags &= ~PG_UNMANAGED;
1190	} else {
1191#ifdef __alpha__
1192		pmap_page_is_free(m);
1193#endif
1194	}
1195
1196	if (m->hold_count != 0) {
1197		m->flags &= ~PG_ZERO;
1198		m->queue = PQ_HOLD;
1199	} else
1200		m->queue = PQ_FREE + m->pc;
1201	pq = &vm_page_queues[m->queue];
1202	mtx_lock_spin(&vm_page_queue_free_mtx);
1203	pq->lcnt++;
1204	++(*pq->cnt);
1205
1206	/*
1207	 * Put zero'd pages on the end ( where we look for zero'd pages
1208	 * first ) and non-zerod pages at the head.
1209	 */
1210	if (m->flags & PG_ZERO) {
1211		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1212		++vm_page_zero_count;
1213	} else {
1214		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1215	}
1216	mtx_unlock_spin(&vm_page_queue_free_mtx);
1217	vm_page_free_wakeup();
1218	splx(s);
1219}
1220
1221/*
1222 *	vm_page_unmanage:
1223 *
1224 * 	Prevent PV management from being done on the page.  The page is
1225 *	removed from the paging queues as if it were wired, and as a
1226 *	consequence of no longer being managed the pageout daemon will not
1227 *	touch it (since there is no way to locate the pte mappings for the
1228 *	page).  madvise() calls that mess with the pmap will also no longer
1229 *	operate on the page.
1230 *
1231 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1232 *	will clear the flag.
1233 *
1234 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1235 *	physical memory as backing store rather then swap-backed memory and
1236 *	will eventually be extended to support 4MB unmanaged physical
1237 *	mappings.
1238 */
1239void
1240vm_page_unmanage(vm_page_t m)
1241{
1242	int s;
1243
1244	s = splvm();
1245	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1246	if ((m->flags & PG_UNMANAGED) == 0) {
1247		if (m->wire_count == 0)
1248			vm_pageq_remove(m);
1249	}
1250	vm_page_flag_set(m, PG_UNMANAGED);
1251	splx(s);
1252}
1253
1254/*
1255 *	vm_page_wire:
1256 *
1257 *	Mark this page as wired down by yet
1258 *	another map, removing it from paging queues
1259 *	as necessary.
1260 *
1261 *	The page queues must be locked.
1262 *	This routine may not block.
1263 */
1264void
1265vm_page_wire(vm_page_t m)
1266{
1267	int s;
1268
1269	/*
1270	 * Only bump the wire statistics if the page is not already wired,
1271	 * and only unqueue the page if it is on some queue (if it is unmanaged
1272	 * it is already off the queues).
1273	 */
1274	s = splvm();
1275	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1276	if (m->wire_count == 0) {
1277		if ((m->flags & PG_UNMANAGED) == 0)
1278			vm_pageq_remove(m);
1279		cnt.v_wire_count++;
1280	}
1281	m->wire_count++;
1282	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1283	splx(s);
1284}
1285
1286/*
1287 *	vm_page_unwire:
1288 *
1289 *	Release one wiring of this page, potentially
1290 *	enabling it to be paged again.
1291 *
1292 *	Many pages placed on the inactive queue should actually go
1293 *	into the cache, but it is difficult to figure out which.  What
1294 *	we do instead, if the inactive target is well met, is to put
1295 *	clean pages at the head of the inactive queue instead of the tail.
1296 *	This will cause them to be moved to the cache more quickly and
1297 *	if not actively re-referenced, freed more quickly.  If we just
1298 *	stick these pages at the end of the inactive queue, heavy filesystem
1299 *	meta-data accesses can cause an unnecessary paging load on memory bound
1300 *	processes.  This optimization causes one-time-use metadata to be
1301 *	reused more quickly.
1302 *
1303 *	BUT, if we are in a low-memory situation we have no choice but to
1304 *	put clean pages on the cache queue.
1305 *
1306 *	A number of routines use vm_page_unwire() to guarantee that the page
1307 *	will go into either the inactive or active queues, and will NEVER
1308 *	be placed in the cache - for example, just after dirtying a page.
1309 *	dirty pages in the cache are not allowed.
1310 *
1311 *	The page queues must be locked.
1312 *	This routine may not block.
1313 */
1314void
1315vm_page_unwire(vm_page_t m, int activate)
1316{
1317	int s;
1318
1319	s = splvm();
1320	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1321	if (m->wire_count > 0) {
1322		m->wire_count--;
1323		if (m->wire_count == 0) {
1324			cnt.v_wire_count--;
1325			if (m->flags & PG_UNMANAGED) {
1326				;
1327			} else if (activate)
1328				vm_pageq_enqueue(PQ_ACTIVE, m);
1329			else {
1330				vm_page_flag_clear(m, PG_WINATCFLS);
1331				vm_pageq_enqueue(PQ_INACTIVE, m);
1332			}
1333		}
1334	} else {
1335		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1336	}
1337	splx(s);
1338}
1339
1340
1341/*
1342 * Move the specified page to the inactive queue.  If the page has
1343 * any associated swap, the swap is deallocated.
1344 *
1345 * Normally athead is 0 resulting in LRU operation.  athead is set
1346 * to 1 if we want this page to be 'as if it were placed in the cache',
1347 * except without unmapping it from the process address space.
1348 *
1349 * This routine may not block.
1350 */
1351static __inline void
1352_vm_page_deactivate(vm_page_t m, int athead)
1353{
1354	int s;
1355
1356	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1357	/*
1358	 * Ignore if already inactive.
1359	 */
1360	if (m->queue == PQ_INACTIVE)
1361		return;
1362
1363	s = splvm();
1364	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1365		if ((m->queue - m->pc) == PQ_CACHE)
1366			cnt.v_reactivated++;
1367		vm_page_flag_clear(m, PG_WINATCFLS);
1368		vm_pageq_remove(m);
1369		if (athead)
1370			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1371		else
1372			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1373		m->queue = PQ_INACTIVE;
1374		vm_page_queues[PQ_INACTIVE].lcnt++;
1375		cnt.v_inactive_count++;
1376	}
1377	splx(s);
1378}
1379
1380void
1381vm_page_deactivate(vm_page_t m)
1382{
1383    _vm_page_deactivate(m, 0);
1384}
1385
1386/*
1387 * vm_page_try_to_cache:
1388 *
1389 * Returns 0 on failure, 1 on success
1390 */
1391int
1392vm_page_try_to_cache(vm_page_t m)
1393{
1394
1395	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1396	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1397	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1398		return (0);
1399	}
1400	vm_page_test_dirty(m);
1401	if (m->dirty)
1402		return (0);
1403	vm_page_cache(m);
1404	return (1);
1405}
1406
1407/*
1408 * vm_page_try_to_free()
1409 *
1410 *	Attempt to free the page.  If we cannot free it, we do nothing.
1411 *	1 is returned on success, 0 on failure.
1412 */
1413int
1414vm_page_try_to_free(vm_page_t m)
1415{
1416
1417	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1418	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1419	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1420		return (0);
1421	}
1422	vm_page_test_dirty(m);
1423	if (m->dirty)
1424		return (0);
1425	vm_page_busy(m);
1426	vm_page_protect(m, VM_PROT_NONE);
1427	vm_page_free(m);
1428	return (1);
1429}
1430
1431/*
1432 * vm_page_cache
1433 *
1434 * Put the specified page onto the page cache queue (if appropriate).
1435 *
1436 * This routine may not block.
1437 */
1438void
1439vm_page_cache(vm_page_t m)
1440{
1441	int s;
1442
1443	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1444	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1445		printf("vm_page_cache: attempting to cache busy page\n");
1446		return;
1447	}
1448	if ((m->queue - m->pc) == PQ_CACHE)
1449		return;
1450
1451	/*
1452	 * Remove all pmaps and indicate that the page is not
1453	 * writeable or mapped.
1454	 */
1455	vm_page_protect(m, VM_PROT_NONE);
1456	if (m->dirty != 0) {
1457		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1458			(long)m->pindex);
1459	}
1460	s = splvm();
1461	vm_pageq_remove_nowakeup(m);
1462	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1463	vm_page_free_wakeup();
1464	splx(s);
1465}
1466
1467/*
1468 * vm_page_dontneed
1469 *
1470 *	Cache, deactivate, or do nothing as appropriate.  This routine
1471 *	is typically used by madvise() MADV_DONTNEED.
1472 *
1473 *	Generally speaking we want to move the page into the cache so
1474 *	it gets reused quickly.  However, this can result in a silly syndrome
1475 *	due to the page recycling too quickly.  Small objects will not be
1476 *	fully cached.  On the otherhand, if we move the page to the inactive
1477 *	queue we wind up with a problem whereby very large objects
1478 *	unnecessarily blow away our inactive and cache queues.
1479 *
1480 *	The solution is to move the pages based on a fixed weighting.  We
1481 *	either leave them alone, deactivate them, or move them to the cache,
1482 *	where moving them to the cache has the highest weighting.
1483 *	By forcing some pages into other queues we eventually force the
1484 *	system to balance the queues, potentially recovering other unrelated
1485 *	space from active.  The idea is to not force this to happen too
1486 *	often.
1487 */
1488void
1489vm_page_dontneed(vm_page_t m)
1490{
1491	static int dnweight;
1492	int dnw;
1493	int head;
1494
1495	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1496	dnw = ++dnweight;
1497
1498	/*
1499	 * occassionally leave the page alone
1500	 */
1501	if ((dnw & 0x01F0) == 0 ||
1502	    m->queue == PQ_INACTIVE ||
1503	    m->queue - m->pc == PQ_CACHE
1504	) {
1505		if (m->act_count >= ACT_INIT)
1506			--m->act_count;
1507		return;
1508	}
1509
1510	if (m->dirty == 0)
1511		vm_page_test_dirty(m);
1512
1513	if (m->dirty || (dnw & 0x0070) == 0) {
1514		/*
1515		 * Deactivate the page 3 times out of 32.
1516		 */
1517		head = 0;
1518	} else {
1519		/*
1520		 * Cache the page 28 times out of every 32.  Note that
1521		 * the page is deactivated instead of cached, but placed
1522		 * at the head of the queue instead of the tail.
1523		 */
1524		head = 1;
1525	}
1526	_vm_page_deactivate(m, head);
1527}
1528
1529/*
1530 * Grab a page, waiting until we are waken up due to the page
1531 * changing state.  We keep on waiting, if the page continues
1532 * to be in the object.  If the page doesn't exist, allocate it.
1533 *
1534 * This routine may block.
1535 */
1536vm_page_t
1537vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1538{
1539	vm_page_t m;
1540	int s, generation;
1541
1542	GIANT_REQUIRED;
1543retrylookup:
1544	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1545		vm_page_lock_queues();
1546		if (m->busy || (m->flags & PG_BUSY)) {
1547			generation = object->generation;
1548
1549			s = splvm();
1550			while ((object->generation == generation) &&
1551					(m->busy || (m->flags & PG_BUSY))) {
1552				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1553				msleep(m, &vm_page_queue_mtx, PVM, "pgrbwt", 0);
1554				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1555					vm_page_unlock_queues();
1556					splx(s);
1557					return NULL;
1558				}
1559			}
1560			vm_page_unlock_queues();
1561			splx(s);
1562			goto retrylookup;
1563		} else {
1564			if (allocflags & VM_ALLOC_WIRED)
1565				vm_page_wire(m);
1566			vm_page_busy(m);
1567			vm_page_unlock_queues();
1568			return m;
1569		}
1570	}
1571
1572	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1573	if (m == NULL) {
1574		VM_WAIT;
1575		if ((allocflags & VM_ALLOC_RETRY) == 0)
1576			return NULL;
1577		goto retrylookup;
1578	}
1579
1580	return m;
1581}
1582
1583/*
1584 * Mapping function for valid bits or for dirty bits in
1585 * a page.  May not block.
1586 *
1587 * Inputs are required to range within a page.
1588 */
1589__inline int
1590vm_page_bits(int base, int size)
1591{
1592	int first_bit;
1593	int last_bit;
1594
1595	KASSERT(
1596	    base + size <= PAGE_SIZE,
1597	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1598	);
1599
1600	if (size == 0)		/* handle degenerate case */
1601		return (0);
1602
1603	first_bit = base >> DEV_BSHIFT;
1604	last_bit = (base + size - 1) >> DEV_BSHIFT;
1605
1606	return ((2 << last_bit) - (1 << first_bit));
1607}
1608
1609/*
1610 *	vm_page_set_validclean:
1611 *
1612 *	Sets portions of a page valid and clean.  The arguments are expected
1613 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1614 *	of any partial chunks touched by the range.  The invalid portion of
1615 *	such chunks will be zero'd.
1616 *
1617 *	This routine may not block.
1618 *
1619 *	(base + size) must be less then or equal to PAGE_SIZE.
1620 */
1621void
1622vm_page_set_validclean(vm_page_t m, int base, int size)
1623{
1624	int pagebits;
1625	int frag;
1626	int endoff;
1627
1628	GIANT_REQUIRED;
1629	if (size == 0)	/* handle degenerate case */
1630		return;
1631
1632	/*
1633	 * If the base is not DEV_BSIZE aligned and the valid
1634	 * bit is clear, we have to zero out a portion of the
1635	 * first block.
1636	 */
1637	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1638	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1639		pmap_zero_page_area(m, frag, base - frag);
1640
1641	/*
1642	 * If the ending offset is not DEV_BSIZE aligned and the
1643	 * valid bit is clear, we have to zero out a portion of
1644	 * the last block.
1645	 */
1646	endoff = base + size;
1647	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1648	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1649		pmap_zero_page_area(m, endoff,
1650		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1651
1652	/*
1653	 * Set valid, clear dirty bits.  If validating the entire
1654	 * page we can safely clear the pmap modify bit.  We also
1655	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1656	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1657	 * be set again.
1658	 *
1659	 * We set valid bits inclusive of any overlap, but we can only
1660	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1661	 * the range.
1662	 */
1663	pagebits = vm_page_bits(base, size);
1664	m->valid |= pagebits;
1665#if 0	/* NOT YET */
1666	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1667		frag = DEV_BSIZE - frag;
1668		base += frag;
1669		size -= frag;
1670		if (size < 0)
1671			size = 0;
1672	}
1673	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1674#endif
1675	m->dirty &= ~pagebits;
1676	if (base == 0 && size == PAGE_SIZE) {
1677		pmap_clear_modify(m);
1678		vm_page_flag_clear(m, PG_NOSYNC);
1679	}
1680}
1681
1682#if 0
1683
1684void
1685vm_page_set_dirty(vm_page_t m, int base, int size)
1686{
1687	m->dirty |= vm_page_bits(base, size);
1688}
1689
1690#endif
1691
1692void
1693vm_page_clear_dirty(vm_page_t m, int base, int size)
1694{
1695	GIANT_REQUIRED;
1696	m->dirty &= ~vm_page_bits(base, size);
1697}
1698
1699/*
1700 *	vm_page_set_invalid:
1701 *
1702 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1703 *	valid and dirty bits for the effected areas are cleared.
1704 *
1705 *	May not block.
1706 */
1707void
1708vm_page_set_invalid(vm_page_t m, int base, int size)
1709{
1710	int bits;
1711
1712	GIANT_REQUIRED;
1713	bits = vm_page_bits(base, size);
1714	m->valid &= ~bits;
1715	m->dirty &= ~bits;
1716	m->object->generation++;
1717}
1718
1719/*
1720 * vm_page_zero_invalid()
1721 *
1722 *	The kernel assumes that the invalid portions of a page contain
1723 *	garbage, but such pages can be mapped into memory by user code.
1724 *	When this occurs, we must zero out the non-valid portions of the
1725 *	page so user code sees what it expects.
1726 *
1727 *	Pages are most often semi-valid when the end of a file is mapped
1728 *	into memory and the file's size is not page aligned.
1729 */
1730void
1731vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1732{
1733	int b;
1734	int i;
1735
1736	/*
1737	 * Scan the valid bits looking for invalid sections that
1738	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1739	 * valid bit may be set ) have already been zerod by
1740	 * vm_page_set_validclean().
1741	 */
1742	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1743		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1744		    (m->valid & (1 << i))
1745		) {
1746			if (i > b) {
1747				pmap_zero_page_area(m,
1748				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1749			}
1750			b = i + 1;
1751		}
1752	}
1753
1754	/*
1755	 * setvalid is TRUE when we can safely set the zero'd areas
1756	 * as being valid.  We can do this if there are no cache consistancy
1757	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1758	 */
1759	if (setvalid)
1760		m->valid = VM_PAGE_BITS_ALL;
1761}
1762
1763/*
1764 *	vm_page_is_valid:
1765 *
1766 *	Is (partial) page valid?  Note that the case where size == 0
1767 *	will return FALSE in the degenerate case where the page is
1768 *	entirely invalid, and TRUE otherwise.
1769 *
1770 *	May not block.
1771 */
1772int
1773vm_page_is_valid(vm_page_t m, int base, int size)
1774{
1775	int bits = vm_page_bits(base, size);
1776
1777	if (m->valid && ((m->valid & bits) == bits))
1778		return 1;
1779	else
1780		return 0;
1781}
1782
1783/*
1784 * update dirty bits from pmap/mmu.  May not block.
1785 */
1786void
1787vm_page_test_dirty(vm_page_t m)
1788{
1789	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1790		vm_page_dirty(m);
1791	}
1792}
1793
1794int so_zerocp_fullpage = 0;
1795
1796void
1797vm_page_cowfault(vm_page_t m)
1798{
1799	vm_page_t mnew;
1800	vm_object_t object;
1801	vm_pindex_t pindex;
1802
1803	object = m->object;
1804	pindex = m->pindex;
1805	vm_page_busy(m);
1806
1807 retry_alloc:
1808	vm_page_remove(m);
1809	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1810	if (mnew == NULL) {
1811		vm_page_insert(m, object, pindex);
1812		VM_WAIT;
1813		goto retry_alloc;
1814	}
1815
1816	if (m->cow == 0) {
1817		/*
1818		 * check to see if we raced with an xmit complete when
1819		 * waiting to allocate a page.  If so, put things back
1820		 * the way they were
1821		 */
1822		vm_page_busy(mnew);
1823		vm_page_free(mnew);
1824		vm_page_insert(m, object, pindex);
1825	} else { /* clear COW & copy page */
1826		if (so_zerocp_fullpage) {
1827			mnew->valid = VM_PAGE_BITS_ALL;
1828		} else {
1829			vm_page_copy(m, mnew);
1830		}
1831		vm_page_dirty(mnew);
1832		vm_page_flag_clear(mnew, PG_BUSY);
1833	}
1834}
1835
1836void
1837vm_page_cowclear(vm_page_t m)
1838{
1839
1840	/* XXX KDM find out if giant is required here. */
1841	GIANT_REQUIRED;
1842	if (m->cow) {
1843		atomic_subtract_int(&m->cow, 1);
1844		/*
1845		 * let vm_fault add back write permission  lazily
1846		 */
1847	}
1848	/*
1849	 *  sf_buf_free() will free the page, so we needn't do it here
1850	 */
1851}
1852
1853void
1854vm_page_cowsetup(vm_page_t m)
1855{
1856	/* XXX KDM find out if giant is required here */
1857	GIANT_REQUIRED;
1858	atomic_add_int(&m->cow, 1);
1859	vm_page_protect(m, VM_PROT_READ);
1860}
1861
1862#include "opt_ddb.h"
1863#ifdef DDB
1864#include <sys/kernel.h>
1865
1866#include <ddb/ddb.h>
1867
1868DB_SHOW_COMMAND(page, vm_page_print_page_info)
1869{
1870	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1871	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1872	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1873	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1874	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1875	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1876	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1877	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1878	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1879	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1880}
1881
1882DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1883{
1884	int i;
1885	db_printf("PQ_FREE:");
1886	for (i = 0; i < PQ_L2_SIZE; i++) {
1887		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1888	}
1889	db_printf("\n");
1890
1891	db_printf("PQ_CACHE:");
1892	for (i = 0; i < PQ_L2_SIZE; i++) {
1893		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1894	}
1895	db_printf("\n");
1896
1897	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1898		vm_page_queues[PQ_ACTIVE].lcnt,
1899		vm_page_queues[PQ_INACTIVE].lcnt);
1900}
1901#endif /* DDB */
1902