vm_object.c revision 92511
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_object.c 92511 2002-03-17 18:37:37Z alc $
65 */
66
67/*
68 *	Virtual memory object module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/lock.h>
74#include <sys/mman.h>
75#include <sys/mount.h>
76#include <sys/kernel.h>
77#include <sys/sysctl.h>
78#include <sys/mutex.h>
79#include <sys/proc.h>		/* for curproc, pageproc */
80#include <sys/socket.h>
81#include <sys/vnode.h>
82#include <sys/vmmeter.h>
83#include <sys/sx.h>
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/pmap.h>
88#include <vm/vm_map.h>
89#include <vm/vm_object.h>
90#include <vm/vm_page.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_pager.h>
93#include <vm/vm_zone.h>
94#include <vm/swap_pager.h>
95#include <vm/vm_kern.h>
96#include <vm/vm_extern.h>
97
98#define EASY_SCAN_FACTOR       8
99
100#define MSYNC_FLUSH_HARDSEQ	0x01
101#define MSYNC_FLUSH_SOFTSEQ	0x02
102
103/*
104 * msync / VM object flushing optimizations
105 */
106static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
107SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
108        CTLFLAG_RW, &msync_flush_flags, 0, "");
109
110static void	vm_object_qcollapse(vm_object_t object);
111static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
112
113/*
114 *	Virtual memory objects maintain the actual data
115 *	associated with allocated virtual memory.  A given
116 *	page of memory exists within exactly one object.
117 *
118 *	An object is only deallocated when all "references"
119 *	are given up.  Only one "reference" to a given
120 *	region of an object should be writeable.
121 *
122 *	Associated with each object is a list of all resident
123 *	memory pages belonging to that object; this list is
124 *	maintained by the "vm_page" module, and locked by the object's
125 *	lock.
126 *
127 *	Each object also records a "pager" routine which is
128 *	used to retrieve (and store) pages to the proper backing
129 *	storage.  In addition, objects may be backed by other
130 *	objects from which they were virtual-copied.
131 *
132 *	The only items within the object structure which are
133 *	modified after time of creation are:
134 *		reference count		locked by object's lock
135 *		pager routine		locked by object's lock
136 *
137 */
138
139struct object_q vm_object_list;
140static struct mtx vm_object_list_mtx;	/* lock for object list and count */
141vm_object_t kernel_object;
142vm_object_t kmem_object;
143static struct vm_object kernel_object_store;
144static struct vm_object kmem_object_store;
145extern int vm_pageout_page_count;
146
147static long object_collapses;
148static long object_bypasses;
149static int next_index;
150static vm_zone_t obj_zone;
151static struct vm_zone obj_zone_store;
152static int object_hash_rand;
153#define VM_OBJECTS_INIT 256
154static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
155
156void
157_vm_object_allocate(objtype_t type, vm_size_t size, vm_object_t object)
158{
159	int incr;
160
161	GIANT_REQUIRED;
162
163	TAILQ_INIT(&object->memq);
164	TAILQ_INIT(&object->shadow_head);
165
166	object->type = type;
167	object->size = size;
168	object->ref_count = 1;
169	object->flags = 0;
170	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
171		vm_object_set_flag(object, OBJ_ONEMAPPING);
172	object->paging_in_progress = 0;
173	object->resident_page_count = 0;
174	object->shadow_count = 0;
175	object->pg_color = next_index;
176	if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
177		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
178	else
179		incr = size;
180	next_index = (next_index + incr) & PQ_L2_MASK;
181	object->handle = NULL;
182	object->backing_object = NULL;
183	object->backing_object_offset = (vm_ooffset_t) 0;
184	/*
185	 * Try to generate a number that will spread objects out in the
186	 * hash table.  We 'wipe' new objects across the hash in 128 page
187	 * increments plus 1 more to offset it a little more by the time
188	 * it wraps around.
189	 */
190	object->hash_rand = object_hash_rand - 129;
191
192	object->generation++;
193
194	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
195
196	object_hash_rand = object->hash_rand;
197}
198
199/*
200 *	vm_object_init:
201 *
202 *	Initialize the VM objects module.
203 */
204void
205vm_object_init(void)
206{
207	GIANT_REQUIRED;
208
209	TAILQ_INIT(&vm_object_list);
210	mtx_init(&vm_object_list_mtx, "vm object_list", MTX_DEF);
211
212	kernel_object = &kernel_object_store;
213	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
214	    kernel_object);
215
216	kmem_object = &kmem_object_store;
217	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
218	    kmem_object);
219
220	obj_zone = &obj_zone_store;
221	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
222		vm_objects_init, VM_OBJECTS_INIT);
223}
224
225void
226vm_object_init2(void)
227{
228	zinitna(obj_zone, NULL, NULL, 0, 0, 0, 1);
229}
230
231void
232vm_object_set_flag(vm_object_t object, u_short bits)
233{
234	GIANT_REQUIRED;
235	object->flags |= bits;
236}
237
238void
239vm_object_clear_flag(vm_object_t object, u_short bits)
240{
241	GIANT_REQUIRED;
242	object->flags &= ~bits;
243}
244
245void
246vm_object_pip_add(vm_object_t object, short i)
247{
248	GIANT_REQUIRED;
249	object->paging_in_progress += i;
250}
251
252void
253vm_object_pip_subtract(vm_object_t object, short i)
254{
255	GIANT_REQUIRED;
256	object->paging_in_progress -= i;
257}
258
259void
260vm_object_pip_wakeup(vm_object_t object)
261{
262	GIANT_REQUIRED;
263	object->paging_in_progress--;
264	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
265		vm_object_clear_flag(object, OBJ_PIPWNT);
266		wakeup(object);
267	}
268}
269
270void
271vm_object_pip_wakeupn(vm_object_t object, short i)
272{
273	GIANT_REQUIRED;
274	if (i)
275		object->paging_in_progress -= i;
276	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
277		vm_object_clear_flag(object, OBJ_PIPWNT);
278		wakeup(object);
279	}
280}
281
282void
283vm_object_pip_sleep(vm_object_t object, char *waitid)
284{
285	GIANT_REQUIRED;
286	if (object->paging_in_progress) {
287		int s = splvm();
288		if (object->paging_in_progress) {
289			vm_object_set_flag(object, OBJ_PIPWNT);
290			tsleep(object, PVM, waitid, 0);
291		}
292		splx(s);
293	}
294}
295
296void
297vm_object_pip_wait(vm_object_t object, char *waitid)
298{
299	GIANT_REQUIRED;
300	while (object->paging_in_progress)
301		vm_object_pip_sleep(object, waitid);
302}
303
304/*
305 *	vm_object_allocate:
306 *
307 *	Returns a new object with the given size.
308 */
309vm_object_t
310vm_object_allocate(objtype_t type, vm_size_t size)
311{
312	vm_object_t result;
313
314	GIANT_REQUIRED;
315
316	result = (vm_object_t) zalloc(obj_zone);
317	_vm_object_allocate(type, size, result);
318
319	return (result);
320}
321
322
323/*
324 *	vm_object_reference:
325 *
326 *	Gets another reference to the given object.
327 */
328void
329vm_object_reference(vm_object_t object)
330{
331	GIANT_REQUIRED;
332
333	if (object == NULL)
334		return;
335
336#if 0
337	/* object can be re-referenced during final cleaning */
338	KASSERT(!(object->flags & OBJ_DEAD),
339	    ("vm_object_reference: attempting to reference dead obj"));
340#endif
341
342	object->ref_count++;
343	if (object->type == OBJT_VNODE) {
344		while (vget((struct vnode *) object->handle, LK_RETRY|LK_NOOBJ, curthread)) {
345			printf("vm_object_reference: delay in getting object\n");
346		}
347	}
348}
349
350/*
351 * handle deallocating a object of type OBJT_VNODE
352 */
353void
354vm_object_vndeallocate(vm_object_t object)
355{
356	struct vnode *vp = (struct vnode *) object->handle;
357
358	GIANT_REQUIRED;
359	KASSERT(object->type == OBJT_VNODE,
360	    ("vm_object_vndeallocate: not a vnode object"));
361	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
362#ifdef INVARIANTS
363	if (object->ref_count == 0) {
364		vprint("vm_object_vndeallocate", vp);
365		panic("vm_object_vndeallocate: bad object reference count");
366	}
367#endif
368
369	object->ref_count--;
370	if (object->ref_count == 0) {
371		vp->v_flag &= ~VTEXT;
372		vm_object_clear_flag(object, OBJ_OPT);
373	}
374	/*
375	 * vrele may need a vop lock
376	 */
377	vrele(vp);
378}
379
380/*
381 *	vm_object_deallocate:
382 *
383 *	Release a reference to the specified object,
384 *	gained either through a vm_object_allocate
385 *	or a vm_object_reference call.  When all references
386 *	are gone, storage associated with this object
387 *	may be relinquished.
388 *
389 *	No object may be locked.
390 */
391void
392vm_object_deallocate(vm_object_t object)
393{
394	vm_object_t temp;
395
396	GIANT_REQUIRED;
397
398	while (object != NULL) {
399
400		if (object->type == OBJT_VNODE) {
401			vm_object_vndeallocate(object);
402			return;
403		}
404
405		KASSERT(object->ref_count != 0,
406			("vm_object_deallocate: object deallocated too many times: %d", object->type));
407
408		/*
409		 * If the reference count goes to 0 we start calling
410		 * vm_object_terminate() on the object chain.
411		 * A ref count of 1 may be a special case depending on the
412		 * shadow count being 0 or 1.
413		 */
414		object->ref_count--;
415		if (object->ref_count > 1) {
416			return;
417		} else if (object->ref_count == 1) {
418			if (object->shadow_count == 0) {
419				vm_object_set_flag(object, OBJ_ONEMAPPING);
420			} else if ((object->shadow_count == 1) &&
421			    (object->handle == NULL) &&
422			    (object->type == OBJT_DEFAULT ||
423			     object->type == OBJT_SWAP)) {
424				vm_object_t robject;
425
426				robject = TAILQ_FIRST(&object->shadow_head);
427				KASSERT(robject != NULL,
428				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
429					 object->ref_count,
430					 object->shadow_count));
431				if ((robject->handle == NULL) &&
432				    (robject->type == OBJT_DEFAULT ||
433				     robject->type == OBJT_SWAP)) {
434
435					robject->ref_count++;
436
437					while (
438						robject->paging_in_progress ||
439						object->paging_in_progress
440					) {
441						vm_object_pip_sleep(robject, "objde1");
442						vm_object_pip_sleep(object, "objde2");
443					}
444
445					if (robject->ref_count == 1) {
446						robject->ref_count--;
447						object = robject;
448						goto doterm;
449					}
450
451					object = robject;
452					vm_object_collapse(object);
453					continue;
454				}
455			}
456
457			return;
458
459		}
460
461doterm:
462
463		temp = object->backing_object;
464		if (temp) {
465			TAILQ_REMOVE(&temp->shadow_head, object, shadow_list);
466			temp->shadow_count--;
467			if (temp->ref_count == 0)
468				vm_object_clear_flag(temp, OBJ_OPT);
469			temp->generation++;
470			object->backing_object = NULL;
471		}
472		/*
473		 * Don't double-terminate, we could be in a termination
474		 * recursion due to the terminate having to sync data
475		 * to disk.
476		 */
477		if ((object->flags & OBJ_DEAD) == 0)
478			vm_object_terminate(object);
479		object = temp;
480	}
481}
482
483/*
484 *	vm_object_terminate actually destroys the specified object, freeing
485 *	up all previously used resources.
486 *
487 *	The object must be locked.
488 *	This routine may block.
489 */
490void
491vm_object_terminate(vm_object_t object)
492{
493	vm_page_t p;
494	int s;
495
496	GIANT_REQUIRED;
497
498	/*
499	 * Make sure no one uses us.
500	 */
501	vm_object_set_flag(object, OBJ_DEAD);
502
503	/*
504	 * wait for the pageout daemon to be done with the object
505	 */
506	vm_object_pip_wait(object, "objtrm");
507
508	KASSERT(!object->paging_in_progress,
509		("vm_object_terminate: pageout in progress"));
510
511	/*
512	 * Clean and free the pages, as appropriate. All references to the
513	 * object are gone, so we don't need to lock it.
514	 */
515	if (object->type == OBJT_VNODE) {
516		struct vnode *vp;
517
518		/*
519		 * Freeze optimized copies.
520		 */
521		vm_freeze_copyopts(object, 0, object->size);
522
523		/*
524		 * Clean pages and flush buffers.
525		 */
526		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
527
528		vp = (struct vnode *) object->handle;
529		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
530	}
531
532	KASSERT(object->ref_count == 0,
533		("vm_object_terminate: object with references, ref_count=%d",
534		object->ref_count));
535
536	/*
537	 * Now free any remaining pages. For internal objects, this also
538	 * removes them from paging queues. Don't free wired pages, just
539	 * remove them from the object.
540	 */
541	s = splvm();
542	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
543		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
544			("vm_object_terminate: freeing busy page %p "
545			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
546		if (p->wire_count == 0) {
547			vm_page_busy(p);
548			vm_page_free(p);
549			cnt.v_pfree++;
550		} else {
551			vm_page_busy(p);
552			vm_page_remove(p);
553		}
554	}
555	splx(s);
556
557	/*
558	 * Let the pager know object is dead.
559	 */
560	vm_pager_deallocate(object);
561
562	/*
563	 * Remove the object from the global object list.
564	 */
565	mtx_lock(&vm_object_list_mtx);
566	TAILQ_REMOVE(&vm_object_list, object, object_list);
567	mtx_unlock(&vm_object_list_mtx);
568
569	wakeup(object);
570
571	/*
572	 * Free the space for the object.
573	 */
574	zfree(obj_zone, object);
575}
576
577/*
578 *	vm_object_page_clean
579 *
580 *	Clean all dirty pages in the specified range of object.  Leaves page
581 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
582 *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
583 *	leaving the object dirty.
584 *
585 *	Odd semantics: if start == end, we clean everything.
586 *
587 *	The object must be locked.
588 */
589void
590vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
591{
592	vm_page_t p, np;
593	vm_offset_t tstart, tend;
594	vm_pindex_t pi;
595	struct vnode *vp;
596	int clearobjflags;
597	int pagerflags;
598	int curgeneration;
599
600	GIANT_REQUIRED;
601
602	if (object->type != OBJT_VNODE ||
603		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
604		return;
605
606	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : 0;
607	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
608
609	vp = object->handle;
610
611	vm_object_set_flag(object, OBJ_CLEANING);
612
613	tstart = start;
614	if (end == 0) {
615		tend = object->size;
616	} else {
617		tend = end;
618	}
619
620	/*
621	 * If the caller is smart and only msync()s a range he knows is
622	 * dirty, we may be able to avoid an object scan.  This results in
623	 * a phenominal improvement in performance.  We cannot do this
624	 * as a matter of course because the object may be huge - e.g.
625	 * the size might be in the gigabytes or terrabytes.
626	 */
627	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
628		vm_offset_t tscan;
629		int scanlimit;
630		int scanreset;
631
632		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
633		if (scanreset < 16)
634			scanreset = 16;
635
636		scanlimit = scanreset;
637		tscan = tstart;
638		while (tscan < tend) {
639			curgeneration = object->generation;
640			p = vm_page_lookup(object, tscan);
641			if (p == NULL || p->valid == 0 ||
642			    (p->queue - p->pc) == PQ_CACHE) {
643				if (--scanlimit == 0)
644					break;
645				++tscan;
646				continue;
647			}
648			vm_page_test_dirty(p);
649			if ((p->dirty & p->valid) == 0) {
650				if (--scanlimit == 0)
651					break;
652				++tscan;
653				continue;
654			}
655			/*
656			 * If we have been asked to skip nosync pages and
657			 * this is a nosync page, we can't continue.
658			 */
659			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
660				if (--scanlimit == 0)
661					break;
662				++tscan;
663				continue;
664			}
665			scanlimit = scanreset;
666
667			/*
668			 * This returns 0 if it was unable to busy the first
669			 * page (i.e. had to sleep).
670			 */
671			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
672		}
673
674		/*
675		 * If everything was dirty and we flushed it successfully,
676		 * and the requested range is not the entire object, we
677		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
678		 * return immediately.
679		 */
680		if (tscan >= tend && (tstart || tend < object->size)) {
681			vm_object_clear_flag(object, OBJ_CLEANING);
682			return;
683		}
684	}
685
686	/*
687	 * Generally set CLEANCHK interlock and make the page read-only so
688	 * we can then clear the object flags.
689	 *
690	 * However, if this is a nosync mmap then the object is likely to
691	 * stay dirty so do not mess with the page and do not clear the
692	 * object flags.
693	 */
694	clearobjflags = 1;
695
696	TAILQ_FOREACH(p, &object->memq, listq) {
697		vm_page_flag_set(p, PG_CLEANCHK);
698		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
699			clearobjflags = 0;
700		else
701			vm_page_protect(p, VM_PROT_READ);
702	}
703
704	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
705		struct vnode *vp;
706
707		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
708		if (object->type == OBJT_VNODE &&
709		    (vp = (struct vnode *)object->handle) != NULL) {
710			if (vp->v_flag & VOBJDIRTY) {
711				mtx_lock(&vp->v_interlock);
712				vp->v_flag &= ~VOBJDIRTY;
713				mtx_unlock(&vp->v_interlock);
714			}
715		}
716	}
717
718rescan:
719	curgeneration = object->generation;
720
721	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
722		int n;
723
724		np = TAILQ_NEXT(p, listq);
725
726again:
727		pi = p->pindex;
728		if (((p->flags & PG_CLEANCHK) == 0) ||
729			(pi < tstart) || (pi >= tend) ||
730			(p->valid == 0) ||
731			((p->queue - p->pc) == PQ_CACHE)) {
732			vm_page_flag_clear(p, PG_CLEANCHK);
733			continue;
734		}
735
736		vm_page_test_dirty(p);
737		if ((p->dirty & p->valid) == 0) {
738			vm_page_flag_clear(p, PG_CLEANCHK);
739			continue;
740		}
741
742		/*
743		 * If we have been asked to skip nosync pages and this is a
744		 * nosync page, skip it.  Note that the object flags were
745		 * not cleared in this case so we do not have to set them.
746		 */
747		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
748			vm_page_flag_clear(p, PG_CLEANCHK);
749			continue;
750		}
751
752		n = vm_object_page_collect_flush(object, p,
753			curgeneration, pagerflags);
754		if (n == 0)
755			goto rescan;
756
757		if (object->generation != curgeneration)
758			goto rescan;
759
760		/*
761		 * Try to optimize the next page.  If we can't we pick up
762		 * our (random) scan where we left off.
763		 */
764		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
765			if ((p = vm_page_lookup(object, pi + n)) != NULL)
766				goto again;
767		}
768	}
769
770#if 0
771	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
772#endif
773
774	vm_object_clear_flag(object, OBJ_CLEANING);
775	return;
776}
777
778static int
779vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
780{
781	int runlen;
782	int s;
783	int maxf;
784	int chkb;
785	int maxb;
786	int i;
787	vm_pindex_t pi;
788	vm_page_t maf[vm_pageout_page_count];
789	vm_page_t mab[vm_pageout_page_count];
790	vm_page_t ma[vm_pageout_page_count];
791
792	s = splvm();
793	pi = p->pindex;
794	while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
795		if (object->generation != curgeneration) {
796			splx(s);
797			return(0);
798		}
799	}
800
801	maxf = 0;
802	for(i = 1; i < vm_pageout_page_count; i++) {
803		vm_page_t tp;
804
805		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
806			if ((tp->flags & PG_BUSY) ||
807				(tp->flags & PG_CLEANCHK) == 0 ||
808				(tp->busy != 0))
809				break;
810			if((tp->queue - tp->pc) == PQ_CACHE) {
811				vm_page_flag_clear(tp, PG_CLEANCHK);
812				break;
813			}
814			vm_page_test_dirty(tp);
815			if ((tp->dirty & tp->valid) == 0) {
816				vm_page_flag_clear(tp, PG_CLEANCHK);
817				break;
818			}
819			maf[ i - 1 ] = tp;
820			maxf++;
821			continue;
822		}
823		break;
824	}
825
826	maxb = 0;
827	chkb = vm_pageout_page_count -  maxf;
828	if (chkb) {
829		for(i = 1; i < chkb;i++) {
830			vm_page_t tp;
831
832			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
833				if ((tp->flags & PG_BUSY) ||
834					(tp->flags & PG_CLEANCHK) == 0 ||
835					(tp->busy != 0))
836					break;
837				if ((tp->queue - tp->pc) == PQ_CACHE) {
838					vm_page_flag_clear(tp, PG_CLEANCHK);
839					break;
840				}
841				vm_page_test_dirty(tp);
842				if ((tp->dirty & tp->valid) == 0) {
843					vm_page_flag_clear(tp, PG_CLEANCHK);
844					break;
845				}
846				mab[ i - 1 ] = tp;
847				maxb++;
848				continue;
849			}
850			break;
851		}
852	}
853
854	for(i = 0; i < maxb; i++) {
855		int index = (maxb - i) - 1;
856		ma[index] = mab[i];
857		vm_page_flag_clear(ma[index], PG_CLEANCHK);
858	}
859	vm_page_flag_clear(p, PG_CLEANCHK);
860	ma[maxb] = p;
861	for(i = 0; i < maxf; i++) {
862		int index = (maxb + i) + 1;
863		ma[index] = maf[i];
864		vm_page_flag_clear(ma[index], PG_CLEANCHK);
865	}
866	runlen = maxb + maxf + 1;
867
868	splx(s);
869	vm_pageout_flush(ma, runlen, pagerflags);
870	for (i = 0; i < runlen; i++) {
871		if (ma[i]->valid & ma[i]->dirty) {
872			vm_page_protect(ma[i], VM_PROT_READ);
873			vm_page_flag_set(ma[i], PG_CLEANCHK);
874
875			/*
876			 * maxf will end up being the actual number of pages
877			 * we wrote out contiguously, non-inclusive of the
878			 * first page.  We do not count look-behind pages.
879			 */
880			if (i >= maxb + 1 && (maxf > i - maxb - 1))
881				maxf = i - maxb - 1;
882		}
883	}
884	return(maxf + 1);
885}
886
887/*
888 * Same as vm_object_pmap_copy, except range checking really
889 * works, and is meant for small sections of an object.
890 *
891 * This code protects resident pages by making them read-only
892 * and is typically called on a fork or split when a page
893 * is converted to copy-on-write.
894 *
895 * NOTE: If the page is already at VM_PROT_NONE, calling
896 * vm_page_protect will have no effect.
897 */
898void
899vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
900{
901	vm_pindex_t idx;
902	vm_page_t p;
903
904	GIANT_REQUIRED;
905
906	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
907		return;
908
909	for (idx = start; idx < end; idx++) {
910		p = vm_page_lookup(object, idx);
911		if (p == NULL)
912			continue;
913		vm_page_protect(p, VM_PROT_READ);
914	}
915}
916
917/*
918 *	vm_object_pmap_remove:
919 *
920 *	Removes all physical pages in the specified
921 *	object range from all physical maps.
922 *
923 *	The object must *not* be locked.
924 */
925void
926vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
927{
928	vm_page_t p;
929
930	GIANT_REQUIRED;
931	if (object == NULL)
932		return;
933	TAILQ_FOREACH(p, &object->memq, listq) {
934		if (p->pindex >= start && p->pindex < end)
935			vm_page_protect(p, VM_PROT_NONE);
936	}
937	if ((start == 0) && (object->size == end))
938		vm_object_clear_flag(object, OBJ_WRITEABLE);
939}
940
941/*
942 *	vm_object_madvise:
943 *
944 *	Implements the madvise function at the object/page level.
945 *
946 *	MADV_WILLNEED	(any object)
947 *
948 *	    Activate the specified pages if they are resident.
949 *
950 *	MADV_DONTNEED	(any object)
951 *
952 *	    Deactivate the specified pages if they are resident.
953 *
954 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
955 *			 OBJ_ONEMAPPING only)
956 *
957 *	    Deactivate and clean the specified pages if they are
958 *	    resident.  This permits the process to reuse the pages
959 *	    without faulting or the kernel to reclaim the pages
960 *	    without I/O.
961 */
962void
963vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
964{
965	vm_pindex_t end, tpindex;
966	vm_object_t tobject;
967	vm_page_t m;
968
969	GIANT_REQUIRED;
970	if (object == NULL)
971		return;
972
973	end = pindex + count;
974
975	/*
976	 * Locate and adjust resident pages
977	 */
978	for (; pindex < end; pindex += 1) {
979relookup:
980		tobject = object;
981		tpindex = pindex;
982shadowlookup:
983		/*
984		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
985		 * and those pages must be OBJ_ONEMAPPING.
986		 */
987		if (advise == MADV_FREE) {
988			if ((tobject->type != OBJT_DEFAULT &&
989			     tobject->type != OBJT_SWAP) ||
990			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
991				continue;
992			}
993		}
994
995		m = vm_page_lookup(tobject, tpindex);
996
997		if (m == NULL) {
998			/*
999			 * There may be swap even if there is no backing page
1000			 */
1001			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1002				swap_pager_freespace(tobject, tpindex, 1);
1003
1004			/*
1005			 * next object
1006			 */
1007			tobject = tobject->backing_object;
1008			if (tobject == NULL)
1009				continue;
1010			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1011			goto shadowlookup;
1012		}
1013
1014		/*
1015		 * If the page is busy or not in a normal active state,
1016		 * we skip it.  If the page is not managed there are no
1017		 * page queues to mess with.  Things can break if we mess
1018		 * with pages in any of the below states.
1019		 */
1020		if (
1021		    m->hold_count ||
1022		    m->wire_count ||
1023		    (m->flags & PG_UNMANAGED) ||
1024		    m->valid != VM_PAGE_BITS_ALL
1025		) {
1026			continue;
1027		}
1028
1029 		if (vm_page_sleep_busy(m, TRUE, "madvpo"))
1030  			goto relookup;
1031
1032		if (advise == MADV_WILLNEED) {
1033			vm_page_activate(m);
1034		} else if (advise == MADV_DONTNEED) {
1035			vm_page_dontneed(m);
1036		} else if (advise == MADV_FREE) {
1037			/*
1038			 * Mark the page clean.  This will allow the page
1039			 * to be freed up by the system.  However, such pages
1040			 * are often reused quickly by malloc()/free()
1041			 * so we do not do anything that would cause
1042			 * a page fault if we can help it.
1043			 *
1044			 * Specifically, we do not try to actually free
1045			 * the page now nor do we try to put it in the
1046			 * cache (which would cause a page fault on reuse).
1047			 *
1048			 * But we do make the page is freeable as we
1049			 * can without actually taking the step of unmapping
1050			 * it.
1051			 */
1052			pmap_clear_modify(m);
1053			m->dirty = 0;
1054			m->act_count = 0;
1055			vm_page_dontneed(m);
1056			if (tobject->type == OBJT_SWAP)
1057				swap_pager_freespace(tobject, tpindex, 1);
1058		}
1059	}
1060}
1061
1062/*
1063 *	vm_object_shadow:
1064 *
1065 *	Create a new object which is backed by the
1066 *	specified existing object range.  The source
1067 *	object reference is deallocated.
1068 *
1069 *	The new object and offset into that object
1070 *	are returned in the source parameters.
1071 */
1072void
1073vm_object_shadow(
1074	vm_object_t *object,	/* IN/OUT */
1075	vm_ooffset_t *offset,	/* IN/OUT */
1076	vm_size_t length)
1077{
1078	vm_object_t source;
1079	vm_object_t result;
1080
1081	GIANT_REQUIRED;
1082	source = *object;
1083
1084	/*
1085	 * Don't create the new object if the old object isn't shared.
1086	 */
1087	if (source != NULL &&
1088	    source->ref_count == 1 &&
1089	    source->handle == NULL &&
1090	    (source->type == OBJT_DEFAULT ||
1091	     source->type == OBJT_SWAP))
1092		return;
1093
1094	/*
1095	 * Allocate a new object with the given length
1096	 */
1097	result = vm_object_allocate(OBJT_DEFAULT, length);
1098	KASSERT(result != NULL, ("vm_object_shadow: no object for shadowing"));
1099
1100	/*
1101	 * The new object shadows the source object, adding a reference to it.
1102	 * Our caller changes his reference to point to the new object,
1103	 * removing a reference to the source object.  Net result: no change
1104	 * of reference count.
1105	 *
1106	 * Try to optimize the result object's page color when shadowing
1107	 * in order to maintain page coloring consistency in the combined
1108	 * shadowed object.
1109	 */
1110	result->backing_object = source;
1111	if (source) {
1112		TAILQ_INSERT_TAIL(&source->shadow_head, result, shadow_list);
1113		source->shadow_count++;
1114		source->generation++;
1115		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1116	}
1117
1118	/*
1119	 * Store the offset into the source object, and fix up the offset into
1120	 * the new object.
1121	 */
1122	result->backing_object_offset = *offset;
1123
1124	/*
1125	 * Return the new things
1126	 */
1127	*offset = 0;
1128	*object = result;
1129}
1130
1131#define	OBSC_TEST_ALL_SHADOWED	0x0001
1132#define	OBSC_COLLAPSE_NOWAIT	0x0002
1133#define	OBSC_COLLAPSE_WAIT	0x0004
1134
1135static __inline int
1136vm_object_backing_scan(vm_object_t object, int op)
1137{
1138	int s;
1139	int r = 1;
1140	vm_page_t p;
1141	vm_object_t backing_object;
1142	vm_pindex_t backing_offset_index;
1143
1144	s = splvm();
1145	GIANT_REQUIRED;
1146
1147	backing_object = object->backing_object;
1148	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1149
1150	/*
1151	 * Initial conditions
1152	 */
1153	if (op & OBSC_TEST_ALL_SHADOWED) {
1154		/*
1155		 * We do not want to have to test for the existence of
1156		 * swap pages in the backing object.  XXX but with the
1157		 * new swapper this would be pretty easy to do.
1158		 *
1159		 * XXX what about anonymous MAP_SHARED memory that hasn't
1160		 * been ZFOD faulted yet?  If we do not test for this, the
1161		 * shadow test may succeed! XXX
1162		 */
1163		if (backing_object->type != OBJT_DEFAULT) {
1164			splx(s);
1165			return (0);
1166		}
1167	}
1168	if (op & OBSC_COLLAPSE_WAIT) {
1169		vm_object_set_flag(backing_object, OBJ_DEAD);
1170	}
1171
1172	/*
1173	 * Our scan
1174	 */
1175	p = TAILQ_FIRST(&backing_object->memq);
1176	while (p) {
1177		vm_page_t next = TAILQ_NEXT(p, listq);
1178		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1179
1180		if (op & OBSC_TEST_ALL_SHADOWED) {
1181			vm_page_t pp;
1182
1183			/*
1184			 * Ignore pages outside the parent object's range
1185			 * and outside the parent object's mapping of the
1186			 * backing object.
1187			 *
1188			 * note that we do not busy the backing object's
1189			 * page.
1190			 */
1191			if (
1192			    p->pindex < backing_offset_index ||
1193			    new_pindex >= object->size
1194			) {
1195				p = next;
1196				continue;
1197			}
1198
1199			/*
1200			 * See if the parent has the page or if the parent's
1201			 * object pager has the page.  If the parent has the
1202			 * page but the page is not valid, the parent's
1203			 * object pager must have the page.
1204			 *
1205			 * If this fails, the parent does not completely shadow
1206			 * the object and we might as well give up now.
1207			 */
1208
1209			pp = vm_page_lookup(object, new_pindex);
1210			if (
1211			    (pp == NULL || pp->valid == 0) &&
1212			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1213			) {
1214				r = 0;
1215				break;
1216			}
1217		}
1218
1219		/*
1220		 * Check for busy page
1221		 */
1222		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1223			vm_page_t pp;
1224
1225			if (op & OBSC_COLLAPSE_NOWAIT) {
1226				if (
1227				    (p->flags & PG_BUSY) ||
1228				    !p->valid ||
1229				    p->hold_count ||
1230				    p->wire_count ||
1231				    p->busy
1232				) {
1233					p = next;
1234					continue;
1235				}
1236			} else if (op & OBSC_COLLAPSE_WAIT) {
1237				if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1238					/*
1239					 * If we slept, anything could have
1240					 * happened.  Since the object is
1241					 * marked dead, the backing offset
1242					 * should not have changed so we
1243					 * just restart our scan.
1244					 */
1245					p = TAILQ_FIRST(&backing_object->memq);
1246					continue;
1247				}
1248			}
1249
1250			/*
1251			 * Busy the page
1252			 */
1253			vm_page_busy(p);
1254
1255			KASSERT(
1256			    p->object == backing_object,
1257			    ("vm_object_qcollapse(): object mismatch")
1258			);
1259
1260			/*
1261			 * Destroy any associated swap
1262			 */
1263			if (backing_object->type == OBJT_SWAP) {
1264				swap_pager_freespace(
1265				    backing_object,
1266				    p->pindex,
1267				    1
1268				);
1269			}
1270
1271			if (
1272			    p->pindex < backing_offset_index ||
1273			    new_pindex >= object->size
1274			) {
1275				/*
1276				 * Page is out of the parent object's range, we
1277				 * can simply destroy it.
1278				 */
1279				vm_page_protect(p, VM_PROT_NONE);
1280				vm_page_free(p);
1281				p = next;
1282				continue;
1283			}
1284
1285			pp = vm_page_lookup(object, new_pindex);
1286			if (
1287			    pp != NULL ||
1288			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1289			) {
1290				/*
1291				 * page already exists in parent OR swap exists
1292				 * for this location in the parent.  Destroy
1293				 * the original page from the backing object.
1294				 *
1295				 * Leave the parent's page alone
1296				 */
1297				vm_page_protect(p, VM_PROT_NONE);
1298				vm_page_free(p);
1299				p = next;
1300				continue;
1301			}
1302
1303			/*
1304			 * Page does not exist in parent, rename the
1305			 * page from the backing object to the main object.
1306			 *
1307			 * If the page was mapped to a process, it can remain
1308			 * mapped through the rename.
1309			 */
1310			if ((p->queue - p->pc) == PQ_CACHE)
1311				vm_page_deactivate(p);
1312
1313			vm_page_rename(p, object, new_pindex);
1314			/* page automatically made dirty by rename */
1315		}
1316		p = next;
1317	}
1318	splx(s);
1319	return (r);
1320}
1321
1322
1323/*
1324 * this version of collapse allows the operation to occur earlier and
1325 * when paging_in_progress is true for an object...  This is not a complete
1326 * operation, but should plug 99.9% of the rest of the leaks.
1327 */
1328static void
1329vm_object_qcollapse(vm_object_t object)
1330{
1331	vm_object_t backing_object = object->backing_object;
1332
1333	GIANT_REQUIRED;
1334
1335	if (backing_object->ref_count != 1)
1336		return;
1337
1338	backing_object->ref_count += 2;
1339
1340	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1341
1342	backing_object->ref_count -= 2;
1343}
1344
1345/*
1346 *	vm_object_collapse:
1347 *
1348 *	Collapse an object with the object backing it.
1349 *	Pages in the backing object are moved into the
1350 *	parent, and the backing object is deallocated.
1351 */
1352void
1353vm_object_collapse(vm_object_t object)
1354{
1355	GIANT_REQUIRED;
1356
1357	while (TRUE) {
1358		vm_object_t backing_object;
1359
1360		/*
1361		 * Verify that the conditions are right for collapse:
1362		 *
1363		 * The object exists and the backing object exists.
1364		 */
1365		if (object == NULL)
1366			break;
1367
1368		if ((backing_object = object->backing_object) == NULL)
1369			break;
1370
1371		/*
1372		 * we check the backing object first, because it is most likely
1373		 * not collapsable.
1374		 */
1375		if (backing_object->handle != NULL ||
1376		    (backing_object->type != OBJT_DEFAULT &&
1377		     backing_object->type != OBJT_SWAP) ||
1378		    (backing_object->flags & OBJ_DEAD) ||
1379		    object->handle != NULL ||
1380		    (object->type != OBJT_DEFAULT &&
1381		     object->type != OBJT_SWAP) ||
1382		    (object->flags & OBJ_DEAD)) {
1383			break;
1384		}
1385
1386		if (
1387		    object->paging_in_progress != 0 ||
1388		    backing_object->paging_in_progress != 0
1389		) {
1390			vm_object_qcollapse(object);
1391			break;
1392		}
1393
1394		/*
1395		 * We know that we can either collapse the backing object (if
1396		 * the parent is the only reference to it) or (perhaps) have
1397		 * the parent bypass the object if the parent happens to shadow
1398		 * all the resident pages in the entire backing object.
1399		 *
1400		 * This is ignoring pager-backed pages such as swap pages.
1401		 * vm_object_backing_scan fails the shadowing test in this
1402		 * case.
1403		 */
1404		if (backing_object->ref_count == 1) {
1405			/*
1406			 * If there is exactly one reference to the backing
1407			 * object, we can collapse it into the parent.
1408			 */
1409			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1410
1411			/*
1412			 * Move the pager from backing_object to object.
1413			 */
1414			if (backing_object->type == OBJT_SWAP) {
1415				vm_object_pip_add(backing_object, 1);
1416
1417				/*
1418				 * scrap the paging_offset junk and do a
1419				 * discrete copy.  This also removes major
1420				 * assumptions about how the swap-pager
1421				 * works from where it doesn't belong.  The
1422				 * new swapper is able to optimize the
1423				 * destroy-source case.
1424				 */
1425				vm_object_pip_add(object, 1);
1426				swap_pager_copy(
1427				    backing_object,
1428				    object,
1429				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1430				vm_object_pip_wakeup(object);
1431
1432				vm_object_pip_wakeup(backing_object);
1433			}
1434			/*
1435			 * Object now shadows whatever backing_object did.
1436			 * Note that the reference to
1437			 * backing_object->backing_object moves from within
1438			 * backing_object to within object.
1439			 */
1440			TAILQ_REMOVE(
1441			    &object->backing_object->shadow_head,
1442			    object,
1443			    shadow_list
1444			);
1445			object->backing_object->shadow_count--;
1446			object->backing_object->generation++;
1447			if (backing_object->backing_object) {
1448				TAILQ_REMOVE(
1449				    &backing_object->backing_object->shadow_head,
1450				    backing_object,
1451				    shadow_list
1452				);
1453				backing_object->backing_object->shadow_count--;
1454				backing_object->backing_object->generation++;
1455			}
1456			object->backing_object = backing_object->backing_object;
1457			if (object->backing_object) {
1458				TAILQ_INSERT_TAIL(
1459				    &object->backing_object->shadow_head,
1460				    object,
1461				    shadow_list
1462				);
1463				object->backing_object->shadow_count++;
1464				object->backing_object->generation++;
1465			}
1466
1467			object->backing_object_offset +=
1468			    backing_object->backing_object_offset;
1469
1470			/*
1471			 * Discard backing_object.
1472			 *
1473			 * Since the backing object has no pages, no pager left,
1474			 * and no object references within it, all that is
1475			 * necessary is to dispose of it.
1476			 */
1477			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1478			KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1479
1480			TAILQ_REMOVE(
1481			    &vm_object_list,
1482			    backing_object,
1483			    object_list
1484			);
1485
1486			zfree(obj_zone, backing_object);
1487
1488			object_collapses++;
1489		} else {
1490			vm_object_t new_backing_object;
1491
1492			/*
1493			 * If we do not entirely shadow the backing object,
1494			 * there is nothing we can do so we give up.
1495			 */
1496			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1497				break;
1498			}
1499
1500			/*
1501			 * Make the parent shadow the next object in the
1502			 * chain.  Deallocating backing_object will not remove
1503			 * it, since its reference count is at least 2.
1504			 */
1505			TAILQ_REMOVE(
1506			    &backing_object->shadow_head,
1507			    object,
1508			    shadow_list
1509			);
1510			backing_object->shadow_count--;
1511			backing_object->generation++;
1512
1513			new_backing_object = backing_object->backing_object;
1514			if ((object->backing_object = new_backing_object) != NULL) {
1515				vm_object_reference(new_backing_object);
1516				TAILQ_INSERT_TAIL(
1517				    &new_backing_object->shadow_head,
1518				    object,
1519				    shadow_list
1520				);
1521				new_backing_object->shadow_count++;
1522				new_backing_object->generation++;
1523				object->backing_object_offset +=
1524					backing_object->backing_object_offset;
1525			}
1526
1527			/*
1528			 * Drop the reference count on backing_object. Since
1529			 * its ref_count was at least 2, it will not vanish;
1530			 * so we don't need to call vm_object_deallocate, but
1531			 * we do anyway.
1532			 */
1533			vm_object_deallocate(backing_object);
1534			object_bypasses++;
1535		}
1536
1537		/*
1538		 * Try again with this object's new backing object.
1539		 */
1540	}
1541}
1542
1543/*
1544 *	vm_object_page_remove: [internal]
1545 *
1546 *	Removes all physical pages in the specified
1547 *	object range from the object's list of pages.
1548 *
1549 *	The object must be locked.
1550 */
1551void
1552vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, boolean_t clean_only)
1553{
1554	vm_page_t p, next;
1555	unsigned int size;
1556	int all;
1557
1558	GIANT_REQUIRED;
1559
1560	if (object == NULL ||
1561	    object->resident_page_count == 0)
1562		return;
1563
1564	all = ((end == 0) && (start == 0));
1565
1566	/*
1567	 * Since physically-backed objects do not use managed pages, we can't
1568	 * remove pages from the object (we must instead remove the page
1569	 * references, and then destroy the object).
1570	 */
1571	KASSERT(object->type != OBJT_PHYS, ("attempt to remove pages from a physical object"));
1572
1573	vm_object_pip_add(object, 1);
1574again:
1575	size = end - start;
1576	if (all || size > object->resident_page_count / 4) {
1577		for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1578			next = TAILQ_NEXT(p, listq);
1579			if (all || ((start <= p->pindex) && (p->pindex < end))) {
1580				if (p->wire_count != 0) {
1581					vm_page_protect(p, VM_PROT_NONE);
1582					if (!clean_only)
1583						p->valid = 0;
1584					continue;
1585				}
1586
1587				/*
1588				 * The busy flags are only cleared at
1589				 * interrupt -- minimize the spl transitions
1590				 */
1591 				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1592 					goto again;
1593
1594				if (clean_only && p->valid) {
1595					vm_page_test_dirty(p);
1596					if (p->valid & p->dirty)
1597						continue;
1598				}
1599
1600				vm_page_busy(p);
1601				vm_page_protect(p, VM_PROT_NONE);
1602				vm_page_free(p);
1603			}
1604		}
1605	} else {
1606		while (size > 0) {
1607			if ((p = vm_page_lookup(object, start)) != 0) {
1608
1609				if (p->wire_count != 0) {
1610					vm_page_protect(p, VM_PROT_NONE);
1611					if (!clean_only)
1612						p->valid = 0;
1613					start += 1;
1614					size -= 1;
1615					continue;
1616				}
1617
1618				/*
1619				 * The busy flags are only cleared at
1620				 * interrupt -- minimize the spl transitions
1621				 */
1622 				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1623					goto again;
1624
1625				if (clean_only && p->valid) {
1626					vm_page_test_dirty(p);
1627					if (p->valid & p->dirty) {
1628						start += 1;
1629						size -= 1;
1630						continue;
1631					}
1632				}
1633
1634				vm_page_busy(p);
1635				vm_page_protect(p, VM_PROT_NONE);
1636				vm_page_free(p);
1637			}
1638			start += 1;
1639			size -= 1;
1640		}
1641	}
1642	vm_object_pip_wakeup(object);
1643}
1644
1645/*
1646 *	Routine:	vm_object_coalesce
1647 *	Function:	Coalesces two objects backing up adjoining
1648 *			regions of memory into a single object.
1649 *
1650 *	returns TRUE if objects were combined.
1651 *
1652 *	NOTE:	Only works at the moment if the second object is NULL -
1653 *		if it's not, which object do we lock first?
1654 *
1655 *	Parameters:
1656 *		prev_object	First object to coalesce
1657 *		prev_offset	Offset into prev_object
1658 *		next_object	Second object into coalesce
1659 *		next_offset	Offset into next_object
1660 *
1661 *		prev_size	Size of reference to prev_object
1662 *		next_size	Size of reference to next_object
1663 *
1664 *	Conditions:
1665 *	The object must *not* be locked.
1666 */
1667boolean_t
1668vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex, vm_size_t prev_size, vm_size_t next_size)
1669{
1670	vm_pindex_t next_pindex;
1671
1672	GIANT_REQUIRED;
1673
1674	if (prev_object == NULL) {
1675		return (TRUE);
1676	}
1677
1678	if (prev_object->type != OBJT_DEFAULT &&
1679	    prev_object->type != OBJT_SWAP) {
1680		return (FALSE);
1681	}
1682
1683	/*
1684	 * Try to collapse the object first
1685	 */
1686	vm_object_collapse(prev_object);
1687
1688	/*
1689	 * Can't coalesce if: . more than one reference . paged out . shadows
1690	 * another object . has a copy elsewhere (any of which mean that the
1691	 * pages not mapped to prev_entry may be in use anyway)
1692	 */
1693	if (prev_object->backing_object != NULL) {
1694		return (FALSE);
1695	}
1696
1697	prev_size >>= PAGE_SHIFT;
1698	next_size >>= PAGE_SHIFT;
1699	next_pindex = prev_pindex + prev_size;
1700
1701	if ((prev_object->ref_count > 1) &&
1702	    (prev_object->size != next_pindex)) {
1703		return (FALSE);
1704	}
1705
1706	/*
1707	 * Remove any pages that may still be in the object from a previous
1708	 * deallocation.
1709	 */
1710	if (next_pindex < prev_object->size) {
1711		vm_object_page_remove(prev_object,
1712				      next_pindex,
1713				      next_pindex + next_size, FALSE);
1714		if (prev_object->type == OBJT_SWAP)
1715			swap_pager_freespace(prev_object,
1716					     next_pindex, next_size);
1717	}
1718
1719	/*
1720	 * Extend the object if necessary.
1721	 */
1722	if (next_pindex + next_size > prev_object->size)
1723		prev_object->size = next_pindex + next_size;
1724
1725	return (TRUE);
1726}
1727
1728void
1729vm_object_set_writeable_dirty(vm_object_t object)
1730{
1731	struct vnode *vp;
1732
1733	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1734	if (object->type == OBJT_VNODE &&
1735	    (vp = (struct vnode *)object->handle) != NULL) {
1736		if ((vp->v_flag & VOBJDIRTY) == 0) {
1737			mtx_lock(&vp->v_interlock);
1738			vp->v_flag |= VOBJDIRTY;
1739			mtx_unlock(&vp->v_interlock);
1740		}
1741	}
1742}
1743
1744#include "opt_ddb.h"
1745#ifdef DDB
1746#include <sys/kernel.h>
1747
1748#include <sys/cons.h>
1749
1750#include <ddb/ddb.h>
1751
1752static int
1753_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1754{
1755	vm_map_t tmpm;
1756	vm_map_entry_t tmpe;
1757	vm_object_t obj;
1758	int entcount;
1759
1760	if (map == 0)
1761		return 0;
1762
1763	if (entry == 0) {
1764		tmpe = map->header.next;
1765		entcount = map->nentries;
1766		while (entcount-- && (tmpe != &map->header)) {
1767			if (_vm_object_in_map(map, object, tmpe)) {
1768				return 1;
1769			}
1770			tmpe = tmpe->next;
1771		}
1772	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1773		tmpm = entry->object.sub_map;
1774		tmpe = tmpm->header.next;
1775		entcount = tmpm->nentries;
1776		while (entcount-- && tmpe != &tmpm->header) {
1777			if (_vm_object_in_map(tmpm, object, tmpe)) {
1778				return 1;
1779			}
1780			tmpe = tmpe->next;
1781		}
1782	} else if ((obj = entry->object.vm_object) != NULL) {
1783		for (; obj; obj = obj->backing_object)
1784			if (obj == object) {
1785				return 1;
1786			}
1787	}
1788	return 0;
1789}
1790
1791static int
1792vm_object_in_map(vm_object_t object)
1793{
1794	struct proc *p;
1795
1796	/* sx_slock(&allproc_lock); */
1797	LIST_FOREACH(p, &allproc, p_list) {
1798		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1799			continue;
1800		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
1801			/* sx_sunlock(&allproc_lock); */
1802			return 1;
1803		}
1804	}
1805	/* sx_sunlock(&allproc_lock); */
1806	if (_vm_object_in_map(kernel_map, object, 0))
1807		return 1;
1808	if (_vm_object_in_map(kmem_map, object, 0))
1809		return 1;
1810	if (_vm_object_in_map(pager_map, object, 0))
1811		return 1;
1812	if (_vm_object_in_map(buffer_map, object, 0))
1813		return 1;
1814	return 0;
1815}
1816
1817DB_SHOW_COMMAND(vmochk, vm_object_check)
1818{
1819	vm_object_t object;
1820
1821	/*
1822	 * make sure that internal objs are in a map somewhere
1823	 * and none have zero ref counts.
1824	 */
1825	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1826		if (object->handle == NULL &&
1827		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1828			if (object->ref_count == 0) {
1829				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1830					(long)object->size);
1831			}
1832			if (!vm_object_in_map(object)) {
1833				db_printf(
1834			"vmochk: internal obj is not in a map: "
1835			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1836				    object->ref_count, (u_long)object->size,
1837				    (u_long)object->size,
1838				    (void *)object->backing_object);
1839			}
1840		}
1841	}
1842}
1843
1844/*
1845 *	vm_object_print:	[ debug ]
1846 */
1847DB_SHOW_COMMAND(object, vm_object_print_static)
1848{
1849	/* XXX convert args. */
1850	vm_object_t object = (vm_object_t)addr;
1851	boolean_t full = have_addr;
1852
1853	vm_page_t p;
1854
1855	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1856#define	count	was_count
1857
1858	int count;
1859
1860	if (object == NULL)
1861		return;
1862
1863	db_iprintf(
1864	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1865	    object, (int)object->type, (u_long)object->size,
1866	    object->resident_page_count, object->ref_count, object->flags);
1867	/*
1868	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1869	 */
1870	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1871	    object->shadow_count,
1872	    object->backing_object ? object->backing_object->ref_count : 0,
1873	    object->backing_object, (long)object->backing_object_offset);
1874
1875	if (!full)
1876		return;
1877
1878	db_indent += 2;
1879	count = 0;
1880	TAILQ_FOREACH(p, &object->memq, listq) {
1881		if (count == 0)
1882			db_iprintf("memory:=");
1883		else if (count == 6) {
1884			db_printf("\n");
1885			db_iprintf(" ...");
1886			count = 0;
1887		} else
1888			db_printf(",");
1889		count++;
1890
1891		db_printf("(off=0x%lx,page=0x%lx)",
1892		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1893	}
1894	if (count != 0)
1895		db_printf("\n");
1896	db_indent -= 2;
1897}
1898
1899/* XXX. */
1900#undef count
1901
1902/* XXX need this non-static entry for calling from vm_map_print. */
1903void
1904vm_object_print(
1905        /* db_expr_t */ long addr,
1906	boolean_t have_addr,
1907	/* db_expr_t */ long count,
1908	char *modif)
1909{
1910	vm_object_print_static(addr, have_addr, count, modif);
1911}
1912
1913DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1914{
1915	vm_object_t object;
1916	int nl = 0;
1917	int c;
1918
1919	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1920		vm_pindex_t idx, fidx;
1921		vm_pindex_t osize;
1922		vm_offset_t pa = -1, padiff;
1923		int rcount;
1924		vm_page_t m;
1925
1926		db_printf("new object: %p\n", (void *)object);
1927		if (nl > 18) {
1928			c = cngetc();
1929			if (c != ' ')
1930				return;
1931			nl = 0;
1932		}
1933		nl++;
1934		rcount = 0;
1935		fidx = 0;
1936		osize = object->size;
1937		if (osize > 128)
1938			osize = 128;
1939		for (idx = 0; idx < osize; idx++) {
1940			m = vm_page_lookup(object, idx);
1941			if (m == NULL) {
1942				if (rcount) {
1943					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1944						(long)fidx, rcount, (long)pa);
1945					if (nl > 18) {
1946						c = cngetc();
1947						if (c != ' ')
1948							return;
1949						nl = 0;
1950					}
1951					nl++;
1952					rcount = 0;
1953				}
1954				continue;
1955			}
1956
1957
1958			if (rcount &&
1959				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1960				++rcount;
1961				continue;
1962			}
1963			if (rcount) {
1964				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1965				padiff >>= PAGE_SHIFT;
1966				padiff &= PQ_L2_MASK;
1967				if (padiff == 0) {
1968					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1969					++rcount;
1970					continue;
1971				}
1972				db_printf(" index(%ld)run(%d)pa(0x%lx)",
1973					(long)fidx, rcount, (long)pa);
1974				db_printf("pd(%ld)\n", (long)padiff);
1975				if (nl > 18) {
1976					c = cngetc();
1977					if (c != ' ')
1978						return;
1979					nl = 0;
1980				}
1981				nl++;
1982			}
1983			fidx = idx;
1984			pa = VM_PAGE_TO_PHYS(m);
1985			rcount = 1;
1986		}
1987		if (rcount) {
1988			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1989				(long)fidx, rcount, (long)pa);
1990			if (nl > 18) {
1991				c = cngetc();
1992				if (c != ' ')
1993					return;
1994				nl = 0;
1995			}
1996			nl++;
1997		}
1998	}
1999}
2000#endif /* DDB */
2001