vm_object.c revision 76117
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_object.c 76117 2001-04-29 02:45:39Z grog $
65 */
66
67/*
68 *	Virtual memory object module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/proc.h>		/* for curproc, pageproc */
74#include <sys/vnode.h>
75#include <sys/vmmeter.h>
76#include <sys/mman.h>
77#include <sys/mount.h>
78#include <sys/mutex.h>
79#include <sys/sx.h>
80
81#include <vm/vm.h>
82#include <vm/vm_param.h>
83#include <vm/pmap.h>
84#include <vm/vm_map.h>
85#include <vm/vm_object.h>
86#include <vm/vm_page.h>
87#include <vm/vm_pageout.h>
88#include <vm/vm_pager.h>
89#include <vm/vm_zone.h>
90#include <vm/swap_pager.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_extern.h>
93
94static void	vm_object_qcollapse __P((vm_object_t object));
95
96/*
97 *	Virtual memory objects maintain the actual data
98 *	associated with allocated virtual memory.  A given
99 *	page of memory exists within exactly one object.
100 *
101 *	An object is only deallocated when all "references"
102 *	are given up.  Only one "reference" to a given
103 *	region of an object should be writeable.
104 *
105 *	Associated with each object is a list of all resident
106 *	memory pages belonging to that object; this list is
107 *	maintained by the "vm_page" module, and locked by the object's
108 *	lock.
109 *
110 *	Each object also records a "pager" routine which is
111 *	used to retrieve (and store) pages to the proper backing
112 *	storage.  In addition, objects may be backed by other
113 *	objects from which they were virtual-copied.
114 *
115 *	The only items within the object structure which are
116 *	modified after time of creation are:
117 *		reference count		locked by object's lock
118 *		pager routine		locked by object's lock
119 *
120 */
121
122struct object_q vm_object_list;
123static struct mtx vm_object_list_mtx;	/* lock for object list and count */
124static long vm_object_count;		/* count of all objects */
125vm_object_t kernel_object;
126vm_object_t kmem_object;
127static struct vm_object kernel_object_store;
128static struct vm_object kmem_object_store;
129extern int vm_pageout_page_count;
130
131static long object_collapses;
132static long object_bypasses;
133static int next_index;
134static vm_zone_t obj_zone;
135static struct vm_zone obj_zone_store;
136static int object_hash_rand;
137#define VM_OBJECTS_INIT 256
138static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
139
140void
141_vm_object_allocate(type, size, object)
142	objtype_t type;
143	vm_size_t size;
144	vm_object_t object;
145{
146	int incr;
147	TAILQ_INIT(&object->memq);
148	TAILQ_INIT(&object->shadow_head);
149
150	object->type = type;
151	object->size = size;
152	object->ref_count = 1;
153	object->flags = 0;
154	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
155		vm_object_set_flag(object, OBJ_ONEMAPPING);
156	object->paging_in_progress = 0;
157	object->resident_page_count = 0;
158	object->shadow_count = 0;
159	object->pg_color = next_index;
160	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
161		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
162	else
163		incr = size;
164	next_index = (next_index + incr) & PQ_L2_MASK;
165	object->handle = NULL;
166	object->backing_object = NULL;
167	object->backing_object_offset = (vm_ooffset_t) 0;
168	/*
169	 * Try to generate a number that will spread objects out in the
170	 * hash table.  We 'wipe' new objects across the hash in 128 page
171	 * increments plus 1 more to offset it a little more by the time
172	 * it wraps around.
173	 */
174	object->hash_rand = object_hash_rand - 129;
175
176	object->generation++;
177
178	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
179	vm_object_count++;
180	object_hash_rand = object->hash_rand;
181}
182
183/*
184 *	vm_object_init:
185 *
186 *	Initialize the VM objects module.
187 */
188void
189vm_object_init()
190{
191	TAILQ_INIT(&vm_object_list);
192	mtx_init(&vm_object_list_mtx, "vm object_list", MTX_DEF);
193	vm_object_count = 0;
194
195	kernel_object = &kernel_object_store;
196	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
197	    kernel_object);
198
199	kmem_object = &kmem_object_store;
200	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
201	    kmem_object);
202
203	obj_zone = &obj_zone_store;
204	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
205		vm_objects_init, VM_OBJECTS_INIT);
206}
207
208void
209vm_object_init2() {
210	zinitna(obj_zone, NULL, NULL, 0, 0, 0, 1);
211}
212
213/*
214 *	vm_object_allocate:
215 *
216 *	Returns a new object with the given size.
217 */
218
219vm_object_t
220vm_object_allocate(type, size)
221	objtype_t type;
222	vm_size_t size;
223{
224	vm_object_t result;
225
226	result = (vm_object_t) zalloc(obj_zone);
227
228	_vm_object_allocate(type, size, result);
229
230	return (result);
231}
232
233
234/*
235 *	vm_object_reference:
236 *
237 *	Gets another reference to the given object.
238 */
239void
240vm_object_reference(object)
241	vm_object_t object;
242{
243	if (object == NULL)
244		return;
245
246	KASSERT(!(object->flags & OBJ_DEAD),
247	    ("vm_object_reference: attempting to reference dead obj"));
248
249	object->ref_count++;
250	if (object->type == OBJT_VNODE) {
251		while (vget((struct vnode *) object->handle, LK_RETRY|LK_NOOBJ, curproc)) {
252			printf("vm_object_reference: delay in getting object\n");
253		}
254	}
255}
256
257void
258vm_object_vndeallocate(object)
259	vm_object_t object;
260{
261	struct vnode *vp = (struct vnode *) object->handle;
262
263	KASSERT(object->type == OBJT_VNODE,
264	    ("vm_object_vndeallocate: not a vnode object"));
265	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
266#ifdef INVARIANTS
267	if (object->ref_count == 0) {
268		vprint("vm_object_vndeallocate", vp);
269		panic("vm_object_vndeallocate: bad object reference count");
270	}
271#endif
272
273	object->ref_count--;
274	if (object->ref_count == 0) {
275		vp->v_flag &= ~VTEXT;
276		vm_object_clear_flag(object, OBJ_OPT);
277	}
278	vrele(vp);
279}
280
281/*
282 *	vm_object_deallocate:
283 *
284 *	Release a reference to the specified object,
285 *	gained either through a vm_object_allocate
286 *	or a vm_object_reference call.  When all references
287 *	are gone, storage associated with this object
288 *	may be relinquished.
289 *
290 *	No object may be locked.
291 */
292void
293vm_object_deallocate(object)
294	vm_object_t object;
295{
296	vm_object_t temp;
297
298	while (object != NULL) {
299
300		if (object->type == OBJT_VNODE) {
301			vm_object_vndeallocate(object);
302			return;
303		}
304
305		KASSERT(object->ref_count != 0,
306			("vm_object_deallocate: object deallocated too many times: %d", object->type));
307
308		/*
309		 * If the reference count goes to 0 we start calling
310		 * vm_object_terminate() on the object chain.
311		 * A ref count of 1 may be a special case depending on the
312		 * shadow count being 0 or 1.
313		 */
314		object->ref_count--;
315		if (object->ref_count > 1) {
316			return;
317		} else if (object->ref_count == 1) {
318			if (object->shadow_count == 0) {
319				vm_object_set_flag(object, OBJ_ONEMAPPING);
320			} else if ((object->shadow_count == 1) &&
321			    (object->handle == NULL) &&
322			    (object->type == OBJT_DEFAULT ||
323			     object->type == OBJT_SWAP)) {
324				vm_object_t robject;
325
326				robject = TAILQ_FIRST(&object->shadow_head);
327				KASSERT(robject != NULL,
328				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
329					 object->ref_count,
330					 object->shadow_count));
331				if ((robject->handle == NULL) &&
332				    (robject->type == OBJT_DEFAULT ||
333				     robject->type == OBJT_SWAP)) {
334
335					robject->ref_count++;
336
337					while (
338						robject->paging_in_progress ||
339						object->paging_in_progress
340					) {
341						vm_object_pip_sleep(robject, "objde1");
342						vm_object_pip_sleep(object, "objde2");
343					}
344
345					if (robject->ref_count == 1) {
346						robject->ref_count--;
347						object = robject;
348						goto doterm;
349					}
350
351					object = robject;
352					vm_object_collapse(object);
353					continue;
354				}
355			}
356
357			return;
358
359		}
360
361doterm:
362
363		temp = object->backing_object;
364		if (temp) {
365			TAILQ_REMOVE(&temp->shadow_head, object, shadow_list);
366			temp->shadow_count--;
367			if (temp->ref_count == 0)
368				vm_object_clear_flag(temp, OBJ_OPT);
369			temp->generation++;
370			object->backing_object = NULL;
371		}
372		vm_object_terminate(object);
373		/* unlocks and deallocates object */
374		object = temp;
375	}
376}
377
378/*
379 *	vm_object_terminate actually destroys the specified object, freeing
380 *	up all previously used resources.
381 *
382 *	The object must be locked.
383 *	This routine may block.
384 */
385void
386vm_object_terminate(object)
387	vm_object_t object;
388{
389	vm_page_t p;
390	int s;
391
392	/*
393	 * Make sure no one uses us.
394	 */
395	vm_object_set_flag(object, OBJ_DEAD);
396
397	/*
398	 * wait for the pageout daemon to be done with the object
399	 */
400	vm_object_pip_wait(object, "objtrm");
401
402	KASSERT(!object->paging_in_progress,
403		("vm_object_terminate: pageout in progress"));
404
405	/*
406	 * Clean and free the pages, as appropriate. All references to the
407	 * object are gone, so we don't need to lock it.
408	 */
409	if (object->type == OBJT_VNODE) {
410		struct vnode *vp;
411
412		/*
413		 * Freeze optimized copies.
414		 */
415		vm_freeze_copyopts(object, 0, object->size);
416
417		/*
418		 * Clean pages and flush buffers.
419		 */
420		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
421
422		vp = (struct vnode *) object->handle;
423		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
424	}
425
426	KASSERT(object->ref_count == 0,
427		("vm_object_terminate: object with references, ref_count=%d",
428		object->ref_count));
429
430	/*
431	 * Now free any remaining pages. For internal objects, this also
432	 * removes them from paging queues. Don't free wired pages, just
433	 * remove them from the object.
434	 */
435	s = splvm();
436	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
437		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
438			("vm_object_terminate: freeing busy page %p "
439			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
440		if (p->wire_count == 0) {
441			vm_page_busy(p);
442			vm_page_free(p);
443			cnt.v_pfree++;
444		} else {
445			vm_page_busy(p);
446			vm_page_remove(p);
447		}
448	}
449	splx(s);
450
451	/*
452	 * Let the pager know object is dead.
453	 */
454	vm_pager_deallocate(object);
455
456	/*
457	 * Remove the object from the global object list.
458	 */
459	mtx_lock(&vm_object_list_mtx);
460	TAILQ_REMOVE(&vm_object_list, object, object_list);
461	mtx_unlock(&vm_object_list_mtx);
462
463	wakeup(object);
464
465	/*
466	 * Free the space for the object.
467	 */
468	zfree(obj_zone, object);
469}
470
471/*
472 *	vm_object_page_clean
473 *
474 *	Clean all dirty pages in the specified range of object.  Leaves page
475 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
476 *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
477 *	leaving the object dirty.
478 *
479 *	Odd semantics: if start == end, we clean everything.
480 *
481 *	The object must be locked.
482 */
483
484void
485vm_object_page_clean(object, start, end, flags)
486	vm_object_t object;
487	vm_pindex_t start;
488	vm_pindex_t end;
489	int flags;
490{
491	vm_page_t p, np, tp;
492	vm_offset_t tstart, tend;
493	vm_pindex_t pi;
494	int s;
495	struct vnode *vp;
496	int runlen;
497	int maxf;
498	int chkb;
499	int maxb;
500	int i;
501	int clearobjflags;
502	int pagerflags;
503	vm_page_t maf[vm_pageout_page_count];
504	vm_page_t mab[vm_pageout_page_count];
505	vm_page_t ma[vm_pageout_page_count];
506	int curgeneration;
507
508	if (object->type != OBJT_VNODE ||
509		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
510		return;
511
512	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : 0;
513	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
514
515	vp = object->handle;
516
517	vm_object_set_flag(object, OBJ_CLEANING);
518
519	tstart = start;
520	if (end == 0) {
521		tend = object->size;
522	} else {
523		tend = end;
524	}
525
526	/*
527	 * Generally set CLEANCHK interlock and make the page read-only so
528	 * we can then clear the object flags.
529	 *
530	 * However, if this is a nosync mmap then the object is likely to
531	 * stay dirty so do not mess with the page and do not clear the
532	 * object flags.
533	 */
534
535	clearobjflags = 1;
536
537	TAILQ_FOREACH(p, &object->memq, listq) {
538		vm_page_flag_set(p, PG_CLEANCHK);
539		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
540			clearobjflags = 0;
541		else
542			vm_page_protect(p, VM_PROT_READ);
543	}
544
545	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
546		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
547	}
548
549rescan:
550	curgeneration = object->generation;
551
552	for(p = TAILQ_FIRST(&object->memq); p; p = np) {
553		np = TAILQ_NEXT(p, listq);
554
555		pi = p->pindex;
556		if (((p->flags & PG_CLEANCHK) == 0) ||
557			(pi < tstart) || (pi >= tend) ||
558			(p->valid == 0) ||
559			((p->queue - p->pc) == PQ_CACHE)) {
560			vm_page_flag_clear(p, PG_CLEANCHK);
561			continue;
562		}
563
564		vm_page_test_dirty(p);
565		if ((p->dirty & p->valid) == 0) {
566			vm_page_flag_clear(p, PG_CLEANCHK);
567			continue;
568		}
569
570		/*
571		 * If we have been asked to skip nosync pages and this is a
572		 * nosync page, skip it.  Note that the object flags were
573		 * not cleared in this case so we do not have to set them.
574		 */
575		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
576			vm_page_flag_clear(p, PG_CLEANCHK);
577			continue;
578		}
579
580		s = splvm();
581		while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
582			if (object->generation != curgeneration) {
583				splx(s);
584				goto rescan;
585			}
586		}
587
588		maxf = 0;
589		for(i=1;i<vm_pageout_page_count;i++) {
590			if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
591				if ((tp->flags & PG_BUSY) ||
592					(tp->flags & PG_CLEANCHK) == 0 ||
593					(tp->busy != 0))
594					break;
595				if((tp->queue - tp->pc) == PQ_CACHE) {
596					vm_page_flag_clear(tp, PG_CLEANCHK);
597					break;
598				}
599				vm_page_test_dirty(tp);
600				if ((tp->dirty & tp->valid) == 0) {
601					vm_page_flag_clear(tp, PG_CLEANCHK);
602					break;
603				}
604				maf[ i - 1 ] = tp;
605				maxf++;
606				continue;
607			}
608			break;
609		}
610
611		maxb = 0;
612		chkb = vm_pageout_page_count -  maxf;
613		if (chkb) {
614			for(i = 1; i < chkb;i++) {
615				if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
616					if ((tp->flags & PG_BUSY) ||
617						(tp->flags & PG_CLEANCHK) == 0 ||
618						(tp->busy != 0))
619						break;
620					if((tp->queue - tp->pc) == PQ_CACHE) {
621						vm_page_flag_clear(tp, PG_CLEANCHK);
622						break;
623					}
624					vm_page_test_dirty(tp);
625					if ((tp->dirty & tp->valid) == 0) {
626						vm_page_flag_clear(tp, PG_CLEANCHK);
627						break;
628					}
629					mab[ i - 1 ] = tp;
630					maxb++;
631					continue;
632				}
633				break;
634			}
635		}
636
637		for(i=0;i<maxb;i++) {
638			int index = (maxb - i) - 1;
639			ma[index] = mab[i];
640			vm_page_flag_clear(ma[index], PG_CLEANCHK);
641		}
642		vm_page_flag_clear(p, PG_CLEANCHK);
643		ma[maxb] = p;
644		for(i=0;i<maxf;i++) {
645			int index = (maxb + i) + 1;
646			ma[index] = maf[i];
647			vm_page_flag_clear(ma[index], PG_CLEANCHK);
648		}
649		runlen = maxb + maxf + 1;
650
651		splx(s);
652		vm_pageout_flush(ma, runlen, pagerflags);
653		for (i = 0; i<runlen; i++) {
654			if (ma[i]->valid & ma[i]->dirty) {
655				vm_page_protect(ma[i], VM_PROT_READ);
656				vm_page_flag_set(ma[i], PG_CLEANCHK);
657			}
658		}
659		if (object->generation != curgeneration)
660			goto rescan;
661	}
662
663#if 0
664	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
665#endif
666
667	vm_object_clear_flag(object, OBJ_CLEANING);
668	return;
669}
670
671#ifdef not_used
672/* XXX I cannot tell if this should be an exported symbol */
673/*
674 *	vm_object_deactivate_pages
675 *
676 *	Deactivate all pages in the specified object.  (Keep its pages
677 *	in memory even though it is no longer referenced.)
678 *
679 *	The object must be locked.
680 */
681static void
682vm_object_deactivate_pages(object)
683	vm_object_t object;
684{
685	vm_page_t p, next;
686
687	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
688		next = TAILQ_NEXT(p, listq);
689		vm_page_deactivate(p);
690	}
691}
692#endif
693
694/*
695 * Same as vm_object_pmap_copy, except range checking really
696 * works, and is meant for small sections of an object.
697 *
698 * This code protects resident pages by making them read-only
699 * and is typically called on a fork or split when a page
700 * is converted to copy-on-write.
701 *
702 * NOTE: If the page is already at VM_PROT_NONE, calling
703 * vm_page_protect will have no effect.
704 */
705
706void
707vm_object_pmap_copy_1(object, start, end)
708	vm_object_t object;
709	vm_pindex_t start;
710	vm_pindex_t end;
711{
712	vm_pindex_t idx;
713	vm_page_t p;
714
715	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
716		return;
717
718	for (idx = start; idx < end; idx++) {
719		p = vm_page_lookup(object, idx);
720		if (p == NULL)
721			continue;
722		vm_page_protect(p, VM_PROT_READ);
723	}
724}
725
726/*
727 *	vm_object_pmap_remove:
728 *
729 *	Removes all physical pages in the specified
730 *	object range from all physical maps.
731 *
732 *	The object must *not* be locked.
733 */
734void
735vm_object_pmap_remove(object, start, end)
736	vm_object_t object;
737	vm_pindex_t start;
738	vm_pindex_t end;
739{
740	vm_page_t p;
741
742	if (object == NULL)
743		return;
744	TAILQ_FOREACH(p, &object->memq, listq) {
745		if (p->pindex >= start && p->pindex < end)
746			vm_page_protect(p, VM_PROT_NONE);
747	}
748	if ((start == 0) && (object->size == end))
749		vm_object_clear_flag(object, OBJ_WRITEABLE);
750}
751
752/*
753 *	vm_object_madvise:
754 *
755 *	Implements the madvise function at the object/page level.
756 *
757 *	MADV_WILLNEED	(any object)
758 *
759 *	    Activate the specified pages if they are resident.
760 *
761 *	MADV_DONTNEED	(any object)
762 *
763 *	    Deactivate the specified pages if they are resident.
764 *
765 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
766 *			 OBJ_ONEMAPPING only)
767 *
768 *	    Deactivate and clean the specified pages if they are
769 *	    resident.  This permits the process to reuse the pages
770 *	    without faulting or the kernel to reclaim the pages
771 *	    without I/O.
772 */
773void
774vm_object_madvise(object, pindex, count, advise)
775	vm_object_t object;
776	vm_pindex_t pindex;
777	int count;
778	int advise;
779{
780	vm_pindex_t end, tpindex;
781	vm_object_t tobject;
782	vm_page_t m;
783
784	if (object == NULL)
785		return;
786
787	end = pindex + count;
788
789	/*
790	 * Locate and adjust resident pages
791	 */
792
793	for (; pindex < end; pindex += 1) {
794relookup:
795		tobject = object;
796		tpindex = pindex;
797shadowlookup:
798		/*
799		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
800		 * and those pages must be OBJ_ONEMAPPING.
801		 */
802		if (advise == MADV_FREE) {
803			if ((tobject->type != OBJT_DEFAULT &&
804			     tobject->type != OBJT_SWAP) ||
805			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
806				continue;
807			}
808		}
809
810		m = vm_page_lookup(tobject, tpindex);
811
812		if (m == NULL) {
813			/*
814			 * There may be swap even if there is no backing page
815			 */
816			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
817				swap_pager_freespace(tobject, tpindex, 1);
818
819			/*
820			 * next object
821			 */
822			tobject = tobject->backing_object;
823			if (tobject == NULL)
824				continue;
825			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
826			goto shadowlookup;
827		}
828
829		/*
830		 * If the page is busy or not in a normal active state,
831		 * we skip it.  If the page is not managed there are no
832		 * page queues to mess with.  Things can break if we mess
833		 * with pages in any of the below states.
834		 */
835		if (
836		    m->hold_count ||
837		    m->wire_count ||
838		    (m->flags & PG_UNMANAGED) ||
839		    m->valid != VM_PAGE_BITS_ALL
840		) {
841			continue;
842		}
843
844 		if (vm_page_sleep_busy(m, TRUE, "madvpo"))
845  			goto relookup;
846
847		if (advise == MADV_WILLNEED) {
848			vm_page_activate(m);
849		} else if (advise == MADV_DONTNEED) {
850			vm_page_dontneed(m);
851		} else if (advise == MADV_FREE) {
852			/*
853			 * Mark the page clean.  This will allow the page
854			 * to be freed up by the system.  However, such pages
855			 * are often reused quickly by malloc()/free()
856			 * so we do not do anything that would cause
857			 * a page fault if we can help it.
858			 *
859			 * Specifically, we do not try to actually free
860			 * the page now nor do we try to put it in the
861			 * cache (which would cause a page fault on reuse).
862			 *
863			 * But we do make the page is freeable as we
864			 * can without actually taking the step of unmapping
865			 * it.
866			 */
867			pmap_clear_modify(m);
868			m->dirty = 0;
869			m->act_count = 0;
870			vm_page_dontneed(m);
871			if (tobject->type == OBJT_SWAP)
872				swap_pager_freespace(tobject, tpindex, 1);
873		}
874	}
875}
876
877/*
878 *	vm_object_shadow:
879 *
880 *	Create a new object which is backed by the
881 *	specified existing object range.  The source
882 *	object reference is deallocated.
883 *
884 *	The new object and offset into that object
885 *	are returned in the source parameters.
886 */
887
888void
889vm_object_shadow(object, offset, length)
890	vm_object_t *object;	/* IN/OUT */
891	vm_ooffset_t *offset;	/* IN/OUT */
892	vm_size_t length;
893{
894	vm_object_t source;
895	vm_object_t result;
896
897	source = *object;
898
899	/*
900	 * Don't create the new object if the old object isn't shared.
901	 */
902
903	if (source != NULL &&
904	    source->ref_count == 1 &&
905	    source->handle == NULL &&
906	    (source->type == OBJT_DEFAULT ||
907	     source->type == OBJT_SWAP))
908		return;
909
910	/*
911	 * Allocate a new object with the given length
912	 */
913	result = vm_object_allocate(OBJT_DEFAULT, length);
914	KASSERT(result != NULL, ("vm_object_shadow: no object for shadowing"));
915
916	/*
917	 * The new object shadows the source object, adding a reference to it.
918	 * Our caller changes his reference to point to the new object,
919	 * removing a reference to the source object.  Net result: no change
920	 * of reference count.
921	 *
922	 * Try to optimize the result object's page color when shadowing
923	 * in order to maintain page coloring consistency in the combined
924	 * shadowed object.
925	 */
926	result->backing_object = source;
927	if (source) {
928		TAILQ_INSERT_TAIL(&source->shadow_head, result, shadow_list);
929		source->shadow_count++;
930		source->generation++;
931		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
932	}
933
934	/*
935	 * Store the offset into the source object, and fix up the offset into
936	 * the new object.
937	 */
938
939	result->backing_object_offset = *offset;
940
941	/*
942	 * Return the new things
943	 */
944
945	*offset = 0;
946	*object = result;
947}
948
949#define	OBSC_TEST_ALL_SHADOWED	0x0001
950#define	OBSC_COLLAPSE_NOWAIT	0x0002
951#define	OBSC_COLLAPSE_WAIT	0x0004
952
953static __inline int
954vm_object_backing_scan(vm_object_t object, int op)
955{
956	int s;
957	int r = 1;
958	vm_page_t p;
959	vm_object_t backing_object;
960	vm_pindex_t backing_offset_index;
961
962	s = splvm();
963
964	backing_object = object->backing_object;
965	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
966
967	/*
968	 * Initial conditions
969	 */
970
971	if (op & OBSC_TEST_ALL_SHADOWED) {
972		/*
973		 * We do not want to have to test for the existence of
974		 * swap pages in the backing object.  XXX but with the
975		 * new swapper this would be pretty easy to do.
976		 *
977		 * XXX what about anonymous MAP_SHARED memory that hasn't
978		 * been ZFOD faulted yet?  If we do not test for this, the
979		 * shadow test may succeed! XXX
980		 */
981		if (backing_object->type != OBJT_DEFAULT) {
982			splx(s);
983			return(0);
984		}
985	}
986	if (op & OBSC_COLLAPSE_WAIT) {
987		vm_object_set_flag(backing_object, OBJ_DEAD);
988	}
989
990	/*
991	 * Our scan
992	 */
993
994	p = TAILQ_FIRST(&backing_object->memq);
995	while (p) {
996		vm_page_t next = TAILQ_NEXT(p, listq);
997		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
998
999		if (op & OBSC_TEST_ALL_SHADOWED) {
1000			vm_page_t pp;
1001
1002			/*
1003			 * Ignore pages outside the parent object's range
1004			 * and outside the parent object's mapping of the
1005			 * backing object.
1006			 *
1007			 * note that we do not busy the backing object's
1008			 * page.
1009			 */
1010
1011			if (
1012			    p->pindex < backing_offset_index ||
1013			    new_pindex >= object->size
1014			) {
1015				p = next;
1016				continue;
1017			}
1018
1019			/*
1020			 * See if the parent has the page or if the parent's
1021			 * object pager has the page.  If the parent has the
1022			 * page but the page is not valid, the parent's
1023			 * object pager must have the page.
1024			 *
1025			 * If this fails, the parent does not completely shadow
1026			 * the object and we might as well give up now.
1027			 */
1028
1029			pp = vm_page_lookup(object, new_pindex);
1030			if (
1031			    (pp == NULL || pp->valid == 0) &&
1032			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1033			) {
1034				r = 0;
1035				break;
1036			}
1037		}
1038
1039		/*
1040		 * Check for busy page
1041		 */
1042
1043		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1044			vm_page_t pp;
1045
1046			if (op & OBSC_COLLAPSE_NOWAIT) {
1047				if (
1048				    (p->flags & PG_BUSY) ||
1049				    !p->valid ||
1050				    p->hold_count ||
1051				    p->wire_count ||
1052				    p->busy
1053				) {
1054					p = next;
1055					continue;
1056				}
1057			} else if (op & OBSC_COLLAPSE_WAIT) {
1058				if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1059					/*
1060					 * If we slept, anything could have
1061					 * happened.  Since the object is
1062					 * marked dead, the backing offset
1063					 * should not have changed so we
1064					 * just restart our scan.
1065					 */
1066					p = TAILQ_FIRST(&backing_object->memq);
1067					continue;
1068				}
1069			}
1070
1071			/*
1072			 * Busy the page
1073			 */
1074			vm_page_busy(p);
1075
1076			KASSERT(
1077			    p->object == backing_object,
1078			    ("vm_object_qcollapse(): object mismatch")
1079			);
1080
1081			/*
1082			 * Destroy any associated swap
1083			 */
1084			if (backing_object->type == OBJT_SWAP) {
1085				swap_pager_freespace(
1086				    backing_object,
1087				    p->pindex,
1088				    1
1089				);
1090			}
1091
1092			if (
1093			    p->pindex < backing_offset_index ||
1094			    new_pindex >= object->size
1095			) {
1096				/*
1097				 * Page is out of the parent object's range, we
1098				 * can simply destroy it.
1099				 */
1100				vm_page_protect(p, VM_PROT_NONE);
1101				vm_page_free(p);
1102				p = next;
1103				continue;
1104			}
1105
1106			pp = vm_page_lookup(object, new_pindex);
1107			if (
1108			    pp != NULL ||
1109			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1110			) {
1111				/*
1112				 * page already exists in parent OR swap exists
1113				 * for this location in the parent.  Destroy
1114				 * the original page from the backing object.
1115				 *
1116				 * Leave the parent's page alone
1117				 */
1118				vm_page_protect(p, VM_PROT_NONE);
1119				vm_page_free(p);
1120				p = next;
1121				continue;
1122			}
1123
1124			/*
1125			 * Page does not exist in parent, rename the
1126			 * page from the backing object to the main object.
1127			 *
1128			 * If the page was mapped to a process, it can remain
1129			 * mapped through the rename.
1130			 */
1131			if ((p->queue - p->pc) == PQ_CACHE)
1132				vm_page_deactivate(p);
1133
1134			vm_page_rename(p, object, new_pindex);
1135			/* page automatically made dirty by rename */
1136		}
1137		p = next;
1138	}
1139	splx(s);
1140	return(r);
1141}
1142
1143
1144/*
1145 * this version of collapse allows the operation to occur earlier and
1146 * when paging_in_progress is true for an object...  This is not a complete
1147 * operation, but should plug 99.9% of the rest of the leaks.
1148 */
1149static void
1150vm_object_qcollapse(object)
1151	vm_object_t object;
1152{
1153	vm_object_t backing_object = object->backing_object;
1154
1155	if (backing_object->ref_count != 1)
1156		return;
1157
1158	backing_object->ref_count += 2;
1159
1160	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1161
1162	backing_object->ref_count -= 2;
1163}
1164
1165/*
1166 *	vm_object_collapse:
1167 *
1168 *	Collapse an object with the object backing it.
1169 *	Pages in the backing object are moved into the
1170 *	parent, and the backing object is deallocated.
1171 */
1172void
1173vm_object_collapse(object)
1174	vm_object_t object;
1175{
1176	while (TRUE) {
1177		vm_object_t backing_object;
1178
1179		/*
1180		 * Verify that the conditions are right for collapse:
1181		 *
1182		 * The object exists and the backing object exists.
1183		 */
1184		if (object == NULL)
1185			break;
1186
1187		if ((backing_object = object->backing_object) == NULL)
1188			break;
1189
1190		/*
1191		 * we check the backing object first, because it is most likely
1192		 * not collapsable.
1193		 */
1194		if (backing_object->handle != NULL ||
1195		    (backing_object->type != OBJT_DEFAULT &&
1196		     backing_object->type != OBJT_SWAP) ||
1197		    (backing_object->flags & OBJ_DEAD) ||
1198		    object->handle != NULL ||
1199		    (object->type != OBJT_DEFAULT &&
1200		     object->type != OBJT_SWAP) ||
1201		    (object->flags & OBJ_DEAD)) {
1202			break;
1203		}
1204
1205		if (
1206		    object->paging_in_progress != 0 ||
1207		    backing_object->paging_in_progress != 0
1208		) {
1209			vm_object_qcollapse(object);
1210			break;
1211		}
1212
1213		/*
1214		 * We know that we can either collapse the backing object (if
1215		 * the parent is the only reference to it) or (perhaps) have
1216		 * the parent bypass the object if the parent happens to shadow
1217		 * all the resident pages in the entire backing object.
1218		 *
1219		 * This is ignoring pager-backed pages such as swap pages.
1220		 * vm_object_backing_scan fails the shadowing test in this
1221		 * case.
1222		 */
1223
1224		if (backing_object->ref_count == 1) {
1225			/*
1226			 * If there is exactly one reference to the backing
1227			 * object, we can collapse it into the parent.
1228			 */
1229
1230			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1231
1232			/*
1233			 * Move the pager from backing_object to object.
1234			 */
1235
1236			if (backing_object->type == OBJT_SWAP) {
1237				vm_object_pip_add(backing_object, 1);
1238
1239				/*
1240				 * scrap the paging_offset junk and do a
1241				 * discrete copy.  This also removes major
1242				 * assumptions about how the swap-pager
1243				 * works from where it doesn't belong.  The
1244				 * new swapper is able to optimize the
1245				 * destroy-source case.
1246				 */
1247
1248				vm_object_pip_add(object, 1);
1249				swap_pager_copy(
1250				    backing_object,
1251				    object,
1252				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1253				vm_object_pip_wakeup(object);
1254
1255				vm_object_pip_wakeup(backing_object);
1256			}
1257			/*
1258			 * Object now shadows whatever backing_object did.
1259			 * Note that the reference to
1260			 * backing_object->backing_object moves from within
1261			 * backing_object to within object.
1262			 */
1263
1264			TAILQ_REMOVE(
1265			    &object->backing_object->shadow_head,
1266			    object,
1267			    shadow_list
1268			);
1269			object->backing_object->shadow_count--;
1270			object->backing_object->generation++;
1271			if (backing_object->backing_object) {
1272				TAILQ_REMOVE(
1273				    &backing_object->backing_object->shadow_head,
1274				    backing_object,
1275				    shadow_list
1276				);
1277				backing_object->backing_object->shadow_count--;
1278				backing_object->backing_object->generation++;
1279			}
1280			object->backing_object = backing_object->backing_object;
1281			if (object->backing_object) {
1282				TAILQ_INSERT_TAIL(
1283				    &object->backing_object->shadow_head,
1284				    object,
1285				    shadow_list
1286				);
1287				object->backing_object->shadow_count++;
1288				object->backing_object->generation++;
1289			}
1290
1291			object->backing_object_offset +=
1292			    backing_object->backing_object_offset;
1293
1294			/*
1295			 * Discard backing_object.
1296			 *
1297			 * Since the backing object has no pages, no pager left,
1298			 * and no object references within it, all that is
1299			 * necessary is to dispose of it.
1300			 */
1301
1302			TAILQ_REMOVE(
1303			    &vm_object_list,
1304			    backing_object,
1305			    object_list
1306			);
1307			vm_object_count--;
1308
1309			zfree(obj_zone, backing_object);
1310
1311			object_collapses++;
1312		} else {
1313			vm_object_t new_backing_object;
1314
1315			/*
1316			 * If we do not entirely shadow the backing object,
1317			 * there is nothing we can do so we give up.
1318			 */
1319
1320			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1321				break;
1322			}
1323
1324			/*
1325			 * Make the parent shadow the next object in the
1326			 * chain.  Deallocating backing_object will not remove
1327			 * it, since its reference count is at least 2.
1328			 */
1329
1330			TAILQ_REMOVE(
1331			    &backing_object->shadow_head,
1332			    object,
1333			    shadow_list
1334			);
1335			backing_object->shadow_count--;
1336			backing_object->generation++;
1337
1338			new_backing_object = backing_object->backing_object;
1339			if ((object->backing_object = new_backing_object) != NULL) {
1340				vm_object_reference(new_backing_object);
1341				TAILQ_INSERT_TAIL(
1342				    &new_backing_object->shadow_head,
1343				    object,
1344				    shadow_list
1345				);
1346				new_backing_object->shadow_count++;
1347				new_backing_object->generation++;
1348				object->backing_object_offset +=
1349					backing_object->backing_object_offset;
1350			}
1351
1352			/*
1353			 * Drop the reference count on backing_object. Since
1354			 * its ref_count was at least 2, it will not vanish;
1355			 * so we don't need to call vm_object_deallocate, but
1356			 * we do anyway.
1357			 */
1358			vm_object_deallocate(backing_object);
1359			object_bypasses++;
1360		}
1361
1362		/*
1363		 * Try again with this object's new backing object.
1364		 */
1365	}
1366}
1367
1368/*
1369 *	vm_object_page_remove: [internal]
1370 *
1371 *	Removes all physical pages in the specified
1372 *	object range from the object's list of pages.
1373 *
1374 *	The object must be locked.
1375 */
1376void
1377vm_object_page_remove(object, start, end, clean_only)
1378	vm_object_t object;
1379	vm_pindex_t start;
1380	vm_pindex_t end;
1381	boolean_t clean_only;
1382{
1383	vm_page_t p, next;
1384	unsigned int size;
1385	int all;
1386
1387	if (object == NULL ||
1388	    object->resident_page_count == 0)
1389		return;
1390
1391	all = ((end == 0) && (start == 0));
1392
1393	/*
1394	 * Since physically-backed objects do not use managed pages, we can't
1395	 * remove pages from the object (we must instead remove the page
1396	 * references, and then destroy the object).
1397	 */
1398	KASSERT(object->type != OBJT_PHYS, ("attempt to remove pages from a physical object"));
1399
1400	vm_object_pip_add(object, 1);
1401again:
1402	size = end - start;
1403	if (all || size > object->resident_page_count / 4) {
1404		for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1405			next = TAILQ_NEXT(p, listq);
1406			if (all || ((start <= p->pindex) && (p->pindex < end))) {
1407				if (p->wire_count != 0) {
1408					vm_page_protect(p, VM_PROT_NONE);
1409					if (!clean_only)
1410						p->valid = 0;
1411					continue;
1412				}
1413
1414				/*
1415				 * The busy flags are only cleared at
1416				 * interrupt -- minimize the spl transitions
1417				 */
1418
1419 				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1420 					goto again;
1421
1422				if (clean_only && p->valid) {
1423					vm_page_test_dirty(p);
1424					if (p->valid & p->dirty)
1425						continue;
1426				}
1427
1428				vm_page_busy(p);
1429				vm_page_protect(p, VM_PROT_NONE);
1430				vm_page_free(p);
1431			}
1432		}
1433	} else {
1434		while (size > 0) {
1435			if ((p = vm_page_lookup(object, start)) != 0) {
1436
1437				if (p->wire_count != 0) {
1438					vm_page_protect(p, VM_PROT_NONE);
1439					if (!clean_only)
1440						p->valid = 0;
1441					start += 1;
1442					size -= 1;
1443					continue;
1444				}
1445
1446				/*
1447				 * The busy flags are only cleared at
1448				 * interrupt -- minimize the spl transitions
1449				 */
1450 				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1451					goto again;
1452
1453				if (clean_only && p->valid) {
1454					vm_page_test_dirty(p);
1455					if (p->valid & p->dirty) {
1456						start += 1;
1457						size -= 1;
1458						continue;
1459					}
1460				}
1461
1462				vm_page_busy(p);
1463				vm_page_protect(p, VM_PROT_NONE);
1464				vm_page_free(p);
1465			}
1466			start += 1;
1467			size -= 1;
1468		}
1469	}
1470	vm_object_pip_wakeup(object);
1471}
1472
1473/*
1474 *	Routine:	vm_object_coalesce
1475 *	Function:	Coalesces two objects backing up adjoining
1476 *			regions of memory into a single object.
1477 *
1478 *	returns TRUE if objects were combined.
1479 *
1480 *	NOTE:	Only works at the moment if the second object is NULL -
1481 *		if it's not, which object do we lock first?
1482 *
1483 *	Parameters:
1484 *		prev_object	First object to coalesce
1485 *		prev_offset	Offset into prev_object
1486 *		next_object	Second object into coalesce
1487 *		next_offset	Offset into next_object
1488 *
1489 *		prev_size	Size of reference to prev_object
1490 *		next_size	Size of reference to next_object
1491 *
1492 *	Conditions:
1493 *	The object must *not* be locked.
1494 */
1495boolean_t
1496vm_object_coalesce(prev_object, prev_pindex, prev_size, next_size)
1497	vm_object_t prev_object;
1498	vm_pindex_t prev_pindex;
1499	vm_size_t prev_size, next_size;
1500{
1501	vm_pindex_t next_pindex;
1502
1503	if (prev_object == NULL) {
1504		return (TRUE);
1505	}
1506
1507	if (prev_object->type != OBJT_DEFAULT &&
1508	    prev_object->type != OBJT_SWAP) {
1509		return (FALSE);
1510	}
1511
1512	/*
1513	 * Try to collapse the object first
1514	 */
1515	vm_object_collapse(prev_object);
1516
1517	/*
1518	 * Can't coalesce if: . more than one reference . paged out . shadows
1519	 * another object . has a copy elsewhere (any of which mean that the
1520	 * pages not mapped to prev_entry may be in use anyway)
1521	 */
1522
1523	if (prev_object->backing_object != NULL) {
1524		return (FALSE);
1525	}
1526
1527	prev_size >>= PAGE_SHIFT;
1528	next_size >>= PAGE_SHIFT;
1529	next_pindex = prev_pindex + prev_size;
1530
1531	if ((prev_object->ref_count > 1) &&
1532	    (prev_object->size != next_pindex)) {
1533		return (FALSE);
1534	}
1535
1536	/*
1537	 * Remove any pages that may still be in the object from a previous
1538	 * deallocation.
1539	 */
1540	if (next_pindex < prev_object->size) {
1541		vm_object_page_remove(prev_object,
1542				      next_pindex,
1543				      next_pindex + next_size, FALSE);
1544		if (prev_object->type == OBJT_SWAP)
1545			swap_pager_freespace(prev_object,
1546					     next_pindex, next_size);
1547	}
1548
1549	/*
1550	 * Extend the object if necessary.
1551	 */
1552	if (next_pindex + next_size > prev_object->size)
1553		prev_object->size = next_pindex + next_size;
1554
1555	return (TRUE);
1556}
1557
1558#include "opt_ddb.h"
1559#ifdef DDB
1560#include <sys/kernel.h>
1561
1562#include <sys/cons.h>
1563
1564#include <ddb/ddb.h>
1565
1566static int	_vm_object_in_map __P((vm_map_t map, vm_object_t object,
1567				       vm_map_entry_t entry));
1568static int	vm_object_in_map __P((vm_object_t object));
1569
1570static int
1571_vm_object_in_map(map, object, entry)
1572	vm_map_t map;
1573	vm_object_t object;
1574	vm_map_entry_t entry;
1575{
1576	vm_map_t tmpm;
1577	vm_map_entry_t tmpe;
1578	vm_object_t obj;
1579	int entcount;
1580
1581	if (map == 0)
1582		return 0;
1583
1584	if (entry == 0) {
1585		tmpe = map->header.next;
1586		entcount = map->nentries;
1587		while (entcount-- && (tmpe != &map->header)) {
1588			if( _vm_object_in_map(map, object, tmpe)) {
1589				return 1;
1590			}
1591			tmpe = tmpe->next;
1592		}
1593	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1594		tmpm = entry->object.sub_map;
1595		tmpe = tmpm->header.next;
1596		entcount = tmpm->nentries;
1597		while (entcount-- && tmpe != &tmpm->header) {
1598			if( _vm_object_in_map(tmpm, object, tmpe)) {
1599				return 1;
1600			}
1601			tmpe = tmpe->next;
1602		}
1603	} else if ((obj = entry->object.vm_object) != NULL) {
1604		for(; obj; obj=obj->backing_object)
1605			if( obj == object) {
1606				return 1;
1607			}
1608	}
1609	return 0;
1610}
1611
1612static int
1613vm_object_in_map( object)
1614	vm_object_t object;
1615{
1616	struct proc *p;
1617
1618	sx_slock(&allproc_lock);
1619	LIST_FOREACH(p, &allproc, p_list) {
1620		if( !p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1621			continue;
1622		if( _vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
1623			sx_sunlock(&allproc_lock);
1624			return 1;
1625		}
1626	}
1627	sx_sunlock(&allproc_lock);
1628	if( _vm_object_in_map( kernel_map, object, 0))
1629		return 1;
1630	if( _vm_object_in_map( kmem_map, object, 0))
1631		return 1;
1632	if( _vm_object_in_map( pager_map, object, 0))
1633		return 1;
1634	if( _vm_object_in_map( buffer_map, object, 0))
1635		return 1;
1636	if( _vm_object_in_map( mb_map, object, 0))
1637		return 1;
1638	return 0;
1639}
1640
1641DB_SHOW_COMMAND(vmochk, vm_object_check)
1642{
1643	vm_object_t object;
1644
1645	/*
1646	 * make sure that internal objs are in a map somewhere
1647	 * and none have zero ref counts.
1648	 */
1649	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1650		if (object->handle == NULL &&
1651		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1652			if (object->ref_count == 0) {
1653				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1654					(long)object->size);
1655			}
1656			if (!vm_object_in_map(object)) {
1657				db_printf(
1658			"vmochk: internal obj is not in a map: "
1659			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1660				    object->ref_count, (u_long)object->size,
1661				    (u_long)object->size,
1662				    (void *)object->backing_object);
1663			}
1664		}
1665	}
1666}
1667
1668/*
1669 *	vm_object_print:	[ debug ]
1670 */
1671DB_SHOW_COMMAND(object, vm_object_print_static)
1672{
1673	/* XXX convert args. */
1674	vm_object_t object = (vm_object_t)addr;
1675	boolean_t full = have_addr;
1676
1677	vm_page_t p;
1678
1679	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1680#define	count	was_count
1681
1682	int count;
1683
1684	if (object == NULL)
1685		return;
1686
1687	db_iprintf(
1688	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1689	    object, (int)object->type, (u_long)object->size,
1690	    object->resident_page_count, object->ref_count, object->flags);
1691	/*
1692	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1693	 */
1694	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1695	    object->shadow_count,
1696	    object->backing_object ? object->backing_object->ref_count : 0,
1697	    object->backing_object, (long)object->backing_object_offset);
1698
1699	if (!full)
1700		return;
1701
1702	db_indent += 2;
1703	count = 0;
1704	TAILQ_FOREACH(p, &object->memq, listq) {
1705		if (count == 0)
1706			db_iprintf("memory:=");
1707		else if (count == 6) {
1708			db_printf("\n");
1709			db_iprintf(" ...");
1710			count = 0;
1711		} else
1712			db_printf(",");
1713		count++;
1714
1715		db_printf("(off=0x%lx,page=0x%lx)",
1716		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1717	}
1718	if (count != 0)
1719		db_printf("\n");
1720	db_indent -= 2;
1721}
1722
1723/* XXX. */
1724#undef count
1725
1726/* XXX need this non-static entry for calling from vm_map_print. */
1727void
1728vm_object_print(addr, have_addr, count, modif)
1729        /* db_expr_t */ long addr;
1730	boolean_t have_addr;
1731	/* db_expr_t */ long count;
1732	char *modif;
1733{
1734	vm_object_print_static(addr, have_addr, count, modif);
1735}
1736
1737DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1738{
1739	vm_object_t object;
1740	int nl = 0;
1741	int c;
1742
1743	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1744		vm_pindex_t idx, fidx;
1745		vm_pindex_t osize;
1746		vm_offset_t pa = -1, padiff;
1747		int rcount;
1748		vm_page_t m;
1749
1750		db_printf("new object: %p\n", (void *)object);
1751		if ( nl > 18) {
1752			c = cngetc();
1753			if (c != ' ')
1754				return;
1755			nl = 0;
1756		}
1757		nl++;
1758		rcount = 0;
1759		fidx = 0;
1760		osize = object->size;
1761		if (osize > 128)
1762			osize = 128;
1763		for(idx=0;idx<osize;idx++) {
1764			m = vm_page_lookup(object, idx);
1765			if (m == NULL) {
1766				if (rcount) {
1767					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1768						(long)fidx, rcount, (long)pa);
1769					if ( nl > 18) {
1770						c = cngetc();
1771						if (c != ' ')
1772							return;
1773						nl = 0;
1774					}
1775					nl++;
1776					rcount = 0;
1777				}
1778				continue;
1779			}
1780
1781
1782			if (rcount &&
1783				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1784				++rcount;
1785				continue;
1786			}
1787			if (rcount) {
1788				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1789				padiff >>= PAGE_SHIFT;
1790				padiff &= PQ_L2_MASK;
1791				if (padiff == 0) {
1792					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1793					++rcount;
1794					continue;
1795				}
1796				db_printf(" index(%ld)run(%d)pa(0x%lx)",
1797					(long)fidx, rcount, (long)pa);
1798				db_printf("pd(%ld)\n", (long)padiff);
1799				if ( nl > 18) {
1800					c = cngetc();
1801					if (c != ' ')
1802						return;
1803					nl = 0;
1804				}
1805				nl++;
1806			}
1807			fidx = idx;
1808			pa = VM_PAGE_TO_PHYS(m);
1809			rcount = 1;
1810		}
1811		if (rcount) {
1812			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1813				(long)fidx, rcount, (long)pa);
1814			if ( nl > 18) {
1815				c = cngetc();
1816				if (c != ' ')
1817					return;
1818				nl = 0;
1819			}
1820			nl++;
1821		}
1822	}
1823}
1824#endif /* DDB */
1825