vm_object.c revision 251151
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory object module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: head/sys/vm/vm_object.c 251151 2013-05-30 20:00:19Z kib $");
67
68#include "opt_vm.h"
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/lock.h>
73#include <sys/mman.h>
74#include <sys/mount.h>
75#include <sys/kernel.h>
76#include <sys/sysctl.h>
77#include <sys/mutex.h>
78#include <sys/proc.h>		/* for curproc, pageproc */
79#include <sys/socket.h>
80#include <sys/resourcevar.h>
81#include <sys/rwlock.h>
82#include <sys/vnode.h>
83#include <sys/vmmeter.h>
84#include <sys/sx.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_object.h>
91#include <vm/vm_page.h>
92#include <vm/vm_pageout.h>
93#include <vm/vm_pager.h>
94#include <vm/swap_pager.h>
95#include <vm/vm_kern.h>
96#include <vm/vm_extern.h>
97#include <vm/vm_radix.h>
98#include <vm/vm_reserv.h>
99#include <vm/uma.h>
100
101static int old_msync;
102SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
103    "Use old (insecure) msync behavior");
104
105static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
106		    int pagerflags, int flags, boolean_t *clearobjflags,
107		    boolean_t *eio);
108static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
109		    boolean_t *clearobjflags);
110static void	vm_object_qcollapse(vm_object_t object);
111static void	vm_object_vndeallocate(vm_object_t object);
112
113/*
114 *	Virtual memory objects maintain the actual data
115 *	associated with allocated virtual memory.  A given
116 *	page of memory exists within exactly one object.
117 *
118 *	An object is only deallocated when all "references"
119 *	are given up.  Only one "reference" to a given
120 *	region of an object should be writeable.
121 *
122 *	Associated with each object is a list of all resident
123 *	memory pages belonging to that object; this list is
124 *	maintained by the "vm_page" module, and locked by the object's
125 *	lock.
126 *
127 *	Each object also records a "pager" routine which is
128 *	used to retrieve (and store) pages to the proper backing
129 *	storage.  In addition, objects may be backed by other
130 *	objects from which they were virtual-copied.
131 *
132 *	The only items within the object structure which are
133 *	modified after time of creation are:
134 *		reference count		locked by object's lock
135 *		pager routine		locked by object's lock
136 *
137 */
138
139struct object_q vm_object_list;
140struct mtx vm_object_list_mtx;	/* lock for object list and count */
141
142struct vm_object kernel_object_store;
143struct vm_object kmem_object_store;
144
145static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
146    "VM object stats");
147
148static long object_collapses;
149SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
150    &object_collapses, 0, "VM object collapses");
151
152static long object_bypasses;
153SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
154    &object_bypasses, 0, "VM object bypasses");
155
156static uma_zone_t obj_zone;
157
158static int vm_object_zinit(void *mem, int size, int flags);
159
160#ifdef INVARIANTS
161static void vm_object_zdtor(void *mem, int size, void *arg);
162
163static void
164vm_object_zdtor(void *mem, int size, void *arg)
165{
166	vm_object_t object;
167
168	object = (vm_object_t)mem;
169	KASSERT(TAILQ_EMPTY(&object->memq),
170	    ("object %p has resident pages in its memq", object));
171	KASSERT(vm_radix_is_empty(&object->rtree),
172	    ("object %p has resident pages in its trie", object));
173#if VM_NRESERVLEVEL > 0
174	KASSERT(LIST_EMPTY(&object->rvq),
175	    ("object %p has reservations",
176	    object));
177#endif
178	KASSERT(vm_object_cache_is_empty(object),
179	    ("object %p has cached pages",
180	    object));
181	KASSERT(object->paging_in_progress == 0,
182	    ("object %p paging_in_progress = %d",
183	    object, object->paging_in_progress));
184	KASSERT(object->resident_page_count == 0,
185	    ("object %p resident_page_count = %d",
186	    object, object->resident_page_count));
187	KASSERT(object->shadow_count == 0,
188	    ("object %p shadow_count = %d",
189	    object, object->shadow_count));
190}
191#endif
192
193static int
194vm_object_zinit(void *mem, int size, int flags)
195{
196	vm_object_t object;
197
198	object = (vm_object_t)mem;
199	bzero(&object->lock, sizeof(object->lock));
200	rw_init_flags(&object->lock, "vm object", RW_DUPOK);
201
202	/* These are true for any object that has been freed */
203	object->rtree.rt_root = 0;
204	object->paging_in_progress = 0;
205	object->resident_page_count = 0;
206	object->shadow_count = 0;
207	object->cache.rt_root = 0;
208	return (0);
209}
210
211static void
212_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
213{
214
215	TAILQ_INIT(&object->memq);
216	LIST_INIT(&object->shadow_head);
217
218	object->type = type;
219	switch (type) {
220	case OBJT_DEAD:
221		panic("_vm_object_allocate: can't create OBJT_DEAD");
222	case OBJT_DEFAULT:
223	case OBJT_SWAP:
224		object->flags = OBJ_ONEMAPPING;
225		break;
226	case OBJT_DEVICE:
227	case OBJT_SG:
228		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
229		break;
230	case OBJT_MGTDEVICE:
231		object->flags = OBJ_FICTITIOUS;
232		break;
233	case OBJT_PHYS:
234		object->flags = OBJ_UNMANAGED;
235		break;
236	case OBJT_VNODE:
237		object->flags = 0;
238		break;
239	default:
240		panic("_vm_object_allocate: type %d is undefined", type);
241	}
242	object->size = size;
243	object->generation = 1;
244	object->ref_count = 1;
245	object->memattr = VM_MEMATTR_DEFAULT;
246	object->cred = NULL;
247	object->charge = 0;
248	object->handle = NULL;
249	object->backing_object = NULL;
250	object->backing_object_offset = (vm_ooffset_t) 0;
251#if VM_NRESERVLEVEL > 0
252	LIST_INIT(&object->rvq);
253#endif
254
255	mtx_lock(&vm_object_list_mtx);
256	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
257	mtx_unlock(&vm_object_list_mtx);
258}
259
260/*
261 *	vm_object_init:
262 *
263 *	Initialize the VM objects module.
264 */
265void
266vm_object_init(void)
267{
268	TAILQ_INIT(&vm_object_list);
269	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
270
271	rw_init(&kernel_object->lock, "kernel vm object");
272	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
273	    kernel_object);
274#if VM_NRESERVLEVEL > 0
275	kernel_object->flags |= OBJ_COLORED;
276	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
277#endif
278
279	rw_init(&kmem_object->lock, "kmem vm object");
280	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
281	    kmem_object);
282#if VM_NRESERVLEVEL > 0
283	kmem_object->flags |= OBJ_COLORED;
284	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
285#endif
286
287	/*
288	 * The lock portion of struct vm_object must be type stable due
289	 * to vm_pageout_fallback_object_lock locking a vm object
290	 * without holding any references to it.
291	 */
292	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
293#ifdef INVARIANTS
294	    vm_object_zdtor,
295#else
296	    NULL,
297#endif
298	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
299
300	vm_radix_init();
301}
302
303void
304vm_object_clear_flag(vm_object_t object, u_short bits)
305{
306
307	VM_OBJECT_ASSERT_WLOCKED(object);
308	object->flags &= ~bits;
309}
310
311/*
312 *	Sets the default memory attribute for the specified object.  Pages
313 *	that are allocated to this object are by default assigned this memory
314 *	attribute.
315 *
316 *	Presently, this function must be called before any pages are allocated
317 *	to the object.  In the future, this requirement may be relaxed for
318 *	"default" and "swap" objects.
319 */
320int
321vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
322{
323
324	VM_OBJECT_ASSERT_WLOCKED(object);
325	switch (object->type) {
326	case OBJT_DEFAULT:
327	case OBJT_DEVICE:
328	case OBJT_MGTDEVICE:
329	case OBJT_PHYS:
330	case OBJT_SG:
331	case OBJT_SWAP:
332	case OBJT_VNODE:
333		if (!TAILQ_EMPTY(&object->memq))
334			return (KERN_FAILURE);
335		break;
336	case OBJT_DEAD:
337		return (KERN_INVALID_ARGUMENT);
338	default:
339		panic("vm_object_set_memattr: object %p is of undefined type",
340		    object);
341	}
342	object->memattr = memattr;
343	return (KERN_SUCCESS);
344}
345
346void
347vm_object_pip_add(vm_object_t object, short i)
348{
349
350	VM_OBJECT_ASSERT_WLOCKED(object);
351	object->paging_in_progress += i;
352}
353
354void
355vm_object_pip_subtract(vm_object_t object, short i)
356{
357
358	VM_OBJECT_ASSERT_WLOCKED(object);
359	object->paging_in_progress -= i;
360}
361
362void
363vm_object_pip_wakeup(vm_object_t object)
364{
365
366	VM_OBJECT_ASSERT_WLOCKED(object);
367	object->paging_in_progress--;
368	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
369		vm_object_clear_flag(object, OBJ_PIPWNT);
370		wakeup(object);
371	}
372}
373
374void
375vm_object_pip_wakeupn(vm_object_t object, short i)
376{
377
378	VM_OBJECT_ASSERT_WLOCKED(object);
379	if (i)
380		object->paging_in_progress -= i;
381	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
382		vm_object_clear_flag(object, OBJ_PIPWNT);
383		wakeup(object);
384	}
385}
386
387void
388vm_object_pip_wait(vm_object_t object, char *waitid)
389{
390
391	VM_OBJECT_ASSERT_WLOCKED(object);
392	while (object->paging_in_progress) {
393		object->flags |= OBJ_PIPWNT;
394		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
395	}
396}
397
398/*
399 *	vm_object_allocate:
400 *
401 *	Returns a new object with the given size.
402 */
403vm_object_t
404vm_object_allocate(objtype_t type, vm_pindex_t size)
405{
406	vm_object_t object;
407
408	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
409	_vm_object_allocate(type, size, object);
410	return (object);
411}
412
413
414/*
415 *	vm_object_reference:
416 *
417 *	Gets another reference to the given object.  Note: OBJ_DEAD
418 *	objects can be referenced during final cleaning.
419 */
420void
421vm_object_reference(vm_object_t object)
422{
423	if (object == NULL)
424		return;
425	VM_OBJECT_WLOCK(object);
426	vm_object_reference_locked(object);
427	VM_OBJECT_WUNLOCK(object);
428}
429
430/*
431 *	vm_object_reference_locked:
432 *
433 *	Gets another reference to the given object.
434 *
435 *	The object must be locked.
436 */
437void
438vm_object_reference_locked(vm_object_t object)
439{
440	struct vnode *vp;
441
442	VM_OBJECT_ASSERT_WLOCKED(object);
443	object->ref_count++;
444	if (object->type == OBJT_VNODE) {
445		vp = object->handle;
446		vref(vp);
447	}
448}
449
450/*
451 * Handle deallocating an object of type OBJT_VNODE.
452 */
453static void
454vm_object_vndeallocate(vm_object_t object)
455{
456	struct vnode *vp = (struct vnode *) object->handle;
457
458	VM_OBJECT_ASSERT_WLOCKED(object);
459	KASSERT(object->type == OBJT_VNODE,
460	    ("vm_object_vndeallocate: not a vnode object"));
461	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
462#ifdef INVARIANTS
463	if (object->ref_count == 0) {
464		vprint("vm_object_vndeallocate", vp);
465		panic("vm_object_vndeallocate: bad object reference count");
466	}
467#endif
468
469	if (object->ref_count > 1) {
470		object->ref_count--;
471		VM_OBJECT_WUNLOCK(object);
472		/* vrele may need the vnode lock. */
473		vrele(vp);
474	} else {
475		vhold(vp);
476		VM_OBJECT_WUNLOCK(object);
477		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
478		vdrop(vp);
479		VM_OBJECT_WLOCK(object);
480		object->ref_count--;
481		if (object->type == OBJT_DEAD) {
482			VM_OBJECT_WUNLOCK(object);
483			VOP_UNLOCK(vp, 0);
484		} else {
485			if (object->ref_count == 0)
486				VOP_UNSET_TEXT(vp);
487			VM_OBJECT_WUNLOCK(object);
488			vput(vp);
489		}
490	}
491}
492
493/*
494 *	vm_object_deallocate:
495 *
496 *	Release a reference to the specified object,
497 *	gained either through a vm_object_allocate
498 *	or a vm_object_reference call.  When all references
499 *	are gone, storage associated with this object
500 *	may be relinquished.
501 *
502 *	No object may be locked.
503 */
504void
505vm_object_deallocate(vm_object_t object)
506{
507	vm_object_t temp;
508	struct vnode *vp;
509
510	while (object != NULL) {
511		VM_OBJECT_WLOCK(object);
512		if (object->type == OBJT_VNODE) {
513			vm_object_vndeallocate(object);
514			return;
515		}
516
517		KASSERT(object->ref_count != 0,
518			("vm_object_deallocate: object deallocated too many times: %d", object->type));
519
520		/*
521		 * If the reference count goes to 0 we start calling
522		 * vm_object_terminate() on the object chain.
523		 * A ref count of 1 may be a special case depending on the
524		 * shadow count being 0 or 1.
525		 */
526		object->ref_count--;
527		if (object->ref_count > 1) {
528			VM_OBJECT_WUNLOCK(object);
529			return;
530		} else if (object->ref_count == 1) {
531			if (object->type == OBJT_SWAP &&
532			    (object->flags & OBJ_TMPFS) != 0) {
533				vp = object->un_pager.swp.swp_tmpfs;
534				vhold(vp);
535				VM_OBJECT_WUNLOCK(object);
536				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
537				vdrop(vp);
538				VM_OBJECT_WLOCK(object);
539				if (object->type == OBJT_DEAD ||
540				    object->ref_count != 1) {
541					VM_OBJECT_WUNLOCK(object);
542					VOP_UNLOCK(vp, 0);
543					return;
544				}
545				if ((object->flags & OBJ_TMPFS) != 0)
546					VOP_UNSET_TEXT(vp);
547				VOP_UNLOCK(vp, 0);
548			}
549			if (object->shadow_count == 0 &&
550			    object->handle == NULL &&
551			    (object->type == OBJT_DEFAULT ||
552			    (object->type == OBJT_SWAP &&
553			    (object->flags & OBJ_TMPFS) == 0))) {
554				vm_object_set_flag(object, OBJ_ONEMAPPING);
555			} else if ((object->shadow_count == 1) &&
556			    (object->handle == NULL) &&
557			    (object->type == OBJT_DEFAULT ||
558			     object->type == OBJT_SWAP)) {
559				KASSERT((object->flags & OBJ_TMPFS) == 0,
560				    ("shadowed tmpfs v_object %p", object));
561				vm_object_t robject;
562
563				robject = LIST_FIRST(&object->shadow_head);
564				KASSERT(robject != NULL,
565				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
566					 object->ref_count,
567					 object->shadow_count));
568				if (!VM_OBJECT_TRYWLOCK(robject)) {
569					/*
570					 * Avoid a potential deadlock.
571					 */
572					object->ref_count++;
573					VM_OBJECT_WUNLOCK(object);
574					/*
575					 * More likely than not the thread
576					 * holding robject's lock has lower
577					 * priority than the current thread.
578					 * Let the lower priority thread run.
579					 */
580					pause("vmo_de", 1);
581					continue;
582				}
583				/*
584				 * Collapse object into its shadow unless its
585				 * shadow is dead.  In that case, object will
586				 * be deallocated by the thread that is
587				 * deallocating its shadow.
588				 */
589				if ((robject->flags & OBJ_DEAD) == 0 &&
590				    (robject->handle == NULL) &&
591				    (robject->type == OBJT_DEFAULT ||
592				     robject->type == OBJT_SWAP)) {
593
594					robject->ref_count++;
595retry:
596					if (robject->paging_in_progress) {
597						VM_OBJECT_WUNLOCK(object);
598						vm_object_pip_wait(robject,
599						    "objde1");
600						temp = robject->backing_object;
601						if (object == temp) {
602							VM_OBJECT_WLOCK(object);
603							goto retry;
604						}
605					} else if (object->paging_in_progress) {
606						VM_OBJECT_WUNLOCK(robject);
607						object->flags |= OBJ_PIPWNT;
608						VM_OBJECT_SLEEP(object, object,
609						    PDROP | PVM, "objde2", 0);
610						VM_OBJECT_WLOCK(robject);
611						temp = robject->backing_object;
612						if (object == temp) {
613							VM_OBJECT_WLOCK(object);
614							goto retry;
615						}
616					} else
617						VM_OBJECT_WUNLOCK(object);
618
619					if (robject->ref_count == 1) {
620						robject->ref_count--;
621						object = robject;
622						goto doterm;
623					}
624					object = robject;
625					vm_object_collapse(object);
626					VM_OBJECT_WUNLOCK(object);
627					continue;
628				}
629				VM_OBJECT_WUNLOCK(robject);
630			}
631			VM_OBJECT_WUNLOCK(object);
632			return;
633		}
634doterm:
635		temp = object->backing_object;
636		if (temp != NULL) {
637			VM_OBJECT_WLOCK(temp);
638			LIST_REMOVE(object, shadow_list);
639			temp->shadow_count--;
640			VM_OBJECT_WUNLOCK(temp);
641			object->backing_object = NULL;
642		}
643		/*
644		 * Don't double-terminate, we could be in a termination
645		 * recursion due to the terminate having to sync data
646		 * to disk.
647		 */
648		if ((object->flags & OBJ_DEAD) == 0)
649			vm_object_terminate(object);
650		else
651			VM_OBJECT_WUNLOCK(object);
652		object = temp;
653	}
654}
655
656/*
657 *	vm_object_destroy removes the object from the global object list
658 *      and frees the space for the object.
659 */
660void
661vm_object_destroy(vm_object_t object)
662{
663
664	/*
665	 * Remove the object from the global object list.
666	 */
667	mtx_lock(&vm_object_list_mtx);
668	TAILQ_REMOVE(&vm_object_list, object, object_list);
669	mtx_unlock(&vm_object_list_mtx);
670
671	/*
672	 * Release the allocation charge.
673	 */
674	if (object->cred != NULL) {
675		KASSERT(object->type == OBJT_DEFAULT ||
676		    object->type == OBJT_SWAP,
677		    ("vm_object_terminate: non-swap obj %p has cred",
678		     object));
679		swap_release_by_cred(object->charge, object->cred);
680		object->charge = 0;
681		crfree(object->cred);
682		object->cred = NULL;
683	}
684
685	/*
686	 * Free the space for the object.
687	 */
688	uma_zfree(obj_zone, object);
689}
690
691/*
692 *	vm_object_terminate actually destroys the specified object, freeing
693 *	up all previously used resources.
694 *
695 *	The object must be locked.
696 *	This routine may block.
697 */
698void
699vm_object_terminate(vm_object_t object)
700{
701	vm_page_t p, p_next;
702
703	VM_OBJECT_ASSERT_WLOCKED(object);
704
705	/*
706	 * Make sure no one uses us.
707	 */
708	vm_object_set_flag(object, OBJ_DEAD);
709
710	/*
711	 * wait for the pageout daemon to be done with the object
712	 */
713	vm_object_pip_wait(object, "objtrm");
714
715	KASSERT(!object->paging_in_progress,
716		("vm_object_terminate: pageout in progress"));
717
718	/*
719	 * Clean and free the pages, as appropriate. All references to the
720	 * object are gone, so we don't need to lock it.
721	 */
722	if (object->type == OBJT_VNODE) {
723		struct vnode *vp = (struct vnode *)object->handle;
724
725		/*
726		 * Clean pages and flush buffers.
727		 */
728		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
729		VM_OBJECT_WUNLOCK(object);
730
731		vinvalbuf(vp, V_SAVE, 0, 0);
732
733		VM_OBJECT_WLOCK(object);
734	}
735
736	KASSERT(object->ref_count == 0,
737		("vm_object_terminate: object with references, ref_count=%d",
738		object->ref_count));
739
740	/*
741	 * Free any remaining pageable pages.  This also removes them from the
742	 * paging queues.  However, don't free wired pages, just remove them
743	 * from the object.  Rather than incrementally removing each page from
744	 * the object, the page and object are reset to any empty state.
745	 */
746	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
747		KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
748		    ("vm_object_terminate: freeing busy page %p", p));
749		vm_page_lock(p);
750		/*
751		 * Optimize the page's removal from the object by resetting
752		 * its "object" field.  Specifically, if the page is not
753		 * wired, then the effect of this assignment is that
754		 * vm_page_free()'s call to vm_page_remove() will return
755		 * immediately without modifying the page or the object.
756		 */
757		p->object = NULL;
758		if (p->wire_count == 0) {
759			vm_page_free(p);
760			PCPU_INC(cnt.v_pfree);
761		}
762		vm_page_unlock(p);
763	}
764	/*
765	 * If the object contained any pages, then reset it to an empty state.
766	 * None of the object's fields, including "resident_page_count", were
767	 * modified by the preceding loop.
768	 */
769	if (object->resident_page_count != 0) {
770		vm_radix_reclaim_allnodes(&object->rtree);
771		TAILQ_INIT(&object->memq);
772		object->resident_page_count = 0;
773		if (object->type == OBJT_VNODE)
774			vdrop(object->handle);
775	}
776
777#if VM_NRESERVLEVEL > 0
778	if (__predict_false(!LIST_EMPTY(&object->rvq)))
779		vm_reserv_break_all(object);
780#endif
781	if (__predict_false(!vm_object_cache_is_empty(object)))
782		vm_page_cache_free(object, 0, 0);
783
784	/*
785	 * Let the pager know object is dead.
786	 */
787	vm_pager_deallocate(object);
788	VM_OBJECT_WUNLOCK(object);
789
790	vm_object_destroy(object);
791}
792
793/*
794 * Make the page read-only so that we can clear the object flags.  However, if
795 * this is a nosync mmap then the object is likely to stay dirty so do not
796 * mess with the page and do not clear the object flags.  Returns TRUE if the
797 * page should be flushed, and FALSE otherwise.
798 */
799static boolean_t
800vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
801{
802
803	/*
804	 * If we have been asked to skip nosync pages and this is a
805	 * nosync page, skip it.  Note that the object flags were not
806	 * cleared in this case so we do not have to set them.
807	 */
808	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
809		*clearobjflags = FALSE;
810		return (FALSE);
811	} else {
812		pmap_remove_write(p);
813		return (p->dirty != 0);
814	}
815}
816
817/*
818 *	vm_object_page_clean
819 *
820 *	Clean all dirty pages in the specified range of object.  Leaves page
821 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
822 *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
823 *	leaving the object dirty.
824 *
825 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
826 *	synchronous clustering mode implementation.
827 *
828 *	Odd semantics: if start == end, we clean everything.
829 *
830 *	The object must be locked.
831 *
832 *	Returns FALSE if some page from the range was not written, as
833 *	reported by the pager, and TRUE otherwise.
834 */
835boolean_t
836vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
837    int flags)
838{
839	vm_page_t np, p;
840	vm_pindex_t pi, tend, tstart;
841	int curgeneration, n, pagerflags;
842	boolean_t clearobjflags, eio, res;
843
844	VM_OBJECT_ASSERT_WLOCKED(object);
845
846	/*
847	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
848	 * objects.  The check below prevents the function from
849	 * operating on non-vnode objects.
850	 */
851	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
852	    object->resident_page_count == 0)
853		return (TRUE);
854
855	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
856	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
857	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
858
859	tstart = OFF_TO_IDX(start);
860	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
861	clearobjflags = tstart == 0 && tend >= object->size;
862	res = TRUE;
863
864rescan:
865	curgeneration = object->generation;
866
867	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
868		pi = p->pindex;
869		if (pi >= tend)
870			break;
871		np = TAILQ_NEXT(p, listq);
872		if (p->valid == 0)
873			continue;
874		if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
875			if (object->generation != curgeneration) {
876				if ((flags & OBJPC_SYNC) != 0)
877					goto rescan;
878				else
879					clearobjflags = FALSE;
880			}
881			np = vm_page_find_least(object, pi);
882			continue;
883		}
884		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
885			continue;
886
887		n = vm_object_page_collect_flush(object, p, pagerflags,
888		    flags, &clearobjflags, &eio);
889		if (eio) {
890			res = FALSE;
891			clearobjflags = FALSE;
892		}
893		if (object->generation != curgeneration) {
894			if ((flags & OBJPC_SYNC) != 0)
895				goto rescan;
896			else
897				clearobjflags = FALSE;
898		}
899
900		/*
901		 * If the VOP_PUTPAGES() did a truncated write, so
902		 * that even the first page of the run is not fully
903		 * written, vm_pageout_flush() returns 0 as the run
904		 * length.  Since the condition that caused truncated
905		 * write may be permanent, e.g. exhausted free space,
906		 * accepting n == 0 would cause an infinite loop.
907		 *
908		 * Forwarding the iterator leaves the unwritten page
909		 * behind, but there is not much we can do there if
910		 * filesystem refuses to write it.
911		 */
912		if (n == 0) {
913			n = 1;
914			clearobjflags = FALSE;
915		}
916		np = vm_page_find_least(object, pi + n);
917	}
918#if 0
919	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
920#endif
921
922	if (clearobjflags)
923		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
924	return (res);
925}
926
927static int
928vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
929    int flags, boolean_t *clearobjflags, boolean_t *eio)
930{
931	vm_page_t ma[vm_pageout_page_count], p_first, tp;
932	int count, i, mreq, runlen;
933
934	vm_page_lock_assert(p, MA_NOTOWNED);
935	VM_OBJECT_ASSERT_WLOCKED(object);
936
937	count = 1;
938	mreq = 0;
939
940	for (tp = p; count < vm_pageout_page_count; count++) {
941		tp = vm_page_next(tp);
942		if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
943			break;
944		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
945			break;
946	}
947
948	for (p_first = p; count < vm_pageout_page_count; count++) {
949		tp = vm_page_prev(p_first);
950		if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
951			break;
952		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
953			break;
954		p_first = tp;
955		mreq++;
956	}
957
958	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
959		ma[i] = tp;
960
961	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
962	return (runlen);
963}
964
965/*
966 * Note that there is absolutely no sense in writing out
967 * anonymous objects, so we track down the vnode object
968 * to write out.
969 * We invalidate (remove) all pages from the address space
970 * for semantic correctness.
971 *
972 * If the backing object is a device object with unmanaged pages, then any
973 * mappings to the specified range of pages must be removed before this
974 * function is called.
975 *
976 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
977 * may start out with a NULL object.
978 */
979boolean_t
980vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
981    boolean_t syncio, boolean_t invalidate)
982{
983	vm_object_t backing_object;
984	struct vnode *vp;
985	struct mount *mp;
986	int error, flags, fsync_after;
987	boolean_t res;
988
989	if (object == NULL)
990		return (TRUE);
991	res = TRUE;
992	error = 0;
993	VM_OBJECT_WLOCK(object);
994	while ((backing_object = object->backing_object) != NULL) {
995		VM_OBJECT_WLOCK(backing_object);
996		offset += object->backing_object_offset;
997		VM_OBJECT_WUNLOCK(object);
998		object = backing_object;
999		if (object->size < OFF_TO_IDX(offset + size))
1000			size = IDX_TO_OFF(object->size) - offset;
1001	}
1002	/*
1003	 * Flush pages if writing is allowed, invalidate them
1004	 * if invalidation requested.  Pages undergoing I/O
1005	 * will be ignored by vm_object_page_remove().
1006	 *
1007	 * We cannot lock the vnode and then wait for paging
1008	 * to complete without deadlocking against vm_fault.
1009	 * Instead we simply call vm_object_page_remove() and
1010	 * allow it to block internally on a page-by-page
1011	 * basis when it encounters pages undergoing async
1012	 * I/O.
1013	 */
1014	if (object->type == OBJT_VNODE &&
1015	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1016		vp = object->handle;
1017		VM_OBJECT_WUNLOCK(object);
1018		(void) vn_start_write(vp, &mp, V_WAIT);
1019		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1020		if (syncio && !invalidate && offset == 0 &&
1021		    OFF_TO_IDX(size) == object->size) {
1022			/*
1023			 * If syncing the whole mapping of the file,
1024			 * it is faster to schedule all the writes in
1025			 * async mode, also allowing the clustering,
1026			 * and then wait for i/o to complete.
1027			 */
1028			flags = 0;
1029			fsync_after = TRUE;
1030		} else {
1031			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1032			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1033			fsync_after = FALSE;
1034		}
1035		VM_OBJECT_WLOCK(object);
1036		res = vm_object_page_clean(object, offset, offset + size,
1037		    flags);
1038		VM_OBJECT_WUNLOCK(object);
1039		if (fsync_after)
1040			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1041		VOP_UNLOCK(vp, 0);
1042		vn_finished_write(mp);
1043		if (error != 0)
1044			res = FALSE;
1045		VM_OBJECT_WLOCK(object);
1046	}
1047	if ((object->type == OBJT_VNODE ||
1048	     object->type == OBJT_DEVICE) && invalidate) {
1049		if (object->type == OBJT_DEVICE)
1050			/*
1051			 * The option OBJPR_NOTMAPPED must be passed here
1052			 * because vm_object_page_remove() cannot remove
1053			 * unmanaged mappings.
1054			 */
1055			flags = OBJPR_NOTMAPPED;
1056		else if (old_msync)
1057			flags = 0;
1058		else
1059			flags = OBJPR_CLEANONLY;
1060		vm_object_page_remove(object, OFF_TO_IDX(offset),
1061		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1062	}
1063	VM_OBJECT_WUNLOCK(object);
1064	return (res);
1065}
1066
1067/*
1068 *	vm_object_madvise:
1069 *
1070 *	Implements the madvise function at the object/page level.
1071 *
1072 *	MADV_WILLNEED	(any object)
1073 *
1074 *	    Activate the specified pages if they are resident.
1075 *
1076 *	MADV_DONTNEED	(any object)
1077 *
1078 *	    Deactivate the specified pages if they are resident.
1079 *
1080 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1081 *			 OBJ_ONEMAPPING only)
1082 *
1083 *	    Deactivate and clean the specified pages if they are
1084 *	    resident.  This permits the process to reuse the pages
1085 *	    without faulting or the kernel to reclaim the pages
1086 *	    without I/O.
1087 */
1088void
1089vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1090    int advise)
1091{
1092	vm_pindex_t tpindex;
1093	vm_object_t backing_object, tobject;
1094	vm_page_t m;
1095
1096	if (object == NULL)
1097		return;
1098	VM_OBJECT_WLOCK(object);
1099	/*
1100	 * Locate and adjust resident pages
1101	 */
1102	for (; pindex < end; pindex += 1) {
1103relookup:
1104		tobject = object;
1105		tpindex = pindex;
1106shadowlookup:
1107		/*
1108		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1109		 * and those pages must be OBJ_ONEMAPPING.
1110		 */
1111		if (advise == MADV_FREE) {
1112			if ((tobject->type != OBJT_DEFAULT &&
1113			     tobject->type != OBJT_SWAP) ||
1114			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1115				goto unlock_tobject;
1116			}
1117		} else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1118			goto unlock_tobject;
1119		m = vm_page_lookup(tobject, tpindex);
1120		if (m == NULL && advise == MADV_WILLNEED) {
1121			/*
1122			 * If the page is cached, reactivate it.
1123			 */
1124			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1125			    VM_ALLOC_NOBUSY);
1126		}
1127		if (m == NULL) {
1128			/*
1129			 * There may be swap even if there is no backing page
1130			 */
1131			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1132				swap_pager_freespace(tobject, tpindex, 1);
1133			/*
1134			 * next object
1135			 */
1136			backing_object = tobject->backing_object;
1137			if (backing_object == NULL)
1138				goto unlock_tobject;
1139			VM_OBJECT_WLOCK(backing_object);
1140			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1141			if (tobject != object)
1142				VM_OBJECT_WUNLOCK(tobject);
1143			tobject = backing_object;
1144			goto shadowlookup;
1145		} else if (m->valid != VM_PAGE_BITS_ALL)
1146			goto unlock_tobject;
1147		/*
1148		 * If the page is not in a normal state, skip it.
1149		 */
1150		vm_page_lock(m);
1151		if (m->hold_count != 0 || m->wire_count != 0) {
1152			vm_page_unlock(m);
1153			goto unlock_tobject;
1154		}
1155		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1156		    ("vm_object_madvise: page %p is fictitious", m));
1157		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1158		    ("vm_object_madvise: page %p is not managed", m));
1159		if ((m->oflags & VPO_BUSY) || m->busy) {
1160			if (advise == MADV_WILLNEED) {
1161				/*
1162				 * Reference the page before unlocking and
1163				 * sleeping so that the page daemon is less
1164				 * likely to reclaim it.
1165				 */
1166				vm_page_aflag_set(m, PGA_REFERENCED);
1167			}
1168			vm_page_unlock(m);
1169			if (object != tobject)
1170				VM_OBJECT_WUNLOCK(object);
1171			m->oflags |= VPO_WANTED;
1172			VM_OBJECT_SLEEP(tobject, m, PDROP | PVM, "madvpo", 0);
1173			VM_OBJECT_WLOCK(object);
1174  			goto relookup;
1175		}
1176		if (advise == MADV_WILLNEED) {
1177			vm_page_activate(m);
1178		} else if (advise == MADV_DONTNEED) {
1179			vm_page_dontneed(m);
1180		} else if (advise == MADV_FREE) {
1181			/*
1182			 * Mark the page clean.  This will allow the page
1183			 * to be freed up by the system.  However, such pages
1184			 * are often reused quickly by malloc()/free()
1185			 * so we do not do anything that would cause
1186			 * a page fault if we can help it.
1187			 *
1188			 * Specifically, we do not try to actually free
1189			 * the page now nor do we try to put it in the
1190			 * cache (which would cause a page fault on reuse).
1191			 *
1192			 * But we do make the page is freeable as we
1193			 * can without actually taking the step of unmapping
1194			 * it.
1195			 */
1196			pmap_clear_modify(m);
1197			m->dirty = 0;
1198			m->act_count = 0;
1199			vm_page_dontneed(m);
1200		}
1201		vm_page_unlock(m);
1202		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1203			swap_pager_freespace(tobject, tpindex, 1);
1204unlock_tobject:
1205		if (tobject != object)
1206			VM_OBJECT_WUNLOCK(tobject);
1207	}
1208	VM_OBJECT_WUNLOCK(object);
1209}
1210
1211/*
1212 *	vm_object_shadow:
1213 *
1214 *	Create a new object which is backed by the
1215 *	specified existing object range.  The source
1216 *	object reference is deallocated.
1217 *
1218 *	The new object and offset into that object
1219 *	are returned in the source parameters.
1220 */
1221void
1222vm_object_shadow(
1223	vm_object_t *object,	/* IN/OUT */
1224	vm_ooffset_t *offset,	/* IN/OUT */
1225	vm_size_t length)
1226{
1227	vm_object_t source;
1228	vm_object_t result;
1229
1230	source = *object;
1231
1232	/*
1233	 * Don't create the new object if the old object isn't shared.
1234	 */
1235	if (source != NULL) {
1236		VM_OBJECT_WLOCK(source);
1237		if (source->ref_count == 1 &&
1238		    source->handle == NULL &&
1239		    (source->type == OBJT_DEFAULT ||
1240		     source->type == OBJT_SWAP)) {
1241			VM_OBJECT_WUNLOCK(source);
1242			return;
1243		}
1244		VM_OBJECT_WUNLOCK(source);
1245	}
1246
1247	/*
1248	 * Allocate a new object with the given length.
1249	 */
1250	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1251
1252	/*
1253	 * The new object shadows the source object, adding a reference to it.
1254	 * Our caller changes his reference to point to the new object,
1255	 * removing a reference to the source object.  Net result: no change
1256	 * of reference count.
1257	 *
1258	 * Try to optimize the result object's page color when shadowing
1259	 * in order to maintain page coloring consistency in the combined
1260	 * shadowed object.
1261	 */
1262	result->backing_object = source;
1263	/*
1264	 * Store the offset into the source object, and fix up the offset into
1265	 * the new object.
1266	 */
1267	result->backing_object_offset = *offset;
1268	if (source != NULL) {
1269		VM_OBJECT_WLOCK(source);
1270		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1271		source->shadow_count++;
1272#if VM_NRESERVLEVEL > 0
1273		result->flags |= source->flags & OBJ_COLORED;
1274		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1275		    ((1 << (VM_NFREEORDER - 1)) - 1);
1276#endif
1277		VM_OBJECT_WUNLOCK(source);
1278	}
1279
1280
1281	/*
1282	 * Return the new things
1283	 */
1284	*offset = 0;
1285	*object = result;
1286}
1287
1288/*
1289 *	vm_object_split:
1290 *
1291 * Split the pages in a map entry into a new object.  This affords
1292 * easier removal of unused pages, and keeps object inheritance from
1293 * being a negative impact on memory usage.
1294 */
1295void
1296vm_object_split(vm_map_entry_t entry)
1297{
1298	vm_page_t m, m_next;
1299	vm_object_t orig_object, new_object, source;
1300	vm_pindex_t idx, offidxstart;
1301	vm_size_t size;
1302
1303	orig_object = entry->object.vm_object;
1304	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1305		return;
1306	if (orig_object->ref_count <= 1)
1307		return;
1308	VM_OBJECT_WUNLOCK(orig_object);
1309
1310	offidxstart = OFF_TO_IDX(entry->offset);
1311	size = atop(entry->end - entry->start);
1312
1313	/*
1314	 * If swap_pager_copy() is later called, it will convert new_object
1315	 * into a swap object.
1316	 */
1317	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1318
1319	/*
1320	 * At this point, the new object is still private, so the order in
1321	 * which the original and new objects are locked does not matter.
1322	 */
1323	VM_OBJECT_WLOCK(new_object);
1324	VM_OBJECT_WLOCK(orig_object);
1325	source = orig_object->backing_object;
1326	if (source != NULL) {
1327		VM_OBJECT_WLOCK(source);
1328		if ((source->flags & OBJ_DEAD) != 0) {
1329			VM_OBJECT_WUNLOCK(source);
1330			VM_OBJECT_WUNLOCK(orig_object);
1331			VM_OBJECT_WUNLOCK(new_object);
1332			vm_object_deallocate(new_object);
1333			VM_OBJECT_WLOCK(orig_object);
1334			return;
1335		}
1336		LIST_INSERT_HEAD(&source->shadow_head,
1337				  new_object, shadow_list);
1338		source->shadow_count++;
1339		vm_object_reference_locked(source);	/* for new_object */
1340		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1341		VM_OBJECT_WUNLOCK(source);
1342		new_object->backing_object_offset =
1343			orig_object->backing_object_offset + entry->offset;
1344		new_object->backing_object = source;
1345	}
1346	if (orig_object->cred != NULL) {
1347		new_object->cred = orig_object->cred;
1348		crhold(orig_object->cred);
1349		new_object->charge = ptoa(size);
1350		KASSERT(orig_object->charge >= ptoa(size),
1351		    ("orig_object->charge < 0"));
1352		orig_object->charge -= ptoa(size);
1353	}
1354retry:
1355	m = vm_page_find_least(orig_object, offidxstart);
1356	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1357	    m = m_next) {
1358		m_next = TAILQ_NEXT(m, listq);
1359
1360		/*
1361		 * We must wait for pending I/O to complete before we can
1362		 * rename the page.
1363		 *
1364		 * We do not have to VM_PROT_NONE the page as mappings should
1365		 * not be changed by this operation.
1366		 */
1367		if ((m->oflags & VPO_BUSY) || m->busy) {
1368			VM_OBJECT_WUNLOCK(new_object);
1369			m->oflags |= VPO_WANTED;
1370			VM_OBJECT_SLEEP(orig_object, m, PVM, "spltwt", 0);
1371			VM_OBJECT_WLOCK(new_object);
1372			goto retry;
1373		}
1374#if VM_NRESERVLEVEL > 0
1375		/*
1376		 * If some of the reservation's allocated pages remain with
1377		 * the original object, then transferring the reservation to
1378		 * the new object is neither particularly beneficial nor
1379		 * particularly harmful as compared to leaving the reservation
1380		 * with the original object.  If, however, all of the
1381		 * reservation's allocated pages are transferred to the new
1382		 * object, then transferring the reservation is typically
1383		 * beneficial.  Determining which of these two cases applies
1384		 * would be more costly than unconditionally renaming the
1385		 * reservation.
1386		 */
1387		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1388#endif
1389		vm_page_lock(m);
1390		vm_page_rename(m, new_object, idx);
1391		vm_page_unlock(m);
1392		/* page automatically made dirty by rename and cache handled */
1393		vm_page_busy(m);
1394	}
1395	if (orig_object->type == OBJT_SWAP) {
1396		/*
1397		 * swap_pager_copy() can sleep, in which case the orig_object's
1398		 * and new_object's locks are released and reacquired.
1399		 */
1400		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1401
1402		/*
1403		 * Transfer any cached pages from orig_object to new_object.
1404		 * If swap_pager_copy() found swapped out pages within the
1405		 * specified range of orig_object, then it changed
1406		 * new_object's type to OBJT_SWAP when it transferred those
1407		 * pages to new_object.  Otherwise, new_object's type
1408		 * should still be OBJT_DEFAULT and orig_object should not
1409		 * contain any cached pages within the specified range.
1410		 */
1411		if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1412			vm_page_cache_transfer(orig_object, offidxstart,
1413			    new_object);
1414	}
1415	VM_OBJECT_WUNLOCK(orig_object);
1416	TAILQ_FOREACH(m, &new_object->memq, listq)
1417		vm_page_wakeup(m);
1418	VM_OBJECT_WUNLOCK(new_object);
1419	entry->object.vm_object = new_object;
1420	entry->offset = 0LL;
1421	vm_object_deallocate(orig_object);
1422	VM_OBJECT_WLOCK(new_object);
1423}
1424
1425#define	OBSC_TEST_ALL_SHADOWED	0x0001
1426#define	OBSC_COLLAPSE_NOWAIT	0x0002
1427#define	OBSC_COLLAPSE_WAIT	0x0004
1428
1429static int
1430vm_object_backing_scan(vm_object_t object, int op)
1431{
1432	int r = 1;
1433	vm_page_t p;
1434	vm_object_t backing_object;
1435	vm_pindex_t backing_offset_index;
1436
1437	VM_OBJECT_ASSERT_WLOCKED(object);
1438	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1439
1440	backing_object = object->backing_object;
1441	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1442
1443	/*
1444	 * Initial conditions
1445	 */
1446	if (op & OBSC_TEST_ALL_SHADOWED) {
1447		/*
1448		 * We do not want to have to test for the existence of cache
1449		 * or swap pages in the backing object.  XXX but with the
1450		 * new swapper this would be pretty easy to do.
1451		 *
1452		 * XXX what about anonymous MAP_SHARED memory that hasn't
1453		 * been ZFOD faulted yet?  If we do not test for this, the
1454		 * shadow test may succeed! XXX
1455		 */
1456		if (backing_object->type != OBJT_DEFAULT) {
1457			return (0);
1458		}
1459	}
1460	if (op & OBSC_COLLAPSE_WAIT) {
1461		vm_object_set_flag(backing_object, OBJ_DEAD);
1462	}
1463
1464	/*
1465	 * Our scan
1466	 */
1467	p = TAILQ_FIRST(&backing_object->memq);
1468	while (p) {
1469		vm_page_t next = TAILQ_NEXT(p, listq);
1470		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1471
1472		if (op & OBSC_TEST_ALL_SHADOWED) {
1473			vm_page_t pp;
1474
1475			/*
1476			 * Ignore pages outside the parent object's range
1477			 * and outside the parent object's mapping of the
1478			 * backing object.
1479			 *
1480			 * note that we do not busy the backing object's
1481			 * page.
1482			 */
1483			if (
1484			    p->pindex < backing_offset_index ||
1485			    new_pindex >= object->size
1486			) {
1487				p = next;
1488				continue;
1489			}
1490
1491			/*
1492			 * See if the parent has the page or if the parent's
1493			 * object pager has the page.  If the parent has the
1494			 * page but the page is not valid, the parent's
1495			 * object pager must have the page.
1496			 *
1497			 * If this fails, the parent does not completely shadow
1498			 * the object and we might as well give up now.
1499			 */
1500
1501			pp = vm_page_lookup(object, new_pindex);
1502			if (
1503			    (pp == NULL || pp->valid == 0) &&
1504			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1505			) {
1506				r = 0;
1507				break;
1508			}
1509		}
1510
1511		/*
1512		 * Check for busy page
1513		 */
1514		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1515			vm_page_t pp;
1516
1517			if (op & OBSC_COLLAPSE_NOWAIT) {
1518				if ((p->oflags & VPO_BUSY) ||
1519				    !p->valid ||
1520				    p->busy) {
1521					p = next;
1522					continue;
1523				}
1524			} else if (op & OBSC_COLLAPSE_WAIT) {
1525				if ((p->oflags & VPO_BUSY) || p->busy) {
1526					VM_OBJECT_WUNLOCK(object);
1527					p->oflags |= VPO_WANTED;
1528					VM_OBJECT_SLEEP(backing_object, p,
1529					    PDROP | PVM, "vmocol", 0);
1530					VM_OBJECT_WLOCK(object);
1531					VM_OBJECT_WLOCK(backing_object);
1532					/*
1533					 * If we slept, anything could have
1534					 * happened.  Since the object is
1535					 * marked dead, the backing offset
1536					 * should not have changed so we
1537					 * just restart our scan.
1538					 */
1539					p = TAILQ_FIRST(&backing_object->memq);
1540					continue;
1541				}
1542			}
1543
1544			KASSERT(
1545			    p->object == backing_object,
1546			    ("vm_object_backing_scan: object mismatch")
1547			);
1548
1549			/*
1550			 * Destroy any associated swap
1551			 */
1552			if (backing_object->type == OBJT_SWAP) {
1553				swap_pager_freespace(
1554				    backing_object,
1555				    p->pindex,
1556				    1
1557				);
1558			}
1559
1560			if (
1561			    p->pindex < backing_offset_index ||
1562			    new_pindex >= object->size
1563			) {
1564				/*
1565				 * Page is out of the parent object's range, we
1566				 * can simply destroy it.
1567				 */
1568				vm_page_lock(p);
1569				KASSERT(!pmap_page_is_mapped(p),
1570				    ("freeing mapped page %p", p));
1571				if (p->wire_count == 0)
1572					vm_page_free(p);
1573				else
1574					vm_page_remove(p);
1575				vm_page_unlock(p);
1576				p = next;
1577				continue;
1578			}
1579
1580			pp = vm_page_lookup(object, new_pindex);
1581			if (
1582			    (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1583			    (pp != NULL && pp->valid == 0)
1584			) {
1585				/*
1586				 * The page in the parent is not (yet) valid.
1587				 * We don't know anything about the state of
1588				 * the original page.  It might be mapped,
1589				 * so we must avoid the next if here.
1590				 *
1591				 * This is due to a race in vm_fault() where
1592				 * we must unbusy the original (backing_obj)
1593				 * page before we can (re)lock the parent.
1594				 * Hence we can get here.
1595				 */
1596				p = next;
1597				continue;
1598			}
1599			if (
1600			    pp != NULL ||
1601			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1602			) {
1603				/*
1604				 * page already exists in parent OR swap exists
1605				 * for this location in the parent.  Destroy
1606				 * the original page from the backing object.
1607				 *
1608				 * Leave the parent's page alone
1609				 */
1610				vm_page_lock(p);
1611				KASSERT(!pmap_page_is_mapped(p),
1612				    ("freeing mapped page %p", p));
1613				if (p->wire_count == 0)
1614					vm_page_free(p);
1615				else
1616					vm_page_remove(p);
1617				vm_page_unlock(p);
1618				p = next;
1619				continue;
1620			}
1621
1622#if VM_NRESERVLEVEL > 0
1623			/*
1624			 * Rename the reservation.
1625			 */
1626			vm_reserv_rename(p, object, backing_object,
1627			    backing_offset_index);
1628#endif
1629
1630			/*
1631			 * Page does not exist in parent, rename the
1632			 * page from the backing object to the main object.
1633			 *
1634			 * If the page was mapped to a process, it can remain
1635			 * mapped through the rename.
1636			 */
1637			vm_page_lock(p);
1638			vm_page_rename(p, object, new_pindex);
1639			vm_page_unlock(p);
1640			/* page automatically made dirty by rename */
1641		}
1642		p = next;
1643	}
1644	return (r);
1645}
1646
1647
1648/*
1649 * this version of collapse allows the operation to occur earlier and
1650 * when paging_in_progress is true for an object...  This is not a complete
1651 * operation, but should plug 99.9% of the rest of the leaks.
1652 */
1653static void
1654vm_object_qcollapse(vm_object_t object)
1655{
1656	vm_object_t backing_object = object->backing_object;
1657
1658	VM_OBJECT_ASSERT_WLOCKED(object);
1659	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1660
1661	if (backing_object->ref_count != 1)
1662		return;
1663
1664	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1665}
1666
1667/*
1668 *	vm_object_collapse:
1669 *
1670 *	Collapse an object with the object backing it.
1671 *	Pages in the backing object are moved into the
1672 *	parent, and the backing object is deallocated.
1673 */
1674void
1675vm_object_collapse(vm_object_t object)
1676{
1677	VM_OBJECT_ASSERT_WLOCKED(object);
1678
1679	while (TRUE) {
1680		vm_object_t backing_object;
1681
1682		/*
1683		 * Verify that the conditions are right for collapse:
1684		 *
1685		 * The object exists and the backing object exists.
1686		 */
1687		if ((backing_object = object->backing_object) == NULL)
1688			break;
1689
1690		/*
1691		 * we check the backing object first, because it is most likely
1692		 * not collapsable.
1693		 */
1694		VM_OBJECT_WLOCK(backing_object);
1695		if (backing_object->handle != NULL ||
1696		    (backing_object->type != OBJT_DEFAULT &&
1697		     backing_object->type != OBJT_SWAP) ||
1698		    (backing_object->flags & OBJ_DEAD) ||
1699		    object->handle != NULL ||
1700		    (object->type != OBJT_DEFAULT &&
1701		     object->type != OBJT_SWAP) ||
1702		    (object->flags & OBJ_DEAD)) {
1703			VM_OBJECT_WUNLOCK(backing_object);
1704			break;
1705		}
1706
1707		if (
1708		    object->paging_in_progress != 0 ||
1709		    backing_object->paging_in_progress != 0
1710		) {
1711			vm_object_qcollapse(object);
1712			VM_OBJECT_WUNLOCK(backing_object);
1713			break;
1714		}
1715		/*
1716		 * We know that we can either collapse the backing object (if
1717		 * the parent is the only reference to it) or (perhaps) have
1718		 * the parent bypass the object if the parent happens to shadow
1719		 * all the resident pages in the entire backing object.
1720		 *
1721		 * This is ignoring pager-backed pages such as swap pages.
1722		 * vm_object_backing_scan fails the shadowing test in this
1723		 * case.
1724		 */
1725		if (backing_object->ref_count == 1) {
1726			/*
1727			 * If there is exactly one reference to the backing
1728			 * object, we can collapse it into the parent.
1729			 */
1730			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1731
1732#if VM_NRESERVLEVEL > 0
1733			/*
1734			 * Break any reservations from backing_object.
1735			 */
1736			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1737				vm_reserv_break_all(backing_object);
1738#endif
1739
1740			/*
1741			 * Move the pager from backing_object to object.
1742			 */
1743			if (backing_object->type == OBJT_SWAP) {
1744				/*
1745				 * swap_pager_copy() can sleep, in which case
1746				 * the backing_object's and object's locks are
1747				 * released and reacquired.
1748				 * Since swap_pager_copy() is being asked to
1749				 * destroy the source, it will change the
1750				 * backing_object's type to OBJT_DEFAULT.
1751				 */
1752				swap_pager_copy(
1753				    backing_object,
1754				    object,
1755				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1756
1757				/*
1758				 * Free any cached pages from backing_object.
1759				 */
1760				if (__predict_false(
1761				    !vm_object_cache_is_empty(backing_object)))
1762					vm_page_cache_free(backing_object, 0, 0);
1763			}
1764			/*
1765			 * Object now shadows whatever backing_object did.
1766			 * Note that the reference to
1767			 * backing_object->backing_object moves from within
1768			 * backing_object to within object.
1769			 */
1770			LIST_REMOVE(object, shadow_list);
1771			backing_object->shadow_count--;
1772			if (backing_object->backing_object) {
1773				VM_OBJECT_WLOCK(backing_object->backing_object);
1774				LIST_REMOVE(backing_object, shadow_list);
1775				LIST_INSERT_HEAD(
1776				    &backing_object->backing_object->shadow_head,
1777				    object, shadow_list);
1778				/*
1779				 * The shadow_count has not changed.
1780				 */
1781				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1782			}
1783			object->backing_object = backing_object->backing_object;
1784			object->backing_object_offset +=
1785			    backing_object->backing_object_offset;
1786
1787			/*
1788			 * Discard backing_object.
1789			 *
1790			 * Since the backing object has no pages, no pager left,
1791			 * and no object references within it, all that is
1792			 * necessary is to dispose of it.
1793			 */
1794			KASSERT(backing_object->ref_count == 1, (
1795"backing_object %p was somehow re-referenced during collapse!",
1796			    backing_object));
1797			VM_OBJECT_WUNLOCK(backing_object);
1798			vm_object_destroy(backing_object);
1799
1800			object_collapses++;
1801		} else {
1802			vm_object_t new_backing_object;
1803
1804			/*
1805			 * If we do not entirely shadow the backing object,
1806			 * there is nothing we can do so we give up.
1807			 */
1808			if (object->resident_page_count != object->size &&
1809			    vm_object_backing_scan(object,
1810			    OBSC_TEST_ALL_SHADOWED) == 0) {
1811				VM_OBJECT_WUNLOCK(backing_object);
1812				break;
1813			}
1814
1815			/*
1816			 * Make the parent shadow the next object in the
1817			 * chain.  Deallocating backing_object will not remove
1818			 * it, since its reference count is at least 2.
1819			 */
1820			LIST_REMOVE(object, shadow_list);
1821			backing_object->shadow_count--;
1822
1823			new_backing_object = backing_object->backing_object;
1824			if ((object->backing_object = new_backing_object) != NULL) {
1825				VM_OBJECT_WLOCK(new_backing_object);
1826				LIST_INSERT_HEAD(
1827				    &new_backing_object->shadow_head,
1828				    object,
1829				    shadow_list
1830				);
1831				new_backing_object->shadow_count++;
1832				vm_object_reference_locked(new_backing_object);
1833				VM_OBJECT_WUNLOCK(new_backing_object);
1834				object->backing_object_offset +=
1835					backing_object->backing_object_offset;
1836			}
1837
1838			/*
1839			 * Drop the reference count on backing_object. Since
1840			 * its ref_count was at least 2, it will not vanish.
1841			 */
1842			backing_object->ref_count--;
1843			VM_OBJECT_WUNLOCK(backing_object);
1844			object_bypasses++;
1845		}
1846
1847		/*
1848		 * Try again with this object's new backing object.
1849		 */
1850	}
1851}
1852
1853/*
1854 *	vm_object_page_remove:
1855 *
1856 *	For the given object, either frees or invalidates each of the
1857 *	specified pages.  In general, a page is freed.  However, if a page is
1858 *	wired for any reason other than the existence of a managed, wired
1859 *	mapping, then it may be invalidated but not removed from the object.
1860 *	Pages are specified by the given range ["start", "end") and the option
1861 *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1862 *	extends from "start" to the end of the object.  If the option
1863 *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1864 *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1865 *	specified, then the pages within the specified range must have no
1866 *	mappings.  Otherwise, if this option is not specified, any mappings to
1867 *	the specified pages are removed before the pages are freed or
1868 *	invalidated.
1869 *
1870 *	In general, this operation should only be performed on objects that
1871 *	contain managed pages.  There are, however, two exceptions.  First, it
1872 *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1873 *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1874 *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1875 *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1876 *
1877 *	The object must be locked.
1878 */
1879void
1880vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1881    int options)
1882{
1883	vm_page_t p, next;
1884	int wirings;
1885
1886	VM_OBJECT_ASSERT_WLOCKED(object);
1887	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1888	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1889	    ("vm_object_page_remove: illegal options for object %p", object));
1890	if (object->resident_page_count == 0)
1891		goto skipmemq;
1892	vm_object_pip_add(object, 1);
1893again:
1894	p = vm_page_find_least(object, start);
1895
1896	/*
1897	 * Here, the variable "p" is either (1) the page with the least pindex
1898	 * greater than or equal to the parameter "start" or (2) NULL.
1899	 */
1900	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1901		next = TAILQ_NEXT(p, listq);
1902
1903		/*
1904		 * If the page is wired for any reason besides the existence
1905		 * of managed, wired mappings, then it cannot be freed.  For
1906		 * example, fictitious pages, which represent device memory,
1907		 * are inherently wired and cannot be freed.  They can,
1908		 * however, be invalidated if the option OBJPR_CLEANONLY is
1909		 * not specified.
1910		 */
1911		vm_page_lock(p);
1912		if ((wirings = p->wire_count) != 0 &&
1913		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1914			if ((options & OBJPR_NOTMAPPED) == 0) {
1915				pmap_remove_all(p);
1916				/* Account for removal of wired mappings. */
1917				if (wirings != 0)
1918					p->wire_count -= wirings;
1919			}
1920			if ((options & OBJPR_CLEANONLY) == 0) {
1921				p->valid = 0;
1922				vm_page_undirty(p);
1923			}
1924			vm_page_unlock(p);
1925			continue;
1926		}
1927		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1928			goto again;
1929		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1930		    ("vm_object_page_remove: page %p is fictitious", p));
1931		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1932			if ((options & OBJPR_NOTMAPPED) == 0)
1933				pmap_remove_write(p);
1934			if (p->dirty) {
1935				vm_page_unlock(p);
1936				continue;
1937			}
1938		}
1939		if ((options & OBJPR_NOTMAPPED) == 0) {
1940			pmap_remove_all(p);
1941			/* Account for removal of wired mappings. */
1942			if (wirings != 0) {
1943				KASSERT(p->wire_count == wirings,
1944				    ("inconsistent wire count %d %d %p",
1945				    p->wire_count, wirings, p));
1946				p->wire_count = 0;
1947				atomic_subtract_int(&cnt.v_wire_count, 1);
1948			}
1949		}
1950		vm_page_free(p);
1951		vm_page_unlock(p);
1952	}
1953	vm_object_pip_wakeup(object);
1954skipmemq:
1955	if (__predict_false(!vm_object_cache_is_empty(object)))
1956		vm_page_cache_free(object, start, end);
1957}
1958
1959/*
1960 *	vm_object_page_cache:
1961 *
1962 *	For the given object, attempt to move the specified clean
1963 *	pages to the cache queue.  If a page is wired for any reason,
1964 *	then it will not be changed.  Pages are specified by the given
1965 *	range ["start", "end").  As a special case, if "end" is zero,
1966 *	then the range extends from "start" to the end of the object.
1967 *	Any mappings to the specified pages are removed before the
1968 *	pages are moved to the cache queue.
1969 *
1970 *	This operation should only be performed on objects that
1971 *	contain non-fictitious, managed pages.
1972 *
1973 *	The object must be locked.
1974 */
1975void
1976vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1977{
1978	struct mtx *mtx, *new_mtx;
1979	vm_page_t p, next;
1980
1981	VM_OBJECT_ASSERT_WLOCKED(object);
1982	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1983	    ("vm_object_page_cache: illegal object %p", object));
1984	if (object->resident_page_count == 0)
1985		return;
1986	p = vm_page_find_least(object, start);
1987
1988	/*
1989	 * Here, the variable "p" is either (1) the page with the least pindex
1990	 * greater than or equal to the parameter "start" or (2) NULL.
1991	 */
1992	mtx = NULL;
1993	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1994		next = TAILQ_NEXT(p, listq);
1995
1996		/*
1997		 * Avoid releasing and reacquiring the same page lock.
1998		 */
1999		new_mtx = vm_page_lockptr(p);
2000		if (mtx != new_mtx) {
2001			if (mtx != NULL)
2002				mtx_unlock(mtx);
2003			mtx = new_mtx;
2004			mtx_lock(mtx);
2005		}
2006		vm_page_try_to_cache(p);
2007	}
2008	if (mtx != NULL)
2009		mtx_unlock(mtx);
2010}
2011
2012/*
2013 *	Populate the specified range of the object with valid pages.  Returns
2014 *	TRUE if the range is successfully populated and FALSE otherwise.
2015 *
2016 *	Note: This function should be optimized to pass a larger array of
2017 *	pages to vm_pager_get_pages() before it is applied to a non-
2018 *	OBJT_DEVICE object.
2019 *
2020 *	The object must be locked.
2021 */
2022boolean_t
2023vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2024{
2025	vm_page_t m, ma[1];
2026	vm_pindex_t pindex;
2027	int rv;
2028
2029	VM_OBJECT_ASSERT_WLOCKED(object);
2030	for (pindex = start; pindex < end; pindex++) {
2031		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
2032		    VM_ALLOC_RETRY);
2033		if (m->valid != VM_PAGE_BITS_ALL) {
2034			ma[0] = m;
2035			rv = vm_pager_get_pages(object, ma, 1, 0);
2036			m = vm_page_lookup(object, pindex);
2037			if (m == NULL)
2038				break;
2039			if (rv != VM_PAGER_OK) {
2040				vm_page_lock(m);
2041				vm_page_free(m);
2042				vm_page_unlock(m);
2043				break;
2044			}
2045		}
2046		/*
2047		 * Keep "m" busy because a subsequent iteration may unlock
2048		 * the object.
2049		 */
2050	}
2051	if (pindex > start) {
2052		m = vm_page_lookup(object, start);
2053		while (m != NULL && m->pindex < pindex) {
2054			vm_page_wakeup(m);
2055			m = TAILQ_NEXT(m, listq);
2056		}
2057	}
2058	return (pindex == end);
2059}
2060
2061/*
2062 *	Routine:	vm_object_coalesce
2063 *	Function:	Coalesces two objects backing up adjoining
2064 *			regions of memory into a single object.
2065 *
2066 *	returns TRUE if objects were combined.
2067 *
2068 *	NOTE:	Only works at the moment if the second object is NULL -
2069 *		if it's not, which object do we lock first?
2070 *
2071 *	Parameters:
2072 *		prev_object	First object to coalesce
2073 *		prev_offset	Offset into prev_object
2074 *		prev_size	Size of reference to prev_object
2075 *		next_size	Size of reference to the second object
2076 *		reserved	Indicator that extension region has
2077 *				swap accounted for
2078 *
2079 *	Conditions:
2080 *	The object must *not* be locked.
2081 */
2082boolean_t
2083vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2084    vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2085{
2086	vm_pindex_t next_pindex;
2087
2088	if (prev_object == NULL)
2089		return (TRUE);
2090	VM_OBJECT_WLOCK(prev_object);
2091	if (prev_object->type != OBJT_DEFAULT &&
2092	    prev_object->type != OBJT_SWAP) {
2093		VM_OBJECT_WUNLOCK(prev_object);
2094		return (FALSE);
2095	}
2096
2097	/*
2098	 * Try to collapse the object first
2099	 */
2100	vm_object_collapse(prev_object);
2101
2102	/*
2103	 * Can't coalesce if: . more than one reference . paged out . shadows
2104	 * another object . has a copy elsewhere (any of which mean that the
2105	 * pages not mapped to prev_entry may be in use anyway)
2106	 */
2107	if (prev_object->backing_object != NULL) {
2108		VM_OBJECT_WUNLOCK(prev_object);
2109		return (FALSE);
2110	}
2111
2112	prev_size >>= PAGE_SHIFT;
2113	next_size >>= PAGE_SHIFT;
2114	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2115
2116	if ((prev_object->ref_count > 1) &&
2117	    (prev_object->size != next_pindex)) {
2118		VM_OBJECT_WUNLOCK(prev_object);
2119		return (FALSE);
2120	}
2121
2122	/*
2123	 * Account for the charge.
2124	 */
2125	if (prev_object->cred != NULL) {
2126
2127		/*
2128		 * If prev_object was charged, then this mapping,
2129		 * althought not charged now, may become writable
2130		 * later. Non-NULL cred in the object would prevent
2131		 * swap reservation during enabling of the write
2132		 * access, so reserve swap now. Failed reservation
2133		 * cause allocation of the separate object for the map
2134		 * entry, and swap reservation for this entry is
2135		 * managed in appropriate time.
2136		 */
2137		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2138		    prev_object->cred)) {
2139			return (FALSE);
2140		}
2141		prev_object->charge += ptoa(next_size);
2142	}
2143
2144	/*
2145	 * Remove any pages that may still be in the object from a previous
2146	 * deallocation.
2147	 */
2148	if (next_pindex < prev_object->size) {
2149		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2150		    next_size, 0);
2151		if (prev_object->type == OBJT_SWAP)
2152			swap_pager_freespace(prev_object,
2153					     next_pindex, next_size);
2154#if 0
2155		if (prev_object->cred != NULL) {
2156			KASSERT(prev_object->charge >=
2157			    ptoa(prev_object->size - next_pindex),
2158			    ("object %p overcharged 1 %jx %jx", prev_object,
2159				(uintmax_t)next_pindex, (uintmax_t)next_size));
2160			prev_object->charge -= ptoa(prev_object->size -
2161			    next_pindex);
2162		}
2163#endif
2164	}
2165
2166	/*
2167	 * Extend the object if necessary.
2168	 */
2169	if (next_pindex + next_size > prev_object->size)
2170		prev_object->size = next_pindex + next_size;
2171
2172	VM_OBJECT_WUNLOCK(prev_object);
2173	return (TRUE);
2174}
2175
2176void
2177vm_object_set_writeable_dirty(vm_object_t object)
2178{
2179
2180	VM_OBJECT_ASSERT_WLOCKED(object);
2181	if (object->type != OBJT_VNODE)
2182		return;
2183	object->generation++;
2184	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2185		return;
2186	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2187}
2188
2189#include "opt_ddb.h"
2190#ifdef DDB
2191#include <sys/kernel.h>
2192
2193#include <sys/cons.h>
2194
2195#include <ddb/ddb.h>
2196
2197static int
2198_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2199{
2200	vm_map_t tmpm;
2201	vm_map_entry_t tmpe;
2202	vm_object_t obj;
2203	int entcount;
2204
2205	if (map == 0)
2206		return 0;
2207
2208	if (entry == 0) {
2209		tmpe = map->header.next;
2210		entcount = map->nentries;
2211		while (entcount-- && (tmpe != &map->header)) {
2212			if (_vm_object_in_map(map, object, tmpe)) {
2213				return 1;
2214			}
2215			tmpe = tmpe->next;
2216		}
2217	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2218		tmpm = entry->object.sub_map;
2219		tmpe = tmpm->header.next;
2220		entcount = tmpm->nentries;
2221		while (entcount-- && tmpe != &tmpm->header) {
2222			if (_vm_object_in_map(tmpm, object, tmpe)) {
2223				return 1;
2224			}
2225			tmpe = tmpe->next;
2226		}
2227	} else if ((obj = entry->object.vm_object) != NULL) {
2228		for (; obj; obj = obj->backing_object)
2229			if (obj == object) {
2230				return 1;
2231			}
2232	}
2233	return 0;
2234}
2235
2236static int
2237vm_object_in_map(vm_object_t object)
2238{
2239	struct proc *p;
2240
2241	/* sx_slock(&allproc_lock); */
2242	FOREACH_PROC_IN_SYSTEM(p) {
2243		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2244			continue;
2245		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2246			/* sx_sunlock(&allproc_lock); */
2247			return 1;
2248		}
2249	}
2250	/* sx_sunlock(&allproc_lock); */
2251	if (_vm_object_in_map(kernel_map, object, 0))
2252		return 1;
2253	if (_vm_object_in_map(kmem_map, object, 0))
2254		return 1;
2255	if (_vm_object_in_map(pager_map, object, 0))
2256		return 1;
2257	if (_vm_object_in_map(buffer_map, object, 0))
2258		return 1;
2259	return 0;
2260}
2261
2262DB_SHOW_COMMAND(vmochk, vm_object_check)
2263{
2264	vm_object_t object;
2265
2266	/*
2267	 * make sure that internal objs are in a map somewhere
2268	 * and none have zero ref counts.
2269	 */
2270	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2271		if (object->handle == NULL &&
2272		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2273			if (object->ref_count == 0) {
2274				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2275					(long)object->size);
2276			}
2277			if (!vm_object_in_map(object)) {
2278				db_printf(
2279			"vmochk: internal obj is not in a map: "
2280			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2281				    object->ref_count, (u_long)object->size,
2282				    (u_long)object->size,
2283				    (void *)object->backing_object);
2284			}
2285		}
2286	}
2287}
2288
2289/*
2290 *	vm_object_print:	[ debug ]
2291 */
2292DB_SHOW_COMMAND(object, vm_object_print_static)
2293{
2294	/* XXX convert args. */
2295	vm_object_t object = (vm_object_t)addr;
2296	boolean_t full = have_addr;
2297
2298	vm_page_t p;
2299
2300	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2301#define	count	was_count
2302
2303	int count;
2304
2305	if (object == NULL)
2306		return;
2307
2308	db_iprintf(
2309	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2310	    object, (int)object->type, (uintmax_t)object->size,
2311	    object->resident_page_count, object->ref_count, object->flags,
2312	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2313	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2314	    object->shadow_count,
2315	    object->backing_object ? object->backing_object->ref_count : 0,
2316	    object->backing_object, (uintmax_t)object->backing_object_offset);
2317
2318	if (!full)
2319		return;
2320
2321	db_indent += 2;
2322	count = 0;
2323	TAILQ_FOREACH(p, &object->memq, listq) {
2324		if (count == 0)
2325			db_iprintf("memory:=");
2326		else if (count == 6) {
2327			db_printf("\n");
2328			db_iprintf(" ...");
2329			count = 0;
2330		} else
2331			db_printf(",");
2332		count++;
2333
2334		db_printf("(off=0x%jx,page=0x%jx)",
2335		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2336	}
2337	if (count != 0)
2338		db_printf("\n");
2339	db_indent -= 2;
2340}
2341
2342/* XXX. */
2343#undef count
2344
2345/* XXX need this non-static entry for calling from vm_map_print. */
2346void
2347vm_object_print(
2348        /* db_expr_t */ long addr,
2349	boolean_t have_addr,
2350	/* db_expr_t */ long count,
2351	char *modif)
2352{
2353	vm_object_print_static(addr, have_addr, count, modif);
2354}
2355
2356DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2357{
2358	vm_object_t object;
2359	vm_pindex_t fidx;
2360	vm_paddr_t pa;
2361	vm_page_t m, prev_m;
2362	int rcount, nl, c;
2363
2364	nl = 0;
2365	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2366		db_printf("new object: %p\n", (void *)object);
2367		if (nl > 18) {
2368			c = cngetc();
2369			if (c != ' ')
2370				return;
2371			nl = 0;
2372		}
2373		nl++;
2374		rcount = 0;
2375		fidx = 0;
2376		pa = -1;
2377		TAILQ_FOREACH(m, &object->memq, listq) {
2378			if (m->pindex > 128)
2379				break;
2380			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2381			    prev_m->pindex + 1 != m->pindex) {
2382				if (rcount) {
2383					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2384						(long)fidx, rcount, (long)pa);
2385					if (nl > 18) {
2386						c = cngetc();
2387						if (c != ' ')
2388							return;
2389						nl = 0;
2390					}
2391					nl++;
2392					rcount = 0;
2393				}
2394			}
2395			if (rcount &&
2396				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2397				++rcount;
2398				continue;
2399			}
2400			if (rcount) {
2401				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2402					(long)fidx, rcount, (long)pa);
2403				if (nl > 18) {
2404					c = cngetc();
2405					if (c != ' ')
2406						return;
2407					nl = 0;
2408				}
2409				nl++;
2410			}
2411			fidx = m->pindex;
2412			pa = VM_PAGE_TO_PHYS(m);
2413			rcount = 1;
2414		}
2415		if (rcount) {
2416			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2417				(long)fidx, rcount, (long)pa);
2418			if (nl > 18) {
2419				c = cngetc();
2420				if (c != ' ')
2421					return;
2422				nl = 0;
2423			}
2424			nl++;
2425		}
2426	}
2427}
2428#endif /* DDB */
2429