vm_object.c revision 248449
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory object module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: head/sys/vm/vm_object.c 248449 2013-03-18 00:25:02Z attilio $");
67
68#include "opt_vm.h"
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/lock.h>
73#include <sys/mman.h>
74#include <sys/mount.h>
75#include <sys/kernel.h>
76#include <sys/sysctl.h>
77#include <sys/mutex.h>
78#include <sys/proc.h>		/* for curproc, pageproc */
79#include <sys/socket.h>
80#include <sys/resourcevar.h>
81#include <sys/rwlock.h>
82#include <sys/vnode.h>
83#include <sys/vmmeter.h>
84#include <sys/sx.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_object.h>
91#include <vm/vm_page.h>
92#include <vm/vm_pageout.h>
93#include <vm/vm_pager.h>
94#include <vm/swap_pager.h>
95#include <vm/vm_kern.h>
96#include <vm/vm_extern.h>
97#include <vm/vm_radix.h>
98#include <vm/vm_reserv.h>
99#include <vm/uma.h>
100
101static int old_msync;
102SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
103    "Use old (insecure) msync behavior");
104
105static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
106		    int pagerflags, int flags, boolean_t *clearobjflags,
107		    boolean_t *eio);
108static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
109		    boolean_t *clearobjflags);
110static void	vm_object_qcollapse(vm_object_t object);
111static void	vm_object_vndeallocate(vm_object_t object);
112
113/*
114 *	Virtual memory objects maintain the actual data
115 *	associated with allocated virtual memory.  A given
116 *	page of memory exists within exactly one object.
117 *
118 *	An object is only deallocated when all "references"
119 *	are given up.  Only one "reference" to a given
120 *	region of an object should be writeable.
121 *
122 *	Associated with each object is a list of all resident
123 *	memory pages belonging to that object; this list is
124 *	maintained by the "vm_page" module, and locked by the object's
125 *	lock.
126 *
127 *	Each object also records a "pager" routine which is
128 *	used to retrieve (and store) pages to the proper backing
129 *	storage.  In addition, objects may be backed by other
130 *	objects from which they were virtual-copied.
131 *
132 *	The only items within the object structure which are
133 *	modified after time of creation are:
134 *		reference count		locked by object's lock
135 *		pager routine		locked by object's lock
136 *
137 */
138
139struct object_q vm_object_list;
140struct mtx vm_object_list_mtx;	/* lock for object list and count */
141
142struct vm_object kernel_object_store;
143struct vm_object kmem_object_store;
144
145static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
146    "VM object stats");
147
148static long object_collapses;
149SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
150    &object_collapses, 0, "VM object collapses");
151
152static long object_bypasses;
153SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
154    &object_bypasses, 0, "VM object bypasses");
155
156static uma_zone_t obj_zone;
157
158static int vm_object_zinit(void *mem, int size, int flags);
159
160#ifdef INVARIANTS
161static void vm_object_zdtor(void *mem, int size, void *arg);
162
163static void
164vm_object_zdtor(void *mem, int size, void *arg)
165{
166	vm_object_t object;
167
168	object = (vm_object_t)mem;
169	KASSERT(TAILQ_EMPTY(&object->memq),
170	    ("object %p has resident pages in its memq", object));
171	KASSERT(vm_radix_is_empty(&object->rtree),
172	    ("object %p has resident pages in its trie", object));
173#if VM_NRESERVLEVEL > 0
174	KASSERT(LIST_EMPTY(&object->rvq),
175	    ("object %p has reservations",
176	    object));
177#endif
178	KASSERT(vm_object_cache_is_empty(object),
179	    ("object %p has cached pages",
180	    object));
181	KASSERT(object->paging_in_progress == 0,
182	    ("object %p paging_in_progress = %d",
183	    object, object->paging_in_progress));
184	KASSERT(object->resident_page_count == 0,
185	    ("object %p resident_page_count = %d",
186	    object, object->resident_page_count));
187	KASSERT(object->shadow_count == 0,
188	    ("object %p shadow_count = %d",
189	    object, object->shadow_count));
190}
191#endif
192
193static int
194vm_object_zinit(void *mem, int size, int flags)
195{
196	vm_object_t object;
197
198	object = (vm_object_t)mem;
199	bzero(&object->lock, sizeof(object->lock));
200	rw_init_flags(&object->lock, "vm object", RW_DUPOK);
201
202	/* These are true for any object that has been freed */
203	object->rtree.rt_root = 0;
204	object->paging_in_progress = 0;
205	object->resident_page_count = 0;
206	object->shadow_count = 0;
207	object->cache.rt_root = 0;
208	return (0);
209}
210
211static void
212_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
213{
214
215	TAILQ_INIT(&object->memq);
216	LIST_INIT(&object->shadow_head);
217
218	object->type = type;
219	switch (type) {
220	case OBJT_DEAD:
221		panic("_vm_object_allocate: can't create OBJT_DEAD");
222	case OBJT_DEFAULT:
223	case OBJT_SWAP:
224		object->flags = OBJ_ONEMAPPING;
225		break;
226	case OBJT_DEVICE:
227	case OBJT_SG:
228		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
229		break;
230	case OBJT_MGTDEVICE:
231		object->flags = OBJ_FICTITIOUS;
232		break;
233	case OBJT_PHYS:
234		object->flags = OBJ_UNMANAGED;
235		break;
236	case OBJT_VNODE:
237		object->flags = 0;
238		break;
239	default:
240		panic("_vm_object_allocate: type %d is undefined", type);
241	}
242	object->size = size;
243	object->generation = 1;
244	object->ref_count = 1;
245	object->memattr = VM_MEMATTR_DEFAULT;
246	object->cred = NULL;
247	object->charge = 0;
248	object->handle = NULL;
249	object->backing_object = NULL;
250	object->backing_object_offset = (vm_ooffset_t) 0;
251#if VM_NRESERVLEVEL > 0
252	LIST_INIT(&object->rvq);
253#endif
254
255	mtx_lock(&vm_object_list_mtx);
256	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
257	mtx_unlock(&vm_object_list_mtx);
258}
259
260/*
261 *	vm_object_init:
262 *
263 *	Initialize the VM objects module.
264 */
265void
266vm_object_init(void)
267{
268	TAILQ_INIT(&vm_object_list);
269	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
270
271	rw_init(&kernel_object->lock, "kernel vm object");
272	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
273	    kernel_object);
274#if VM_NRESERVLEVEL > 0
275	kernel_object->flags |= OBJ_COLORED;
276	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
277#endif
278
279	rw_init(&kmem_object->lock, "kmem vm object");
280	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
281	    kmem_object);
282#if VM_NRESERVLEVEL > 0
283	kmem_object->flags |= OBJ_COLORED;
284	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
285#endif
286
287	/*
288	 * The lock portion of struct vm_object must be type stable due
289	 * to vm_pageout_fallback_object_lock locking a vm object
290	 * without holding any references to it.
291	 */
292	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
293#ifdef INVARIANTS
294	    vm_object_zdtor,
295#else
296	    NULL,
297#endif
298	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
299
300	vm_radix_init();
301}
302
303void
304vm_object_clear_flag(vm_object_t object, u_short bits)
305{
306
307	VM_OBJECT_ASSERT_WLOCKED(object);
308	object->flags &= ~bits;
309}
310
311/*
312 *	Sets the default memory attribute for the specified object.  Pages
313 *	that are allocated to this object are by default assigned this memory
314 *	attribute.
315 *
316 *	Presently, this function must be called before any pages are allocated
317 *	to the object.  In the future, this requirement may be relaxed for
318 *	"default" and "swap" objects.
319 */
320int
321vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
322{
323
324	VM_OBJECT_ASSERT_WLOCKED(object);
325	switch (object->type) {
326	case OBJT_DEFAULT:
327	case OBJT_DEVICE:
328	case OBJT_MGTDEVICE:
329	case OBJT_PHYS:
330	case OBJT_SG:
331	case OBJT_SWAP:
332	case OBJT_VNODE:
333		if (!TAILQ_EMPTY(&object->memq))
334			return (KERN_FAILURE);
335		break;
336	case OBJT_DEAD:
337		return (KERN_INVALID_ARGUMENT);
338	default:
339		panic("vm_object_set_memattr: object %p is of undefined type",
340		    object);
341	}
342	object->memattr = memattr;
343	return (KERN_SUCCESS);
344}
345
346void
347vm_object_pip_add(vm_object_t object, short i)
348{
349
350	VM_OBJECT_ASSERT_WLOCKED(object);
351	object->paging_in_progress += i;
352}
353
354void
355vm_object_pip_subtract(vm_object_t object, short i)
356{
357
358	VM_OBJECT_ASSERT_WLOCKED(object);
359	object->paging_in_progress -= i;
360}
361
362void
363vm_object_pip_wakeup(vm_object_t object)
364{
365
366	VM_OBJECT_ASSERT_WLOCKED(object);
367	object->paging_in_progress--;
368	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
369		vm_object_clear_flag(object, OBJ_PIPWNT);
370		wakeup(object);
371	}
372}
373
374void
375vm_object_pip_wakeupn(vm_object_t object, short i)
376{
377
378	VM_OBJECT_ASSERT_WLOCKED(object);
379	if (i)
380		object->paging_in_progress -= i;
381	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
382		vm_object_clear_flag(object, OBJ_PIPWNT);
383		wakeup(object);
384	}
385}
386
387void
388vm_object_pip_wait(vm_object_t object, char *waitid)
389{
390
391	VM_OBJECT_ASSERT_WLOCKED(object);
392	while (object->paging_in_progress) {
393		object->flags |= OBJ_PIPWNT;
394		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
395	}
396}
397
398/*
399 *	vm_object_allocate:
400 *
401 *	Returns a new object with the given size.
402 */
403vm_object_t
404vm_object_allocate(objtype_t type, vm_pindex_t size)
405{
406	vm_object_t object;
407
408	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
409	_vm_object_allocate(type, size, object);
410	return (object);
411}
412
413
414/*
415 *	vm_object_reference:
416 *
417 *	Gets another reference to the given object.  Note: OBJ_DEAD
418 *	objects can be referenced during final cleaning.
419 */
420void
421vm_object_reference(vm_object_t object)
422{
423	if (object == NULL)
424		return;
425	VM_OBJECT_WLOCK(object);
426	vm_object_reference_locked(object);
427	VM_OBJECT_WUNLOCK(object);
428}
429
430/*
431 *	vm_object_reference_locked:
432 *
433 *	Gets another reference to the given object.
434 *
435 *	The object must be locked.
436 */
437void
438vm_object_reference_locked(vm_object_t object)
439{
440	struct vnode *vp;
441
442	VM_OBJECT_ASSERT_WLOCKED(object);
443	object->ref_count++;
444	if (object->type == OBJT_VNODE) {
445		vp = object->handle;
446		vref(vp);
447	}
448}
449
450/*
451 * Handle deallocating an object of type OBJT_VNODE.
452 */
453static void
454vm_object_vndeallocate(vm_object_t object)
455{
456	struct vnode *vp = (struct vnode *) object->handle;
457
458	VM_OBJECT_ASSERT_WLOCKED(object);
459	KASSERT(object->type == OBJT_VNODE,
460	    ("vm_object_vndeallocate: not a vnode object"));
461	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
462#ifdef INVARIANTS
463	if (object->ref_count == 0) {
464		vprint("vm_object_vndeallocate", vp);
465		panic("vm_object_vndeallocate: bad object reference count");
466	}
467#endif
468
469	if (object->ref_count > 1) {
470		object->ref_count--;
471		VM_OBJECT_WUNLOCK(object);
472		/* vrele may need the vnode lock. */
473		vrele(vp);
474	} else {
475		vhold(vp);
476		VM_OBJECT_WUNLOCK(object);
477		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
478		vdrop(vp);
479		VM_OBJECT_WLOCK(object);
480		object->ref_count--;
481		if (object->type == OBJT_DEAD) {
482			VM_OBJECT_WUNLOCK(object);
483			VOP_UNLOCK(vp, 0);
484		} else {
485			if (object->ref_count == 0)
486				VOP_UNSET_TEXT(vp);
487			VM_OBJECT_WUNLOCK(object);
488			vput(vp);
489		}
490	}
491}
492
493/*
494 *	vm_object_deallocate:
495 *
496 *	Release a reference to the specified object,
497 *	gained either through a vm_object_allocate
498 *	or a vm_object_reference call.  When all references
499 *	are gone, storage associated with this object
500 *	may be relinquished.
501 *
502 *	No object may be locked.
503 */
504void
505vm_object_deallocate(vm_object_t object)
506{
507	vm_object_t temp;
508
509	while (object != NULL) {
510		VM_OBJECT_WLOCK(object);
511		if (object->type == OBJT_VNODE) {
512			vm_object_vndeallocate(object);
513			return;
514		}
515
516		KASSERT(object->ref_count != 0,
517			("vm_object_deallocate: object deallocated too many times: %d", object->type));
518
519		/*
520		 * If the reference count goes to 0 we start calling
521		 * vm_object_terminate() on the object chain.
522		 * A ref count of 1 may be a special case depending on the
523		 * shadow count being 0 or 1.
524		 */
525		object->ref_count--;
526		if (object->ref_count > 1) {
527			VM_OBJECT_WUNLOCK(object);
528			return;
529		} else if (object->ref_count == 1) {
530			if (object->shadow_count == 0 &&
531			    object->handle == NULL &&
532			    (object->type == OBJT_DEFAULT ||
533			     object->type == OBJT_SWAP)) {
534				vm_object_set_flag(object, OBJ_ONEMAPPING);
535			} else if ((object->shadow_count == 1) &&
536			    (object->handle == NULL) &&
537			    (object->type == OBJT_DEFAULT ||
538			     object->type == OBJT_SWAP)) {
539				vm_object_t robject;
540
541				robject = LIST_FIRST(&object->shadow_head);
542				KASSERT(robject != NULL,
543				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
544					 object->ref_count,
545					 object->shadow_count));
546				if (!VM_OBJECT_TRYWLOCK(robject)) {
547					/*
548					 * Avoid a potential deadlock.
549					 */
550					object->ref_count++;
551					VM_OBJECT_WUNLOCK(object);
552					/*
553					 * More likely than not the thread
554					 * holding robject's lock has lower
555					 * priority than the current thread.
556					 * Let the lower priority thread run.
557					 */
558					pause("vmo_de", 1);
559					continue;
560				}
561				/*
562				 * Collapse object into its shadow unless its
563				 * shadow is dead.  In that case, object will
564				 * be deallocated by the thread that is
565				 * deallocating its shadow.
566				 */
567				if ((robject->flags & OBJ_DEAD) == 0 &&
568				    (robject->handle == NULL) &&
569				    (robject->type == OBJT_DEFAULT ||
570				     robject->type == OBJT_SWAP)) {
571
572					robject->ref_count++;
573retry:
574					if (robject->paging_in_progress) {
575						VM_OBJECT_WUNLOCK(object);
576						vm_object_pip_wait(robject,
577						    "objde1");
578						temp = robject->backing_object;
579						if (object == temp) {
580							VM_OBJECT_WLOCK(object);
581							goto retry;
582						}
583					} else if (object->paging_in_progress) {
584						VM_OBJECT_WUNLOCK(robject);
585						object->flags |= OBJ_PIPWNT;
586						VM_OBJECT_SLEEP(object, object,
587						    PDROP | PVM, "objde2", 0);
588						VM_OBJECT_WLOCK(robject);
589						temp = robject->backing_object;
590						if (object == temp) {
591							VM_OBJECT_WLOCK(object);
592							goto retry;
593						}
594					} else
595						VM_OBJECT_WUNLOCK(object);
596
597					if (robject->ref_count == 1) {
598						robject->ref_count--;
599						object = robject;
600						goto doterm;
601					}
602					object = robject;
603					vm_object_collapse(object);
604					VM_OBJECT_WUNLOCK(object);
605					continue;
606				}
607				VM_OBJECT_WUNLOCK(robject);
608			}
609			VM_OBJECT_WUNLOCK(object);
610			return;
611		}
612doterm:
613		temp = object->backing_object;
614		if (temp != NULL) {
615			VM_OBJECT_WLOCK(temp);
616			LIST_REMOVE(object, shadow_list);
617			temp->shadow_count--;
618			VM_OBJECT_WUNLOCK(temp);
619			object->backing_object = NULL;
620		}
621		/*
622		 * Don't double-terminate, we could be in a termination
623		 * recursion due to the terminate having to sync data
624		 * to disk.
625		 */
626		if ((object->flags & OBJ_DEAD) == 0)
627			vm_object_terminate(object);
628		else
629			VM_OBJECT_WUNLOCK(object);
630		object = temp;
631	}
632}
633
634/*
635 *	vm_object_destroy removes the object from the global object list
636 *      and frees the space for the object.
637 */
638void
639vm_object_destroy(vm_object_t object)
640{
641
642	/*
643	 * Remove the object from the global object list.
644	 */
645	mtx_lock(&vm_object_list_mtx);
646	TAILQ_REMOVE(&vm_object_list, object, object_list);
647	mtx_unlock(&vm_object_list_mtx);
648
649	/*
650	 * Release the allocation charge.
651	 */
652	if (object->cred != NULL) {
653		KASSERT(object->type == OBJT_DEFAULT ||
654		    object->type == OBJT_SWAP,
655		    ("vm_object_terminate: non-swap obj %p has cred",
656		     object));
657		swap_release_by_cred(object->charge, object->cred);
658		object->charge = 0;
659		crfree(object->cred);
660		object->cred = NULL;
661	}
662
663	/*
664	 * Free the space for the object.
665	 */
666	uma_zfree(obj_zone, object);
667}
668
669/*
670 *	vm_object_terminate actually destroys the specified object, freeing
671 *	up all previously used resources.
672 *
673 *	The object must be locked.
674 *	This routine may block.
675 */
676void
677vm_object_terminate(vm_object_t object)
678{
679	vm_page_t p, p_next;
680
681	VM_OBJECT_ASSERT_WLOCKED(object);
682
683	/*
684	 * Make sure no one uses us.
685	 */
686	vm_object_set_flag(object, OBJ_DEAD);
687
688	/*
689	 * wait for the pageout daemon to be done with the object
690	 */
691	vm_object_pip_wait(object, "objtrm");
692
693	KASSERT(!object->paging_in_progress,
694		("vm_object_terminate: pageout in progress"));
695
696	/*
697	 * Clean and free the pages, as appropriate. All references to the
698	 * object are gone, so we don't need to lock it.
699	 */
700	if (object->type == OBJT_VNODE) {
701		struct vnode *vp = (struct vnode *)object->handle;
702
703		/*
704		 * Clean pages and flush buffers.
705		 */
706		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
707		VM_OBJECT_WUNLOCK(object);
708
709		vinvalbuf(vp, V_SAVE, 0, 0);
710
711		VM_OBJECT_WLOCK(object);
712	}
713
714	KASSERT(object->ref_count == 0,
715		("vm_object_terminate: object with references, ref_count=%d",
716		object->ref_count));
717
718	/*
719	 * Free any remaining pageable pages.  This also removes them from the
720	 * paging queues.  However, don't free wired pages, just remove them
721	 * from the object.  Rather than incrementally removing each page from
722	 * the object, the page and object are reset to any empty state.
723	 */
724	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
725		KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
726		    ("vm_object_terminate: freeing busy page %p", p));
727		vm_page_lock(p);
728		/*
729		 * Optimize the page's removal from the object by resetting
730		 * its "object" field.  Specifically, if the page is not
731		 * wired, then the effect of this assignment is that
732		 * vm_page_free()'s call to vm_page_remove() will return
733		 * immediately without modifying the page or the object.
734		 */
735		p->object = NULL;
736		if (p->wire_count == 0) {
737			vm_page_free(p);
738			PCPU_INC(cnt.v_pfree);
739		}
740		vm_page_unlock(p);
741	}
742	/*
743	 * If the object contained any pages, then reset it to an empty state.
744	 * None of the object's fields, including "resident_page_count", were
745	 * modified by the preceding loop.
746	 */
747	if (object->resident_page_count != 0) {
748		vm_radix_reclaim_allnodes(&object->rtree);
749		TAILQ_INIT(&object->memq);
750		object->resident_page_count = 0;
751		if (object->type == OBJT_VNODE)
752			vdrop(object->handle);
753	}
754
755#if VM_NRESERVLEVEL > 0
756	if (__predict_false(!LIST_EMPTY(&object->rvq)))
757		vm_reserv_break_all(object);
758#endif
759	if (__predict_false(!vm_object_cache_is_empty(object)))
760		vm_page_cache_free(object, 0, 0);
761
762	/*
763	 * Let the pager know object is dead.
764	 */
765	vm_pager_deallocate(object);
766	VM_OBJECT_WUNLOCK(object);
767
768	vm_object_destroy(object);
769}
770
771/*
772 * Make the page read-only so that we can clear the object flags.  However, if
773 * this is a nosync mmap then the object is likely to stay dirty so do not
774 * mess with the page and do not clear the object flags.  Returns TRUE if the
775 * page should be flushed, and FALSE otherwise.
776 */
777static boolean_t
778vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
779{
780
781	/*
782	 * If we have been asked to skip nosync pages and this is a
783	 * nosync page, skip it.  Note that the object flags were not
784	 * cleared in this case so we do not have to set them.
785	 */
786	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
787		*clearobjflags = FALSE;
788		return (FALSE);
789	} else {
790		pmap_remove_write(p);
791		return (p->dirty != 0);
792	}
793}
794
795/*
796 *	vm_object_page_clean
797 *
798 *	Clean all dirty pages in the specified range of object.  Leaves page
799 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
800 *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
801 *	leaving the object dirty.
802 *
803 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
804 *	synchronous clustering mode implementation.
805 *
806 *	Odd semantics: if start == end, we clean everything.
807 *
808 *	The object must be locked.
809 *
810 *	Returns FALSE if some page from the range was not written, as
811 *	reported by the pager, and TRUE otherwise.
812 */
813boolean_t
814vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
815    int flags)
816{
817	vm_page_t np, p;
818	vm_pindex_t pi, tend, tstart;
819	int curgeneration, n, pagerflags;
820	boolean_t clearobjflags, eio, res;
821
822	VM_OBJECT_ASSERT_WLOCKED(object);
823	KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
824	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
825	    object->resident_page_count == 0)
826		return (TRUE);
827
828	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
829	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
830	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
831
832	tstart = OFF_TO_IDX(start);
833	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
834	clearobjflags = tstart == 0 && tend >= object->size;
835	res = TRUE;
836
837rescan:
838	curgeneration = object->generation;
839
840	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
841		pi = p->pindex;
842		if (pi >= tend)
843			break;
844		np = TAILQ_NEXT(p, listq);
845		if (p->valid == 0)
846			continue;
847		if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
848			if (object->generation != curgeneration) {
849				if ((flags & OBJPC_SYNC) != 0)
850					goto rescan;
851				else
852					clearobjflags = FALSE;
853			}
854			np = vm_page_find_least(object, pi);
855			continue;
856		}
857		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
858			continue;
859
860		n = vm_object_page_collect_flush(object, p, pagerflags,
861		    flags, &clearobjflags, &eio);
862		if (eio) {
863			res = FALSE;
864			clearobjflags = FALSE;
865		}
866		if (object->generation != curgeneration) {
867			if ((flags & OBJPC_SYNC) != 0)
868				goto rescan;
869			else
870				clearobjflags = FALSE;
871		}
872
873		/*
874		 * If the VOP_PUTPAGES() did a truncated write, so
875		 * that even the first page of the run is not fully
876		 * written, vm_pageout_flush() returns 0 as the run
877		 * length.  Since the condition that caused truncated
878		 * write may be permanent, e.g. exhausted free space,
879		 * accepting n == 0 would cause an infinite loop.
880		 *
881		 * Forwarding the iterator leaves the unwritten page
882		 * behind, but there is not much we can do there if
883		 * filesystem refuses to write it.
884		 */
885		if (n == 0) {
886			n = 1;
887			clearobjflags = FALSE;
888		}
889		np = vm_page_find_least(object, pi + n);
890	}
891#if 0
892	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
893#endif
894
895	if (clearobjflags)
896		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
897	return (res);
898}
899
900static int
901vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
902    int flags, boolean_t *clearobjflags, boolean_t *eio)
903{
904	vm_page_t ma[vm_pageout_page_count], p_first, tp;
905	int count, i, mreq, runlen;
906
907	vm_page_lock_assert(p, MA_NOTOWNED);
908	VM_OBJECT_ASSERT_WLOCKED(object);
909
910	count = 1;
911	mreq = 0;
912
913	for (tp = p; count < vm_pageout_page_count; count++) {
914		tp = vm_page_next(tp);
915		if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
916			break;
917		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
918			break;
919	}
920
921	for (p_first = p; count < vm_pageout_page_count; count++) {
922		tp = vm_page_prev(p_first);
923		if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
924			break;
925		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
926			break;
927		p_first = tp;
928		mreq++;
929	}
930
931	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
932		ma[i] = tp;
933
934	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
935	return (runlen);
936}
937
938/*
939 * Note that there is absolutely no sense in writing out
940 * anonymous objects, so we track down the vnode object
941 * to write out.
942 * We invalidate (remove) all pages from the address space
943 * for semantic correctness.
944 *
945 * If the backing object is a device object with unmanaged pages, then any
946 * mappings to the specified range of pages must be removed before this
947 * function is called.
948 *
949 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
950 * may start out with a NULL object.
951 */
952boolean_t
953vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
954    boolean_t syncio, boolean_t invalidate)
955{
956	vm_object_t backing_object;
957	struct vnode *vp;
958	struct mount *mp;
959	int error, flags, fsync_after;
960	boolean_t res;
961
962	if (object == NULL)
963		return (TRUE);
964	res = TRUE;
965	error = 0;
966	VM_OBJECT_WLOCK(object);
967	while ((backing_object = object->backing_object) != NULL) {
968		VM_OBJECT_WLOCK(backing_object);
969		offset += object->backing_object_offset;
970		VM_OBJECT_WUNLOCK(object);
971		object = backing_object;
972		if (object->size < OFF_TO_IDX(offset + size))
973			size = IDX_TO_OFF(object->size) - offset;
974	}
975	/*
976	 * Flush pages if writing is allowed, invalidate them
977	 * if invalidation requested.  Pages undergoing I/O
978	 * will be ignored by vm_object_page_remove().
979	 *
980	 * We cannot lock the vnode and then wait for paging
981	 * to complete without deadlocking against vm_fault.
982	 * Instead we simply call vm_object_page_remove() and
983	 * allow it to block internally on a page-by-page
984	 * basis when it encounters pages undergoing async
985	 * I/O.
986	 */
987	if (object->type == OBJT_VNODE &&
988	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
989		vp = object->handle;
990		VM_OBJECT_WUNLOCK(object);
991		(void) vn_start_write(vp, &mp, V_WAIT);
992		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
993		if (syncio && !invalidate && offset == 0 &&
994		    OFF_TO_IDX(size) == object->size) {
995			/*
996			 * If syncing the whole mapping of the file,
997			 * it is faster to schedule all the writes in
998			 * async mode, also allowing the clustering,
999			 * and then wait for i/o to complete.
1000			 */
1001			flags = 0;
1002			fsync_after = TRUE;
1003		} else {
1004			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1005			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1006			fsync_after = FALSE;
1007		}
1008		VM_OBJECT_WLOCK(object);
1009		res = vm_object_page_clean(object, offset, offset + size,
1010		    flags);
1011		VM_OBJECT_WUNLOCK(object);
1012		if (fsync_after)
1013			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1014		VOP_UNLOCK(vp, 0);
1015		vn_finished_write(mp);
1016		if (error != 0)
1017			res = FALSE;
1018		VM_OBJECT_WLOCK(object);
1019	}
1020	if ((object->type == OBJT_VNODE ||
1021	     object->type == OBJT_DEVICE) && invalidate) {
1022		if (object->type == OBJT_DEVICE)
1023			/*
1024			 * The option OBJPR_NOTMAPPED must be passed here
1025			 * because vm_object_page_remove() cannot remove
1026			 * unmanaged mappings.
1027			 */
1028			flags = OBJPR_NOTMAPPED;
1029		else if (old_msync)
1030			flags = 0;
1031		else
1032			flags = OBJPR_CLEANONLY;
1033		vm_object_page_remove(object, OFF_TO_IDX(offset),
1034		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1035	}
1036	VM_OBJECT_WUNLOCK(object);
1037	return (res);
1038}
1039
1040/*
1041 *	vm_object_madvise:
1042 *
1043 *	Implements the madvise function at the object/page level.
1044 *
1045 *	MADV_WILLNEED	(any object)
1046 *
1047 *	    Activate the specified pages if they are resident.
1048 *
1049 *	MADV_DONTNEED	(any object)
1050 *
1051 *	    Deactivate the specified pages if they are resident.
1052 *
1053 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1054 *			 OBJ_ONEMAPPING only)
1055 *
1056 *	    Deactivate and clean the specified pages if they are
1057 *	    resident.  This permits the process to reuse the pages
1058 *	    without faulting or the kernel to reclaim the pages
1059 *	    without I/O.
1060 */
1061void
1062vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1063    int advise)
1064{
1065	vm_pindex_t tpindex;
1066	vm_object_t backing_object, tobject;
1067	vm_page_t m;
1068
1069	if (object == NULL)
1070		return;
1071	VM_OBJECT_WLOCK(object);
1072	/*
1073	 * Locate and adjust resident pages
1074	 */
1075	for (; pindex < end; pindex += 1) {
1076relookup:
1077		tobject = object;
1078		tpindex = pindex;
1079shadowlookup:
1080		/*
1081		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1082		 * and those pages must be OBJ_ONEMAPPING.
1083		 */
1084		if (advise == MADV_FREE) {
1085			if ((tobject->type != OBJT_DEFAULT &&
1086			     tobject->type != OBJT_SWAP) ||
1087			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1088				goto unlock_tobject;
1089			}
1090		} else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1091			goto unlock_tobject;
1092		m = vm_page_lookup(tobject, tpindex);
1093		if (m == NULL && advise == MADV_WILLNEED) {
1094			/*
1095			 * If the page is cached, reactivate it.
1096			 */
1097			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1098			    VM_ALLOC_NOBUSY);
1099		}
1100		if (m == NULL) {
1101			/*
1102			 * There may be swap even if there is no backing page
1103			 */
1104			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1105				swap_pager_freespace(tobject, tpindex, 1);
1106			/*
1107			 * next object
1108			 */
1109			backing_object = tobject->backing_object;
1110			if (backing_object == NULL)
1111				goto unlock_tobject;
1112			VM_OBJECT_WLOCK(backing_object);
1113			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1114			if (tobject != object)
1115				VM_OBJECT_WUNLOCK(tobject);
1116			tobject = backing_object;
1117			goto shadowlookup;
1118		} else if (m->valid != VM_PAGE_BITS_ALL)
1119			goto unlock_tobject;
1120		/*
1121		 * If the page is not in a normal state, skip it.
1122		 */
1123		vm_page_lock(m);
1124		if (m->hold_count != 0 || m->wire_count != 0) {
1125			vm_page_unlock(m);
1126			goto unlock_tobject;
1127		}
1128		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1129		    ("vm_object_madvise: page %p is fictitious", m));
1130		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1131		    ("vm_object_madvise: page %p is not managed", m));
1132		if ((m->oflags & VPO_BUSY) || m->busy) {
1133			if (advise == MADV_WILLNEED) {
1134				/*
1135				 * Reference the page before unlocking and
1136				 * sleeping so that the page daemon is less
1137				 * likely to reclaim it.
1138				 */
1139				vm_page_aflag_set(m, PGA_REFERENCED);
1140			}
1141			vm_page_unlock(m);
1142			if (object != tobject)
1143				VM_OBJECT_WUNLOCK(object);
1144			m->oflags |= VPO_WANTED;
1145			VM_OBJECT_SLEEP(tobject, m, PDROP | PVM, "madvpo", 0);
1146			VM_OBJECT_WLOCK(object);
1147  			goto relookup;
1148		}
1149		if (advise == MADV_WILLNEED) {
1150			vm_page_activate(m);
1151		} else if (advise == MADV_DONTNEED) {
1152			vm_page_dontneed(m);
1153		} else if (advise == MADV_FREE) {
1154			/*
1155			 * Mark the page clean.  This will allow the page
1156			 * to be freed up by the system.  However, such pages
1157			 * are often reused quickly by malloc()/free()
1158			 * so we do not do anything that would cause
1159			 * a page fault if we can help it.
1160			 *
1161			 * Specifically, we do not try to actually free
1162			 * the page now nor do we try to put it in the
1163			 * cache (which would cause a page fault on reuse).
1164			 *
1165			 * But we do make the page is freeable as we
1166			 * can without actually taking the step of unmapping
1167			 * it.
1168			 */
1169			pmap_clear_modify(m);
1170			m->dirty = 0;
1171			m->act_count = 0;
1172			vm_page_dontneed(m);
1173		}
1174		vm_page_unlock(m);
1175		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1176			swap_pager_freespace(tobject, tpindex, 1);
1177unlock_tobject:
1178		if (tobject != object)
1179			VM_OBJECT_WUNLOCK(tobject);
1180	}
1181	VM_OBJECT_WUNLOCK(object);
1182}
1183
1184/*
1185 *	vm_object_shadow:
1186 *
1187 *	Create a new object which is backed by the
1188 *	specified existing object range.  The source
1189 *	object reference is deallocated.
1190 *
1191 *	The new object and offset into that object
1192 *	are returned in the source parameters.
1193 */
1194void
1195vm_object_shadow(
1196	vm_object_t *object,	/* IN/OUT */
1197	vm_ooffset_t *offset,	/* IN/OUT */
1198	vm_size_t length)
1199{
1200	vm_object_t source;
1201	vm_object_t result;
1202
1203	source = *object;
1204
1205	/*
1206	 * Don't create the new object if the old object isn't shared.
1207	 */
1208	if (source != NULL) {
1209		VM_OBJECT_WLOCK(source);
1210		if (source->ref_count == 1 &&
1211		    source->handle == NULL &&
1212		    (source->type == OBJT_DEFAULT ||
1213		     source->type == OBJT_SWAP)) {
1214			VM_OBJECT_WUNLOCK(source);
1215			return;
1216		}
1217		VM_OBJECT_WUNLOCK(source);
1218	}
1219
1220	/*
1221	 * Allocate a new object with the given length.
1222	 */
1223	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1224
1225	/*
1226	 * The new object shadows the source object, adding a reference to it.
1227	 * Our caller changes his reference to point to the new object,
1228	 * removing a reference to the source object.  Net result: no change
1229	 * of reference count.
1230	 *
1231	 * Try to optimize the result object's page color when shadowing
1232	 * in order to maintain page coloring consistency in the combined
1233	 * shadowed object.
1234	 */
1235	result->backing_object = source;
1236	/*
1237	 * Store the offset into the source object, and fix up the offset into
1238	 * the new object.
1239	 */
1240	result->backing_object_offset = *offset;
1241	if (source != NULL) {
1242		VM_OBJECT_WLOCK(source);
1243		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1244		source->shadow_count++;
1245#if VM_NRESERVLEVEL > 0
1246		result->flags |= source->flags & OBJ_COLORED;
1247		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1248		    ((1 << (VM_NFREEORDER - 1)) - 1);
1249#endif
1250		VM_OBJECT_WUNLOCK(source);
1251	}
1252
1253
1254	/*
1255	 * Return the new things
1256	 */
1257	*offset = 0;
1258	*object = result;
1259}
1260
1261/*
1262 *	vm_object_split:
1263 *
1264 * Split the pages in a map entry into a new object.  This affords
1265 * easier removal of unused pages, and keeps object inheritance from
1266 * being a negative impact on memory usage.
1267 */
1268void
1269vm_object_split(vm_map_entry_t entry)
1270{
1271	vm_page_t m, m_next;
1272	vm_object_t orig_object, new_object, source;
1273	vm_pindex_t idx, offidxstart;
1274	vm_size_t size;
1275
1276	orig_object = entry->object.vm_object;
1277	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1278		return;
1279	if (orig_object->ref_count <= 1)
1280		return;
1281	VM_OBJECT_WUNLOCK(orig_object);
1282
1283	offidxstart = OFF_TO_IDX(entry->offset);
1284	size = atop(entry->end - entry->start);
1285
1286	/*
1287	 * If swap_pager_copy() is later called, it will convert new_object
1288	 * into a swap object.
1289	 */
1290	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1291
1292	/*
1293	 * At this point, the new object is still private, so the order in
1294	 * which the original and new objects are locked does not matter.
1295	 */
1296	VM_OBJECT_WLOCK(new_object);
1297	VM_OBJECT_WLOCK(orig_object);
1298	source = orig_object->backing_object;
1299	if (source != NULL) {
1300		VM_OBJECT_WLOCK(source);
1301		if ((source->flags & OBJ_DEAD) != 0) {
1302			VM_OBJECT_WUNLOCK(source);
1303			VM_OBJECT_WUNLOCK(orig_object);
1304			VM_OBJECT_WUNLOCK(new_object);
1305			vm_object_deallocate(new_object);
1306			VM_OBJECT_WLOCK(orig_object);
1307			return;
1308		}
1309		LIST_INSERT_HEAD(&source->shadow_head,
1310				  new_object, shadow_list);
1311		source->shadow_count++;
1312		vm_object_reference_locked(source);	/* for new_object */
1313		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1314		VM_OBJECT_WUNLOCK(source);
1315		new_object->backing_object_offset =
1316			orig_object->backing_object_offset + entry->offset;
1317		new_object->backing_object = source;
1318	}
1319	if (orig_object->cred != NULL) {
1320		new_object->cred = orig_object->cred;
1321		crhold(orig_object->cred);
1322		new_object->charge = ptoa(size);
1323		KASSERT(orig_object->charge >= ptoa(size),
1324		    ("orig_object->charge < 0"));
1325		orig_object->charge -= ptoa(size);
1326	}
1327retry:
1328	m = vm_page_find_least(orig_object, offidxstart);
1329	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1330	    m = m_next) {
1331		m_next = TAILQ_NEXT(m, listq);
1332
1333		/*
1334		 * We must wait for pending I/O to complete before we can
1335		 * rename the page.
1336		 *
1337		 * We do not have to VM_PROT_NONE the page as mappings should
1338		 * not be changed by this operation.
1339		 */
1340		if ((m->oflags & VPO_BUSY) || m->busy) {
1341			VM_OBJECT_WUNLOCK(new_object);
1342			m->oflags |= VPO_WANTED;
1343			VM_OBJECT_SLEEP(orig_object, m, PVM, "spltwt", 0);
1344			VM_OBJECT_WLOCK(new_object);
1345			goto retry;
1346		}
1347#if VM_NRESERVLEVEL > 0
1348		/*
1349		 * If some of the reservation's allocated pages remain with
1350		 * the original object, then transferring the reservation to
1351		 * the new object is neither particularly beneficial nor
1352		 * particularly harmful as compared to leaving the reservation
1353		 * with the original object.  If, however, all of the
1354		 * reservation's allocated pages are transferred to the new
1355		 * object, then transferring the reservation is typically
1356		 * beneficial.  Determining which of these two cases applies
1357		 * would be more costly than unconditionally renaming the
1358		 * reservation.
1359		 */
1360		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1361#endif
1362		vm_page_lock(m);
1363		vm_page_rename(m, new_object, idx);
1364		vm_page_unlock(m);
1365		/* page automatically made dirty by rename and cache handled */
1366		vm_page_busy(m);
1367	}
1368	if (orig_object->type == OBJT_SWAP) {
1369		/*
1370		 * swap_pager_copy() can sleep, in which case the orig_object's
1371		 * and new_object's locks are released and reacquired.
1372		 */
1373		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1374
1375		/*
1376		 * Transfer any cached pages from orig_object to new_object.
1377		 * If swap_pager_copy() found swapped out pages within the
1378		 * specified range of orig_object, then it changed
1379		 * new_object's type to OBJT_SWAP when it transferred those
1380		 * pages to new_object.  Otherwise, new_object's type
1381		 * should still be OBJT_DEFAULT and orig_object should not
1382		 * contain any cached pages within the specified range.
1383		 */
1384		if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1385			vm_page_cache_transfer(orig_object, offidxstart,
1386			    new_object);
1387	}
1388	VM_OBJECT_WUNLOCK(orig_object);
1389	TAILQ_FOREACH(m, &new_object->memq, listq)
1390		vm_page_wakeup(m);
1391	VM_OBJECT_WUNLOCK(new_object);
1392	entry->object.vm_object = new_object;
1393	entry->offset = 0LL;
1394	vm_object_deallocate(orig_object);
1395	VM_OBJECT_WLOCK(new_object);
1396}
1397
1398#define	OBSC_TEST_ALL_SHADOWED	0x0001
1399#define	OBSC_COLLAPSE_NOWAIT	0x0002
1400#define	OBSC_COLLAPSE_WAIT	0x0004
1401
1402static int
1403vm_object_backing_scan(vm_object_t object, int op)
1404{
1405	int r = 1;
1406	vm_page_t p;
1407	vm_object_t backing_object;
1408	vm_pindex_t backing_offset_index;
1409
1410	VM_OBJECT_ASSERT_WLOCKED(object);
1411	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1412
1413	backing_object = object->backing_object;
1414	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1415
1416	/*
1417	 * Initial conditions
1418	 */
1419	if (op & OBSC_TEST_ALL_SHADOWED) {
1420		/*
1421		 * We do not want to have to test for the existence of cache
1422		 * or swap pages in the backing object.  XXX but with the
1423		 * new swapper this would be pretty easy to do.
1424		 *
1425		 * XXX what about anonymous MAP_SHARED memory that hasn't
1426		 * been ZFOD faulted yet?  If we do not test for this, the
1427		 * shadow test may succeed! XXX
1428		 */
1429		if (backing_object->type != OBJT_DEFAULT) {
1430			return (0);
1431		}
1432	}
1433	if (op & OBSC_COLLAPSE_WAIT) {
1434		vm_object_set_flag(backing_object, OBJ_DEAD);
1435	}
1436
1437	/*
1438	 * Our scan
1439	 */
1440	p = TAILQ_FIRST(&backing_object->memq);
1441	while (p) {
1442		vm_page_t next = TAILQ_NEXT(p, listq);
1443		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1444
1445		if (op & OBSC_TEST_ALL_SHADOWED) {
1446			vm_page_t pp;
1447
1448			/*
1449			 * Ignore pages outside the parent object's range
1450			 * and outside the parent object's mapping of the
1451			 * backing object.
1452			 *
1453			 * note that we do not busy the backing object's
1454			 * page.
1455			 */
1456			if (
1457			    p->pindex < backing_offset_index ||
1458			    new_pindex >= object->size
1459			) {
1460				p = next;
1461				continue;
1462			}
1463
1464			/*
1465			 * See if the parent has the page or if the parent's
1466			 * object pager has the page.  If the parent has the
1467			 * page but the page is not valid, the parent's
1468			 * object pager must have the page.
1469			 *
1470			 * If this fails, the parent does not completely shadow
1471			 * the object and we might as well give up now.
1472			 */
1473
1474			pp = vm_page_lookup(object, new_pindex);
1475			if (
1476			    (pp == NULL || pp->valid == 0) &&
1477			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1478			) {
1479				r = 0;
1480				break;
1481			}
1482		}
1483
1484		/*
1485		 * Check for busy page
1486		 */
1487		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1488			vm_page_t pp;
1489
1490			if (op & OBSC_COLLAPSE_NOWAIT) {
1491				if ((p->oflags & VPO_BUSY) ||
1492				    !p->valid ||
1493				    p->busy) {
1494					p = next;
1495					continue;
1496				}
1497			} else if (op & OBSC_COLLAPSE_WAIT) {
1498				if ((p->oflags & VPO_BUSY) || p->busy) {
1499					VM_OBJECT_WUNLOCK(object);
1500					p->oflags |= VPO_WANTED;
1501					VM_OBJECT_SLEEP(backing_object, p,
1502					    PDROP | PVM, "vmocol", 0);
1503					VM_OBJECT_WLOCK(object);
1504					VM_OBJECT_WLOCK(backing_object);
1505					/*
1506					 * If we slept, anything could have
1507					 * happened.  Since the object is
1508					 * marked dead, the backing offset
1509					 * should not have changed so we
1510					 * just restart our scan.
1511					 */
1512					p = TAILQ_FIRST(&backing_object->memq);
1513					continue;
1514				}
1515			}
1516
1517			KASSERT(
1518			    p->object == backing_object,
1519			    ("vm_object_backing_scan: object mismatch")
1520			);
1521
1522			/*
1523			 * Destroy any associated swap
1524			 */
1525			if (backing_object->type == OBJT_SWAP) {
1526				swap_pager_freespace(
1527				    backing_object,
1528				    p->pindex,
1529				    1
1530				);
1531			}
1532
1533			if (
1534			    p->pindex < backing_offset_index ||
1535			    new_pindex >= object->size
1536			) {
1537				/*
1538				 * Page is out of the parent object's range, we
1539				 * can simply destroy it.
1540				 */
1541				vm_page_lock(p);
1542				KASSERT(!pmap_page_is_mapped(p),
1543				    ("freeing mapped page %p", p));
1544				if (p->wire_count == 0)
1545					vm_page_free(p);
1546				else
1547					vm_page_remove(p);
1548				vm_page_unlock(p);
1549				p = next;
1550				continue;
1551			}
1552
1553			pp = vm_page_lookup(object, new_pindex);
1554			if (
1555			    (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1556			    (pp != NULL && pp->valid == 0)
1557			) {
1558				/*
1559				 * The page in the parent is not (yet) valid.
1560				 * We don't know anything about the state of
1561				 * the original page.  It might be mapped,
1562				 * so we must avoid the next if here.
1563				 *
1564				 * This is due to a race in vm_fault() where
1565				 * we must unbusy the original (backing_obj)
1566				 * page before we can (re)lock the parent.
1567				 * Hence we can get here.
1568				 */
1569				p = next;
1570				continue;
1571			}
1572			if (
1573			    pp != NULL ||
1574			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1575			) {
1576				/*
1577				 * page already exists in parent OR swap exists
1578				 * for this location in the parent.  Destroy
1579				 * the original page from the backing object.
1580				 *
1581				 * Leave the parent's page alone
1582				 */
1583				vm_page_lock(p);
1584				KASSERT(!pmap_page_is_mapped(p),
1585				    ("freeing mapped page %p", p));
1586				if (p->wire_count == 0)
1587					vm_page_free(p);
1588				else
1589					vm_page_remove(p);
1590				vm_page_unlock(p);
1591				p = next;
1592				continue;
1593			}
1594
1595#if VM_NRESERVLEVEL > 0
1596			/*
1597			 * Rename the reservation.
1598			 */
1599			vm_reserv_rename(p, object, backing_object,
1600			    backing_offset_index);
1601#endif
1602
1603			/*
1604			 * Page does not exist in parent, rename the
1605			 * page from the backing object to the main object.
1606			 *
1607			 * If the page was mapped to a process, it can remain
1608			 * mapped through the rename.
1609			 */
1610			vm_page_lock(p);
1611			vm_page_rename(p, object, new_pindex);
1612			vm_page_unlock(p);
1613			/* page automatically made dirty by rename */
1614		}
1615		p = next;
1616	}
1617	return (r);
1618}
1619
1620
1621/*
1622 * this version of collapse allows the operation to occur earlier and
1623 * when paging_in_progress is true for an object...  This is not a complete
1624 * operation, but should plug 99.9% of the rest of the leaks.
1625 */
1626static void
1627vm_object_qcollapse(vm_object_t object)
1628{
1629	vm_object_t backing_object = object->backing_object;
1630
1631	VM_OBJECT_ASSERT_WLOCKED(object);
1632	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1633
1634	if (backing_object->ref_count != 1)
1635		return;
1636
1637	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1638}
1639
1640/*
1641 *	vm_object_collapse:
1642 *
1643 *	Collapse an object with the object backing it.
1644 *	Pages in the backing object are moved into the
1645 *	parent, and the backing object is deallocated.
1646 */
1647void
1648vm_object_collapse(vm_object_t object)
1649{
1650	VM_OBJECT_ASSERT_WLOCKED(object);
1651
1652	while (TRUE) {
1653		vm_object_t backing_object;
1654
1655		/*
1656		 * Verify that the conditions are right for collapse:
1657		 *
1658		 * The object exists and the backing object exists.
1659		 */
1660		if ((backing_object = object->backing_object) == NULL)
1661			break;
1662
1663		/*
1664		 * we check the backing object first, because it is most likely
1665		 * not collapsable.
1666		 */
1667		VM_OBJECT_WLOCK(backing_object);
1668		if (backing_object->handle != NULL ||
1669		    (backing_object->type != OBJT_DEFAULT &&
1670		     backing_object->type != OBJT_SWAP) ||
1671		    (backing_object->flags & OBJ_DEAD) ||
1672		    object->handle != NULL ||
1673		    (object->type != OBJT_DEFAULT &&
1674		     object->type != OBJT_SWAP) ||
1675		    (object->flags & OBJ_DEAD)) {
1676			VM_OBJECT_WUNLOCK(backing_object);
1677			break;
1678		}
1679
1680		if (
1681		    object->paging_in_progress != 0 ||
1682		    backing_object->paging_in_progress != 0
1683		) {
1684			vm_object_qcollapse(object);
1685			VM_OBJECT_WUNLOCK(backing_object);
1686			break;
1687		}
1688		/*
1689		 * We know that we can either collapse the backing object (if
1690		 * the parent is the only reference to it) or (perhaps) have
1691		 * the parent bypass the object if the parent happens to shadow
1692		 * all the resident pages in the entire backing object.
1693		 *
1694		 * This is ignoring pager-backed pages such as swap pages.
1695		 * vm_object_backing_scan fails the shadowing test in this
1696		 * case.
1697		 */
1698		if (backing_object->ref_count == 1) {
1699			/*
1700			 * If there is exactly one reference to the backing
1701			 * object, we can collapse it into the parent.
1702			 */
1703			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1704
1705#if VM_NRESERVLEVEL > 0
1706			/*
1707			 * Break any reservations from backing_object.
1708			 */
1709			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1710				vm_reserv_break_all(backing_object);
1711#endif
1712
1713			/*
1714			 * Move the pager from backing_object to object.
1715			 */
1716			if (backing_object->type == OBJT_SWAP) {
1717				/*
1718				 * swap_pager_copy() can sleep, in which case
1719				 * the backing_object's and object's locks are
1720				 * released and reacquired.
1721				 * Since swap_pager_copy() is being asked to
1722				 * destroy the source, it will change the
1723				 * backing_object's type to OBJT_DEFAULT.
1724				 */
1725				swap_pager_copy(
1726				    backing_object,
1727				    object,
1728				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1729
1730				/*
1731				 * Free any cached pages from backing_object.
1732				 */
1733				if (__predict_false(
1734				    !vm_object_cache_is_empty(backing_object)))
1735					vm_page_cache_free(backing_object, 0, 0);
1736			}
1737			/*
1738			 * Object now shadows whatever backing_object did.
1739			 * Note that the reference to
1740			 * backing_object->backing_object moves from within
1741			 * backing_object to within object.
1742			 */
1743			LIST_REMOVE(object, shadow_list);
1744			backing_object->shadow_count--;
1745			if (backing_object->backing_object) {
1746				VM_OBJECT_WLOCK(backing_object->backing_object);
1747				LIST_REMOVE(backing_object, shadow_list);
1748				LIST_INSERT_HEAD(
1749				    &backing_object->backing_object->shadow_head,
1750				    object, shadow_list);
1751				/*
1752				 * The shadow_count has not changed.
1753				 */
1754				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1755			}
1756			object->backing_object = backing_object->backing_object;
1757			object->backing_object_offset +=
1758			    backing_object->backing_object_offset;
1759
1760			/*
1761			 * Discard backing_object.
1762			 *
1763			 * Since the backing object has no pages, no pager left,
1764			 * and no object references within it, all that is
1765			 * necessary is to dispose of it.
1766			 */
1767			KASSERT(backing_object->ref_count == 1, (
1768"backing_object %p was somehow re-referenced during collapse!",
1769			    backing_object));
1770			VM_OBJECT_WUNLOCK(backing_object);
1771			vm_object_destroy(backing_object);
1772
1773			object_collapses++;
1774		} else {
1775			vm_object_t new_backing_object;
1776
1777			/*
1778			 * If we do not entirely shadow the backing object,
1779			 * there is nothing we can do so we give up.
1780			 */
1781			if (object->resident_page_count != object->size &&
1782			    vm_object_backing_scan(object,
1783			    OBSC_TEST_ALL_SHADOWED) == 0) {
1784				VM_OBJECT_WUNLOCK(backing_object);
1785				break;
1786			}
1787
1788			/*
1789			 * Make the parent shadow the next object in the
1790			 * chain.  Deallocating backing_object will not remove
1791			 * it, since its reference count is at least 2.
1792			 */
1793			LIST_REMOVE(object, shadow_list);
1794			backing_object->shadow_count--;
1795
1796			new_backing_object = backing_object->backing_object;
1797			if ((object->backing_object = new_backing_object) != NULL) {
1798				VM_OBJECT_WLOCK(new_backing_object);
1799				LIST_INSERT_HEAD(
1800				    &new_backing_object->shadow_head,
1801				    object,
1802				    shadow_list
1803				);
1804				new_backing_object->shadow_count++;
1805				vm_object_reference_locked(new_backing_object);
1806				VM_OBJECT_WUNLOCK(new_backing_object);
1807				object->backing_object_offset +=
1808					backing_object->backing_object_offset;
1809			}
1810
1811			/*
1812			 * Drop the reference count on backing_object. Since
1813			 * its ref_count was at least 2, it will not vanish.
1814			 */
1815			backing_object->ref_count--;
1816			VM_OBJECT_WUNLOCK(backing_object);
1817			object_bypasses++;
1818		}
1819
1820		/*
1821		 * Try again with this object's new backing object.
1822		 */
1823	}
1824}
1825
1826/*
1827 *	vm_object_page_remove:
1828 *
1829 *	For the given object, either frees or invalidates each of the
1830 *	specified pages.  In general, a page is freed.  However, if a page is
1831 *	wired for any reason other than the existence of a managed, wired
1832 *	mapping, then it may be invalidated but not removed from the object.
1833 *	Pages are specified by the given range ["start", "end") and the option
1834 *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1835 *	extends from "start" to the end of the object.  If the option
1836 *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1837 *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1838 *	specified, then the pages within the specified range must have no
1839 *	mappings.  Otherwise, if this option is not specified, any mappings to
1840 *	the specified pages are removed before the pages are freed or
1841 *	invalidated.
1842 *
1843 *	In general, this operation should only be performed on objects that
1844 *	contain managed pages.  There are, however, two exceptions.  First, it
1845 *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1846 *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1847 *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1848 *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1849 *
1850 *	The object must be locked.
1851 */
1852void
1853vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1854    int options)
1855{
1856	vm_page_t p, next;
1857	int wirings;
1858
1859	VM_OBJECT_ASSERT_WLOCKED(object);
1860	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1861	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1862	    ("vm_object_page_remove: illegal options for object %p", object));
1863	if (object->resident_page_count == 0)
1864		goto skipmemq;
1865	vm_object_pip_add(object, 1);
1866again:
1867	p = vm_page_find_least(object, start);
1868
1869	/*
1870	 * Here, the variable "p" is either (1) the page with the least pindex
1871	 * greater than or equal to the parameter "start" or (2) NULL.
1872	 */
1873	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1874		next = TAILQ_NEXT(p, listq);
1875
1876		/*
1877		 * If the page is wired for any reason besides the existence
1878		 * of managed, wired mappings, then it cannot be freed.  For
1879		 * example, fictitious pages, which represent device memory,
1880		 * are inherently wired and cannot be freed.  They can,
1881		 * however, be invalidated if the option OBJPR_CLEANONLY is
1882		 * not specified.
1883		 */
1884		vm_page_lock(p);
1885		if ((wirings = p->wire_count) != 0 &&
1886		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1887			if ((options & OBJPR_NOTMAPPED) == 0) {
1888				pmap_remove_all(p);
1889				/* Account for removal of wired mappings. */
1890				if (wirings != 0)
1891					p->wire_count -= wirings;
1892			}
1893			if ((options & OBJPR_CLEANONLY) == 0) {
1894				p->valid = 0;
1895				vm_page_undirty(p);
1896			}
1897			vm_page_unlock(p);
1898			continue;
1899		}
1900		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1901			goto again;
1902		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1903		    ("vm_object_page_remove: page %p is fictitious", p));
1904		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1905			if ((options & OBJPR_NOTMAPPED) == 0)
1906				pmap_remove_write(p);
1907			if (p->dirty) {
1908				vm_page_unlock(p);
1909				continue;
1910			}
1911		}
1912		if ((options & OBJPR_NOTMAPPED) == 0) {
1913			pmap_remove_all(p);
1914			/* Account for removal of wired mappings. */
1915			if (wirings != 0) {
1916				KASSERT(p->wire_count == wirings,
1917				    ("inconsistent wire count %d %d %p",
1918				    p->wire_count, wirings, p));
1919				p->wire_count = 0;
1920				atomic_subtract_int(&cnt.v_wire_count, 1);
1921			}
1922		}
1923		vm_page_free(p);
1924		vm_page_unlock(p);
1925	}
1926	vm_object_pip_wakeup(object);
1927skipmemq:
1928	if (__predict_false(!vm_object_cache_is_empty(object)))
1929		vm_page_cache_free(object, start, end);
1930}
1931
1932/*
1933 *	vm_object_page_cache:
1934 *
1935 *	For the given object, attempt to move the specified clean
1936 *	pages to the cache queue.  If a page is wired for any reason,
1937 *	then it will not be changed.  Pages are specified by the given
1938 *	range ["start", "end").  As a special case, if "end" is zero,
1939 *	then the range extends from "start" to the end of the object.
1940 *	Any mappings to the specified pages are removed before the
1941 *	pages are moved to the cache queue.
1942 *
1943 *	This operation should only be performed on objects that
1944 *	contain non-fictitious, managed pages.
1945 *
1946 *	The object must be locked.
1947 */
1948void
1949vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1950{
1951	struct mtx *mtx, *new_mtx;
1952	vm_page_t p, next;
1953
1954	VM_OBJECT_ASSERT_WLOCKED(object);
1955	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1956	    ("vm_object_page_cache: illegal object %p", object));
1957	if (object->resident_page_count == 0)
1958		return;
1959	p = vm_page_find_least(object, start);
1960
1961	/*
1962	 * Here, the variable "p" is either (1) the page with the least pindex
1963	 * greater than or equal to the parameter "start" or (2) NULL.
1964	 */
1965	mtx = NULL;
1966	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1967		next = TAILQ_NEXT(p, listq);
1968
1969		/*
1970		 * Avoid releasing and reacquiring the same page lock.
1971		 */
1972		new_mtx = vm_page_lockptr(p);
1973		if (mtx != new_mtx) {
1974			if (mtx != NULL)
1975				mtx_unlock(mtx);
1976			mtx = new_mtx;
1977			mtx_lock(mtx);
1978		}
1979		vm_page_try_to_cache(p);
1980	}
1981	if (mtx != NULL)
1982		mtx_unlock(mtx);
1983}
1984
1985/*
1986 *	Populate the specified range of the object with valid pages.  Returns
1987 *	TRUE if the range is successfully populated and FALSE otherwise.
1988 *
1989 *	Note: This function should be optimized to pass a larger array of
1990 *	pages to vm_pager_get_pages() before it is applied to a non-
1991 *	OBJT_DEVICE object.
1992 *
1993 *	The object must be locked.
1994 */
1995boolean_t
1996vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1997{
1998	vm_page_t m, ma[1];
1999	vm_pindex_t pindex;
2000	int rv;
2001
2002	VM_OBJECT_ASSERT_WLOCKED(object);
2003	for (pindex = start; pindex < end; pindex++) {
2004		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
2005		    VM_ALLOC_RETRY);
2006		if (m->valid != VM_PAGE_BITS_ALL) {
2007			ma[0] = m;
2008			rv = vm_pager_get_pages(object, ma, 1, 0);
2009			m = vm_page_lookup(object, pindex);
2010			if (m == NULL)
2011				break;
2012			if (rv != VM_PAGER_OK) {
2013				vm_page_lock(m);
2014				vm_page_free(m);
2015				vm_page_unlock(m);
2016				break;
2017			}
2018		}
2019		/*
2020		 * Keep "m" busy because a subsequent iteration may unlock
2021		 * the object.
2022		 */
2023	}
2024	if (pindex > start) {
2025		m = vm_page_lookup(object, start);
2026		while (m != NULL && m->pindex < pindex) {
2027			vm_page_wakeup(m);
2028			m = TAILQ_NEXT(m, listq);
2029		}
2030	}
2031	return (pindex == end);
2032}
2033
2034/*
2035 *	Routine:	vm_object_coalesce
2036 *	Function:	Coalesces two objects backing up adjoining
2037 *			regions of memory into a single object.
2038 *
2039 *	returns TRUE if objects were combined.
2040 *
2041 *	NOTE:	Only works at the moment if the second object is NULL -
2042 *		if it's not, which object do we lock first?
2043 *
2044 *	Parameters:
2045 *		prev_object	First object to coalesce
2046 *		prev_offset	Offset into prev_object
2047 *		prev_size	Size of reference to prev_object
2048 *		next_size	Size of reference to the second object
2049 *		reserved	Indicator that extension region has
2050 *				swap accounted for
2051 *
2052 *	Conditions:
2053 *	The object must *not* be locked.
2054 */
2055boolean_t
2056vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2057    vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2058{
2059	vm_pindex_t next_pindex;
2060
2061	if (prev_object == NULL)
2062		return (TRUE);
2063	VM_OBJECT_WLOCK(prev_object);
2064	if (prev_object->type != OBJT_DEFAULT &&
2065	    prev_object->type != OBJT_SWAP) {
2066		VM_OBJECT_WUNLOCK(prev_object);
2067		return (FALSE);
2068	}
2069
2070	/*
2071	 * Try to collapse the object first
2072	 */
2073	vm_object_collapse(prev_object);
2074
2075	/*
2076	 * Can't coalesce if: . more than one reference . paged out . shadows
2077	 * another object . has a copy elsewhere (any of which mean that the
2078	 * pages not mapped to prev_entry may be in use anyway)
2079	 */
2080	if (prev_object->backing_object != NULL) {
2081		VM_OBJECT_WUNLOCK(prev_object);
2082		return (FALSE);
2083	}
2084
2085	prev_size >>= PAGE_SHIFT;
2086	next_size >>= PAGE_SHIFT;
2087	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2088
2089	if ((prev_object->ref_count > 1) &&
2090	    (prev_object->size != next_pindex)) {
2091		VM_OBJECT_WUNLOCK(prev_object);
2092		return (FALSE);
2093	}
2094
2095	/*
2096	 * Account for the charge.
2097	 */
2098	if (prev_object->cred != NULL) {
2099
2100		/*
2101		 * If prev_object was charged, then this mapping,
2102		 * althought not charged now, may become writable
2103		 * later. Non-NULL cred in the object would prevent
2104		 * swap reservation during enabling of the write
2105		 * access, so reserve swap now. Failed reservation
2106		 * cause allocation of the separate object for the map
2107		 * entry, and swap reservation for this entry is
2108		 * managed in appropriate time.
2109		 */
2110		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2111		    prev_object->cred)) {
2112			return (FALSE);
2113		}
2114		prev_object->charge += ptoa(next_size);
2115	}
2116
2117	/*
2118	 * Remove any pages that may still be in the object from a previous
2119	 * deallocation.
2120	 */
2121	if (next_pindex < prev_object->size) {
2122		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2123		    next_size, 0);
2124		if (prev_object->type == OBJT_SWAP)
2125			swap_pager_freespace(prev_object,
2126					     next_pindex, next_size);
2127#if 0
2128		if (prev_object->cred != NULL) {
2129			KASSERT(prev_object->charge >=
2130			    ptoa(prev_object->size - next_pindex),
2131			    ("object %p overcharged 1 %jx %jx", prev_object,
2132				(uintmax_t)next_pindex, (uintmax_t)next_size));
2133			prev_object->charge -= ptoa(prev_object->size -
2134			    next_pindex);
2135		}
2136#endif
2137	}
2138
2139	/*
2140	 * Extend the object if necessary.
2141	 */
2142	if (next_pindex + next_size > prev_object->size)
2143		prev_object->size = next_pindex + next_size;
2144
2145	VM_OBJECT_WUNLOCK(prev_object);
2146	return (TRUE);
2147}
2148
2149void
2150vm_object_set_writeable_dirty(vm_object_t object)
2151{
2152
2153	VM_OBJECT_ASSERT_WLOCKED(object);
2154	if (object->type != OBJT_VNODE)
2155		return;
2156	object->generation++;
2157	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2158		return;
2159	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2160}
2161
2162#include "opt_ddb.h"
2163#ifdef DDB
2164#include <sys/kernel.h>
2165
2166#include <sys/cons.h>
2167
2168#include <ddb/ddb.h>
2169
2170static int
2171_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2172{
2173	vm_map_t tmpm;
2174	vm_map_entry_t tmpe;
2175	vm_object_t obj;
2176	int entcount;
2177
2178	if (map == 0)
2179		return 0;
2180
2181	if (entry == 0) {
2182		tmpe = map->header.next;
2183		entcount = map->nentries;
2184		while (entcount-- && (tmpe != &map->header)) {
2185			if (_vm_object_in_map(map, object, tmpe)) {
2186				return 1;
2187			}
2188			tmpe = tmpe->next;
2189		}
2190	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2191		tmpm = entry->object.sub_map;
2192		tmpe = tmpm->header.next;
2193		entcount = tmpm->nentries;
2194		while (entcount-- && tmpe != &tmpm->header) {
2195			if (_vm_object_in_map(tmpm, object, tmpe)) {
2196				return 1;
2197			}
2198			tmpe = tmpe->next;
2199		}
2200	} else if ((obj = entry->object.vm_object) != NULL) {
2201		for (; obj; obj = obj->backing_object)
2202			if (obj == object) {
2203				return 1;
2204			}
2205	}
2206	return 0;
2207}
2208
2209static int
2210vm_object_in_map(vm_object_t object)
2211{
2212	struct proc *p;
2213
2214	/* sx_slock(&allproc_lock); */
2215	FOREACH_PROC_IN_SYSTEM(p) {
2216		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2217			continue;
2218		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2219			/* sx_sunlock(&allproc_lock); */
2220			return 1;
2221		}
2222	}
2223	/* sx_sunlock(&allproc_lock); */
2224	if (_vm_object_in_map(kernel_map, object, 0))
2225		return 1;
2226	if (_vm_object_in_map(kmem_map, object, 0))
2227		return 1;
2228	if (_vm_object_in_map(pager_map, object, 0))
2229		return 1;
2230	if (_vm_object_in_map(buffer_map, object, 0))
2231		return 1;
2232	return 0;
2233}
2234
2235DB_SHOW_COMMAND(vmochk, vm_object_check)
2236{
2237	vm_object_t object;
2238
2239	/*
2240	 * make sure that internal objs are in a map somewhere
2241	 * and none have zero ref counts.
2242	 */
2243	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2244		if (object->handle == NULL &&
2245		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2246			if (object->ref_count == 0) {
2247				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2248					(long)object->size);
2249			}
2250			if (!vm_object_in_map(object)) {
2251				db_printf(
2252			"vmochk: internal obj is not in a map: "
2253			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2254				    object->ref_count, (u_long)object->size,
2255				    (u_long)object->size,
2256				    (void *)object->backing_object);
2257			}
2258		}
2259	}
2260}
2261
2262/*
2263 *	vm_object_print:	[ debug ]
2264 */
2265DB_SHOW_COMMAND(object, vm_object_print_static)
2266{
2267	/* XXX convert args. */
2268	vm_object_t object = (vm_object_t)addr;
2269	boolean_t full = have_addr;
2270
2271	vm_page_t p;
2272
2273	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2274#define	count	was_count
2275
2276	int count;
2277
2278	if (object == NULL)
2279		return;
2280
2281	db_iprintf(
2282	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2283	    object, (int)object->type, (uintmax_t)object->size,
2284	    object->resident_page_count, object->ref_count, object->flags,
2285	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2286	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2287	    object->shadow_count,
2288	    object->backing_object ? object->backing_object->ref_count : 0,
2289	    object->backing_object, (uintmax_t)object->backing_object_offset);
2290
2291	if (!full)
2292		return;
2293
2294	db_indent += 2;
2295	count = 0;
2296	TAILQ_FOREACH(p, &object->memq, listq) {
2297		if (count == 0)
2298			db_iprintf("memory:=");
2299		else if (count == 6) {
2300			db_printf("\n");
2301			db_iprintf(" ...");
2302			count = 0;
2303		} else
2304			db_printf(",");
2305		count++;
2306
2307		db_printf("(off=0x%jx,page=0x%jx)",
2308		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2309	}
2310	if (count != 0)
2311		db_printf("\n");
2312	db_indent -= 2;
2313}
2314
2315/* XXX. */
2316#undef count
2317
2318/* XXX need this non-static entry for calling from vm_map_print. */
2319void
2320vm_object_print(
2321        /* db_expr_t */ long addr,
2322	boolean_t have_addr,
2323	/* db_expr_t */ long count,
2324	char *modif)
2325{
2326	vm_object_print_static(addr, have_addr, count, modif);
2327}
2328
2329DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2330{
2331	vm_object_t object;
2332	vm_pindex_t fidx;
2333	vm_paddr_t pa;
2334	vm_page_t m, prev_m;
2335	int rcount, nl, c;
2336
2337	nl = 0;
2338	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2339		db_printf("new object: %p\n", (void *)object);
2340		if (nl > 18) {
2341			c = cngetc();
2342			if (c != ' ')
2343				return;
2344			nl = 0;
2345		}
2346		nl++;
2347		rcount = 0;
2348		fidx = 0;
2349		pa = -1;
2350		TAILQ_FOREACH(m, &object->memq, listq) {
2351			if (m->pindex > 128)
2352				break;
2353			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2354			    prev_m->pindex + 1 != m->pindex) {
2355				if (rcount) {
2356					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2357						(long)fidx, rcount, (long)pa);
2358					if (nl > 18) {
2359						c = cngetc();
2360						if (c != ' ')
2361							return;
2362						nl = 0;
2363					}
2364					nl++;
2365					rcount = 0;
2366				}
2367			}
2368			if (rcount &&
2369				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2370				++rcount;
2371				continue;
2372			}
2373			if (rcount) {
2374				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2375					(long)fidx, rcount, (long)pa);
2376				if (nl > 18) {
2377					c = cngetc();
2378					if (c != ' ')
2379						return;
2380					nl = 0;
2381				}
2382				nl++;
2383			}
2384			fidx = m->pindex;
2385			pa = VM_PAGE_TO_PHYS(m);
2386			rcount = 1;
2387		}
2388		if (rcount) {
2389			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2390				(long)fidx, rcount, (long)pa);
2391			if (nl > 18) {
2392				c = cngetc();
2393				if (c != ' ')
2394					return;
2395				nl = 0;
2396			}
2397			nl++;
2398		}
2399	}
2400}
2401#endif /* DDB */
2402