vm_object.c revision 247788
1139776Simp/*-
222521Sdyson * Copyright (c) 1991, 1993
31541Srgrimes *	The Regents of the University of California.  All rights reserved.
41541Srgrimes *
51541Srgrimes * This code is derived from software contributed to Berkeley by
61541Srgrimes * The Mach Operating System project at Carnegie-Mellon University.
71541Srgrimes *
81541Srgrimes * Redistribution and use in source and binary forms, with or without
91541Srgrimes * modification, are permitted provided that the following conditions
101541Srgrimes * are met:
111541Srgrimes * 1. Redistributions of source code must retain the above copyright
121541Srgrimes *    notice, this list of conditions and the following disclaimer.
131541Srgrimes * 2. Redistributions in binary form must reproduce the above copyright
141541Srgrimes *    notice, this list of conditions and the following disclaimer in the
151541Srgrimes *    documentation and/or other materials provided with the distribution.
161541Srgrimes * 4. Neither the name of the University nor the names of its contributors
171541Srgrimes *    may be used to endorse or promote products derived from this software
181541Srgrimes *    without specific prior written permission.
191541Srgrimes *
201541Srgrimes * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
211541Srgrimes * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
221541Srgrimes * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
231541Srgrimes * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
241541Srgrimes * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
251541Srgrimes * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
261541Srgrimes * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
271541Srgrimes * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
281541Srgrimes * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
291541Srgrimes * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
301541Srgrimes * SUCH DAMAGE.
311541Srgrimes *
321541Srgrimes *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
331541Srgrimes *
3450477Speter *
351541Srgrimes * Copyright (c) 1987, 1990 Carnegie-Mellon University.
361541Srgrimes * All rights reserved.
371541Srgrimes *
381541Srgrimes * Authors: Avadis Tevanian, Jr., Michael Wayne Young
391541Srgrimes *
401541Srgrimes * Permission to use, copy, modify and distribute this software and
411541Srgrimes * its documentation is hereby granted, provided that both the copyright
421541Srgrimes * notice and this permission notice appear in all copies of the
4376166Smarkm * software, derivative works or modified versions, and any portions
442946Swollman * thereof, and that both notices appear in supporting documentation.
4576166Smarkm *
4689316Salfred * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
4776166Smarkm * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
4876166Smarkm * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
491541Srgrimes *
501541Srgrimes * Carnegie Mellon requests users of this software to return to
511541Srgrimes *
5276166Smarkm *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
5377031Sru *  School of Computer Science
541541Srgrimes *  Carnegie Mellon University
55151897Srwatson *  Pittsburgh PA 15213-3890
5630354Sphk *
57158611Skbyanc * any improvements or extensions that they make and grant Carnegie the
58132902Sphk * rights to redistribute these changes.
59116271Sphk */
60116271Sphk
61141622Sphk/*
62116271Sphk *	Virtual memory object module.
631541Srgrimes */
64158611Skbyanc
65158611Skbyanc#include <sys/cdefs.h>
66158611Skbyanc__FBSDID("$FreeBSD: head/sys/vm/vm_object.c 247788 2013-03-04 13:10:59Z attilio $");
67191990Sattilio
68158611Skbyanc#include "opt_vm.h"
69158611Skbyanc
70158611Skbyanc#include <sys/param.h>
71158611Skbyanc#include <sys/systm.h>
72158611Skbyanc#include <sys/lock.h>
731541Srgrimes#include <sys/mman.h>
741541Srgrimes#include <sys/mount.h>
7512143Sphk#include <sys/kernel.h>
76191990Sattilio#include <sys/sysctl.h>
771541Srgrimes#include <sys/mutex.h>
781541Srgrimes#include <sys/proc.h>		/* for curproc, pageproc */
791541Srgrimes#include <sys/socket.h>
801541Srgrimes#include <sys/resourcevar.h>
811541Srgrimes#include <sys/vnode.h>
821541Srgrimes#include <sys/vmmeter.h>
831541Srgrimes#include <sys/sx.h>
841541Srgrimes
85137478Sphk#include <vm/vm.h>
861541Srgrimes#include <vm/vm_param.h>
871541Srgrimes#include <vm/pmap.h>
88184205Sdes#include <vm/vm_map.h>
89111119Simp#include <vm/vm_object.h>
90179288Slulf#include <vm/vm_page.h>
91179288Slulf#include <vm/vm_pageout.h>
92179288Slulf#include <vm/vm_pager.h>
93179288Slulf#include <vm/swap_pager.h>
94179288Slulf#include <vm/vm_kern.h>
95179288Slulf#include <vm/vm_extern.h>
96179288Slulf#include <vm/vm_reserv.h>
97191990Sattilio#include <vm/uma.h>
98179288Slulf
99179288Slulfstatic int old_msync;
100179288SlulfSYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
101179288Slulf    "Use old (insecure) msync behavior");
102179288Slulf
1031541Srgrimesstatic int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
104101308Sjeff		    int pagerflags, int flags, boolean_t *clearobjflags,
1051541Srgrimes		    boolean_t *eio);
106179288Slulfstatic boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
1071541Srgrimes		    boolean_t *clearobjflags);
1081541Srgrimesstatic void	vm_object_qcollapse(vm_object_t object);
109179288Slulfstatic void	vm_object_vndeallocate(vm_object_t object);
110179288Slulf
111179288Slulf/*
11222521Sdyson *	Virtual memory objects maintain the actual data
1131541Srgrimes *	associated with allocated virtual memory.  A given
114138483Sphk *	page of memory exists within exactly one object.
1151541Srgrimes *
1161541Srgrimes *	An object is only deallocated when all "references"
1171541Srgrimes *	are given up.  Only one "reference" to a given
11812143Sphk *	region of an object should be writeable.
119191990Sattilio *
1201541Srgrimes *	Associated with each object is a list of all resident
1211541Srgrimes *	memory pages belonging to that object; this list is
1221541Srgrimes *	maintained by the "vm_page" module, and locked by the object's
123179288Slulf *	lock.
124179288Slulf *
1251541Srgrimes *	Each object also records a "pager" routine which is
1261541Srgrimes *	used to retrieve (and store) pages to the proper backing
1271541Srgrimes *	storage.  In addition, objects may be backed by other
128179288Slulf *	objects from which they were virtual-copied.
129179288Slulf *
130179288Slulf *	The only items within the object structure which are
131179288Slulf *	modified after time of creation are:
132179288Slulf *		reference count		locked by object's lock
133179288Slulf *		pager routine		locked by object's lock
1341541Srgrimes *
135179288Slulf */
1361541Srgrimes
1371541Srgrimesstruct object_q vm_object_list;
1381541Srgrimesstruct mtx vm_object_list_mtx;	/* lock for object list and count */
1391541Srgrimes
1401541Srgrimesstruct vm_object kernel_object_store;
14176688Siedowsestruct vm_object kmem_object_store;
14276688Siedowse
14376688Siedowsestatic SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
1441541Srgrimes    "VM object stats");
145191990Sattilio
1461541Srgrimesstatic long object_collapses;
1471541SrgrimesSYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
1481541Srgrimes    &object_collapses, 0, "VM object collapses");
149179288Slulf
150179288Slulfstatic long object_bypasses;
1511541SrgrimesSYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
152179288Slulf    &object_bypasses, 0, "VM object bypasses");
153179288Slulf
1541541Srgrimesstatic uma_zone_t obj_zone;
155179288Slulf
156179288Slulfstatic int vm_object_zinit(void *mem, int size, int flags);
1571541Srgrimes
1581541Srgrimes#ifdef INVARIANTS
1591541Srgrimesstatic void vm_object_zdtor(void *mem, int size, void *arg);
1601541Srgrimes
161141622Sphkstatic void
162191990Sattiliovm_object_zdtor(void *mem, int size, void *arg)
1631541Srgrimes{
164144058Sjeff	vm_object_t object;
1651541Srgrimes
1661541Srgrimes	object = (vm_object_t)mem;
1671541Srgrimes	KASSERT(TAILQ_EMPTY(&object->memq),
1681541Srgrimes	    ("object %p has resident pages in its memq", object));
1691541Srgrimes	KASSERT(object->root == NULL,
1701541Srgrimes	    ("object %p has resident pages in its tree", object));
1711541Srgrimes#if VM_NRESERVLEVEL > 0
1721541Srgrimes	KASSERT(LIST_EMPTY(&object->rvq),
173191990Sattilio	    ("object %p has reservations",
1741541Srgrimes	    object));
1751541Srgrimes#endif
1761541Srgrimes	KASSERT(object->cache == NULL,
1771541Srgrimes	    ("object %p has cached pages",
17812143Sphk	    object));
179191990Sattilio	KASSERT(object->paging_in_progress == 0,
1801541Srgrimes	    ("object %p paging_in_progress = %d",
1811541Srgrimes	    object, object->paging_in_progress));
182191990Sattilio	KASSERT(object->resident_page_count == 0,
18383366Sjulian	    ("object %p resident_page_count = %d",
1841541Srgrimes	    object, object->resident_page_count));
1851541Srgrimes	KASSERT(object->shadow_count == 0,
1861541Srgrimes	    ("object %p shadow_count = %d",
1871541Srgrimes	    object, object->shadow_count));
1881541Srgrimes}
1891541Srgrimes#endif
190191990Sattilio
191191990Sattiliostatic int
1921541Srgrimesvm_object_zinit(void *mem, int size, int flags)
1931541Srgrimes{
1941541Srgrimes	vm_object_t object;
1951541Srgrimes
1961541Srgrimes	object = (vm_object_t)mem;
1971541Srgrimes	bzero(&object->mtx, sizeof(object->mtx));
198125454Sjhb	mtx_init(&object->mtx, "vm object", NULL, MTX_DEF | MTX_DUPOK);
199125454Sjhb
200125454Sjhb	/* These are true for any object that has been freed */
20183366Sjulian	object->root = NULL;
202168355Srwatson	object->paging_in_progress = 0;
2031541Srgrimes	object->resident_page_count = 0;
2041541Srgrimes	object->shadow_count = 0;
2051541Srgrimes	object->cache = NULL;
2061541Srgrimes	return (0);
2071541Srgrimes}
2081541Srgrimes
2091541Srgrimesstatic void
2101541Srgrimes_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
2111541Srgrimes{
2121541Srgrimes
2131541Srgrimes	TAILQ_INIT(&object->memq);
2141541Srgrimes	LIST_INIT(&object->shadow_head);
215168355Srwatson
2161541Srgrimes	object->type = type;
2171541Srgrimes	switch (type) {
2181541Srgrimes	case OBJT_DEAD:
2191541Srgrimes		panic("_vm_object_allocate: can't create OBJT_DEAD");
2201541Srgrimes	case OBJT_DEFAULT:
2211541Srgrimes	case OBJT_SWAP:
2221541Srgrimes		object->flags = OBJ_ONEMAPPING;
2231541Srgrimes		break;
2241541Srgrimes	case OBJT_DEVICE:
2251541Srgrimes	case OBJT_SG:
2261541Srgrimes		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
2271541Srgrimes		break;
22812143Sphk	case OBJT_MGTDEVICE:
229158611Skbyanc		object->flags = OBJ_FICTITIOUS;
230116271Sphk		break;
231132902Sphk	case OBJT_PHYS:
232116271Sphk		object->flags = OBJ_UNMANAGED;
233116271Sphk		break;
234179288Slulf	case OBJT_VNODE:
235116271Sphk		object->flags = 0;
2361541Srgrimes		break;
2372946Swollman	default:
23877133Sru		panic("_vm_object_allocate: type %d is undefined", type);
239	}
240	object->size = size;
241	object->generation = 1;
242	object->ref_count = 1;
243	object->memattr = VM_MEMATTR_DEFAULT;
244	object->cred = NULL;
245	object->charge = 0;
246	object->handle = NULL;
247	object->backing_object = NULL;
248	object->backing_object_offset = (vm_ooffset_t) 0;
249#if VM_NRESERVLEVEL > 0
250	LIST_INIT(&object->rvq);
251#endif
252
253	mtx_lock(&vm_object_list_mtx);
254	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
255	mtx_unlock(&vm_object_list_mtx);
256}
257
258/*
259 *	vm_object_init:
260 *
261 *	Initialize the VM objects module.
262 */
263void
264vm_object_init(void)
265{
266	TAILQ_INIT(&vm_object_list);
267	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
268
269	mtx_init(&kernel_object->mtx, "vm object", "kernel object", MTX_DEF);
270	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
271	    kernel_object);
272#if VM_NRESERVLEVEL > 0
273	kernel_object->flags |= OBJ_COLORED;
274	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
275#endif
276
277	mtx_init(&kmem_object->mtx, "vm object", "kmem object", MTX_DEF);
278	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
279	    kmem_object);
280#if VM_NRESERVLEVEL > 0
281	kmem_object->flags |= OBJ_COLORED;
282	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
283#endif
284
285	/*
286	 * The lock portion of struct vm_object must be type stable due
287	 * to vm_pageout_fallback_object_lock locking a vm object
288	 * without holding any references to it.
289	 */
290	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
291#ifdef INVARIANTS
292	    vm_object_zdtor,
293#else
294	    NULL,
295#endif
296	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
297}
298
299void
300vm_object_clear_flag(vm_object_t object, u_short bits)
301{
302
303	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
304	object->flags &= ~bits;
305}
306
307/*
308 *	Sets the default memory attribute for the specified object.  Pages
309 *	that are allocated to this object are by default assigned this memory
310 *	attribute.
311 *
312 *	Presently, this function must be called before any pages are allocated
313 *	to the object.  In the future, this requirement may be relaxed for
314 *	"default" and "swap" objects.
315 */
316int
317vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
318{
319
320	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
321	switch (object->type) {
322	case OBJT_DEFAULT:
323	case OBJT_DEVICE:
324	case OBJT_MGTDEVICE:
325	case OBJT_PHYS:
326	case OBJT_SG:
327	case OBJT_SWAP:
328	case OBJT_VNODE:
329		if (!TAILQ_EMPTY(&object->memq))
330			return (KERN_FAILURE);
331		break;
332	case OBJT_DEAD:
333		return (KERN_INVALID_ARGUMENT);
334	default:
335		panic("vm_object_set_memattr: object %p is of undefined type",
336		    object);
337	}
338	object->memattr = memattr;
339	return (KERN_SUCCESS);
340}
341
342void
343vm_object_pip_add(vm_object_t object, short i)
344{
345
346	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
347	object->paging_in_progress += i;
348}
349
350void
351vm_object_pip_subtract(vm_object_t object, short i)
352{
353
354	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
355	object->paging_in_progress -= i;
356}
357
358void
359vm_object_pip_wakeup(vm_object_t object)
360{
361
362	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
363	object->paging_in_progress--;
364	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
365		vm_object_clear_flag(object, OBJ_PIPWNT);
366		wakeup(object);
367	}
368}
369
370void
371vm_object_pip_wakeupn(vm_object_t object, short i)
372{
373
374	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
375	if (i)
376		object->paging_in_progress -= i;
377	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
378		vm_object_clear_flag(object, OBJ_PIPWNT);
379		wakeup(object);
380	}
381}
382
383void
384vm_object_pip_wait(vm_object_t object, char *waitid)
385{
386
387	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
388	while (object->paging_in_progress) {
389		object->flags |= OBJ_PIPWNT;
390		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
391	}
392}
393
394/*
395 *	vm_object_allocate:
396 *
397 *	Returns a new object with the given size.
398 */
399vm_object_t
400vm_object_allocate(objtype_t type, vm_pindex_t size)
401{
402	vm_object_t object;
403
404	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
405	_vm_object_allocate(type, size, object);
406	return (object);
407}
408
409
410/*
411 *	vm_object_reference:
412 *
413 *	Gets another reference to the given object.  Note: OBJ_DEAD
414 *	objects can be referenced during final cleaning.
415 */
416void
417vm_object_reference(vm_object_t object)
418{
419	if (object == NULL)
420		return;
421	VM_OBJECT_LOCK(object);
422	vm_object_reference_locked(object);
423	VM_OBJECT_UNLOCK(object);
424}
425
426/*
427 *	vm_object_reference_locked:
428 *
429 *	Gets another reference to the given object.
430 *
431 *	The object must be locked.
432 */
433void
434vm_object_reference_locked(vm_object_t object)
435{
436	struct vnode *vp;
437
438	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
439	object->ref_count++;
440	if (object->type == OBJT_VNODE) {
441		vp = object->handle;
442		vref(vp);
443	}
444}
445
446/*
447 * Handle deallocating an object of type OBJT_VNODE.
448 */
449static void
450vm_object_vndeallocate(vm_object_t object)
451{
452	struct vnode *vp = (struct vnode *) object->handle;
453
454	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
455	KASSERT(object->type == OBJT_VNODE,
456	    ("vm_object_vndeallocate: not a vnode object"));
457	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
458#ifdef INVARIANTS
459	if (object->ref_count == 0) {
460		vprint("vm_object_vndeallocate", vp);
461		panic("vm_object_vndeallocate: bad object reference count");
462	}
463#endif
464
465	if (object->ref_count > 1) {
466		object->ref_count--;
467		VM_OBJECT_UNLOCK(object);
468		/* vrele may need the vnode lock. */
469		vrele(vp);
470	} else {
471		vhold(vp);
472		VM_OBJECT_UNLOCK(object);
473		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
474		vdrop(vp);
475		VM_OBJECT_LOCK(object);
476		object->ref_count--;
477		if (object->type == OBJT_DEAD) {
478			VM_OBJECT_UNLOCK(object);
479			VOP_UNLOCK(vp, 0);
480		} else {
481			if (object->ref_count == 0)
482				VOP_UNSET_TEXT(vp);
483			VM_OBJECT_UNLOCK(object);
484			vput(vp);
485		}
486	}
487}
488
489/*
490 *	vm_object_deallocate:
491 *
492 *	Release a reference to the specified object,
493 *	gained either through a vm_object_allocate
494 *	or a vm_object_reference call.  When all references
495 *	are gone, storage associated with this object
496 *	may be relinquished.
497 *
498 *	No object may be locked.
499 */
500void
501vm_object_deallocate(vm_object_t object)
502{
503	vm_object_t temp;
504
505	while (object != NULL) {
506		VM_OBJECT_LOCK(object);
507		if (object->type == OBJT_VNODE) {
508			vm_object_vndeallocate(object);
509			return;
510		}
511
512		KASSERT(object->ref_count != 0,
513			("vm_object_deallocate: object deallocated too many times: %d", object->type));
514
515		/*
516		 * If the reference count goes to 0 we start calling
517		 * vm_object_terminate() on the object chain.
518		 * A ref count of 1 may be a special case depending on the
519		 * shadow count being 0 or 1.
520		 */
521		object->ref_count--;
522		if (object->ref_count > 1) {
523			VM_OBJECT_UNLOCK(object);
524			return;
525		} else if (object->ref_count == 1) {
526			if (object->shadow_count == 0 &&
527			    object->handle == NULL &&
528			    (object->type == OBJT_DEFAULT ||
529			     object->type == OBJT_SWAP)) {
530				vm_object_set_flag(object, OBJ_ONEMAPPING);
531			} else if ((object->shadow_count == 1) &&
532			    (object->handle == NULL) &&
533			    (object->type == OBJT_DEFAULT ||
534			     object->type == OBJT_SWAP)) {
535				vm_object_t robject;
536
537				robject = LIST_FIRST(&object->shadow_head);
538				KASSERT(robject != NULL,
539				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
540					 object->ref_count,
541					 object->shadow_count));
542				if (!VM_OBJECT_TRYLOCK(robject)) {
543					/*
544					 * Avoid a potential deadlock.
545					 */
546					object->ref_count++;
547					VM_OBJECT_UNLOCK(object);
548					/*
549					 * More likely than not the thread
550					 * holding robject's lock has lower
551					 * priority than the current thread.
552					 * Let the lower priority thread run.
553					 */
554					pause("vmo_de", 1);
555					continue;
556				}
557				/*
558				 * Collapse object into its shadow unless its
559				 * shadow is dead.  In that case, object will
560				 * be deallocated by the thread that is
561				 * deallocating its shadow.
562				 */
563				if ((robject->flags & OBJ_DEAD) == 0 &&
564				    (robject->handle == NULL) &&
565				    (robject->type == OBJT_DEFAULT ||
566				     robject->type == OBJT_SWAP)) {
567
568					robject->ref_count++;
569retry:
570					if (robject->paging_in_progress) {
571						VM_OBJECT_UNLOCK(object);
572						vm_object_pip_wait(robject,
573						    "objde1");
574						temp = robject->backing_object;
575						if (object == temp) {
576							VM_OBJECT_LOCK(object);
577							goto retry;
578						}
579					} else if (object->paging_in_progress) {
580						VM_OBJECT_UNLOCK(robject);
581						object->flags |= OBJ_PIPWNT;
582						VM_OBJECT_SLEEP(object, object,
583						    PDROP | PVM, "objde2", 0);
584						VM_OBJECT_LOCK(robject);
585						temp = robject->backing_object;
586						if (object == temp) {
587							VM_OBJECT_LOCK(object);
588							goto retry;
589						}
590					} else
591						VM_OBJECT_UNLOCK(object);
592
593					if (robject->ref_count == 1) {
594						robject->ref_count--;
595						object = robject;
596						goto doterm;
597					}
598					object = robject;
599					vm_object_collapse(object);
600					VM_OBJECT_UNLOCK(object);
601					continue;
602				}
603				VM_OBJECT_UNLOCK(robject);
604			}
605			VM_OBJECT_UNLOCK(object);
606			return;
607		}
608doterm:
609		temp = object->backing_object;
610		if (temp != NULL) {
611			VM_OBJECT_LOCK(temp);
612			LIST_REMOVE(object, shadow_list);
613			temp->shadow_count--;
614			VM_OBJECT_UNLOCK(temp);
615			object->backing_object = NULL;
616		}
617		/*
618		 * Don't double-terminate, we could be in a termination
619		 * recursion due to the terminate having to sync data
620		 * to disk.
621		 */
622		if ((object->flags & OBJ_DEAD) == 0)
623			vm_object_terminate(object);
624		else
625			VM_OBJECT_UNLOCK(object);
626		object = temp;
627	}
628}
629
630/*
631 *	vm_object_destroy removes the object from the global object list
632 *      and frees the space for the object.
633 */
634void
635vm_object_destroy(vm_object_t object)
636{
637
638	/*
639	 * Remove the object from the global object list.
640	 */
641	mtx_lock(&vm_object_list_mtx);
642	TAILQ_REMOVE(&vm_object_list, object, object_list);
643	mtx_unlock(&vm_object_list_mtx);
644
645	/*
646	 * Release the allocation charge.
647	 */
648	if (object->cred != NULL) {
649		KASSERT(object->type == OBJT_DEFAULT ||
650		    object->type == OBJT_SWAP,
651		    ("vm_object_terminate: non-swap obj %p has cred",
652		     object));
653		swap_release_by_cred(object->charge, object->cred);
654		object->charge = 0;
655		crfree(object->cred);
656		object->cred = NULL;
657	}
658
659	/*
660	 * Free the space for the object.
661	 */
662	uma_zfree(obj_zone, object);
663}
664
665/*
666 *	vm_object_terminate actually destroys the specified object, freeing
667 *	up all previously used resources.
668 *
669 *	The object must be locked.
670 *	This routine may block.
671 */
672void
673vm_object_terminate(vm_object_t object)
674{
675	vm_page_t p, p_next;
676
677	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
678
679	/*
680	 * Make sure no one uses us.
681	 */
682	vm_object_set_flag(object, OBJ_DEAD);
683
684	/*
685	 * wait for the pageout daemon to be done with the object
686	 */
687	vm_object_pip_wait(object, "objtrm");
688
689	KASSERT(!object->paging_in_progress,
690		("vm_object_terminate: pageout in progress"));
691
692	/*
693	 * Clean and free the pages, as appropriate. All references to the
694	 * object are gone, so we don't need to lock it.
695	 */
696	if (object->type == OBJT_VNODE) {
697		struct vnode *vp = (struct vnode *)object->handle;
698
699		/*
700		 * Clean pages and flush buffers.
701		 */
702		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
703		VM_OBJECT_UNLOCK(object);
704
705		vinvalbuf(vp, V_SAVE, 0, 0);
706
707		VM_OBJECT_LOCK(object);
708	}
709
710	KASSERT(object->ref_count == 0,
711		("vm_object_terminate: object with references, ref_count=%d",
712		object->ref_count));
713
714	/*
715	 * Free any remaining pageable pages.  This also removes them from the
716	 * paging queues.  However, don't free wired pages, just remove them
717	 * from the object.  Rather than incrementally removing each page from
718	 * the object, the page and object are reset to any empty state.
719	 */
720	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
721		KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
722		    ("vm_object_terminate: freeing busy page %p", p));
723		vm_page_lock(p);
724		/*
725		 * Optimize the page's removal from the object by resetting
726		 * its "object" field.  Specifically, if the page is not
727		 * wired, then the effect of this assignment is that
728		 * vm_page_free()'s call to vm_page_remove() will return
729		 * immediately without modifying the page or the object.
730		 */
731		p->object = NULL;
732		if (p->wire_count == 0) {
733			vm_page_free(p);
734			PCPU_INC(cnt.v_pfree);
735		}
736		vm_page_unlock(p);
737	}
738	/*
739	 * If the object contained any pages, then reset it to an empty state.
740	 * None of the object's fields, including "resident_page_count", were
741	 * modified by the preceding loop.
742	 */
743	if (object->resident_page_count != 0) {
744		object->root = NULL;
745		TAILQ_INIT(&object->memq);
746		object->resident_page_count = 0;
747		if (object->type == OBJT_VNODE)
748			vdrop(object->handle);
749	}
750
751#if VM_NRESERVLEVEL > 0
752	if (__predict_false(!LIST_EMPTY(&object->rvq)))
753		vm_reserv_break_all(object);
754#endif
755	if (__predict_false(object->cache != NULL))
756		vm_page_cache_free(object, 0, 0);
757
758	/*
759	 * Let the pager know object is dead.
760	 */
761	vm_pager_deallocate(object);
762	VM_OBJECT_UNLOCK(object);
763
764	vm_object_destroy(object);
765}
766
767/*
768 * Make the page read-only so that we can clear the object flags.  However, if
769 * this is a nosync mmap then the object is likely to stay dirty so do not
770 * mess with the page and do not clear the object flags.  Returns TRUE if the
771 * page should be flushed, and FALSE otherwise.
772 */
773static boolean_t
774vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
775{
776
777	/*
778	 * If we have been asked to skip nosync pages and this is a
779	 * nosync page, skip it.  Note that the object flags were not
780	 * cleared in this case so we do not have to set them.
781	 */
782	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
783		*clearobjflags = FALSE;
784		return (FALSE);
785	} else {
786		pmap_remove_write(p);
787		return (p->dirty != 0);
788	}
789}
790
791/*
792 *	vm_object_page_clean
793 *
794 *	Clean all dirty pages in the specified range of object.  Leaves page
795 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
796 *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
797 *	leaving the object dirty.
798 *
799 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
800 *	synchronous clustering mode implementation.
801 *
802 *	Odd semantics: if start == end, we clean everything.
803 *
804 *	The object must be locked.
805 *
806 *	Returns FALSE if some page from the range was not written, as
807 *	reported by the pager, and TRUE otherwise.
808 */
809boolean_t
810vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
811    int flags)
812{
813	vm_page_t np, p;
814	vm_pindex_t pi, tend, tstart;
815	int curgeneration, n, pagerflags;
816	boolean_t clearobjflags, eio, res;
817
818	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
819	KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
820	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
821	    object->resident_page_count == 0)
822		return (TRUE);
823
824	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
825	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
826	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
827
828	tstart = OFF_TO_IDX(start);
829	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
830	clearobjflags = tstart == 0 && tend >= object->size;
831	res = TRUE;
832
833rescan:
834	curgeneration = object->generation;
835
836	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
837		pi = p->pindex;
838		if (pi >= tend)
839			break;
840		np = TAILQ_NEXT(p, listq);
841		if (p->valid == 0)
842			continue;
843		if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
844			if (object->generation != curgeneration) {
845				if ((flags & OBJPC_SYNC) != 0)
846					goto rescan;
847				else
848					clearobjflags = FALSE;
849			}
850			np = vm_page_find_least(object, pi);
851			continue;
852		}
853		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
854			continue;
855
856		n = vm_object_page_collect_flush(object, p, pagerflags,
857		    flags, &clearobjflags, &eio);
858		if (eio) {
859			res = FALSE;
860			clearobjflags = FALSE;
861		}
862		if (object->generation != curgeneration) {
863			if ((flags & OBJPC_SYNC) != 0)
864				goto rescan;
865			else
866				clearobjflags = FALSE;
867		}
868
869		/*
870		 * If the VOP_PUTPAGES() did a truncated write, so
871		 * that even the first page of the run is not fully
872		 * written, vm_pageout_flush() returns 0 as the run
873		 * length.  Since the condition that caused truncated
874		 * write may be permanent, e.g. exhausted free space,
875		 * accepting n == 0 would cause an infinite loop.
876		 *
877		 * Forwarding the iterator leaves the unwritten page
878		 * behind, but there is not much we can do there if
879		 * filesystem refuses to write it.
880		 */
881		if (n == 0) {
882			n = 1;
883			clearobjflags = FALSE;
884		}
885		np = vm_page_find_least(object, pi + n);
886	}
887#if 0
888	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
889#endif
890
891	if (clearobjflags)
892		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
893	return (res);
894}
895
896static int
897vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
898    int flags, boolean_t *clearobjflags, boolean_t *eio)
899{
900	vm_page_t ma[vm_pageout_page_count], p_first, tp;
901	int count, i, mreq, runlen;
902
903	vm_page_lock_assert(p, MA_NOTOWNED);
904	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
905
906	count = 1;
907	mreq = 0;
908
909	for (tp = p; count < vm_pageout_page_count; count++) {
910		tp = vm_page_next(tp);
911		if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
912			break;
913		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
914			break;
915	}
916
917	for (p_first = p; count < vm_pageout_page_count; count++) {
918		tp = vm_page_prev(p_first);
919		if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
920			break;
921		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
922			break;
923		p_first = tp;
924		mreq++;
925	}
926
927	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
928		ma[i] = tp;
929
930	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
931	return (runlen);
932}
933
934/*
935 * Note that there is absolutely no sense in writing out
936 * anonymous objects, so we track down the vnode object
937 * to write out.
938 * We invalidate (remove) all pages from the address space
939 * for semantic correctness.
940 *
941 * If the backing object is a device object with unmanaged pages, then any
942 * mappings to the specified range of pages must be removed before this
943 * function is called.
944 *
945 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
946 * may start out with a NULL object.
947 */
948boolean_t
949vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
950    boolean_t syncio, boolean_t invalidate)
951{
952	vm_object_t backing_object;
953	struct vnode *vp;
954	struct mount *mp;
955	int error, flags, fsync_after;
956	boolean_t res;
957
958	if (object == NULL)
959		return (TRUE);
960	res = TRUE;
961	error = 0;
962	VM_OBJECT_LOCK(object);
963	while ((backing_object = object->backing_object) != NULL) {
964		VM_OBJECT_LOCK(backing_object);
965		offset += object->backing_object_offset;
966		VM_OBJECT_UNLOCK(object);
967		object = backing_object;
968		if (object->size < OFF_TO_IDX(offset + size))
969			size = IDX_TO_OFF(object->size) - offset;
970	}
971	/*
972	 * Flush pages if writing is allowed, invalidate them
973	 * if invalidation requested.  Pages undergoing I/O
974	 * will be ignored by vm_object_page_remove().
975	 *
976	 * We cannot lock the vnode and then wait for paging
977	 * to complete without deadlocking against vm_fault.
978	 * Instead we simply call vm_object_page_remove() and
979	 * allow it to block internally on a page-by-page
980	 * basis when it encounters pages undergoing async
981	 * I/O.
982	 */
983	if (object->type == OBJT_VNODE &&
984	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
985		vp = object->handle;
986		VM_OBJECT_UNLOCK(object);
987		(void) vn_start_write(vp, &mp, V_WAIT);
988		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
989		if (syncio && !invalidate && offset == 0 &&
990		    OFF_TO_IDX(size) == object->size) {
991			/*
992			 * If syncing the whole mapping of the file,
993			 * it is faster to schedule all the writes in
994			 * async mode, also allowing the clustering,
995			 * and then wait for i/o to complete.
996			 */
997			flags = 0;
998			fsync_after = TRUE;
999		} else {
1000			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1001			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1002			fsync_after = FALSE;
1003		}
1004		VM_OBJECT_LOCK(object);
1005		res = vm_object_page_clean(object, offset, offset + size,
1006		    flags);
1007		VM_OBJECT_UNLOCK(object);
1008		if (fsync_after)
1009			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1010		VOP_UNLOCK(vp, 0);
1011		vn_finished_write(mp);
1012		if (error != 0)
1013			res = FALSE;
1014		VM_OBJECT_LOCK(object);
1015	}
1016	if ((object->type == OBJT_VNODE ||
1017	     object->type == OBJT_DEVICE) && invalidate) {
1018		if (object->type == OBJT_DEVICE)
1019			/*
1020			 * The option OBJPR_NOTMAPPED must be passed here
1021			 * because vm_object_page_remove() cannot remove
1022			 * unmanaged mappings.
1023			 */
1024			flags = OBJPR_NOTMAPPED;
1025		else if (old_msync)
1026			flags = 0;
1027		else
1028			flags = OBJPR_CLEANONLY;
1029		vm_object_page_remove(object, OFF_TO_IDX(offset),
1030		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1031	}
1032	VM_OBJECT_UNLOCK(object);
1033	return (res);
1034}
1035
1036/*
1037 *	vm_object_madvise:
1038 *
1039 *	Implements the madvise function at the object/page level.
1040 *
1041 *	MADV_WILLNEED	(any object)
1042 *
1043 *	    Activate the specified pages if they are resident.
1044 *
1045 *	MADV_DONTNEED	(any object)
1046 *
1047 *	    Deactivate the specified pages if they are resident.
1048 *
1049 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1050 *			 OBJ_ONEMAPPING only)
1051 *
1052 *	    Deactivate and clean the specified pages if they are
1053 *	    resident.  This permits the process to reuse the pages
1054 *	    without faulting or the kernel to reclaim the pages
1055 *	    without I/O.
1056 */
1057void
1058vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1059    int advise)
1060{
1061	vm_pindex_t tpindex;
1062	vm_object_t backing_object, tobject;
1063	vm_page_t m;
1064
1065	if (object == NULL)
1066		return;
1067	VM_OBJECT_LOCK(object);
1068	/*
1069	 * Locate and adjust resident pages
1070	 */
1071	for (; pindex < end; pindex += 1) {
1072relookup:
1073		tobject = object;
1074		tpindex = pindex;
1075shadowlookup:
1076		/*
1077		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1078		 * and those pages must be OBJ_ONEMAPPING.
1079		 */
1080		if (advise == MADV_FREE) {
1081			if ((tobject->type != OBJT_DEFAULT &&
1082			     tobject->type != OBJT_SWAP) ||
1083			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1084				goto unlock_tobject;
1085			}
1086		} else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1087			goto unlock_tobject;
1088		m = vm_page_lookup(tobject, tpindex);
1089		if (m == NULL && advise == MADV_WILLNEED) {
1090			/*
1091			 * If the page is cached, reactivate it.
1092			 */
1093			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1094			    VM_ALLOC_NOBUSY);
1095		}
1096		if (m == NULL) {
1097			/*
1098			 * There may be swap even if there is no backing page
1099			 */
1100			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1101				swap_pager_freespace(tobject, tpindex, 1);
1102			/*
1103			 * next object
1104			 */
1105			backing_object = tobject->backing_object;
1106			if (backing_object == NULL)
1107				goto unlock_tobject;
1108			VM_OBJECT_LOCK(backing_object);
1109			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1110			if (tobject != object)
1111				VM_OBJECT_UNLOCK(tobject);
1112			tobject = backing_object;
1113			goto shadowlookup;
1114		} else if (m->valid != VM_PAGE_BITS_ALL)
1115			goto unlock_tobject;
1116		/*
1117		 * If the page is not in a normal state, skip it.
1118		 */
1119		vm_page_lock(m);
1120		if (m->hold_count != 0 || m->wire_count != 0) {
1121			vm_page_unlock(m);
1122			goto unlock_tobject;
1123		}
1124		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1125		    ("vm_object_madvise: page %p is fictitious", m));
1126		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1127		    ("vm_object_madvise: page %p is not managed", m));
1128		if ((m->oflags & VPO_BUSY) || m->busy) {
1129			if (advise == MADV_WILLNEED) {
1130				/*
1131				 * Reference the page before unlocking and
1132				 * sleeping so that the page daemon is less
1133				 * likely to reclaim it.
1134				 */
1135				vm_page_aflag_set(m, PGA_REFERENCED);
1136			}
1137			vm_page_unlock(m);
1138			if (object != tobject)
1139				VM_OBJECT_UNLOCK(object);
1140			m->oflags |= VPO_WANTED;
1141			VM_OBJECT_SLEEP(tobject, m, PDROP | PVM, "madvpo", 0);
1142			VM_OBJECT_LOCK(object);
1143  			goto relookup;
1144		}
1145		if (advise == MADV_WILLNEED) {
1146			vm_page_activate(m);
1147		} else if (advise == MADV_DONTNEED) {
1148			vm_page_dontneed(m);
1149		} else if (advise == MADV_FREE) {
1150			/*
1151			 * Mark the page clean.  This will allow the page
1152			 * to be freed up by the system.  However, such pages
1153			 * are often reused quickly by malloc()/free()
1154			 * so we do not do anything that would cause
1155			 * a page fault if we can help it.
1156			 *
1157			 * Specifically, we do not try to actually free
1158			 * the page now nor do we try to put it in the
1159			 * cache (which would cause a page fault on reuse).
1160			 *
1161			 * But we do make the page is freeable as we
1162			 * can without actually taking the step of unmapping
1163			 * it.
1164			 */
1165			pmap_clear_modify(m);
1166			m->dirty = 0;
1167			m->act_count = 0;
1168			vm_page_dontneed(m);
1169		}
1170		vm_page_unlock(m);
1171		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1172			swap_pager_freespace(tobject, tpindex, 1);
1173unlock_tobject:
1174		if (tobject != object)
1175			VM_OBJECT_UNLOCK(tobject);
1176	}
1177	VM_OBJECT_UNLOCK(object);
1178}
1179
1180/*
1181 *	vm_object_shadow:
1182 *
1183 *	Create a new object which is backed by the
1184 *	specified existing object range.  The source
1185 *	object reference is deallocated.
1186 *
1187 *	The new object and offset into that object
1188 *	are returned in the source parameters.
1189 */
1190void
1191vm_object_shadow(
1192	vm_object_t *object,	/* IN/OUT */
1193	vm_ooffset_t *offset,	/* IN/OUT */
1194	vm_size_t length)
1195{
1196	vm_object_t source;
1197	vm_object_t result;
1198
1199	source = *object;
1200
1201	/*
1202	 * Don't create the new object if the old object isn't shared.
1203	 */
1204	if (source != NULL) {
1205		VM_OBJECT_LOCK(source);
1206		if (source->ref_count == 1 &&
1207		    source->handle == NULL &&
1208		    (source->type == OBJT_DEFAULT ||
1209		     source->type == OBJT_SWAP)) {
1210			VM_OBJECT_UNLOCK(source);
1211			return;
1212		}
1213		VM_OBJECT_UNLOCK(source);
1214	}
1215
1216	/*
1217	 * Allocate a new object with the given length.
1218	 */
1219	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1220
1221	/*
1222	 * The new object shadows the source object, adding a reference to it.
1223	 * Our caller changes his reference to point to the new object,
1224	 * removing a reference to the source object.  Net result: no change
1225	 * of reference count.
1226	 *
1227	 * Try to optimize the result object's page color when shadowing
1228	 * in order to maintain page coloring consistency in the combined
1229	 * shadowed object.
1230	 */
1231	result->backing_object = source;
1232	/*
1233	 * Store the offset into the source object, and fix up the offset into
1234	 * the new object.
1235	 */
1236	result->backing_object_offset = *offset;
1237	if (source != NULL) {
1238		VM_OBJECT_LOCK(source);
1239		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1240		source->shadow_count++;
1241#if VM_NRESERVLEVEL > 0
1242		result->flags |= source->flags & OBJ_COLORED;
1243		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1244		    ((1 << (VM_NFREEORDER - 1)) - 1);
1245#endif
1246		VM_OBJECT_UNLOCK(source);
1247	}
1248
1249
1250	/*
1251	 * Return the new things
1252	 */
1253	*offset = 0;
1254	*object = result;
1255}
1256
1257/*
1258 *	vm_object_split:
1259 *
1260 * Split the pages in a map entry into a new object.  This affords
1261 * easier removal of unused pages, and keeps object inheritance from
1262 * being a negative impact on memory usage.
1263 */
1264void
1265vm_object_split(vm_map_entry_t entry)
1266{
1267	vm_page_t m, m_next;
1268	vm_object_t orig_object, new_object, source;
1269	vm_pindex_t idx, offidxstart;
1270	vm_size_t size;
1271
1272	orig_object = entry->object.vm_object;
1273	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1274		return;
1275	if (orig_object->ref_count <= 1)
1276		return;
1277	VM_OBJECT_UNLOCK(orig_object);
1278
1279	offidxstart = OFF_TO_IDX(entry->offset);
1280	size = atop(entry->end - entry->start);
1281
1282	/*
1283	 * If swap_pager_copy() is later called, it will convert new_object
1284	 * into a swap object.
1285	 */
1286	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1287
1288	/*
1289	 * At this point, the new object is still private, so the order in
1290	 * which the original and new objects are locked does not matter.
1291	 */
1292	VM_OBJECT_LOCK(new_object);
1293	VM_OBJECT_LOCK(orig_object);
1294	source = orig_object->backing_object;
1295	if (source != NULL) {
1296		VM_OBJECT_LOCK(source);
1297		if ((source->flags & OBJ_DEAD) != 0) {
1298			VM_OBJECT_UNLOCK(source);
1299			VM_OBJECT_UNLOCK(orig_object);
1300			VM_OBJECT_UNLOCK(new_object);
1301			vm_object_deallocate(new_object);
1302			VM_OBJECT_LOCK(orig_object);
1303			return;
1304		}
1305		LIST_INSERT_HEAD(&source->shadow_head,
1306				  new_object, shadow_list);
1307		source->shadow_count++;
1308		vm_object_reference_locked(source);	/* for new_object */
1309		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1310		VM_OBJECT_UNLOCK(source);
1311		new_object->backing_object_offset =
1312			orig_object->backing_object_offset + entry->offset;
1313		new_object->backing_object = source;
1314	}
1315	if (orig_object->cred != NULL) {
1316		new_object->cred = orig_object->cred;
1317		crhold(orig_object->cred);
1318		new_object->charge = ptoa(size);
1319		KASSERT(orig_object->charge >= ptoa(size),
1320		    ("orig_object->charge < 0"));
1321		orig_object->charge -= ptoa(size);
1322	}
1323retry:
1324	m = vm_page_find_least(orig_object, offidxstart);
1325	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1326	    m = m_next) {
1327		m_next = TAILQ_NEXT(m, listq);
1328
1329		/*
1330		 * We must wait for pending I/O to complete before we can
1331		 * rename the page.
1332		 *
1333		 * We do not have to VM_PROT_NONE the page as mappings should
1334		 * not be changed by this operation.
1335		 */
1336		if ((m->oflags & VPO_BUSY) || m->busy) {
1337			VM_OBJECT_UNLOCK(new_object);
1338			m->oflags |= VPO_WANTED;
1339			VM_OBJECT_SLEEP(orig_object, m, PVM, "spltwt", 0);
1340			VM_OBJECT_LOCK(new_object);
1341			goto retry;
1342		}
1343#if VM_NRESERVLEVEL > 0
1344		/*
1345		 * If some of the reservation's allocated pages remain with
1346		 * the original object, then transferring the reservation to
1347		 * the new object is neither particularly beneficial nor
1348		 * particularly harmful as compared to leaving the reservation
1349		 * with the original object.  If, however, all of the
1350		 * reservation's allocated pages are transferred to the new
1351		 * object, then transferring the reservation is typically
1352		 * beneficial.  Determining which of these two cases applies
1353		 * would be more costly than unconditionally renaming the
1354		 * reservation.
1355		 */
1356		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1357#endif
1358		vm_page_lock(m);
1359		vm_page_rename(m, new_object, idx);
1360		vm_page_unlock(m);
1361		/* page automatically made dirty by rename and cache handled */
1362		vm_page_busy(m);
1363	}
1364	if (orig_object->type == OBJT_SWAP) {
1365		/*
1366		 * swap_pager_copy() can sleep, in which case the orig_object's
1367		 * and new_object's locks are released and reacquired.
1368		 */
1369		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1370
1371		/*
1372		 * Transfer any cached pages from orig_object to new_object.
1373		 * If swap_pager_copy() found swapped out pages within the
1374		 * specified range of orig_object, then it changed
1375		 * new_object's type to OBJT_SWAP when it transferred those
1376		 * pages to new_object.  Otherwise, new_object's type
1377		 * should still be OBJT_DEFAULT and orig_object should not
1378		 * contain any cached pages within the specified range.
1379		 */
1380		if (__predict_false(orig_object->cache != NULL))
1381			vm_page_cache_transfer(orig_object, offidxstart,
1382			    new_object);
1383	}
1384	VM_OBJECT_UNLOCK(orig_object);
1385	TAILQ_FOREACH(m, &new_object->memq, listq)
1386		vm_page_wakeup(m);
1387	VM_OBJECT_UNLOCK(new_object);
1388	entry->object.vm_object = new_object;
1389	entry->offset = 0LL;
1390	vm_object_deallocate(orig_object);
1391	VM_OBJECT_LOCK(new_object);
1392}
1393
1394#define	OBSC_TEST_ALL_SHADOWED	0x0001
1395#define	OBSC_COLLAPSE_NOWAIT	0x0002
1396#define	OBSC_COLLAPSE_WAIT	0x0004
1397
1398static int
1399vm_object_backing_scan(vm_object_t object, int op)
1400{
1401	int r = 1;
1402	vm_page_t p;
1403	vm_object_t backing_object;
1404	vm_pindex_t backing_offset_index;
1405
1406	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1407	VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1408
1409	backing_object = object->backing_object;
1410	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1411
1412	/*
1413	 * Initial conditions
1414	 */
1415	if (op & OBSC_TEST_ALL_SHADOWED) {
1416		/*
1417		 * We do not want to have to test for the existence of cache
1418		 * or swap pages in the backing object.  XXX but with the
1419		 * new swapper this would be pretty easy to do.
1420		 *
1421		 * XXX what about anonymous MAP_SHARED memory that hasn't
1422		 * been ZFOD faulted yet?  If we do not test for this, the
1423		 * shadow test may succeed! XXX
1424		 */
1425		if (backing_object->type != OBJT_DEFAULT) {
1426			return (0);
1427		}
1428	}
1429	if (op & OBSC_COLLAPSE_WAIT) {
1430		vm_object_set_flag(backing_object, OBJ_DEAD);
1431	}
1432
1433	/*
1434	 * Our scan
1435	 */
1436	p = TAILQ_FIRST(&backing_object->memq);
1437	while (p) {
1438		vm_page_t next = TAILQ_NEXT(p, listq);
1439		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1440
1441		if (op & OBSC_TEST_ALL_SHADOWED) {
1442			vm_page_t pp;
1443
1444			/*
1445			 * Ignore pages outside the parent object's range
1446			 * and outside the parent object's mapping of the
1447			 * backing object.
1448			 *
1449			 * note that we do not busy the backing object's
1450			 * page.
1451			 */
1452			if (
1453			    p->pindex < backing_offset_index ||
1454			    new_pindex >= object->size
1455			) {
1456				p = next;
1457				continue;
1458			}
1459
1460			/*
1461			 * See if the parent has the page or if the parent's
1462			 * object pager has the page.  If the parent has the
1463			 * page but the page is not valid, the parent's
1464			 * object pager must have the page.
1465			 *
1466			 * If this fails, the parent does not completely shadow
1467			 * the object and we might as well give up now.
1468			 */
1469
1470			pp = vm_page_lookup(object, new_pindex);
1471			if (
1472			    (pp == NULL || pp->valid == 0) &&
1473			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1474			) {
1475				r = 0;
1476				break;
1477			}
1478		}
1479
1480		/*
1481		 * Check for busy page
1482		 */
1483		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1484			vm_page_t pp;
1485
1486			if (op & OBSC_COLLAPSE_NOWAIT) {
1487				if ((p->oflags & VPO_BUSY) ||
1488				    !p->valid ||
1489				    p->busy) {
1490					p = next;
1491					continue;
1492				}
1493			} else if (op & OBSC_COLLAPSE_WAIT) {
1494				if ((p->oflags & VPO_BUSY) || p->busy) {
1495					VM_OBJECT_UNLOCK(object);
1496					p->oflags |= VPO_WANTED;
1497					VM_OBJECT_SLEEP(backing_object, p,
1498					    PDROP | PVM, "vmocol", 0);
1499					VM_OBJECT_LOCK(object);
1500					VM_OBJECT_LOCK(backing_object);
1501					/*
1502					 * If we slept, anything could have
1503					 * happened.  Since the object is
1504					 * marked dead, the backing offset
1505					 * should not have changed so we
1506					 * just restart our scan.
1507					 */
1508					p = TAILQ_FIRST(&backing_object->memq);
1509					continue;
1510				}
1511			}
1512
1513			KASSERT(
1514			    p->object == backing_object,
1515			    ("vm_object_backing_scan: object mismatch")
1516			);
1517
1518			/*
1519			 * Destroy any associated swap
1520			 */
1521			if (backing_object->type == OBJT_SWAP) {
1522				swap_pager_freespace(
1523				    backing_object,
1524				    p->pindex,
1525				    1
1526				);
1527			}
1528
1529			if (
1530			    p->pindex < backing_offset_index ||
1531			    new_pindex >= object->size
1532			) {
1533				/*
1534				 * Page is out of the parent object's range, we
1535				 * can simply destroy it.
1536				 */
1537				vm_page_lock(p);
1538				KASSERT(!pmap_page_is_mapped(p),
1539				    ("freeing mapped page %p", p));
1540				if (p->wire_count == 0)
1541					vm_page_free(p);
1542				else
1543					vm_page_remove(p);
1544				vm_page_unlock(p);
1545				p = next;
1546				continue;
1547			}
1548
1549			pp = vm_page_lookup(object, new_pindex);
1550			if (
1551			    (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1552			    (pp != NULL && pp->valid == 0)
1553			) {
1554				/*
1555				 * The page in the parent is not (yet) valid.
1556				 * We don't know anything about the state of
1557				 * the original page.  It might be mapped,
1558				 * so we must avoid the next if here.
1559				 *
1560				 * This is due to a race in vm_fault() where
1561				 * we must unbusy the original (backing_obj)
1562				 * page before we can (re)lock the parent.
1563				 * Hence we can get here.
1564				 */
1565				p = next;
1566				continue;
1567			}
1568			if (
1569			    pp != NULL ||
1570			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1571			) {
1572				/*
1573				 * page already exists in parent OR swap exists
1574				 * for this location in the parent.  Destroy
1575				 * the original page from the backing object.
1576				 *
1577				 * Leave the parent's page alone
1578				 */
1579				vm_page_lock(p);
1580				KASSERT(!pmap_page_is_mapped(p),
1581				    ("freeing mapped page %p", p));
1582				if (p->wire_count == 0)
1583					vm_page_free(p);
1584				else
1585					vm_page_remove(p);
1586				vm_page_unlock(p);
1587				p = next;
1588				continue;
1589			}
1590
1591#if VM_NRESERVLEVEL > 0
1592			/*
1593			 * Rename the reservation.
1594			 */
1595			vm_reserv_rename(p, object, backing_object,
1596			    backing_offset_index);
1597#endif
1598
1599			/*
1600			 * Page does not exist in parent, rename the
1601			 * page from the backing object to the main object.
1602			 *
1603			 * If the page was mapped to a process, it can remain
1604			 * mapped through the rename.
1605			 */
1606			vm_page_lock(p);
1607			vm_page_rename(p, object, new_pindex);
1608			vm_page_unlock(p);
1609			/* page automatically made dirty by rename */
1610		}
1611		p = next;
1612	}
1613	return (r);
1614}
1615
1616
1617/*
1618 * this version of collapse allows the operation to occur earlier and
1619 * when paging_in_progress is true for an object...  This is not a complete
1620 * operation, but should plug 99.9% of the rest of the leaks.
1621 */
1622static void
1623vm_object_qcollapse(vm_object_t object)
1624{
1625	vm_object_t backing_object = object->backing_object;
1626
1627	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1628	VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1629
1630	if (backing_object->ref_count != 1)
1631		return;
1632
1633	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1634}
1635
1636/*
1637 *	vm_object_collapse:
1638 *
1639 *	Collapse an object with the object backing it.
1640 *	Pages in the backing object are moved into the
1641 *	parent, and the backing object is deallocated.
1642 */
1643void
1644vm_object_collapse(vm_object_t object)
1645{
1646	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1647
1648	while (TRUE) {
1649		vm_object_t backing_object;
1650
1651		/*
1652		 * Verify that the conditions are right for collapse:
1653		 *
1654		 * The object exists and the backing object exists.
1655		 */
1656		if ((backing_object = object->backing_object) == NULL)
1657			break;
1658
1659		/*
1660		 * we check the backing object first, because it is most likely
1661		 * not collapsable.
1662		 */
1663		VM_OBJECT_LOCK(backing_object);
1664		if (backing_object->handle != NULL ||
1665		    (backing_object->type != OBJT_DEFAULT &&
1666		     backing_object->type != OBJT_SWAP) ||
1667		    (backing_object->flags & OBJ_DEAD) ||
1668		    object->handle != NULL ||
1669		    (object->type != OBJT_DEFAULT &&
1670		     object->type != OBJT_SWAP) ||
1671		    (object->flags & OBJ_DEAD)) {
1672			VM_OBJECT_UNLOCK(backing_object);
1673			break;
1674		}
1675
1676		if (
1677		    object->paging_in_progress != 0 ||
1678		    backing_object->paging_in_progress != 0
1679		) {
1680			vm_object_qcollapse(object);
1681			VM_OBJECT_UNLOCK(backing_object);
1682			break;
1683		}
1684		/*
1685		 * We know that we can either collapse the backing object (if
1686		 * the parent is the only reference to it) or (perhaps) have
1687		 * the parent bypass the object if the parent happens to shadow
1688		 * all the resident pages in the entire backing object.
1689		 *
1690		 * This is ignoring pager-backed pages such as swap pages.
1691		 * vm_object_backing_scan fails the shadowing test in this
1692		 * case.
1693		 */
1694		if (backing_object->ref_count == 1) {
1695			/*
1696			 * If there is exactly one reference to the backing
1697			 * object, we can collapse it into the parent.
1698			 */
1699			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1700
1701#if VM_NRESERVLEVEL > 0
1702			/*
1703			 * Break any reservations from backing_object.
1704			 */
1705			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1706				vm_reserv_break_all(backing_object);
1707#endif
1708
1709			/*
1710			 * Move the pager from backing_object to object.
1711			 */
1712			if (backing_object->type == OBJT_SWAP) {
1713				/*
1714				 * swap_pager_copy() can sleep, in which case
1715				 * the backing_object's and object's locks are
1716				 * released and reacquired.
1717				 * Since swap_pager_copy() is being asked to
1718				 * destroy the source, it will change the
1719				 * backing_object's type to OBJT_DEFAULT.
1720				 */
1721				swap_pager_copy(
1722				    backing_object,
1723				    object,
1724				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1725
1726				/*
1727				 * Free any cached pages from backing_object.
1728				 */
1729				if (__predict_false(backing_object->cache != NULL))
1730					vm_page_cache_free(backing_object, 0, 0);
1731			}
1732			/*
1733			 * Object now shadows whatever backing_object did.
1734			 * Note that the reference to
1735			 * backing_object->backing_object moves from within
1736			 * backing_object to within object.
1737			 */
1738			LIST_REMOVE(object, shadow_list);
1739			backing_object->shadow_count--;
1740			if (backing_object->backing_object) {
1741				VM_OBJECT_LOCK(backing_object->backing_object);
1742				LIST_REMOVE(backing_object, shadow_list);
1743				LIST_INSERT_HEAD(
1744				    &backing_object->backing_object->shadow_head,
1745				    object, shadow_list);
1746				/*
1747				 * The shadow_count has not changed.
1748				 */
1749				VM_OBJECT_UNLOCK(backing_object->backing_object);
1750			}
1751			object->backing_object = backing_object->backing_object;
1752			object->backing_object_offset +=
1753			    backing_object->backing_object_offset;
1754
1755			/*
1756			 * Discard backing_object.
1757			 *
1758			 * Since the backing object has no pages, no pager left,
1759			 * and no object references within it, all that is
1760			 * necessary is to dispose of it.
1761			 */
1762			KASSERT(backing_object->ref_count == 1, (
1763"backing_object %p was somehow re-referenced during collapse!",
1764			    backing_object));
1765			VM_OBJECT_UNLOCK(backing_object);
1766			vm_object_destroy(backing_object);
1767
1768			object_collapses++;
1769		} else {
1770			vm_object_t new_backing_object;
1771
1772			/*
1773			 * If we do not entirely shadow the backing object,
1774			 * there is nothing we can do so we give up.
1775			 */
1776			if (object->resident_page_count != object->size &&
1777			    vm_object_backing_scan(object,
1778			    OBSC_TEST_ALL_SHADOWED) == 0) {
1779				VM_OBJECT_UNLOCK(backing_object);
1780				break;
1781			}
1782
1783			/*
1784			 * Make the parent shadow the next object in the
1785			 * chain.  Deallocating backing_object will not remove
1786			 * it, since its reference count is at least 2.
1787			 */
1788			LIST_REMOVE(object, shadow_list);
1789			backing_object->shadow_count--;
1790
1791			new_backing_object = backing_object->backing_object;
1792			if ((object->backing_object = new_backing_object) != NULL) {
1793				VM_OBJECT_LOCK(new_backing_object);
1794				LIST_INSERT_HEAD(
1795				    &new_backing_object->shadow_head,
1796				    object,
1797				    shadow_list
1798				);
1799				new_backing_object->shadow_count++;
1800				vm_object_reference_locked(new_backing_object);
1801				VM_OBJECT_UNLOCK(new_backing_object);
1802				object->backing_object_offset +=
1803					backing_object->backing_object_offset;
1804			}
1805
1806			/*
1807			 * Drop the reference count on backing_object. Since
1808			 * its ref_count was at least 2, it will not vanish.
1809			 */
1810			backing_object->ref_count--;
1811			VM_OBJECT_UNLOCK(backing_object);
1812			object_bypasses++;
1813		}
1814
1815		/*
1816		 * Try again with this object's new backing object.
1817		 */
1818	}
1819}
1820
1821/*
1822 *	vm_object_page_remove:
1823 *
1824 *	For the given object, either frees or invalidates each of the
1825 *	specified pages.  In general, a page is freed.  However, if a page is
1826 *	wired for any reason other than the existence of a managed, wired
1827 *	mapping, then it may be invalidated but not removed from the object.
1828 *	Pages are specified by the given range ["start", "end") and the option
1829 *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1830 *	extends from "start" to the end of the object.  If the option
1831 *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1832 *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1833 *	specified, then the pages within the specified range must have no
1834 *	mappings.  Otherwise, if this option is not specified, any mappings to
1835 *	the specified pages are removed before the pages are freed or
1836 *	invalidated.
1837 *
1838 *	In general, this operation should only be performed on objects that
1839 *	contain managed pages.  There are, however, two exceptions.  First, it
1840 *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1841 *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1842 *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1843 *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1844 *
1845 *	The object must be locked.
1846 */
1847void
1848vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1849    int options)
1850{
1851	vm_page_t p, next;
1852	int wirings;
1853
1854	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1855	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1856	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1857	    ("vm_object_page_remove: illegal options for object %p", object));
1858	if (object->resident_page_count == 0)
1859		goto skipmemq;
1860	vm_object_pip_add(object, 1);
1861again:
1862	p = vm_page_find_least(object, start);
1863
1864	/*
1865	 * Here, the variable "p" is either (1) the page with the least pindex
1866	 * greater than or equal to the parameter "start" or (2) NULL.
1867	 */
1868	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1869		next = TAILQ_NEXT(p, listq);
1870
1871		/*
1872		 * If the page is wired for any reason besides the existence
1873		 * of managed, wired mappings, then it cannot be freed.  For
1874		 * example, fictitious pages, which represent device memory,
1875		 * are inherently wired and cannot be freed.  They can,
1876		 * however, be invalidated if the option OBJPR_CLEANONLY is
1877		 * not specified.
1878		 */
1879		vm_page_lock(p);
1880		if ((wirings = p->wire_count) != 0 &&
1881		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1882			if ((options & OBJPR_NOTMAPPED) == 0) {
1883				pmap_remove_all(p);
1884				/* Account for removal of wired mappings. */
1885				if (wirings != 0)
1886					p->wire_count -= wirings;
1887			}
1888			if ((options & OBJPR_CLEANONLY) == 0) {
1889				p->valid = 0;
1890				vm_page_undirty(p);
1891			}
1892			vm_page_unlock(p);
1893			continue;
1894		}
1895		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1896			goto again;
1897		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1898		    ("vm_object_page_remove: page %p is fictitious", p));
1899		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1900			if ((options & OBJPR_NOTMAPPED) == 0)
1901				pmap_remove_write(p);
1902			if (p->dirty) {
1903				vm_page_unlock(p);
1904				continue;
1905			}
1906		}
1907		if ((options & OBJPR_NOTMAPPED) == 0) {
1908			pmap_remove_all(p);
1909			/* Account for removal of wired mappings. */
1910			if (wirings != 0) {
1911				KASSERT(p->wire_count == wirings,
1912				    ("inconsistent wire count %d %d %p",
1913				    p->wire_count, wirings, p));
1914				p->wire_count = 0;
1915				atomic_subtract_int(&cnt.v_wire_count, 1);
1916			}
1917		}
1918		vm_page_free(p);
1919		vm_page_unlock(p);
1920	}
1921	vm_object_pip_wakeup(object);
1922skipmemq:
1923	if (__predict_false(object->cache != NULL))
1924		vm_page_cache_free(object, start, end);
1925}
1926
1927/*
1928 *	vm_object_page_cache:
1929 *
1930 *	For the given object, attempt to move the specified clean
1931 *	pages to the cache queue.  If a page is wired for any reason,
1932 *	then it will not be changed.  Pages are specified by the given
1933 *	range ["start", "end").  As a special case, if "end" is zero,
1934 *	then the range extends from "start" to the end of the object.
1935 *	Any mappings to the specified pages are removed before the
1936 *	pages are moved to the cache queue.
1937 *
1938 *	This operation should only be performed on objects that
1939 *	contain non-fictitious, managed pages.
1940 *
1941 *	The object must be locked.
1942 */
1943void
1944vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1945{
1946	struct mtx *mtx, *new_mtx;
1947	vm_page_t p, next;
1948
1949	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1950	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1951	    ("vm_object_page_cache: illegal object %p", object));
1952	if (object->resident_page_count == 0)
1953		return;
1954	p = vm_page_find_least(object, start);
1955
1956	/*
1957	 * Here, the variable "p" is either (1) the page with the least pindex
1958	 * greater than or equal to the parameter "start" or (2) NULL.
1959	 */
1960	mtx = NULL;
1961	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1962		next = TAILQ_NEXT(p, listq);
1963
1964		/*
1965		 * Avoid releasing and reacquiring the same page lock.
1966		 */
1967		new_mtx = vm_page_lockptr(p);
1968		if (mtx != new_mtx) {
1969			if (mtx != NULL)
1970				mtx_unlock(mtx);
1971			mtx = new_mtx;
1972			mtx_lock(mtx);
1973		}
1974		vm_page_try_to_cache(p);
1975	}
1976	if (mtx != NULL)
1977		mtx_unlock(mtx);
1978}
1979
1980/*
1981 *	Populate the specified range of the object with valid pages.  Returns
1982 *	TRUE if the range is successfully populated and FALSE otherwise.
1983 *
1984 *	Note: This function should be optimized to pass a larger array of
1985 *	pages to vm_pager_get_pages() before it is applied to a non-
1986 *	OBJT_DEVICE object.
1987 *
1988 *	The object must be locked.
1989 */
1990boolean_t
1991vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1992{
1993	vm_page_t m, ma[1];
1994	vm_pindex_t pindex;
1995	int rv;
1996
1997	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1998	for (pindex = start; pindex < end; pindex++) {
1999		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
2000		    VM_ALLOC_RETRY);
2001		if (m->valid != VM_PAGE_BITS_ALL) {
2002			ma[0] = m;
2003			rv = vm_pager_get_pages(object, ma, 1, 0);
2004			m = vm_page_lookup(object, pindex);
2005			if (m == NULL)
2006				break;
2007			if (rv != VM_PAGER_OK) {
2008				vm_page_lock(m);
2009				vm_page_free(m);
2010				vm_page_unlock(m);
2011				break;
2012			}
2013		}
2014		/*
2015		 * Keep "m" busy because a subsequent iteration may unlock
2016		 * the object.
2017		 */
2018	}
2019	if (pindex > start) {
2020		m = vm_page_lookup(object, start);
2021		while (m != NULL && m->pindex < pindex) {
2022			vm_page_wakeup(m);
2023			m = TAILQ_NEXT(m, listq);
2024		}
2025	}
2026	return (pindex == end);
2027}
2028
2029/*
2030 *	Routine:	vm_object_coalesce
2031 *	Function:	Coalesces two objects backing up adjoining
2032 *			regions of memory into a single object.
2033 *
2034 *	returns TRUE if objects were combined.
2035 *
2036 *	NOTE:	Only works at the moment if the second object is NULL -
2037 *		if it's not, which object do we lock first?
2038 *
2039 *	Parameters:
2040 *		prev_object	First object to coalesce
2041 *		prev_offset	Offset into prev_object
2042 *		prev_size	Size of reference to prev_object
2043 *		next_size	Size of reference to the second object
2044 *		reserved	Indicator that extension region has
2045 *				swap accounted for
2046 *
2047 *	Conditions:
2048 *	The object must *not* be locked.
2049 */
2050boolean_t
2051vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2052    vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2053{
2054	vm_pindex_t next_pindex;
2055
2056	if (prev_object == NULL)
2057		return (TRUE);
2058	VM_OBJECT_LOCK(prev_object);
2059	if (prev_object->type != OBJT_DEFAULT &&
2060	    prev_object->type != OBJT_SWAP) {
2061		VM_OBJECT_UNLOCK(prev_object);
2062		return (FALSE);
2063	}
2064
2065	/*
2066	 * Try to collapse the object first
2067	 */
2068	vm_object_collapse(prev_object);
2069
2070	/*
2071	 * Can't coalesce if: . more than one reference . paged out . shadows
2072	 * another object . has a copy elsewhere (any of which mean that the
2073	 * pages not mapped to prev_entry may be in use anyway)
2074	 */
2075	if (prev_object->backing_object != NULL) {
2076		VM_OBJECT_UNLOCK(prev_object);
2077		return (FALSE);
2078	}
2079
2080	prev_size >>= PAGE_SHIFT;
2081	next_size >>= PAGE_SHIFT;
2082	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2083
2084	if ((prev_object->ref_count > 1) &&
2085	    (prev_object->size != next_pindex)) {
2086		VM_OBJECT_UNLOCK(prev_object);
2087		return (FALSE);
2088	}
2089
2090	/*
2091	 * Account for the charge.
2092	 */
2093	if (prev_object->cred != NULL) {
2094
2095		/*
2096		 * If prev_object was charged, then this mapping,
2097		 * althought not charged now, may become writable
2098		 * later. Non-NULL cred in the object would prevent
2099		 * swap reservation during enabling of the write
2100		 * access, so reserve swap now. Failed reservation
2101		 * cause allocation of the separate object for the map
2102		 * entry, and swap reservation for this entry is
2103		 * managed in appropriate time.
2104		 */
2105		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2106		    prev_object->cred)) {
2107			return (FALSE);
2108		}
2109		prev_object->charge += ptoa(next_size);
2110	}
2111
2112	/*
2113	 * Remove any pages that may still be in the object from a previous
2114	 * deallocation.
2115	 */
2116	if (next_pindex < prev_object->size) {
2117		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2118		    next_size, 0);
2119		if (prev_object->type == OBJT_SWAP)
2120			swap_pager_freespace(prev_object,
2121					     next_pindex, next_size);
2122#if 0
2123		if (prev_object->cred != NULL) {
2124			KASSERT(prev_object->charge >=
2125			    ptoa(prev_object->size - next_pindex),
2126			    ("object %p overcharged 1 %jx %jx", prev_object,
2127				(uintmax_t)next_pindex, (uintmax_t)next_size));
2128			prev_object->charge -= ptoa(prev_object->size -
2129			    next_pindex);
2130		}
2131#endif
2132	}
2133
2134	/*
2135	 * Extend the object if necessary.
2136	 */
2137	if (next_pindex + next_size > prev_object->size)
2138		prev_object->size = next_pindex + next_size;
2139
2140	VM_OBJECT_UNLOCK(prev_object);
2141	return (TRUE);
2142}
2143
2144void
2145vm_object_set_writeable_dirty(vm_object_t object)
2146{
2147
2148	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2149	if (object->type != OBJT_VNODE)
2150		return;
2151	object->generation++;
2152	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2153		return;
2154	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2155}
2156
2157#include "opt_ddb.h"
2158#ifdef DDB
2159#include <sys/kernel.h>
2160
2161#include <sys/cons.h>
2162
2163#include <ddb/ddb.h>
2164
2165static int
2166_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2167{
2168	vm_map_t tmpm;
2169	vm_map_entry_t tmpe;
2170	vm_object_t obj;
2171	int entcount;
2172
2173	if (map == 0)
2174		return 0;
2175
2176	if (entry == 0) {
2177		tmpe = map->header.next;
2178		entcount = map->nentries;
2179		while (entcount-- && (tmpe != &map->header)) {
2180			if (_vm_object_in_map(map, object, tmpe)) {
2181				return 1;
2182			}
2183			tmpe = tmpe->next;
2184		}
2185	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2186		tmpm = entry->object.sub_map;
2187		tmpe = tmpm->header.next;
2188		entcount = tmpm->nentries;
2189		while (entcount-- && tmpe != &tmpm->header) {
2190			if (_vm_object_in_map(tmpm, object, tmpe)) {
2191				return 1;
2192			}
2193			tmpe = tmpe->next;
2194		}
2195	} else if ((obj = entry->object.vm_object) != NULL) {
2196		for (; obj; obj = obj->backing_object)
2197			if (obj == object) {
2198				return 1;
2199			}
2200	}
2201	return 0;
2202}
2203
2204static int
2205vm_object_in_map(vm_object_t object)
2206{
2207	struct proc *p;
2208
2209	/* sx_slock(&allproc_lock); */
2210	FOREACH_PROC_IN_SYSTEM(p) {
2211		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2212			continue;
2213		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2214			/* sx_sunlock(&allproc_lock); */
2215			return 1;
2216		}
2217	}
2218	/* sx_sunlock(&allproc_lock); */
2219	if (_vm_object_in_map(kernel_map, object, 0))
2220		return 1;
2221	if (_vm_object_in_map(kmem_map, object, 0))
2222		return 1;
2223	if (_vm_object_in_map(pager_map, object, 0))
2224		return 1;
2225	if (_vm_object_in_map(buffer_map, object, 0))
2226		return 1;
2227	return 0;
2228}
2229
2230DB_SHOW_COMMAND(vmochk, vm_object_check)
2231{
2232	vm_object_t object;
2233
2234	/*
2235	 * make sure that internal objs are in a map somewhere
2236	 * and none have zero ref counts.
2237	 */
2238	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2239		if (object->handle == NULL &&
2240		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2241			if (object->ref_count == 0) {
2242				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2243					(long)object->size);
2244			}
2245			if (!vm_object_in_map(object)) {
2246				db_printf(
2247			"vmochk: internal obj is not in a map: "
2248			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2249				    object->ref_count, (u_long)object->size,
2250				    (u_long)object->size,
2251				    (void *)object->backing_object);
2252			}
2253		}
2254	}
2255}
2256
2257/*
2258 *	vm_object_print:	[ debug ]
2259 */
2260DB_SHOW_COMMAND(object, vm_object_print_static)
2261{
2262	/* XXX convert args. */
2263	vm_object_t object = (vm_object_t)addr;
2264	boolean_t full = have_addr;
2265
2266	vm_page_t p;
2267
2268	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2269#define	count	was_count
2270
2271	int count;
2272
2273	if (object == NULL)
2274		return;
2275
2276	db_iprintf(
2277	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2278	    object, (int)object->type, (uintmax_t)object->size,
2279	    object->resident_page_count, object->ref_count, object->flags,
2280	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2281	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2282	    object->shadow_count,
2283	    object->backing_object ? object->backing_object->ref_count : 0,
2284	    object->backing_object, (uintmax_t)object->backing_object_offset);
2285
2286	if (!full)
2287		return;
2288
2289	db_indent += 2;
2290	count = 0;
2291	TAILQ_FOREACH(p, &object->memq, listq) {
2292		if (count == 0)
2293			db_iprintf("memory:=");
2294		else if (count == 6) {
2295			db_printf("\n");
2296			db_iprintf(" ...");
2297			count = 0;
2298		} else
2299			db_printf(",");
2300		count++;
2301
2302		db_printf("(off=0x%jx,page=0x%jx)",
2303		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2304	}
2305	if (count != 0)
2306		db_printf("\n");
2307	db_indent -= 2;
2308}
2309
2310/* XXX. */
2311#undef count
2312
2313/* XXX need this non-static entry for calling from vm_map_print. */
2314void
2315vm_object_print(
2316        /* db_expr_t */ long addr,
2317	boolean_t have_addr,
2318	/* db_expr_t */ long count,
2319	char *modif)
2320{
2321	vm_object_print_static(addr, have_addr, count, modif);
2322}
2323
2324DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2325{
2326	vm_object_t object;
2327	vm_pindex_t fidx;
2328	vm_paddr_t pa;
2329	vm_page_t m, prev_m;
2330	int rcount, nl, c;
2331
2332	nl = 0;
2333	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2334		db_printf("new object: %p\n", (void *)object);
2335		if (nl > 18) {
2336			c = cngetc();
2337			if (c != ' ')
2338				return;
2339			nl = 0;
2340		}
2341		nl++;
2342		rcount = 0;
2343		fidx = 0;
2344		pa = -1;
2345		TAILQ_FOREACH(m, &object->memq, listq) {
2346			if (m->pindex > 128)
2347				break;
2348			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2349			    prev_m->pindex + 1 != m->pindex) {
2350				if (rcount) {
2351					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2352						(long)fidx, rcount, (long)pa);
2353					if (nl > 18) {
2354						c = cngetc();
2355						if (c != ' ')
2356							return;
2357						nl = 0;
2358					}
2359					nl++;
2360					rcount = 0;
2361				}
2362			}
2363			if (rcount &&
2364				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2365				++rcount;
2366				continue;
2367			}
2368			if (rcount) {
2369				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2370					(long)fidx, rcount, (long)pa);
2371				if (nl > 18) {
2372					c = cngetc();
2373					if (c != ' ')
2374						return;
2375					nl = 0;
2376				}
2377				nl++;
2378			}
2379			fidx = m->pindex;
2380			pa = VM_PAGE_TO_PHYS(m);
2381			rcount = 1;
2382		}
2383		if (rcount) {
2384			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2385				(long)fidx, rcount, (long)pa);
2386			if (nl > 18) {
2387				c = cngetc();
2388				if (c != ' ')
2389					return;
2390				nl = 0;
2391			}
2392			nl++;
2393		}
2394	}
2395}
2396#endif /* DDB */
2397