vm_object.c revision 209685
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory object module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: head/sys/vm/vm_object.c 209685 2010-07-04 11:13:33Z kib $");
67
68#include "opt_vm.h"
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/lock.h>
73#include <sys/mman.h>
74#include <sys/mount.h>
75#include <sys/kernel.h>
76#include <sys/sysctl.h>
77#include <sys/mutex.h>
78#include <sys/proc.h>		/* for curproc, pageproc */
79#include <sys/socket.h>
80#include <sys/resourcevar.h>
81#include <sys/vnode.h>
82#include <sys/vmmeter.h>
83#include <sys/sx.h>
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/pmap.h>
88#include <vm/vm_map.h>
89#include <vm/vm_object.h>
90#include <vm/vm_page.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_pager.h>
93#include <vm/swap_pager.h>
94#include <vm/vm_kern.h>
95#include <vm/vm_extern.h>
96#include <vm/vm_reserv.h>
97#include <vm/uma.h>
98
99#define EASY_SCAN_FACTOR       8
100
101#define MSYNC_FLUSH_HARDSEQ	0x01
102#define MSYNC_FLUSH_SOFTSEQ	0x02
103
104/*
105 * msync / VM object flushing optimizations
106 */
107static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
108SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags, CTLFLAG_RW, &msync_flush_flags, 0,
109    "Enable sequential iteration optimization");
110
111static int old_msync;
112SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
113    "Use old (insecure) msync behavior");
114
115static void	vm_object_qcollapse(vm_object_t object);
116static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
117static void	vm_object_vndeallocate(vm_object_t object);
118
119/*
120 *	Virtual memory objects maintain the actual data
121 *	associated with allocated virtual memory.  A given
122 *	page of memory exists within exactly one object.
123 *
124 *	An object is only deallocated when all "references"
125 *	are given up.  Only one "reference" to a given
126 *	region of an object should be writeable.
127 *
128 *	Associated with each object is a list of all resident
129 *	memory pages belonging to that object; this list is
130 *	maintained by the "vm_page" module, and locked by the object's
131 *	lock.
132 *
133 *	Each object also records a "pager" routine which is
134 *	used to retrieve (and store) pages to the proper backing
135 *	storage.  In addition, objects may be backed by other
136 *	objects from which they were virtual-copied.
137 *
138 *	The only items within the object structure which are
139 *	modified after time of creation are:
140 *		reference count		locked by object's lock
141 *		pager routine		locked by object's lock
142 *
143 */
144
145struct object_q vm_object_list;
146struct mtx vm_object_list_mtx;	/* lock for object list and count */
147
148struct vm_object kernel_object_store;
149struct vm_object kmem_object_store;
150
151SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
152
153static long object_collapses;
154SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
155    &object_collapses, 0, "VM object collapses");
156
157static long object_bypasses;
158SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
159    &object_bypasses, 0, "VM object bypasses");
160
161static uma_zone_t obj_zone;
162
163static int vm_object_zinit(void *mem, int size, int flags);
164
165#ifdef INVARIANTS
166static void vm_object_zdtor(void *mem, int size, void *arg);
167
168static void
169vm_object_zdtor(void *mem, int size, void *arg)
170{
171	vm_object_t object;
172
173	object = (vm_object_t)mem;
174	KASSERT(TAILQ_EMPTY(&object->memq),
175	    ("object %p has resident pages",
176	    object));
177#if VM_NRESERVLEVEL > 0
178	KASSERT(LIST_EMPTY(&object->rvq),
179	    ("object %p has reservations",
180	    object));
181#endif
182	KASSERT(object->cache == NULL,
183	    ("object %p has cached pages",
184	    object));
185	KASSERT(object->paging_in_progress == 0,
186	    ("object %p paging_in_progress = %d",
187	    object, object->paging_in_progress));
188	KASSERT(object->resident_page_count == 0,
189	    ("object %p resident_page_count = %d",
190	    object, object->resident_page_count));
191	KASSERT(object->shadow_count == 0,
192	    ("object %p shadow_count = %d",
193	    object, object->shadow_count));
194}
195#endif
196
197static int
198vm_object_zinit(void *mem, int size, int flags)
199{
200	vm_object_t object;
201
202	object = (vm_object_t)mem;
203	bzero(&object->mtx, sizeof(object->mtx));
204	VM_OBJECT_LOCK_INIT(object, "standard object");
205
206	/* These are true for any object that has been freed */
207	object->paging_in_progress = 0;
208	object->resident_page_count = 0;
209	object->shadow_count = 0;
210	return (0);
211}
212
213void
214_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
215{
216
217	TAILQ_INIT(&object->memq);
218	LIST_INIT(&object->shadow_head);
219
220	object->root = NULL;
221	object->type = type;
222	object->size = size;
223	object->generation = 1;
224	object->ref_count = 1;
225	object->memattr = VM_MEMATTR_DEFAULT;
226	object->flags = 0;
227	object->uip = NULL;
228	object->charge = 0;
229	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
230		object->flags = OBJ_ONEMAPPING;
231	object->pg_color = 0;
232	object->handle = NULL;
233	object->backing_object = NULL;
234	object->backing_object_offset = (vm_ooffset_t) 0;
235#if VM_NRESERVLEVEL > 0
236	LIST_INIT(&object->rvq);
237#endif
238	object->cache = NULL;
239
240	mtx_lock(&vm_object_list_mtx);
241	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
242	mtx_unlock(&vm_object_list_mtx);
243}
244
245/*
246 *	vm_object_init:
247 *
248 *	Initialize the VM objects module.
249 */
250void
251vm_object_init(void)
252{
253	TAILQ_INIT(&vm_object_list);
254	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
255
256	VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
257	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
258	    kernel_object);
259#if VM_NRESERVLEVEL > 0
260	kernel_object->flags |= OBJ_COLORED;
261	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
262#endif
263
264	VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
265	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
266	    kmem_object);
267#if VM_NRESERVLEVEL > 0
268	kmem_object->flags |= OBJ_COLORED;
269	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
270#endif
271
272	/*
273	 * The lock portion of struct vm_object must be type stable due
274	 * to vm_pageout_fallback_object_lock locking a vm object
275	 * without holding any references to it.
276	 */
277	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
278#ifdef INVARIANTS
279	    vm_object_zdtor,
280#else
281	    NULL,
282#endif
283	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
284}
285
286void
287vm_object_clear_flag(vm_object_t object, u_short bits)
288{
289
290	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
291	object->flags &= ~bits;
292}
293
294/*
295 *	Sets the default memory attribute for the specified object.  Pages
296 *	that are allocated to this object are by default assigned this memory
297 *	attribute.
298 *
299 *	Presently, this function must be called before any pages are allocated
300 *	to the object.  In the future, this requirement may be relaxed for
301 *	"default" and "swap" objects.
302 */
303int
304vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
305{
306
307	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
308	switch (object->type) {
309	case OBJT_DEFAULT:
310	case OBJT_DEVICE:
311	case OBJT_PHYS:
312	case OBJT_SG:
313	case OBJT_SWAP:
314	case OBJT_VNODE:
315		if (!TAILQ_EMPTY(&object->memq))
316			return (KERN_FAILURE);
317		break;
318	case OBJT_DEAD:
319		return (KERN_INVALID_ARGUMENT);
320	}
321	object->memattr = memattr;
322	return (KERN_SUCCESS);
323}
324
325void
326vm_object_pip_add(vm_object_t object, short i)
327{
328
329	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
330	object->paging_in_progress += i;
331}
332
333void
334vm_object_pip_subtract(vm_object_t object, short i)
335{
336
337	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
338	object->paging_in_progress -= i;
339}
340
341void
342vm_object_pip_wakeup(vm_object_t object)
343{
344
345	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
346	object->paging_in_progress--;
347	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
348		vm_object_clear_flag(object, OBJ_PIPWNT);
349		wakeup(object);
350	}
351}
352
353void
354vm_object_pip_wakeupn(vm_object_t object, short i)
355{
356
357	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
358	if (i)
359		object->paging_in_progress -= i;
360	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
361		vm_object_clear_flag(object, OBJ_PIPWNT);
362		wakeup(object);
363	}
364}
365
366void
367vm_object_pip_wait(vm_object_t object, char *waitid)
368{
369
370	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
371	while (object->paging_in_progress) {
372		object->flags |= OBJ_PIPWNT;
373		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
374	}
375}
376
377/*
378 *	vm_object_allocate:
379 *
380 *	Returns a new object with the given size.
381 */
382vm_object_t
383vm_object_allocate(objtype_t type, vm_pindex_t size)
384{
385	vm_object_t object;
386
387	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
388	_vm_object_allocate(type, size, object);
389	return (object);
390}
391
392
393/*
394 *	vm_object_reference:
395 *
396 *	Gets another reference to the given object.  Note: OBJ_DEAD
397 *	objects can be referenced during final cleaning.
398 */
399void
400vm_object_reference(vm_object_t object)
401{
402	if (object == NULL)
403		return;
404	VM_OBJECT_LOCK(object);
405	vm_object_reference_locked(object);
406	VM_OBJECT_UNLOCK(object);
407}
408
409/*
410 *	vm_object_reference_locked:
411 *
412 *	Gets another reference to the given object.
413 *
414 *	The object must be locked.
415 */
416void
417vm_object_reference_locked(vm_object_t object)
418{
419	struct vnode *vp;
420
421	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
422	object->ref_count++;
423	if (object->type == OBJT_VNODE) {
424		vp = object->handle;
425		vref(vp);
426	}
427}
428
429/*
430 * Handle deallocating an object of type OBJT_VNODE.
431 */
432static void
433vm_object_vndeallocate(vm_object_t object)
434{
435	struct vnode *vp = (struct vnode *) object->handle;
436
437	VFS_ASSERT_GIANT(vp->v_mount);
438	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
439	KASSERT(object->type == OBJT_VNODE,
440	    ("vm_object_vndeallocate: not a vnode object"));
441	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
442#ifdef INVARIANTS
443	if (object->ref_count == 0) {
444		vprint("vm_object_vndeallocate", vp);
445		panic("vm_object_vndeallocate: bad object reference count");
446	}
447#endif
448
449	object->ref_count--;
450	if (object->ref_count == 0) {
451		mp_fixme("Unlocked vflag access.");
452		vp->v_vflag &= ~VV_TEXT;
453	}
454	VM_OBJECT_UNLOCK(object);
455	/*
456	 * vrele may need a vop lock
457	 */
458	vrele(vp);
459}
460
461/*
462 *	vm_object_deallocate:
463 *
464 *	Release a reference to the specified object,
465 *	gained either through a vm_object_allocate
466 *	or a vm_object_reference call.  When all references
467 *	are gone, storage associated with this object
468 *	may be relinquished.
469 *
470 *	No object may be locked.
471 */
472void
473vm_object_deallocate(vm_object_t object)
474{
475	vm_object_t temp;
476
477	while (object != NULL) {
478		int vfslocked;
479
480		vfslocked = 0;
481	restart:
482		VM_OBJECT_LOCK(object);
483		if (object->type == OBJT_VNODE) {
484			struct vnode *vp = (struct vnode *) object->handle;
485
486			/*
487			 * Conditionally acquire Giant for a vnode-backed
488			 * object.  We have to be careful since the type of
489			 * a vnode object can change while the object is
490			 * unlocked.
491			 */
492			if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
493				vfslocked = 1;
494				if (!mtx_trylock(&Giant)) {
495					VM_OBJECT_UNLOCK(object);
496					mtx_lock(&Giant);
497					goto restart;
498				}
499			}
500			vm_object_vndeallocate(object);
501			VFS_UNLOCK_GIANT(vfslocked);
502			return;
503		} else
504			/*
505			 * This is to handle the case that the object
506			 * changed type while we dropped its lock to
507			 * obtain Giant.
508			 */
509			VFS_UNLOCK_GIANT(vfslocked);
510
511		KASSERT(object->ref_count != 0,
512			("vm_object_deallocate: object deallocated too many times: %d", object->type));
513
514		/*
515		 * If the reference count goes to 0 we start calling
516		 * vm_object_terminate() on the object chain.
517		 * A ref count of 1 may be a special case depending on the
518		 * shadow count being 0 or 1.
519		 */
520		object->ref_count--;
521		if (object->ref_count > 1) {
522			VM_OBJECT_UNLOCK(object);
523			return;
524		} else if (object->ref_count == 1) {
525			if (object->shadow_count == 0 &&
526			    object->handle == NULL &&
527			    (object->type == OBJT_DEFAULT ||
528			     object->type == OBJT_SWAP)) {
529				vm_object_set_flag(object, OBJ_ONEMAPPING);
530			} else if ((object->shadow_count == 1) &&
531			    (object->handle == NULL) &&
532			    (object->type == OBJT_DEFAULT ||
533			     object->type == OBJT_SWAP)) {
534				vm_object_t robject;
535
536				robject = LIST_FIRST(&object->shadow_head);
537				KASSERT(robject != NULL,
538				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
539					 object->ref_count,
540					 object->shadow_count));
541				if (!VM_OBJECT_TRYLOCK(robject)) {
542					/*
543					 * Avoid a potential deadlock.
544					 */
545					object->ref_count++;
546					VM_OBJECT_UNLOCK(object);
547					/*
548					 * More likely than not the thread
549					 * holding robject's lock has lower
550					 * priority than the current thread.
551					 * Let the lower priority thread run.
552					 */
553					pause("vmo_de", 1);
554					continue;
555				}
556				/*
557				 * Collapse object into its shadow unless its
558				 * shadow is dead.  In that case, object will
559				 * be deallocated by the thread that is
560				 * deallocating its shadow.
561				 */
562				if ((robject->flags & OBJ_DEAD) == 0 &&
563				    (robject->handle == NULL) &&
564				    (robject->type == OBJT_DEFAULT ||
565				     robject->type == OBJT_SWAP)) {
566
567					robject->ref_count++;
568retry:
569					if (robject->paging_in_progress) {
570						VM_OBJECT_UNLOCK(object);
571						vm_object_pip_wait(robject,
572						    "objde1");
573						temp = robject->backing_object;
574						if (object == temp) {
575							VM_OBJECT_LOCK(object);
576							goto retry;
577						}
578					} else if (object->paging_in_progress) {
579						VM_OBJECT_UNLOCK(robject);
580						object->flags |= OBJ_PIPWNT;
581						msleep(object,
582						    VM_OBJECT_MTX(object),
583						    PDROP | PVM, "objde2", 0);
584						VM_OBJECT_LOCK(robject);
585						temp = robject->backing_object;
586						if (object == temp) {
587							VM_OBJECT_LOCK(object);
588							goto retry;
589						}
590					} else
591						VM_OBJECT_UNLOCK(object);
592
593					if (robject->ref_count == 1) {
594						robject->ref_count--;
595						object = robject;
596						goto doterm;
597					}
598					object = robject;
599					vm_object_collapse(object);
600					VM_OBJECT_UNLOCK(object);
601					continue;
602				}
603				VM_OBJECT_UNLOCK(robject);
604			}
605			VM_OBJECT_UNLOCK(object);
606			return;
607		}
608doterm:
609		temp = object->backing_object;
610		if (temp != NULL) {
611			VM_OBJECT_LOCK(temp);
612			LIST_REMOVE(object, shadow_list);
613			temp->shadow_count--;
614			temp->generation++;
615			VM_OBJECT_UNLOCK(temp);
616			object->backing_object = NULL;
617		}
618		/*
619		 * Don't double-terminate, we could be in a termination
620		 * recursion due to the terminate having to sync data
621		 * to disk.
622		 */
623		if ((object->flags & OBJ_DEAD) == 0)
624			vm_object_terminate(object);
625		else
626			VM_OBJECT_UNLOCK(object);
627		object = temp;
628	}
629}
630
631/*
632 *	vm_object_destroy removes the object from the global object list
633 *      and frees the space for the object.
634 */
635void
636vm_object_destroy(vm_object_t object)
637{
638
639	/*
640	 * Remove the object from the global object list.
641	 */
642	mtx_lock(&vm_object_list_mtx);
643	TAILQ_REMOVE(&vm_object_list, object, object_list);
644	mtx_unlock(&vm_object_list_mtx);
645
646	/*
647	 * Release the allocation charge.
648	 */
649	if (object->uip != NULL) {
650		KASSERT(object->type == OBJT_DEFAULT ||
651		    object->type == OBJT_SWAP,
652		    ("vm_object_terminate: non-swap obj %p has uip",
653		     object));
654		swap_release_by_uid(object->charge, object->uip);
655		object->charge = 0;
656		uifree(object->uip);
657		object->uip = NULL;
658	}
659
660	/*
661	 * Free the space for the object.
662	 */
663	uma_zfree(obj_zone, object);
664}
665
666/*
667 *	vm_object_terminate actually destroys the specified object, freeing
668 *	up all previously used resources.
669 *
670 *	The object must be locked.
671 *	This routine may block.
672 */
673void
674vm_object_terminate(vm_object_t object)
675{
676	vm_page_t p;
677
678	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
679
680	/*
681	 * Make sure no one uses us.
682	 */
683	vm_object_set_flag(object, OBJ_DEAD);
684
685	/*
686	 * wait for the pageout daemon to be done with the object
687	 */
688	vm_object_pip_wait(object, "objtrm");
689
690	KASSERT(!object->paging_in_progress,
691		("vm_object_terminate: pageout in progress"));
692
693	/*
694	 * Clean and free the pages, as appropriate. All references to the
695	 * object are gone, so we don't need to lock it.
696	 */
697	if (object->type == OBJT_VNODE) {
698		struct vnode *vp = (struct vnode *)object->handle;
699
700		/*
701		 * Clean pages and flush buffers.
702		 */
703		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
704		VM_OBJECT_UNLOCK(object);
705
706		vinvalbuf(vp, V_SAVE, 0, 0);
707
708		VM_OBJECT_LOCK(object);
709	}
710
711	KASSERT(object->ref_count == 0,
712		("vm_object_terminate: object with references, ref_count=%d",
713		object->ref_count));
714
715	/*
716	 * Now free any remaining pages. For internal objects, this also
717	 * removes them from paging queues. Don't free wired pages, just
718	 * remove them from the object.
719	 */
720	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
721		KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
722			("vm_object_terminate: freeing busy page %p "
723			"p->busy = %d, p->oflags %x\n", p, p->busy, p->oflags));
724		vm_page_lock(p);
725		if (p->wire_count == 0) {
726			vm_page_free(p);
727			PCPU_INC(cnt.v_pfree);
728		} else
729			vm_page_remove(p);
730		vm_page_unlock(p);
731	}
732
733#if VM_NRESERVLEVEL > 0
734	if (__predict_false(!LIST_EMPTY(&object->rvq)))
735		vm_reserv_break_all(object);
736#endif
737	if (__predict_false(object->cache != NULL))
738		vm_page_cache_free(object, 0, 0);
739
740	/*
741	 * Let the pager know object is dead.
742	 */
743	vm_pager_deallocate(object);
744	VM_OBJECT_UNLOCK(object);
745
746	vm_object_destroy(object);
747}
748
749/*
750 *	vm_object_page_clean
751 *
752 *	Clean all dirty pages in the specified range of object.  Leaves page
753 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
754 *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
755 *	leaving the object dirty.
756 *
757 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
758 *	synchronous clustering mode implementation.
759 *
760 *	Odd semantics: if start == end, we clean everything.
761 *
762 *	The object must be locked.
763 */
764void
765vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
766{
767	vm_page_t p, np;
768	vm_pindex_t tstart, tend;
769	vm_pindex_t pi;
770	int clearobjflags;
771	int pagerflags;
772	int curgeneration;
773
774	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
775	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
776	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0)
777		return;
778	KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
779
780	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
781	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
782
783	vm_object_set_flag(object, OBJ_CLEANING);
784
785	tstart = start;
786	if (end == 0) {
787		tend = object->size;
788	} else {
789		tend = end;
790	}
791
792	/*
793	 * If the caller is smart and only msync()s a range he knows is
794	 * dirty, we may be able to avoid an object scan.  This results in
795	 * a phenominal improvement in performance.  We cannot do this
796	 * as a matter of course because the object may be huge - e.g.
797	 * the size might be in the gigabytes or terrabytes.
798	 */
799	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
800		vm_pindex_t tscan;
801		int scanlimit;
802		int scanreset;
803
804		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
805		if (scanreset < 16)
806			scanreset = 16;
807		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
808
809		scanlimit = scanreset;
810		tscan = tstart;
811		while (tscan < tend) {
812			curgeneration = object->generation;
813			p = vm_page_lookup(object, tscan);
814			if (p == NULL || p->valid == 0) {
815				if (--scanlimit == 0)
816					break;
817				++tscan;
818				continue;
819			}
820			vm_page_test_dirty(p);
821			if (p->dirty == 0) {
822				if (--scanlimit == 0)
823					break;
824				++tscan;
825				continue;
826			}
827			/*
828			 * If we have been asked to skip nosync pages and
829			 * this is a nosync page, we can't continue.
830			 */
831			if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
832				if (--scanlimit == 0)
833					break;
834				++tscan;
835				continue;
836			}
837			scanlimit = scanreset;
838
839			/*
840			 * This returns 0 if it was unable to busy the first
841			 * page (i.e. had to sleep).
842			 */
843			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
844
845		}
846
847		/*
848		 * If everything was dirty and we flushed it successfully,
849		 * and the requested range is not the entire object, we
850		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
851		 * return immediately.
852		 */
853		if (tscan >= tend && (tstart || tend < object->size)) {
854			vm_object_clear_flag(object, OBJ_CLEANING);
855			return;
856		}
857		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
858	}
859
860	/*
861	 * Generally set CLEANCHK interlock and make the page read-only so
862	 * we can then clear the object flags.
863	 *
864	 * However, if this is a nosync mmap then the object is likely to
865	 * stay dirty so do not mess with the page and do not clear the
866	 * object flags.
867	 */
868	clearobjflags = 1;
869	TAILQ_FOREACH(p, &object->memq, listq) {
870		p->oflags |= VPO_CLEANCHK;
871		if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC))
872			clearobjflags = 0;
873		else
874			pmap_remove_write(p);
875	}
876
877	if (clearobjflags && (tstart == 0) && (tend == object->size))
878		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
879
880rescan:
881	curgeneration = object->generation;
882
883	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
884		int n;
885
886		np = TAILQ_NEXT(p, listq);
887
888again:
889		pi = p->pindex;
890		if ((p->oflags & VPO_CLEANCHK) == 0 ||
891			(pi < tstart) || (pi >= tend) ||
892		    p->valid == 0) {
893			p->oflags &= ~VPO_CLEANCHK;
894			continue;
895		}
896
897		vm_page_test_dirty(p);
898		if (p->dirty == 0) {
899			p->oflags &= ~VPO_CLEANCHK;
900			continue;
901		}
902		/*
903		 * If we have been asked to skip nosync pages and this is a
904		 * nosync page, skip it.  Note that the object flags were
905		 * not cleared in this case so we do not have to set them.
906		 */
907		if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
908			p->oflags &= ~VPO_CLEANCHK;
909			continue;
910		}
911
912		n = vm_object_page_collect_flush(object, p,
913			curgeneration, pagerflags);
914		if (n == 0)
915			goto rescan;
916
917		if (object->generation != curgeneration)
918			goto rescan;
919
920		/*
921		 * Try to optimize the next page.  If we can't we pick up
922		 * our (random) scan where we left off.
923		 */
924		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ)
925			if ((p = vm_page_lookup(object, pi + n)) != NULL)
926				goto again;
927	}
928#if 0
929	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
930#endif
931
932	vm_object_clear_flag(object, OBJ_CLEANING);
933	return;
934}
935
936static int
937vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
938{
939	int runlen;
940	int maxf;
941	int chkb;
942	int maxb;
943	int i;
944	vm_pindex_t pi;
945	vm_page_t maf[vm_pageout_page_count];
946	vm_page_t mab[vm_pageout_page_count];
947	vm_page_t ma[vm_pageout_page_count];
948
949	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
950	vm_page_lock_assert(p, MA_NOTOWNED);
951	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
952	pi = p->pindex;
953	while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
954		if (object->generation != curgeneration) {
955			return(0);
956		}
957	}
958	maxf = 0;
959	for(i = 1; i < vm_pageout_page_count; i++) {
960		vm_page_t tp;
961
962		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
963			if ((tp->oflags & VPO_BUSY) ||
964				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
965				 (tp->oflags & VPO_CLEANCHK) == 0) ||
966				(tp->busy != 0))
967				break;
968			vm_page_test_dirty(tp);
969			if (tp->dirty == 0) {
970				tp->oflags &= ~VPO_CLEANCHK;
971				break;
972			}
973			maf[ i - 1 ] = tp;
974			maxf++;
975			continue;
976		}
977		break;
978	}
979
980	maxb = 0;
981	chkb = vm_pageout_page_count -  maxf;
982	if (chkb) {
983		for(i = 1; i < chkb;i++) {
984			vm_page_t tp;
985
986			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
987				if ((tp->oflags & VPO_BUSY) ||
988					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
989					 (tp->oflags & VPO_CLEANCHK) == 0) ||
990					(tp->busy != 0))
991					break;
992				vm_page_test_dirty(tp);
993				if (tp->dirty == 0) {
994					tp->oflags &= ~VPO_CLEANCHK;
995					break;
996				}
997				mab[ i - 1 ] = tp;
998				maxb++;
999				continue;
1000			}
1001			break;
1002		}
1003	}
1004
1005	for(i = 0; i < maxb; i++) {
1006		int index = (maxb - i) - 1;
1007		ma[index] = mab[i];
1008		ma[index]->oflags &= ~VPO_CLEANCHK;
1009	}
1010	p->oflags &= ~VPO_CLEANCHK;
1011	ma[maxb] = p;
1012	for(i = 0; i < maxf; i++) {
1013		int index = (maxb + i) + 1;
1014		ma[index] = maf[i];
1015		ma[index]->oflags &= ~VPO_CLEANCHK;
1016	}
1017	runlen = maxb + maxf + 1;
1018
1019	vm_pageout_flush(ma, runlen, pagerflags);
1020	for (i = 0; i < runlen; i++) {
1021		if (ma[i]->dirty) {
1022			pmap_remove_write(ma[i]);
1023			ma[i]->oflags |= VPO_CLEANCHK;
1024
1025			/*
1026			 * maxf will end up being the actual number of pages
1027			 * we wrote out contiguously, non-inclusive of the
1028			 * first page.  We do not count look-behind pages.
1029			 */
1030			if (i >= maxb + 1 && (maxf > i - maxb - 1))
1031				maxf = i - maxb - 1;
1032		}
1033	}
1034	return(maxf + 1);
1035}
1036
1037/*
1038 * Note that there is absolutely no sense in writing out
1039 * anonymous objects, so we track down the vnode object
1040 * to write out.
1041 * We invalidate (remove) all pages from the address space
1042 * for semantic correctness.
1043 *
1044 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1045 * may start out with a NULL object.
1046 */
1047void
1048vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1049    boolean_t syncio, boolean_t invalidate)
1050{
1051	vm_object_t backing_object;
1052	struct vnode *vp;
1053	struct mount *mp;
1054	int flags;
1055
1056	if (object == NULL)
1057		return;
1058	VM_OBJECT_LOCK(object);
1059	while ((backing_object = object->backing_object) != NULL) {
1060		VM_OBJECT_LOCK(backing_object);
1061		offset += object->backing_object_offset;
1062		VM_OBJECT_UNLOCK(object);
1063		object = backing_object;
1064		if (object->size < OFF_TO_IDX(offset + size))
1065			size = IDX_TO_OFF(object->size) - offset;
1066	}
1067	/*
1068	 * Flush pages if writing is allowed, invalidate them
1069	 * if invalidation requested.  Pages undergoing I/O
1070	 * will be ignored by vm_object_page_remove().
1071	 *
1072	 * We cannot lock the vnode and then wait for paging
1073	 * to complete without deadlocking against vm_fault.
1074	 * Instead we simply call vm_object_page_remove() and
1075	 * allow it to block internally on a page-by-page
1076	 * basis when it encounters pages undergoing async
1077	 * I/O.
1078	 */
1079	if (object->type == OBJT_VNODE &&
1080	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1081		int vfslocked;
1082		vp = object->handle;
1083		VM_OBJECT_UNLOCK(object);
1084		(void) vn_start_write(vp, &mp, V_WAIT);
1085		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1086		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1087		flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1088		flags |= invalidate ? OBJPC_INVAL : 0;
1089		VM_OBJECT_LOCK(object);
1090		vm_object_page_clean(object,
1091		    OFF_TO_IDX(offset),
1092		    OFF_TO_IDX(offset + size + PAGE_MASK),
1093		    flags);
1094		VM_OBJECT_UNLOCK(object);
1095		VOP_UNLOCK(vp, 0);
1096		VFS_UNLOCK_GIANT(vfslocked);
1097		vn_finished_write(mp);
1098		VM_OBJECT_LOCK(object);
1099	}
1100	if ((object->type == OBJT_VNODE ||
1101	     object->type == OBJT_DEVICE) && invalidate) {
1102		boolean_t purge;
1103		purge = old_msync || (object->type == OBJT_DEVICE);
1104		vm_object_page_remove(object,
1105		    OFF_TO_IDX(offset),
1106		    OFF_TO_IDX(offset + size + PAGE_MASK),
1107		    purge ? FALSE : TRUE);
1108	}
1109	VM_OBJECT_UNLOCK(object);
1110}
1111
1112/*
1113 *	vm_object_madvise:
1114 *
1115 *	Implements the madvise function at the object/page level.
1116 *
1117 *	MADV_WILLNEED	(any object)
1118 *
1119 *	    Activate the specified pages if they are resident.
1120 *
1121 *	MADV_DONTNEED	(any object)
1122 *
1123 *	    Deactivate the specified pages if they are resident.
1124 *
1125 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1126 *			 OBJ_ONEMAPPING only)
1127 *
1128 *	    Deactivate and clean the specified pages if they are
1129 *	    resident.  This permits the process to reuse the pages
1130 *	    without faulting or the kernel to reclaim the pages
1131 *	    without I/O.
1132 */
1133void
1134vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1135{
1136	vm_pindex_t end, tpindex;
1137	vm_object_t backing_object, tobject;
1138	vm_page_t m;
1139
1140	if (object == NULL)
1141		return;
1142	VM_OBJECT_LOCK(object);
1143	end = pindex + count;
1144	/*
1145	 * Locate and adjust resident pages
1146	 */
1147	for (; pindex < end; pindex += 1) {
1148relookup:
1149		tobject = object;
1150		tpindex = pindex;
1151shadowlookup:
1152		/*
1153		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1154		 * and those pages must be OBJ_ONEMAPPING.
1155		 */
1156		if (advise == MADV_FREE) {
1157			if ((tobject->type != OBJT_DEFAULT &&
1158			     tobject->type != OBJT_SWAP) ||
1159			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1160				goto unlock_tobject;
1161			}
1162		} else if (tobject->type == OBJT_PHYS)
1163			goto unlock_tobject;
1164		m = vm_page_lookup(tobject, tpindex);
1165		if (m == NULL && advise == MADV_WILLNEED) {
1166			/*
1167			 * If the page is cached, reactivate it.
1168			 */
1169			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1170			    VM_ALLOC_NOBUSY);
1171		}
1172		if (m == NULL) {
1173			/*
1174			 * There may be swap even if there is no backing page
1175			 */
1176			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1177				swap_pager_freespace(tobject, tpindex, 1);
1178			/*
1179			 * next object
1180			 */
1181			backing_object = tobject->backing_object;
1182			if (backing_object == NULL)
1183				goto unlock_tobject;
1184			VM_OBJECT_LOCK(backing_object);
1185			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1186			if (tobject != object)
1187				VM_OBJECT_UNLOCK(tobject);
1188			tobject = backing_object;
1189			goto shadowlookup;
1190		} else if (m->valid != VM_PAGE_BITS_ALL)
1191			goto unlock_tobject;
1192		/*
1193		 * If the page is not in a normal state, skip it.
1194		 */
1195		vm_page_lock(m);
1196		if (m->hold_count != 0 || m->wire_count != 0) {
1197			vm_page_unlock(m);
1198			goto unlock_tobject;
1199		}
1200		KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1201		    ("vm_object_madvise: page %p is not managed", m));
1202		if ((m->oflags & VPO_BUSY) || m->busy) {
1203			if (advise == MADV_WILLNEED) {
1204				/*
1205				 * Reference the page before unlocking and
1206				 * sleeping so that the page daemon is less
1207				 * likely to reclaim it.
1208				 */
1209				vm_page_lock_queues();
1210				vm_page_flag_set(m, PG_REFERENCED);
1211				vm_page_unlock_queues();
1212			}
1213			vm_page_unlock(m);
1214			if (object != tobject)
1215				VM_OBJECT_UNLOCK(object);
1216			m->oflags |= VPO_WANTED;
1217			msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
1218			    0);
1219			VM_OBJECT_LOCK(object);
1220  			goto relookup;
1221		}
1222		if (advise == MADV_WILLNEED) {
1223			vm_page_activate(m);
1224		} else if (advise == MADV_DONTNEED) {
1225			vm_page_dontneed(m);
1226		} else if (advise == MADV_FREE) {
1227			/*
1228			 * Mark the page clean.  This will allow the page
1229			 * to be freed up by the system.  However, such pages
1230			 * are often reused quickly by malloc()/free()
1231			 * so we do not do anything that would cause
1232			 * a page fault if we can help it.
1233			 *
1234			 * Specifically, we do not try to actually free
1235			 * the page now nor do we try to put it in the
1236			 * cache (which would cause a page fault on reuse).
1237			 *
1238			 * But we do make the page is freeable as we
1239			 * can without actually taking the step of unmapping
1240			 * it.
1241			 */
1242			pmap_clear_modify(m);
1243			m->dirty = 0;
1244			m->act_count = 0;
1245			vm_page_dontneed(m);
1246		}
1247		vm_page_unlock(m);
1248		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1249			swap_pager_freespace(tobject, tpindex, 1);
1250unlock_tobject:
1251		if (tobject != object)
1252			VM_OBJECT_UNLOCK(tobject);
1253	}
1254	VM_OBJECT_UNLOCK(object);
1255}
1256
1257/*
1258 *	vm_object_shadow:
1259 *
1260 *	Create a new object which is backed by the
1261 *	specified existing object range.  The source
1262 *	object reference is deallocated.
1263 *
1264 *	The new object and offset into that object
1265 *	are returned in the source parameters.
1266 */
1267void
1268vm_object_shadow(
1269	vm_object_t *object,	/* IN/OUT */
1270	vm_ooffset_t *offset,	/* IN/OUT */
1271	vm_size_t length)
1272{
1273	vm_object_t source;
1274	vm_object_t result;
1275
1276	source = *object;
1277
1278	/*
1279	 * Don't create the new object if the old object isn't shared.
1280	 */
1281	if (source != NULL) {
1282		VM_OBJECT_LOCK(source);
1283		if (source->ref_count == 1 &&
1284		    source->handle == NULL &&
1285		    (source->type == OBJT_DEFAULT ||
1286		     source->type == OBJT_SWAP)) {
1287			VM_OBJECT_UNLOCK(source);
1288			return;
1289		}
1290		VM_OBJECT_UNLOCK(source);
1291	}
1292
1293	/*
1294	 * Allocate a new object with the given length.
1295	 */
1296	result = vm_object_allocate(OBJT_DEFAULT, length);
1297
1298	/*
1299	 * The new object shadows the source object, adding a reference to it.
1300	 * Our caller changes his reference to point to the new object,
1301	 * removing a reference to the source object.  Net result: no change
1302	 * of reference count.
1303	 *
1304	 * Try to optimize the result object's page color when shadowing
1305	 * in order to maintain page coloring consistency in the combined
1306	 * shadowed object.
1307	 */
1308	result->backing_object = source;
1309	/*
1310	 * Store the offset into the source object, and fix up the offset into
1311	 * the new object.
1312	 */
1313	result->backing_object_offset = *offset;
1314	if (source != NULL) {
1315		VM_OBJECT_LOCK(source);
1316		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1317		source->shadow_count++;
1318		source->generation++;
1319#if VM_NRESERVLEVEL > 0
1320		result->flags |= source->flags & OBJ_COLORED;
1321		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1322		    ((1 << (VM_NFREEORDER - 1)) - 1);
1323#endif
1324		VM_OBJECT_UNLOCK(source);
1325	}
1326
1327
1328	/*
1329	 * Return the new things
1330	 */
1331	*offset = 0;
1332	*object = result;
1333}
1334
1335/*
1336 *	vm_object_split:
1337 *
1338 * Split the pages in a map entry into a new object.  This affords
1339 * easier removal of unused pages, and keeps object inheritance from
1340 * being a negative impact on memory usage.
1341 */
1342void
1343vm_object_split(vm_map_entry_t entry)
1344{
1345	vm_page_t m, m_next;
1346	vm_object_t orig_object, new_object, source;
1347	vm_pindex_t idx, offidxstart;
1348	vm_size_t size;
1349
1350	orig_object = entry->object.vm_object;
1351	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1352		return;
1353	if (orig_object->ref_count <= 1)
1354		return;
1355	VM_OBJECT_UNLOCK(orig_object);
1356
1357	offidxstart = OFF_TO_IDX(entry->offset);
1358	size = atop(entry->end - entry->start);
1359
1360	/*
1361	 * If swap_pager_copy() is later called, it will convert new_object
1362	 * into a swap object.
1363	 */
1364	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1365
1366	/*
1367	 * At this point, the new object is still private, so the order in
1368	 * which the original and new objects are locked does not matter.
1369	 */
1370	VM_OBJECT_LOCK(new_object);
1371	VM_OBJECT_LOCK(orig_object);
1372	source = orig_object->backing_object;
1373	if (source != NULL) {
1374		VM_OBJECT_LOCK(source);
1375		if ((source->flags & OBJ_DEAD) != 0) {
1376			VM_OBJECT_UNLOCK(source);
1377			VM_OBJECT_UNLOCK(orig_object);
1378			VM_OBJECT_UNLOCK(new_object);
1379			vm_object_deallocate(new_object);
1380			VM_OBJECT_LOCK(orig_object);
1381			return;
1382		}
1383		LIST_INSERT_HEAD(&source->shadow_head,
1384				  new_object, shadow_list);
1385		source->shadow_count++;
1386		source->generation++;
1387		vm_object_reference_locked(source);	/* for new_object */
1388		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1389		VM_OBJECT_UNLOCK(source);
1390		new_object->backing_object_offset =
1391			orig_object->backing_object_offset + entry->offset;
1392		new_object->backing_object = source;
1393	}
1394	if (orig_object->uip != NULL) {
1395		new_object->uip = orig_object->uip;
1396		uihold(orig_object->uip);
1397		new_object->charge = ptoa(size);
1398		KASSERT(orig_object->charge >= ptoa(size),
1399		    ("orig_object->charge < 0"));
1400		orig_object->charge -= ptoa(size);
1401	}
1402retry:
1403	m = vm_page_find_least(orig_object, offidxstart);
1404	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1405	    m = m_next) {
1406		m_next = TAILQ_NEXT(m, listq);
1407
1408		/*
1409		 * We must wait for pending I/O to complete before we can
1410		 * rename the page.
1411		 *
1412		 * We do not have to VM_PROT_NONE the page as mappings should
1413		 * not be changed by this operation.
1414		 */
1415		if ((m->oflags & VPO_BUSY) || m->busy) {
1416			VM_OBJECT_UNLOCK(new_object);
1417			m->oflags |= VPO_WANTED;
1418			msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1419			VM_OBJECT_LOCK(new_object);
1420			goto retry;
1421		}
1422		vm_page_lock(m);
1423		vm_page_rename(m, new_object, idx);
1424		vm_page_unlock(m);
1425		/* page automatically made dirty by rename and cache handled */
1426		vm_page_busy(m);
1427	}
1428	if (orig_object->type == OBJT_SWAP) {
1429		/*
1430		 * swap_pager_copy() can sleep, in which case the orig_object's
1431		 * and new_object's locks are released and reacquired.
1432		 */
1433		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1434
1435		/*
1436		 * Transfer any cached pages from orig_object to new_object.
1437		 */
1438		if (__predict_false(orig_object->cache != NULL))
1439			vm_page_cache_transfer(orig_object, offidxstart,
1440			    new_object);
1441	}
1442	VM_OBJECT_UNLOCK(orig_object);
1443	TAILQ_FOREACH(m, &new_object->memq, listq)
1444		vm_page_wakeup(m);
1445	VM_OBJECT_UNLOCK(new_object);
1446	entry->object.vm_object = new_object;
1447	entry->offset = 0LL;
1448	vm_object_deallocate(orig_object);
1449	VM_OBJECT_LOCK(new_object);
1450}
1451
1452#define	OBSC_TEST_ALL_SHADOWED	0x0001
1453#define	OBSC_COLLAPSE_NOWAIT	0x0002
1454#define	OBSC_COLLAPSE_WAIT	0x0004
1455
1456static int
1457vm_object_backing_scan(vm_object_t object, int op)
1458{
1459	int r = 1;
1460	vm_page_t p;
1461	vm_object_t backing_object;
1462	vm_pindex_t backing_offset_index;
1463
1464	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1465	VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1466
1467	backing_object = object->backing_object;
1468	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1469
1470	/*
1471	 * Initial conditions
1472	 */
1473	if (op & OBSC_TEST_ALL_SHADOWED) {
1474		/*
1475		 * We do not want to have to test for the existence of cache
1476		 * or swap pages in the backing object.  XXX but with the
1477		 * new swapper this would be pretty easy to do.
1478		 *
1479		 * XXX what about anonymous MAP_SHARED memory that hasn't
1480		 * been ZFOD faulted yet?  If we do not test for this, the
1481		 * shadow test may succeed! XXX
1482		 */
1483		if (backing_object->type != OBJT_DEFAULT) {
1484			return (0);
1485		}
1486	}
1487	if (op & OBSC_COLLAPSE_WAIT) {
1488		vm_object_set_flag(backing_object, OBJ_DEAD);
1489	}
1490
1491	/*
1492	 * Our scan
1493	 */
1494	p = TAILQ_FIRST(&backing_object->memq);
1495	while (p) {
1496		vm_page_t next = TAILQ_NEXT(p, listq);
1497		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1498
1499		if (op & OBSC_TEST_ALL_SHADOWED) {
1500			vm_page_t pp;
1501
1502			/*
1503			 * Ignore pages outside the parent object's range
1504			 * and outside the parent object's mapping of the
1505			 * backing object.
1506			 *
1507			 * note that we do not busy the backing object's
1508			 * page.
1509			 */
1510			if (
1511			    p->pindex < backing_offset_index ||
1512			    new_pindex >= object->size
1513			) {
1514				p = next;
1515				continue;
1516			}
1517
1518			/*
1519			 * See if the parent has the page or if the parent's
1520			 * object pager has the page.  If the parent has the
1521			 * page but the page is not valid, the parent's
1522			 * object pager must have the page.
1523			 *
1524			 * If this fails, the parent does not completely shadow
1525			 * the object and we might as well give up now.
1526			 */
1527
1528			pp = vm_page_lookup(object, new_pindex);
1529			if (
1530			    (pp == NULL || pp->valid == 0) &&
1531			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1532			) {
1533				r = 0;
1534				break;
1535			}
1536		}
1537
1538		/*
1539		 * Check for busy page
1540		 */
1541		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1542			vm_page_t pp;
1543
1544			if (op & OBSC_COLLAPSE_NOWAIT) {
1545				if ((p->oflags & VPO_BUSY) ||
1546				    !p->valid ||
1547				    p->busy) {
1548					p = next;
1549					continue;
1550				}
1551			} else if (op & OBSC_COLLAPSE_WAIT) {
1552				if ((p->oflags & VPO_BUSY) || p->busy) {
1553					VM_OBJECT_UNLOCK(object);
1554					p->oflags |= VPO_WANTED;
1555					msleep(p, VM_OBJECT_MTX(backing_object),
1556					    PDROP | PVM, "vmocol", 0);
1557					VM_OBJECT_LOCK(object);
1558					VM_OBJECT_LOCK(backing_object);
1559					/*
1560					 * If we slept, anything could have
1561					 * happened.  Since the object is
1562					 * marked dead, the backing offset
1563					 * should not have changed so we
1564					 * just restart our scan.
1565					 */
1566					p = TAILQ_FIRST(&backing_object->memq);
1567					continue;
1568				}
1569			}
1570
1571			KASSERT(
1572			    p->object == backing_object,
1573			    ("vm_object_backing_scan: object mismatch")
1574			);
1575
1576			/*
1577			 * Destroy any associated swap
1578			 */
1579			if (backing_object->type == OBJT_SWAP) {
1580				swap_pager_freespace(
1581				    backing_object,
1582				    p->pindex,
1583				    1
1584				);
1585			}
1586
1587			if (
1588			    p->pindex < backing_offset_index ||
1589			    new_pindex >= object->size
1590			) {
1591				/*
1592				 * Page is out of the parent object's range, we
1593				 * can simply destroy it.
1594				 */
1595				vm_page_lock(p);
1596				KASSERT(!pmap_page_is_mapped(p),
1597				    ("freeing mapped page %p", p));
1598				if (p->wire_count == 0)
1599					vm_page_free(p);
1600				else
1601					vm_page_remove(p);
1602				vm_page_unlock(p);
1603				p = next;
1604				continue;
1605			}
1606
1607			pp = vm_page_lookup(object, new_pindex);
1608			if (
1609			    pp != NULL ||
1610			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1611			) {
1612				/*
1613				 * page already exists in parent OR swap exists
1614				 * for this location in the parent.  Destroy
1615				 * the original page from the backing object.
1616				 *
1617				 * Leave the parent's page alone
1618				 */
1619				vm_page_lock(p);
1620				KASSERT(!pmap_page_is_mapped(p),
1621				    ("freeing mapped page %p", p));
1622				if (p->wire_count == 0)
1623					vm_page_free(p);
1624				else
1625					vm_page_remove(p);
1626				vm_page_unlock(p);
1627				p = next;
1628				continue;
1629			}
1630
1631#if VM_NRESERVLEVEL > 0
1632			/*
1633			 * Rename the reservation.
1634			 */
1635			vm_reserv_rename(p, object, backing_object,
1636			    backing_offset_index);
1637#endif
1638
1639			/*
1640			 * Page does not exist in parent, rename the
1641			 * page from the backing object to the main object.
1642			 *
1643			 * If the page was mapped to a process, it can remain
1644			 * mapped through the rename.
1645			 */
1646			vm_page_lock(p);
1647			vm_page_rename(p, object, new_pindex);
1648			vm_page_unlock(p);
1649			/* page automatically made dirty by rename */
1650		}
1651		p = next;
1652	}
1653	return (r);
1654}
1655
1656
1657/*
1658 * this version of collapse allows the operation to occur earlier and
1659 * when paging_in_progress is true for an object...  This is not a complete
1660 * operation, but should plug 99.9% of the rest of the leaks.
1661 */
1662static void
1663vm_object_qcollapse(vm_object_t object)
1664{
1665	vm_object_t backing_object = object->backing_object;
1666
1667	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1668	VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1669
1670	if (backing_object->ref_count != 1)
1671		return;
1672
1673	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1674}
1675
1676/*
1677 *	vm_object_collapse:
1678 *
1679 *	Collapse an object with the object backing it.
1680 *	Pages in the backing object are moved into the
1681 *	parent, and the backing object is deallocated.
1682 */
1683void
1684vm_object_collapse(vm_object_t object)
1685{
1686	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1687
1688	while (TRUE) {
1689		vm_object_t backing_object;
1690
1691		/*
1692		 * Verify that the conditions are right for collapse:
1693		 *
1694		 * The object exists and the backing object exists.
1695		 */
1696		if ((backing_object = object->backing_object) == NULL)
1697			break;
1698
1699		/*
1700		 * we check the backing object first, because it is most likely
1701		 * not collapsable.
1702		 */
1703		VM_OBJECT_LOCK(backing_object);
1704		if (backing_object->handle != NULL ||
1705		    (backing_object->type != OBJT_DEFAULT &&
1706		     backing_object->type != OBJT_SWAP) ||
1707		    (backing_object->flags & OBJ_DEAD) ||
1708		    object->handle != NULL ||
1709		    (object->type != OBJT_DEFAULT &&
1710		     object->type != OBJT_SWAP) ||
1711		    (object->flags & OBJ_DEAD)) {
1712			VM_OBJECT_UNLOCK(backing_object);
1713			break;
1714		}
1715
1716		if (
1717		    object->paging_in_progress != 0 ||
1718		    backing_object->paging_in_progress != 0
1719		) {
1720			vm_object_qcollapse(object);
1721			VM_OBJECT_UNLOCK(backing_object);
1722			break;
1723		}
1724		/*
1725		 * We know that we can either collapse the backing object (if
1726		 * the parent is the only reference to it) or (perhaps) have
1727		 * the parent bypass the object if the parent happens to shadow
1728		 * all the resident pages in the entire backing object.
1729		 *
1730		 * This is ignoring pager-backed pages such as swap pages.
1731		 * vm_object_backing_scan fails the shadowing test in this
1732		 * case.
1733		 */
1734		if (backing_object->ref_count == 1) {
1735			/*
1736			 * If there is exactly one reference to the backing
1737			 * object, we can collapse it into the parent.
1738			 */
1739			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1740
1741#if VM_NRESERVLEVEL > 0
1742			/*
1743			 * Break any reservations from backing_object.
1744			 */
1745			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1746				vm_reserv_break_all(backing_object);
1747#endif
1748
1749			/*
1750			 * Move the pager from backing_object to object.
1751			 */
1752			if (backing_object->type == OBJT_SWAP) {
1753				/*
1754				 * swap_pager_copy() can sleep, in which case
1755				 * the backing_object's and object's locks are
1756				 * released and reacquired.
1757				 */
1758				swap_pager_copy(
1759				    backing_object,
1760				    object,
1761				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1762
1763				/*
1764				 * Free any cached pages from backing_object.
1765				 */
1766				if (__predict_false(backing_object->cache != NULL))
1767					vm_page_cache_free(backing_object, 0, 0);
1768			}
1769			/*
1770			 * Object now shadows whatever backing_object did.
1771			 * Note that the reference to
1772			 * backing_object->backing_object moves from within
1773			 * backing_object to within object.
1774			 */
1775			LIST_REMOVE(object, shadow_list);
1776			backing_object->shadow_count--;
1777			backing_object->generation++;
1778			if (backing_object->backing_object) {
1779				VM_OBJECT_LOCK(backing_object->backing_object);
1780				LIST_REMOVE(backing_object, shadow_list);
1781				LIST_INSERT_HEAD(
1782				    &backing_object->backing_object->shadow_head,
1783				    object, shadow_list);
1784				/*
1785				 * The shadow_count has not changed.
1786				 */
1787				backing_object->backing_object->generation++;
1788				VM_OBJECT_UNLOCK(backing_object->backing_object);
1789			}
1790			object->backing_object = backing_object->backing_object;
1791			object->backing_object_offset +=
1792			    backing_object->backing_object_offset;
1793
1794			/*
1795			 * Discard backing_object.
1796			 *
1797			 * Since the backing object has no pages, no pager left,
1798			 * and no object references within it, all that is
1799			 * necessary is to dispose of it.
1800			 */
1801			KASSERT(backing_object->ref_count == 1, (
1802"backing_object %p was somehow re-referenced during collapse!",
1803			    backing_object));
1804			VM_OBJECT_UNLOCK(backing_object);
1805			vm_object_destroy(backing_object);
1806
1807			object_collapses++;
1808		} else {
1809			vm_object_t new_backing_object;
1810
1811			/*
1812			 * If we do not entirely shadow the backing object,
1813			 * there is nothing we can do so we give up.
1814			 */
1815			if (object->resident_page_count != object->size &&
1816			    vm_object_backing_scan(object,
1817			    OBSC_TEST_ALL_SHADOWED) == 0) {
1818				VM_OBJECT_UNLOCK(backing_object);
1819				break;
1820			}
1821
1822			/*
1823			 * Make the parent shadow the next object in the
1824			 * chain.  Deallocating backing_object will not remove
1825			 * it, since its reference count is at least 2.
1826			 */
1827			LIST_REMOVE(object, shadow_list);
1828			backing_object->shadow_count--;
1829			backing_object->generation++;
1830
1831			new_backing_object = backing_object->backing_object;
1832			if ((object->backing_object = new_backing_object) != NULL) {
1833				VM_OBJECT_LOCK(new_backing_object);
1834				LIST_INSERT_HEAD(
1835				    &new_backing_object->shadow_head,
1836				    object,
1837				    shadow_list
1838				);
1839				new_backing_object->shadow_count++;
1840				new_backing_object->generation++;
1841				vm_object_reference_locked(new_backing_object);
1842				VM_OBJECT_UNLOCK(new_backing_object);
1843				object->backing_object_offset +=
1844					backing_object->backing_object_offset;
1845			}
1846
1847			/*
1848			 * Drop the reference count on backing_object. Since
1849			 * its ref_count was at least 2, it will not vanish.
1850			 */
1851			backing_object->ref_count--;
1852			VM_OBJECT_UNLOCK(backing_object);
1853			object_bypasses++;
1854		}
1855
1856		/*
1857		 * Try again with this object's new backing object.
1858		 */
1859	}
1860}
1861
1862/*
1863 *	vm_object_page_remove:
1864 *
1865 *	For the given object, either frees or invalidates each of the
1866 *	specified pages.  In general, a page is freed.  However, if a
1867 *	page is wired for any reason other than the existence of a
1868 *	managed, wired mapping, then it may be invalidated but not
1869 *	removed from the object.  Pages are specified by the given
1870 *	range ["start", "end") and Boolean "clean_only".  As a
1871 *	special case, if "end" is zero, then the range extends from
1872 *	"start" to the end of the object.  If "clean_only" is TRUE,
1873 *	then only the non-dirty pages within the specified range are
1874 *	affected.
1875 *
1876 *	In general, this operation should only be performed on objects
1877 *	that contain managed pages.  There are two exceptions.  First,
1878 *	it may be performed on the kernel and kmem objects.  Second,
1879 *	it may be used by msync(..., MS_INVALIDATE) to invalidate
1880 *	device-backed pages.  In both of these cases, "clean_only"
1881 *	must be FALSE.
1882 *
1883 *	The object must be locked.
1884 */
1885void
1886vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1887    boolean_t clean_only)
1888{
1889	vm_page_t p, next;
1890	int wirings;
1891
1892	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1893	if (object->resident_page_count == 0)
1894		goto skipmemq;
1895
1896	/*
1897	 * Since physically-backed objects do not use managed pages, we can't
1898	 * remove pages from the object (we must instead remove the page
1899	 * references, and then destroy the object).
1900	 */
1901	KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
1902	    object == kmem_object,
1903	    ("attempt to remove pages from a physical object"));
1904
1905	vm_object_pip_add(object, 1);
1906again:
1907	p = vm_page_find_least(object, start);
1908
1909	/*
1910	 * Assert: the variable p is either (1) the page with the
1911	 * least pindex greater than or equal to the parameter pindex
1912	 * or (2) NULL.
1913	 */
1914	for (;
1915	     p != NULL && (p->pindex < end || end == 0);
1916	     p = next) {
1917		next = TAILQ_NEXT(p, listq);
1918
1919		/*
1920		 * If the page is wired for any reason besides the
1921		 * existence of managed, wired mappings, then it cannot
1922		 * be freed.  For example, fictitious pages, which
1923		 * represent device memory, are inherently wired and
1924		 * cannot be freed.  They can, however, be invalidated
1925		 * if "clean_only" is FALSE.
1926		 */
1927		vm_page_lock(p);
1928		if ((wirings = p->wire_count) != 0 &&
1929		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1930			/* Fictitious pages do not have managed mappings. */
1931			if ((p->flags & PG_FICTITIOUS) == 0)
1932				pmap_remove_all(p);
1933			/* Account for removal of managed, wired mappings. */
1934			p->wire_count -= wirings;
1935			if (!clean_only) {
1936				p->valid = 0;
1937				vm_page_undirty(p);
1938			}
1939			vm_page_unlock(p);
1940			continue;
1941		}
1942		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1943			goto again;
1944		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1945		    ("vm_object_page_remove: page %p is fictitious", p));
1946		if (clean_only && p->valid) {
1947			pmap_remove_write(p);
1948			if (p->dirty) {
1949				vm_page_unlock(p);
1950				continue;
1951			}
1952		}
1953		pmap_remove_all(p);
1954		/* Account for removal of managed, wired mappings. */
1955		if (wirings != 0)
1956			p->wire_count -= wirings;
1957		vm_page_free(p);
1958		vm_page_unlock(p);
1959	}
1960	vm_object_pip_wakeup(object);
1961skipmemq:
1962	if (__predict_false(object->cache != NULL))
1963		vm_page_cache_free(object, start, end);
1964}
1965
1966/*
1967 *	Populate the specified range of the object with valid pages.  Returns
1968 *	TRUE if the range is successfully populated and FALSE otherwise.
1969 *
1970 *	Note: This function should be optimized to pass a larger array of
1971 *	pages to vm_pager_get_pages() before it is applied to a non-
1972 *	OBJT_DEVICE object.
1973 *
1974 *	The object must be locked.
1975 */
1976boolean_t
1977vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1978{
1979	vm_page_t m, ma[1];
1980	vm_pindex_t pindex;
1981	int rv;
1982
1983	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1984	for (pindex = start; pindex < end; pindex++) {
1985		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
1986		    VM_ALLOC_RETRY);
1987		if (m->valid != VM_PAGE_BITS_ALL) {
1988			ma[0] = m;
1989			rv = vm_pager_get_pages(object, ma, 1, 0);
1990			m = vm_page_lookup(object, pindex);
1991			if (m == NULL)
1992				break;
1993			if (rv != VM_PAGER_OK) {
1994				vm_page_lock(m);
1995				vm_page_free(m);
1996				vm_page_unlock(m);
1997				break;
1998			}
1999		}
2000		/*
2001		 * Keep "m" busy because a subsequent iteration may unlock
2002		 * the object.
2003		 */
2004	}
2005	if (pindex > start) {
2006		m = vm_page_lookup(object, start);
2007		while (m != NULL && m->pindex < pindex) {
2008			vm_page_wakeup(m);
2009			m = TAILQ_NEXT(m, listq);
2010		}
2011	}
2012	return (pindex == end);
2013}
2014
2015/*
2016 *	Routine:	vm_object_coalesce
2017 *	Function:	Coalesces two objects backing up adjoining
2018 *			regions of memory into a single object.
2019 *
2020 *	returns TRUE if objects were combined.
2021 *
2022 *	NOTE:	Only works at the moment if the second object is NULL -
2023 *		if it's not, which object do we lock first?
2024 *
2025 *	Parameters:
2026 *		prev_object	First object to coalesce
2027 *		prev_offset	Offset into prev_object
2028 *		prev_size	Size of reference to prev_object
2029 *		next_size	Size of reference to the second object
2030 *		reserved	Indicator that extension region has
2031 *				swap accounted for
2032 *
2033 *	Conditions:
2034 *	The object must *not* be locked.
2035 */
2036boolean_t
2037vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2038    vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2039{
2040	vm_pindex_t next_pindex;
2041
2042	if (prev_object == NULL)
2043		return (TRUE);
2044	VM_OBJECT_LOCK(prev_object);
2045	if (prev_object->type != OBJT_DEFAULT &&
2046	    prev_object->type != OBJT_SWAP) {
2047		VM_OBJECT_UNLOCK(prev_object);
2048		return (FALSE);
2049	}
2050
2051	/*
2052	 * Try to collapse the object first
2053	 */
2054	vm_object_collapse(prev_object);
2055
2056	/*
2057	 * Can't coalesce if: . more than one reference . paged out . shadows
2058	 * another object . has a copy elsewhere (any of which mean that the
2059	 * pages not mapped to prev_entry may be in use anyway)
2060	 */
2061	if (prev_object->backing_object != NULL) {
2062		VM_OBJECT_UNLOCK(prev_object);
2063		return (FALSE);
2064	}
2065
2066	prev_size >>= PAGE_SHIFT;
2067	next_size >>= PAGE_SHIFT;
2068	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2069
2070	if ((prev_object->ref_count > 1) &&
2071	    (prev_object->size != next_pindex)) {
2072		VM_OBJECT_UNLOCK(prev_object);
2073		return (FALSE);
2074	}
2075
2076	/*
2077	 * Account for the charge.
2078	 */
2079	if (prev_object->uip != NULL) {
2080
2081		/*
2082		 * If prev_object was charged, then this mapping,
2083		 * althought not charged now, may become writable
2084		 * later. Non-NULL uip in the object would prevent
2085		 * swap reservation during enabling of the write
2086		 * access, so reserve swap now. Failed reservation
2087		 * cause allocation of the separate object for the map
2088		 * entry, and swap reservation for this entry is
2089		 * managed in appropriate time.
2090		 */
2091		if (!reserved && !swap_reserve_by_uid(ptoa(next_size),
2092		    prev_object->uip)) {
2093			return (FALSE);
2094		}
2095		prev_object->charge += ptoa(next_size);
2096	}
2097
2098	/*
2099	 * Remove any pages that may still be in the object from a previous
2100	 * deallocation.
2101	 */
2102	if (next_pindex < prev_object->size) {
2103		vm_object_page_remove(prev_object,
2104				      next_pindex,
2105				      next_pindex + next_size, FALSE);
2106		if (prev_object->type == OBJT_SWAP)
2107			swap_pager_freespace(prev_object,
2108					     next_pindex, next_size);
2109#if 0
2110		if (prev_object->uip != NULL) {
2111			KASSERT(prev_object->charge >=
2112			    ptoa(prev_object->size - next_pindex),
2113			    ("object %p overcharged 1 %jx %jx", prev_object,
2114				(uintmax_t)next_pindex, (uintmax_t)next_size));
2115			prev_object->charge -= ptoa(prev_object->size -
2116			    next_pindex);
2117		}
2118#endif
2119	}
2120
2121	/*
2122	 * Extend the object if necessary.
2123	 */
2124	if (next_pindex + next_size > prev_object->size)
2125		prev_object->size = next_pindex + next_size;
2126
2127	VM_OBJECT_UNLOCK(prev_object);
2128	return (TRUE);
2129}
2130
2131void
2132vm_object_set_writeable_dirty(vm_object_t object)
2133{
2134
2135	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2136	if (object->type != OBJT_VNODE ||
2137	    (object->flags & OBJ_MIGHTBEDIRTY) != 0)
2138		return;
2139	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2140}
2141
2142#include "opt_ddb.h"
2143#ifdef DDB
2144#include <sys/kernel.h>
2145
2146#include <sys/cons.h>
2147
2148#include <ddb/ddb.h>
2149
2150static int
2151_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2152{
2153	vm_map_t tmpm;
2154	vm_map_entry_t tmpe;
2155	vm_object_t obj;
2156	int entcount;
2157
2158	if (map == 0)
2159		return 0;
2160
2161	if (entry == 0) {
2162		tmpe = map->header.next;
2163		entcount = map->nentries;
2164		while (entcount-- && (tmpe != &map->header)) {
2165			if (_vm_object_in_map(map, object, tmpe)) {
2166				return 1;
2167			}
2168			tmpe = tmpe->next;
2169		}
2170	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2171		tmpm = entry->object.sub_map;
2172		tmpe = tmpm->header.next;
2173		entcount = tmpm->nentries;
2174		while (entcount-- && tmpe != &tmpm->header) {
2175			if (_vm_object_in_map(tmpm, object, tmpe)) {
2176				return 1;
2177			}
2178			tmpe = tmpe->next;
2179		}
2180	} else if ((obj = entry->object.vm_object) != NULL) {
2181		for (; obj; obj = obj->backing_object)
2182			if (obj == object) {
2183				return 1;
2184			}
2185	}
2186	return 0;
2187}
2188
2189static int
2190vm_object_in_map(vm_object_t object)
2191{
2192	struct proc *p;
2193
2194	/* sx_slock(&allproc_lock); */
2195	FOREACH_PROC_IN_SYSTEM(p) {
2196		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2197			continue;
2198		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2199			/* sx_sunlock(&allproc_lock); */
2200			return 1;
2201		}
2202	}
2203	/* sx_sunlock(&allproc_lock); */
2204	if (_vm_object_in_map(kernel_map, object, 0))
2205		return 1;
2206	if (_vm_object_in_map(kmem_map, object, 0))
2207		return 1;
2208	if (_vm_object_in_map(pager_map, object, 0))
2209		return 1;
2210	if (_vm_object_in_map(buffer_map, object, 0))
2211		return 1;
2212	return 0;
2213}
2214
2215DB_SHOW_COMMAND(vmochk, vm_object_check)
2216{
2217	vm_object_t object;
2218
2219	/*
2220	 * make sure that internal objs are in a map somewhere
2221	 * and none have zero ref counts.
2222	 */
2223	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2224		if (object->handle == NULL &&
2225		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2226			if (object->ref_count == 0) {
2227				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2228					(long)object->size);
2229			}
2230			if (!vm_object_in_map(object)) {
2231				db_printf(
2232			"vmochk: internal obj is not in a map: "
2233			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2234				    object->ref_count, (u_long)object->size,
2235				    (u_long)object->size,
2236				    (void *)object->backing_object);
2237			}
2238		}
2239	}
2240}
2241
2242/*
2243 *	vm_object_print:	[ debug ]
2244 */
2245DB_SHOW_COMMAND(object, vm_object_print_static)
2246{
2247	/* XXX convert args. */
2248	vm_object_t object = (vm_object_t)addr;
2249	boolean_t full = have_addr;
2250
2251	vm_page_t p;
2252
2253	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2254#define	count	was_count
2255
2256	int count;
2257
2258	if (object == NULL)
2259		return;
2260
2261	db_iprintf(
2262	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x uip %d charge %jx\n",
2263	    object, (int)object->type, (uintmax_t)object->size,
2264	    object->resident_page_count, object->ref_count, object->flags,
2265	    object->uip ? object->uip->ui_uid : -1, (uintmax_t)object->charge);
2266	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2267	    object->shadow_count,
2268	    object->backing_object ? object->backing_object->ref_count : 0,
2269	    object->backing_object, (uintmax_t)object->backing_object_offset);
2270
2271	if (!full)
2272		return;
2273
2274	db_indent += 2;
2275	count = 0;
2276	TAILQ_FOREACH(p, &object->memq, listq) {
2277		if (count == 0)
2278			db_iprintf("memory:=");
2279		else if (count == 6) {
2280			db_printf("\n");
2281			db_iprintf(" ...");
2282			count = 0;
2283		} else
2284			db_printf(",");
2285		count++;
2286
2287		db_printf("(off=0x%jx,page=0x%jx)",
2288		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2289	}
2290	if (count != 0)
2291		db_printf("\n");
2292	db_indent -= 2;
2293}
2294
2295/* XXX. */
2296#undef count
2297
2298/* XXX need this non-static entry for calling from vm_map_print. */
2299void
2300vm_object_print(
2301        /* db_expr_t */ long addr,
2302	boolean_t have_addr,
2303	/* db_expr_t */ long count,
2304	char *modif)
2305{
2306	vm_object_print_static(addr, have_addr, count, modif);
2307}
2308
2309DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2310{
2311	vm_object_t object;
2312	vm_pindex_t fidx;
2313	vm_paddr_t pa;
2314	vm_page_t m, prev_m;
2315	int rcount, nl, c;
2316
2317	nl = 0;
2318	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2319		db_printf("new object: %p\n", (void *)object);
2320		if (nl > 18) {
2321			c = cngetc();
2322			if (c != ' ')
2323				return;
2324			nl = 0;
2325		}
2326		nl++;
2327		rcount = 0;
2328		fidx = 0;
2329		pa = -1;
2330		TAILQ_FOREACH(m, &object->memq, listq) {
2331			if (m->pindex > 128)
2332				break;
2333			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2334			    prev_m->pindex + 1 != m->pindex) {
2335				if (rcount) {
2336					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2337						(long)fidx, rcount, (long)pa);
2338					if (nl > 18) {
2339						c = cngetc();
2340						if (c != ' ')
2341							return;
2342						nl = 0;
2343					}
2344					nl++;
2345					rcount = 0;
2346				}
2347			}
2348			if (rcount &&
2349				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2350				++rcount;
2351				continue;
2352			}
2353			if (rcount) {
2354				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2355					(long)fidx, rcount, (long)pa);
2356				if (nl > 18) {
2357					c = cngetc();
2358					if (c != ' ')
2359						return;
2360					nl = 0;
2361				}
2362				nl++;
2363			}
2364			fidx = m->pindex;
2365			pa = VM_PAGE_TO_PHYS(m);
2366			rcount = 1;
2367		}
2368		if (rcount) {
2369			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2370				(long)fidx, rcount, (long)pa);
2371			if (nl > 18) {
2372				c = cngetc();
2373				if (c != ' ')
2374					return;
2375				nl = 0;
2376			}
2377			nl++;
2378		}
2379	}
2380}
2381#endif /* DDB */
2382