vm_object.c revision 183754
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory object module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: head/sys/vm/vm_object.c 183754 2008-10-10 21:23:50Z attilio $");
67
68#include "opt_vm.h"
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/lock.h>
73#include <sys/mman.h>
74#include <sys/mount.h>
75#include <sys/kernel.h>
76#include <sys/sysctl.h>
77#include <sys/mutex.h>
78#include <sys/proc.h>		/* for curproc, pageproc */
79#include <sys/socket.h>
80#include <sys/vnode.h>
81#include <sys/vmmeter.h>
82#include <sys/sx.h>
83
84#include <vm/vm.h>
85#include <vm/vm_param.h>
86#include <vm/pmap.h>
87#include <vm/vm_map.h>
88#include <vm/vm_object.h>
89#include <vm/vm_page.h>
90#include <vm/vm_pageout.h>
91#include <vm/vm_pager.h>
92#include <vm/swap_pager.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vm_reserv.h>
96#include <vm/uma.h>
97
98#define EASY_SCAN_FACTOR       8
99
100#define MSYNC_FLUSH_HARDSEQ	0x01
101#define MSYNC_FLUSH_SOFTSEQ	0x02
102
103/*
104 * msync / VM object flushing optimizations
105 */
106static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
107SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags, CTLFLAG_RW, &msync_flush_flags, 0,
108    "Enable sequential iteration optimization");
109
110static int old_msync;
111SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
112    "Use old (insecure) msync behavior");
113
114static void	vm_object_qcollapse(vm_object_t object);
115static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
116static void	vm_object_vndeallocate(vm_object_t object);
117
118/*
119 *	Virtual memory objects maintain the actual data
120 *	associated with allocated virtual memory.  A given
121 *	page of memory exists within exactly one object.
122 *
123 *	An object is only deallocated when all "references"
124 *	are given up.  Only one "reference" to a given
125 *	region of an object should be writeable.
126 *
127 *	Associated with each object is a list of all resident
128 *	memory pages belonging to that object; this list is
129 *	maintained by the "vm_page" module, and locked by the object's
130 *	lock.
131 *
132 *	Each object also records a "pager" routine which is
133 *	used to retrieve (and store) pages to the proper backing
134 *	storage.  In addition, objects may be backed by other
135 *	objects from which they were virtual-copied.
136 *
137 *	The only items within the object structure which are
138 *	modified after time of creation are:
139 *		reference count		locked by object's lock
140 *		pager routine		locked by object's lock
141 *
142 */
143
144struct object_q vm_object_list;
145struct mtx vm_object_list_mtx;	/* lock for object list and count */
146
147struct vm_object kernel_object_store;
148struct vm_object kmem_object_store;
149
150SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
151
152static long object_collapses;
153SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
154    &object_collapses, 0, "VM object collapses");
155
156static long object_bypasses;
157SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
158    &object_bypasses, 0, "VM object bypasses");
159
160static uma_zone_t obj_zone;
161
162static int vm_object_zinit(void *mem, int size, int flags);
163
164#ifdef INVARIANTS
165static void vm_object_zdtor(void *mem, int size, void *arg);
166
167static void
168vm_object_zdtor(void *mem, int size, void *arg)
169{
170	vm_object_t object;
171
172	object = (vm_object_t)mem;
173	KASSERT(TAILQ_EMPTY(&object->memq),
174	    ("object %p has resident pages",
175	    object));
176#if VM_NRESERVLEVEL > 0
177	KASSERT(LIST_EMPTY(&object->rvq),
178	    ("object %p has reservations",
179	    object));
180#endif
181	KASSERT(object->cache == NULL,
182	    ("object %p has cached pages",
183	    object));
184	KASSERT(object->paging_in_progress == 0,
185	    ("object %p paging_in_progress = %d",
186	    object, object->paging_in_progress));
187	KASSERT(object->resident_page_count == 0,
188	    ("object %p resident_page_count = %d",
189	    object, object->resident_page_count));
190	KASSERT(object->shadow_count == 0,
191	    ("object %p shadow_count = %d",
192	    object, object->shadow_count));
193}
194#endif
195
196static int
197vm_object_zinit(void *mem, int size, int flags)
198{
199	vm_object_t object;
200
201	object = (vm_object_t)mem;
202	bzero(&object->mtx, sizeof(object->mtx));
203	VM_OBJECT_LOCK_INIT(object, "standard object");
204
205	/* These are true for any object that has been freed */
206	object->paging_in_progress = 0;
207	object->resident_page_count = 0;
208	object->shadow_count = 0;
209	return (0);
210}
211
212void
213_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
214{
215
216	TAILQ_INIT(&object->memq);
217	LIST_INIT(&object->shadow_head);
218
219	object->root = NULL;
220	object->type = type;
221	object->size = size;
222	object->generation = 1;
223	object->ref_count = 1;
224	object->flags = 0;
225	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
226		object->flags = OBJ_ONEMAPPING;
227	object->pg_color = 0;
228	object->handle = NULL;
229	object->backing_object = NULL;
230	object->backing_object_offset = (vm_ooffset_t) 0;
231#if VM_NRESERVLEVEL > 0
232	LIST_INIT(&object->rvq);
233#endif
234	object->cache = NULL;
235
236	mtx_lock(&vm_object_list_mtx);
237	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
238	mtx_unlock(&vm_object_list_mtx);
239}
240
241/*
242 *	vm_object_init:
243 *
244 *	Initialize the VM objects module.
245 */
246void
247vm_object_init(void)
248{
249	TAILQ_INIT(&vm_object_list);
250	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
251
252	VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
253	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
254	    kernel_object);
255#if VM_NRESERVLEVEL > 0
256	kernel_object->flags |= OBJ_COLORED;
257	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
258#endif
259
260	VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
261	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
262	    kmem_object);
263#if VM_NRESERVLEVEL > 0
264	kmem_object->flags |= OBJ_COLORED;
265	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
266#endif
267
268	/*
269	 * The lock portion of struct vm_object must be type stable due
270	 * to vm_pageout_fallback_object_lock locking a vm object
271	 * without holding any references to it.
272	 */
273	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
274#ifdef INVARIANTS
275	    vm_object_zdtor,
276#else
277	    NULL,
278#endif
279	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
280}
281
282void
283vm_object_clear_flag(vm_object_t object, u_short bits)
284{
285
286	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
287	object->flags &= ~bits;
288}
289
290void
291vm_object_pip_add(vm_object_t object, short i)
292{
293
294	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
295	object->paging_in_progress += i;
296}
297
298void
299vm_object_pip_subtract(vm_object_t object, short i)
300{
301
302	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
303	object->paging_in_progress -= i;
304}
305
306void
307vm_object_pip_wakeup(vm_object_t object)
308{
309
310	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
311	object->paging_in_progress--;
312	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
313		vm_object_clear_flag(object, OBJ_PIPWNT);
314		wakeup(object);
315	}
316}
317
318void
319vm_object_pip_wakeupn(vm_object_t object, short i)
320{
321
322	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
323	if (i)
324		object->paging_in_progress -= i;
325	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
326		vm_object_clear_flag(object, OBJ_PIPWNT);
327		wakeup(object);
328	}
329}
330
331void
332vm_object_pip_wait(vm_object_t object, char *waitid)
333{
334
335	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
336	while (object->paging_in_progress) {
337		object->flags |= OBJ_PIPWNT;
338		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
339	}
340}
341
342/*
343 *	vm_object_allocate:
344 *
345 *	Returns a new object with the given size.
346 */
347vm_object_t
348vm_object_allocate(objtype_t type, vm_pindex_t size)
349{
350	vm_object_t object;
351
352	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
353	_vm_object_allocate(type, size, object);
354	return (object);
355}
356
357
358/*
359 *	vm_object_reference:
360 *
361 *	Gets another reference to the given object.  Note: OBJ_DEAD
362 *	objects can be referenced during final cleaning.
363 */
364void
365vm_object_reference(vm_object_t object)
366{
367	if (object == NULL)
368		return;
369	VM_OBJECT_LOCK(object);
370	vm_object_reference_locked(object);
371	VM_OBJECT_UNLOCK(object);
372}
373
374/*
375 *	vm_object_reference_locked:
376 *
377 *	Gets another reference to the given object.
378 *
379 *	The object must be locked.
380 */
381void
382vm_object_reference_locked(vm_object_t object)
383{
384	struct vnode *vp;
385
386	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
387	object->ref_count++;
388	if (object->type == OBJT_VNODE) {
389		vp = object->handle;
390		vref(vp);
391	}
392}
393
394/*
395 * Handle deallocating an object of type OBJT_VNODE.
396 */
397static void
398vm_object_vndeallocate(vm_object_t object)
399{
400	struct vnode *vp = (struct vnode *) object->handle;
401
402	VFS_ASSERT_GIANT(vp->v_mount);
403	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
404	KASSERT(object->type == OBJT_VNODE,
405	    ("vm_object_vndeallocate: not a vnode object"));
406	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
407#ifdef INVARIANTS
408	if (object->ref_count == 0) {
409		vprint("vm_object_vndeallocate", vp);
410		panic("vm_object_vndeallocate: bad object reference count");
411	}
412#endif
413
414	object->ref_count--;
415	if (object->ref_count == 0) {
416		mp_fixme("Unlocked vflag access.");
417		vp->v_vflag &= ~VV_TEXT;
418	}
419	VM_OBJECT_UNLOCK(object);
420	/*
421	 * vrele may need a vop lock
422	 */
423	vrele(vp);
424}
425
426/*
427 *	vm_object_deallocate:
428 *
429 *	Release a reference to the specified object,
430 *	gained either through a vm_object_allocate
431 *	or a vm_object_reference call.  When all references
432 *	are gone, storage associated with this object
433 *	may be relinquished.
434 *
435 *	No object may be locked.
436 */
437void
438vm_object_deallocate(vm_object_t object)
439{
440	vm_object_t temp;
441
442	while (object != NULL) {
443		int vfslocked;
444
445		vfslocked = 0;
446	restart:
447		VM_OBJECT_LOCK(object);
448		if (object->type == OBJT_VNODE) {
449			struct vnode *vp = (struct vnode *) object->handle;
450
451			/*
452			 * Conditionally acquire Giant for a vnode-backed
453			 * object.  We have to be careful since the type of
454			 * a vnode object can change while the object is
455			 * unlocked.
456			 */
457			if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
458				vfslocked = 1;
459				if (!mtx_trylock(&Giant)) {
460					VM_OBJECT_UNLOCK(object);
461					mtx_lock(&Giant);
462					goto restart;
463				}
464			}
465			vm_object_vndeallocate(object);
466			VFS_UNLOCK_GIANT(vfslocked);
467			return;
468		} else
469			/*
470			 * This is to handle the case that the object
471			 * changed type while we dropped its lock to
472			 * obtain Giant.
473			 */
474			VFS_UNLOCK_GIANT(vfslocked);
475
476		KASSERT(object->ref_count != 0,
477			("vm_object_deallocate: object deallocated too many times: %d", object->type));
478
479		/*
480		 * If the reference count goes to 0 we start calling
481		 * vm_object_terminate() on the object chain.
482		 * A ref count of 1 may be a special case depending on the
483		 * shadow count being 0 or 1.
484		 */
485		object->ref_count--;
486		if (object->ref_count > 1) {
487			VM_OBJECT_UNLOCK(object);
488			return;
489		} else if (object->ref_count == 1) {
490			if (object->shadow_count == 0 &&
491			    object->handle == NULL &&
492			    (object->type == OBJT_DEFAULT ||
493			     object->type == OBJT_SWAP)) {
494				vm_object_set_flag(object, OBJ_ONEMAPPING);
495			} else if ((object->shadow_count == 1) &&
496			    (object->handle == NULL) &&
497			    (object->type == OBJT_DEFAULT ||
498			     object->type == OBJT_SWAP)) {
499				vm_object_t robject;
500
501				robject = LIST_FIRST(&object->shadow_head);
502				KASSERT(robject != NULL,
503				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
504					 object->ref_count,
505					 object->shadow_count));
506				if (!VM_OBJECT_TRYLOCK(robject)) {
507					/*
508					 * Avoid a potential deadlock.
509					 */
510					object->ref_count++;
511					VM_OBJECT_UNLOCK(object);
512					/*
513					 * More likely than not the thread
514					 * holding robject's lock has lower
515					 * priority than the current thread.
516					 * Let the lower priority thread run.
517					 */
518					pause("vmo_de", 1);
519					continue;
520				}
521				/*
522				 * Collapse object into its shadow unless its
523				 * shadow is dead.  In that case, object will
524				 * be deallocated by the thread that is
525				 * deallocating its shadow.
526				 */
527				if ((robject->flags & OBJ_DEAD) == 0 &&
528				    (robject->handle == NULL) &&
529				    (robject->type == OBJT_DEFAULT ||
530				     robject->type == OBJT_SWAP)) {
531
532					robject->ref_count++;
533retry:
534					if (robject->paging_in_progress) {
535						VM_OBJECT_UNLOCK(object);
536						vm_object_pip_wait(robject,
537						    "objde1");
538						temp = robject->backing_object;
539						if (object == temp) {
540							VM_OBJECT_LOCK(object);
541							goto retry;
542						}
543					} else if (object->paging_in_progress) {
544						VM_OBJECT_UNLOCK(robject);
545						object->flags |= OBJ_PIPWNT;
546						msleep(object,
547						    VM_OBJECT_MTX(object),
548						    PDROP | PVM, "objde2", 0);
549						VM_OBJECT_LOCK(robject);
550						temp = robject->backing_object;
551						if (object == temp) {
552							VM_OBJECT_LOCK(object);
553							goto retry;
554						}
555					} else
556						VM_OBJECT_UNLOCK(object);
557
558					if (robject->ref_count == 1) {
559						robject->ref_count--;
560						object = robject;
561						goto doterm;
562					}
563					object = robject;
564					vm_object_collapse(object);
565					VM_OBJECT_UNLOCK(object);
566					continue;
567				}
568				VM_OBJECT_UNLOCK(robject);
569			}
570			VM_OBJECT_UNLOCK(object);
571			return;
572		}
573doterm:
574		temp = object->backing_object;
575		if (temp != NULL) {
576			VM_OBJECT_LOCK(temp);
577			LIST_REMOVE(object, shadow_list);
578			temp->shadow_count--;
579			temp->generation++;
580			VM_OBJECT_UNLOCK(temp);
581			object->backing_object = NULL;
582		}
583		/*
584		 * Don't double-terminate, we could be in a termination
585		 * recursion due to the terminate having to sync data
586		 * to disk.
587		 */
588		if ((object->flags & OBJ_DEAD) == 0)
589			vm_object_terminate(object);
590		else
591			VM_OBJECT_UNLOCK(object);
592		object = temp;
593	}
594}
595
596/*
597 *	vm_object_destroy removes the object from the global object list
598 *      and frees the space for the object.
599 */
600void
601vm_object_destroy(vm_object_t object)
602{
603
604	/*
605	 * Remove the object from the global object list.
606	 */
607	mtx_lock(&vm_object_list_mtx);
608	TAILQ_REMOVE(&vm_object_list, object, object_list);
609	mtx_unlock(&vm_object_list_mtx);
610
611	/*
612	 * Free the space for the object.
613	 */
614	uma_zfree(obj_zone, object);
615}
616
617/*
618 *	vm_object_terminate actually destroys the specified object, freeing
619 *	up all previously used resources.
620 *
621 *	The object must be locked.
622 *	This routine may block.
623 */
624void
625vm_object_terminate(vm_object_t object)
626{
627	vm_page_t p;
628
629	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
630
631	/*
632	 * Make sure no one uses us.
633	 */
634	vm_object_set_flag(object, OBJ_DEAD);
635
636	/*
637	 * wait for the pageout daemon to be done with the object
638	 */
639	vm_object_pip_wait(object, "objtrm");
640
641	KASSERT(!object->paging_in_progress,
642		("vm_object_terminate: pageout in progress"));
643
644	/*
645	 * Clean and free the pages, as appropriate. All references to the
646	 * object are gone, so we don't need to lock it.
647	 */
648	if (object->type == OBJT_VNODE) {
649		struct vnode *vp = (struct vnode *)object->handle;
650
651		/*
652		 * Clean pages and flush buffers.
653		 */
654		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
655		VM_OBJECT_UNLOCK(object);
656
657		vinvalbuf(vp, V_SAVE, 0, 0);
658
659		VM_OBJECT_LOCK(object);
660	}
661
662	KASSERT(object->ref_count == 0,
663		("vm_object_terminate: object with references, ref_count=%d",
664		object->ref_count));
665
666	/*
667	 * Now free any remaining pages. For internal objects, this also
668	 * removes them from paging queues. Don't free wired pages, just
669	 * remove them from the object.
670	 */
671	vm_page_lock_queues();
672	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
673		KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
674			("vm_object_terminate: freeing busy page %p "
675			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
676		if (p->wire_count == 0) {
677			vm_page_free(p);
678			cnt.v_pfree++;
679		} else {
680			vm_page_remove(p);
681		}
682	}
683	vm_page_unlock_queues();
684
685#if VM_NRESERVLEVEL > 0
686	if (__predict_false(!LIST_EMPTY(&object->rvq)))
687		vm_reserv_break_all(object);
688#endif
689	if (__predict_false(object->cache != NULL))
690		vm_page_cache_free(object, 0, 0);
691
692	/*
693	 * Let the pager know object is dead.
694	 */
695	vm_pager_deallocate(object);
696	VM_OBJECT_UNLOCK(object);
697
698	vm_object_destroy(object);
699}
700
701/*
702 *	vm_object_page_clean
703 *
704 *	Clean all dirty pages in the specified range of object.  Leaves page
705 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
706 *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
707 *	leaving the object dirty.
708 *
709 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
710 *	synchronous clustering mode implementation.
711 *
712 *	Odd semantics: if start == end, we clean everything.
713 *
714 *	The object must be locked.
715 */
716void
717vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
718{
719	vm_page_t p, np;
720	vm_pindex_t tstart, tend;
721	vm_pindex_t pi;
722	int clearobjflags;
723	int pagerflags;
724	int curgeneration;
725
726	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
727	if (object->type != OBJT_VNODE ||
728		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
729		return;
730
731	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
732	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
733
734	vm_object_set_flag(object, OBJ_CLEANING);
735
736	tstart = start;
737	if (end == 0) {
738		tend = object->size;
739	} else {
740		tend = end;
741	}
742
743	vm_page_lock_queues();
744	/*
745	 * If the caller is smart and only msync()s a range he knows is
746	 * dirty, we may be able to avoid an object scan.  This results in
747	 * a phenominal improvement in performance.  We cannot do this
748	 * as a matter of course because the object may be huge - e.g.
749	 * the size might be in the gigabytes or terrabytes.
750	 */
751	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
752		vm_pindex_t tscan;
753		int scanlimit;
754		int scanreset;
755
756		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
757		if (scanreset < 16)
758			scanreset = 16;
759		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
760
761		scanlimit = scanreset;
762		tscan = tstart;
763		while (tscan < tend) {
764			curgeneration = object->generation;
765			p = vm_page_lookup(object, tscan);
766			if (p == NULL || p->valid == 0) {
767				if (--scanlimit == 0)
768					break;
769				++tscan;
770				continue;
771			}
772			vm_page_test_dirty(p);
773			if ((p->dirty & p->valid) == 0) {
774				if (--scanlimit == 0)
775					break;
776				++tscan;
777				continue;
778			}
779			/*
780			 * If we have been asked to skip nosync pages and
781			 * this is a nosync page, we can't continue.
782			 */
783			if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
784				if (--scanlimit == 0)
785					break;
786				++tscan;
787				continue;
788			}
789			scanlimit = scanreset;
790
791			/*
792			 * This returns 0 if it was unable to busy the first
793			 * page (i.e. had to sleep).
794			 */
795			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
796		}
797
798		/*
799		 * If everything was dirty and we flushed it successfully,
800		 * and the requested range is not the entire object, we
801		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
802		 * return immediately.
803		 */
804		if (tscan >= tend && (tstart || tend < object->size)) {
805			vm_page_unlock_queues();
806			vm_object_clear_flag(object, OBJ_CLEANING);
807			return;
808		}
809		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
810	}
811
812	/*
813	 * Generally set CLEANCHK interlock and make the page read-only so
814	 * we can then clear the object flags.
815	 *
816	 * However, if this is a nosync mmap then the object is likely to
817	 * stay dirty so do not mess with the page and do not clear the
818	 * object flags.
819	 */
820	clearobjflags = 1;
821	TAILQ_FOREACH(p, &object->memq, listq) {
822		p->oflags |= VPO_CLEANCHK;
823		if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC))
824			clearobjflags = 0;
825		else
826			pmap_remove_write(p);
827	}
828
829	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
830		struct vnode *vp;
831
832		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
833		if (object->type == OBJT_VNODE &&
834		    (vp = (struct vnode *)object->handle) != NULL) {
835			VI_LOCK(vp);
836			if (vp->v_iflag & VI_OBJDIRTY)
837				vp->v_iflag &= ~VI_OBJDIRTY;
838			VI_UNLOCK(vp);
839		}
840	}
841
842rescan:
843	curgeneration = object->generation;
844
845	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
846		int n;
847
848		np = TAILQ_NEXT(p, listq);
849
850again:
851		pi = p->pindex;
852		if ((p->oflags & VPO_CLEANCHK) == 0 ||
853			(pi < tstart) || (pi >= tend) ||
854		    p->valid == 0) {
855			p->oflags &= ~VPO_CLEANCHK;
856			continue;
857		}
858
859		vm_page_test_dirty(p);
860		if ((p->dirty & p->valid) == 0) {
861			p->oflags &= ~VPO_CLEANCHK;
862			continue;
863		}
864
865		/*
866		 * If we have been asked to skip nosync pages and this is a
867		 * nosync page, skip it.  Note that the object flags were
868		 * not cleared in this case so we do not have to set them.
869		 */
870		if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
871			p->oflags &= ~VPO_CLEANCHK;
872			continue;
873		}
874
875		n = vm_object_page_collect_flush(object, p,
876			curgeneration, pagerflags);
877		if (n == 0)
878			goto rescan;
879
880		if (object->generation != curgeneration)
881			goto rescan;
882
883		/*
884		 * Try to optimize the next page.  If we can't we pick up
885		 * our (random) scan where we left off.
886		 */
887		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
888			if ((p = vm_page_lookup(object, pi + n)) != NULL)
889				goto again;
890		}
891	}
892	vm_page_unlock_queues();
893#if 0
894	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
895#endif
896
897	vm_object_clear_flag(object, OBJ_CLEANING);
898	return;
899}
900
901static int
902vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
903{
904	int runlen;
905	int maxf;
906	int chkb;
907	int maxb;
908	int i;
909	vm_pindex_t pi;
910	vm_page_t maf[vm_pageout_page_count];
911	vm_page_t mab[vm_pageout_page_count];
912	vm_page_t ma[vm_pageout_page_count];
913
914	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
915	pi = p->pindex;
916	while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
917		vm_page_lock_queues();
918		if (object->generation != curgeneration) {
919			return(0);
920		}
921	}
922	maxf = 0;
923	for(i = 1; i < vm_pageout_page_count; i++) {
924		vm_page_t tp;
925
926		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
927			if ((tp->oflags & VPO_BUSY) ||
928				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
929				 (tp->oflags & VPO_CLEANCHK) == 0) ||
930				(tp->busy != 0))
931				break;
932			vm_page_test_dirty(tp);
933			if ((tp->dirty & tp->valid) == 0) {
934				tp->oflags &= ~VPO_CLEANCHK;
935				break;
936			}
937			maf[ i - 1 ] = tp;
938			maxf++;
939			continue;
940		}
941		break;
942	}
943
944	maxb = 0;
945	chkb = vm_pageout_page_count -  maxf;
946	if (chkb) {
947		for(i = 1; i < chkb;i++) {
948			vm_page_t tp;
949
950			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
951				if ((tp->oflags & VPO_BUSY) ||
952					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
953					 (tp->oflags & VPO_CLEANCHK) == 0) ||
954					(tp->busy != 0))
955					break;
956				vm_page_test_dirty(tp);
957				if ((tp->dirty & tp->valid) == 0) {
958					tp->oflags &= ~VPO_CLEANCHK;
959					break;
960				}
961				mab[ i - 1 ] = tp;
962				maxb++;
963				continue;
964			}
965			break;
966		}
967	}
968
969	for(i = 0; i < maxb; i++) {
970		int index = (maxb - i) - 1;
971		ma[index] = mab[i];
972		ma[index]->oflags &= ~VPO_CLEANCHK;
973	}
974	p->oflags &= ~VPO_CLEANCHK;
975	ma[maxb] = p;
976	for(i = 0; i < maxf; i++) {
977		int index = (maxb + i) + 1;
978		ma[index] = maf[i];
979		ma[index]->oflags &= ~VPO_CLEANCHK;
980	}
981	runlen = maxb + maxf + 1;
982
983	vm_pageout_flush(ma, runlen, pagerflags);
984	for (i = 0; i < runlen; i++) {
985		if (ma[i]->valid & ma[i]->dirty) {
986			pmap_remove_write(ma[i]);
987			ma[i]->oflags |= VPO_CLEANCHK;
988
989			/*
990			 * maxf will end up being the actual number of pages
991			 * we wrote out contiguously, non-inclusive of the
992			 * first page.  We do not count look-behind pages.
993			 */
994			if (i >= maxb + 1 && (maxf > i - maxb - 1))
995				maxf = i - maxb - 1;
996		}
997	}
998	return(maxf + 1);
999}
1000
1001/*
1002 * Note that there is absolutely no sense in writing out
1003 * anonymous objects, so we track down the vnode object
1004 * to write out.
1005 * We invalidate (remove) all pages from the address space
1006 * for semantic correctness.
1007 *
1008 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1009 * may start out with a NULL object.
1010 */
1011void
1012vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1013    boolean_t syncio, boolean_t invalidate)
1014{
1015	vm_object_t backing_object;
1016	struct vnode *vp;
1017	struct mount *mp;
1018	int flags;
1019
1020	if (object == NULL)
1021		return;
1022	VM_OBJECT_LOCK(object);
1023	while ((backing_object = object->backing_object) != NULL) {
1024		VM_OBJECT_LOCK(backing_object);
1025		offset += object->backing_object_offset;
1026		VM_OBJECT_UNLOCK(object);
1027		object = backing_object;
1028		if (object->size < OFF_TO_IDX(offset + size))
1029			size = IDX_TO_OFF(object->size) - offset;
1030	}
1031	/*
1032	 * Flush pages if writing is allowed, invalidate them
1033	 * if invalidation requested.  Pages undergoing I/O
1034	 * will be ignored by vm_object_page_remove().
1035	 *
1036	 * We cannot lock the vnode and then wait for paging
1037	 * to complete without deadlocking against vm_fault.
1038	 * Instead we simply call vm_object_page_remove() and
1039	 * allow it to block internally on a page-by-page
1040	 * basis when it encounters pages undergoing async
1041	 * I/O.
1042	 */
1043	if (object->type == OBJT_VNODE &&
1044	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1045		int vfslocked;
1046		vp = object->handle;
1047		VM_OBJECT_UNLOCK(object);
1048		(void) vn_start_write(vp, &mp, V_WAIT);
1049		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1050		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1051		flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1052		flags |= invalidate ? OBJPC_INVAL : 0;
1053		VM_OBJECT_LOCK(object);
1054		vm_object_page_clean(object,
1055		    OFF_TO_IDX(offset),
1056		    OFF_TO_IDX(offset + size + PAGE_MASK),
1057		    flags);
1058		VM_OBJECT_UNLOCK(object);
1059		VOP_UNLOCK(vp, 0);
1060		VFS_UNLOCK_GIANT(vfslocked);
1061		vn_finished_write(mp);
1062		VM_OBJECT_LOCK(object);
1063	}
1064	if ((object->type == OBJT_VNODE ||
1065	     object->type == OBJT_DEVICE) && invalidate) {
1066		boolean_t purge;
1067		purge = old_msync || (object->type == OBJT_DEVICE);
1068		vm_object_page_remove(object,
1069		    OFF_TO_IDX(offset),
1070		    OFF_TO_IDX(offset + size + PAGE_MASK),
1071		    purge ? FALSE : TRUE);
1072	}
1073	VM_OBJECT_UNLOCK(object);
1074}
1075
1076/*
1077 *	vm_object_madvise:
1078 *
1079 *	Implements the madvise function at the object/page level.
1080 *
1081 *	MADV_WILLNEED	(any object)
1082 *
1083 *	    Activate the specified pages if they are resident.
1084 *
1085 *	MADV_DONTNEED	(any object)
1086 *
1087 *	    Deactivate the specified pages if they are resident.
1088 *
1089 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1090 *			 OBJ_ONEMAPPING only)
1091 *
1092 *	    Deactivate and clean the specified pages if they are
1093 *	    resident.  This permits the process to reuse the pages
1094 *	    without faulting or the kernel to reclaim the pages
1095 *	    without I/O.
1096 */
1097void
1098vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1099{
1100	vm_pindex_t end, tpindex;
1101	vm_object_t backing_object, tobject;
1102	vm_page_t m;
1103
1104	if (object == NULL)
1105		return;
1106	VM_OBJECT_LOCK(object);
1107	end = pindex + count;
1108	/*
1109	 * Locate and adjust resident pages
1110	 */
1111	for (; pindex < end; pindex += 1) {
1112relookup:
1113		tobject = object;
1114		tpindex = pindex;
1115shadowlookup:
1116		/*
1117		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1118		 * and those pages must be OBJ_ONEMAPPING.
1119		 */
1120		if (advise == MADV_FREE) {
1121			if ((tobject->type != OBJT_DEFAULT &&
1122			     tobject->type != OBJT_SWAP) ||
1123			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1124				goto unlock_tobject;
1125			}
1126		}
1127		m = vm_page_lookup(tobject, tpindex);
1128		if (m == NULL && advise == MADV_WILLNEED) {
1129			/*
1130			 * If the page is cached, reactivate it.
1131			 */
1132			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1133			    VM_ALLOC_NOBUSY);
1134		}
1135		if (m == NULL) {
1136			/*
1137			 * There may be swap even if there is no backing page
1138			 */
1139			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1140				swap_pager_freespace(tobject, tpindex, 1);
1141			/*
1142			 * next object
1143			 */
1144			backing_object = tobject->backing_object;
1145			if (backing_object == NULL)
1146				goto unlock_tobject;
1147			VM_OBJECT_LOCK(backing_object);
1148			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1149			if (tobject != object)
1150				VM_OBJECT_UNLOCK(tobject);
1151			tobject = backing_object;
1152			goto shadowlookup;
1153		}
1154		/*
1155		 * If the page is busy or not in a normal active state,
1156		 * we skip it.  If the page is not managed there are no
1157		 * page queues to mess with.  Things can break if we mess
1158		 * with pages in any of the below states.
1159		 */
1160		vm_page_lock_queues();
1161		if (m->hold_count ||
1162		    m->wire_count ||
1163		    (m->flags & PG_UNMANAGED) ||
1164		    m->valid != VM_PAGE_BITS_ALL) {
1165			vm_page_unlock_queues();
1166			goto unlock_tobject;
1167		}
1168		if ((m->oflags & VPO_BUSY) || m->busy) {
1169			vm_page_flag_set(m, PG_REFERENCED);
1170			vm_page_unlock_queues();
1171			if (object != tobject)
1172				VM_OBJECT_UNLOCK(object);
1173			m->oflags |= VPO_WANTED;
1174			msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo", 0);
1175			VM_OBJECT_LOCK(object);
1176  			goto relookup;
1177		}
1178		if (advise == MADV_WILLNEED) {
1179			vm_page_activate(m);
1180		} else if (advise == MADV_DONTNEED) {
1181			vm_page_dontneed(m);
1182		} else if (advise == MADV_FREE) {
1183			/*
1184			 * Mark the page clean.  This will allow the page
1185			 * to be freed up by the system.  However, such pages
1186			 * are often reused quickly by malloc()/free()
1187			 * so we do not do anything that would cause
1188			 * a page fault if we can help it.
1189			 *
1190			 * Specifically, we do not try to actually free
1191			 * the page now nor do we try to put it in the
1192			 * cache (which would cause a page fault on reuse).
1193			 *
1194			 * But we do make the page is freeable as we
1195			 * can without actually taking the step of unmapping
1196			 * it.
1197			 */
1198			pmap_clear_modify(m);
1199			m->dirty = 0;
1200			m->act_count = 0;
1201			vm_page_dontneed(m);
1202		}
1203		vm_page_unlock_queues();
1204		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1205			swap_pager_freespace(tobject, tpindex, 1);
1206unlock_tobject:
1207		if (tobject != object)
1208			VM_OBJECT_UNLOCK(tobject);
1209	}
1210	VM_OBJECT_UNLOCK(object);
1211}
1212
1213/*
1214 *	vm_object_shadow:
1215 *
1216 *	Create a new object which is backed by the
1217 *	specified existing object range.  The source
1218 *	object reference is deallocated.
1219 *
1220 *	The new object and offset into that object
1221 *	are returned in the source parameters.
1222 */
1223void
1224vm_object_shadow(
1225	vm_object_t *object,	/* IN/OUT */
1226	vm_ooffset_t *offset,	/* IN/OUT */
1227	vm_size_t length)
1228{
1229	vm_object_t source;
1230	vm_object_t result;
1231
1232	source = *object;
1233
1234	/*
1235	 * Don't create the new object if the old object isn't shared.
1236	 */
1237	if (source != NULL) {
1238		VM_OBJECT_LOCK(source);
1239		if (source->ref_count == 1 &&
1240		    source->handle == NULL &&
1241		    (source->type == OBJT_DEFAULT ||
1242		     source->type == OBJT_SWAP)) {
1243			VM_OBJECT_UNLOCK(source);
1244			return;
1245		}
1246		VM_OBJECT_UNLOCK(source);
1247	}
1248
1249	/*
1250	 * Allocate a new object with the given length.
1251	 */
1252	result = vm_object_allocate(OBJT_DEFAULT, length);
1253
1254	/*
1255	 * The new object shadows the source object, adding a reference to it.
1256	 * Our caller changes his reference to point to the new object,
1257	 * removing a reference to the source object.  Net result: no change
1258	 * of reference count.
1259	 *
1260	 * Try to optimize the result object's page color when shadowing
1261	 * in order to maintain page coloring consistency in the combined
1262	 * shadowed object.
1263	 */
1264	result->backing_object = source;
1265	/*
1266	 * Store the offset into the source object, and fix up the offset into
1267	 * the new object.
1268	 */
1269	result->backing_object_offset = *offset;
1270	if (source != NULL) {
1271		VM_OBJECT_LOCK(source);
1272		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1273		source->shadow_count++;
1274		source->generation++;
1275#if VM_NRESERVLEVEL > 0
1276		result->flags |= source->flags & (OBJ_NEEDGIANT | OBJ_COLORED);
1277		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1278		    ((1 << (VM_NFREEORDER - 1)) - 1);
1279#else
1280		result->flags |= source->flags & OBJ_NEEDGIANT;
1281#endif
1282		VM_OBJECT_UNLOCK(source);
1283	}
1284
1285
1286	/*
1287	 * Return the new things
1288	 */
1289	*offset = 0;
1290	*object = result;
1291}
1292
1293/*
1294 *	vm_object_split:
1295 *
1296 * Split the pages in a map entry into a new object.  This affords
1297 * easier removal of unused pages, and keeps object inheritance from
1298 * being a negative impact on memory usage.
1299 */
1300void
1301vm_object_split(vm_map_entry_t entry)
1302{
1303	vm_page_t m, m_next;
1304	vm_object_t orig_object, new_object, source;
1305	vm_pindex_t idx, offidxstart;
1306	vm_size_t size;
1307
1308	orig_object = entry->object.vm_object;
1309	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1310		return;
1311	if (orig_object->ref_count <= 1)
1312		return;
1313	VM_OBJECT_UNLOCK(orig_object);
1314
1315	offidxstart = OFF_TO_IDX(entry->offset);
1316	size = atop(entry->end - entry->start);
1317
1318	/*
1319	 * If swap_pager_copy() is later called, it will convert new_object
1320	 * into a swap object.
1321	 */
1322	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1323
1324	/*
1325	 * At this point, the new object is still private, so the order in
1326	 * which the original and new objects are locked does not matter.
1327	 */
1328	VM_OBJECT_LOCK(new_object);
1329	VM_OBJECT_LOCK(orig_object);
1330	source = orig_object->backing_object;
1331	if (source != NULL) {
1332		VM_OBJECT_LOCK(source);
1333		if ((source->flags & OBJ_DEAD) != 0) {
1334			VM_OBJECT_UNLOCK(source);
1335			VM_OBJECT_UNLOCK(orig_object);
1336			VM_OBJECT_UNLOCK(new_object);
1337			vm_object_deallocate(new_object);
1338			VM_OBJECT_LOCK(orig_object);
1339			return;
1340		}
1341		LIST_INSERT_HEAD(&source->shadow_head,
1342				  new_object, shadow_list);
1343		source->shadow_count++;
1344		source->generation++;
1345		vm_object_reference_locked(source);	/* for new_object */
1346		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1347		VM_OBJECT_UNLOCK(source);
1348		new_object->backing_object_offset =
1349			orig_object->backing_object_offset + entry->offset;
1350		new_object->backing_object = source;
1351	}
1352	new_object->flags |= orig_object->flags & OBJ_NEEDGIANT;
1353retry:
1354	if ((m = TAILQ_FIRST(&orig_object->memq)) != NULL) {
1355		if (m->pindex < offidxstart) {
1356			m = vm_page_splay(offidxstart, orig_object->root);
1357			if ((orig_object->root = m)->pindex < offidxstart)
1358				m = TAILQ_NEXT(m, listq);
1359		}
1360	}
1361	vm_page_lock_queues();
1362	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1363	    m = m_next) {
1364		m_next = TAILQ_NEXT(m, listq);
1365
1366		/*
1367		 * We must wait for pending I/O to complete before we can
1368		 * rename the page.
1369		 *
1370		 * We do not have to VM_PROT_NONE the page as mappings should
1371		 * not be changed by this operation.
1372		 */
1373		if ((m->oflags & VPO_BUSY) || m->busy) {
1374			vm_page_flag_set(m, PG_REFERENCED);
1375			vm_page_unlock_queues();
1376			VM_OBJECT_UNLOCK(new_object);
1377			m->oflags |= VPO_WANTED;
1378			msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1379			VM_OBJECT_LOCK(new_object);
1380			goto retry;
1381		}
1382		vm_page_rename(m, new_object, idx);
1383		/* page automatically made dirty by rename and cache handled */
1384		vm_page_busy(m);
1385	}
1386	vm_page_unlock_queues();
1387	if (orig_object->type == OBJT_SWAP) {
1388		/*
1389		 * swap_pager_copy() can sleep, in which case the orig_object's
1390		 * and new_object's locks are released and reacquired.
1391		 */
1392		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1393
1394		/*
1395		 * Transfer any cached pages from orig_object to new_object.
1396		 */
1397		if (__predict_false(orig_object->cache != NULL))
1398			vm_page_cache_transfer(orig_object, offidxstart,
1399			    new_object);
1400	}
1401	VM_OBJECT_UNLOCK(orig_object);
1402	TAILQ_FOREACH(m, &new_object->memq, listq)
1403		vm_page_wakeup(m);
1404	VM_OBJECT_UNLOCK(new_object);
1405	entry->object.vm_object = new_object;
1406	entry->offset = 0LL;
1407	vm_object_deallocate(orig_object);
1408	VM_OBJECT_LOCK(new_object);
1409}
1410
1411#define	OBSC_TEST_ALL_SHADOWED	0x0001
1412#define	OBSC_COLLAPSE_NOWAIT	0x0002
1413#define	OBSC_COLLAPSE_WAIT	0x0004
1414
1415static int
1416vm_object_backing_scan(vm_object_t object, int op)
1417{
1418	int r = 1;
1419	vm_page_t p;
1420	vm_object_t backing_object;
1421	vm_pindex_t backing_offset_index;
1422
1423	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1424	VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1425
1426	backing_object = object->backing_object;
1427	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1428
1429	/*
1430	 * Initial conditions
1431	 */
1432	if (op & OBSC_TEST_ALL_SHADOWED) {
1433		/*
1434		 * We do not want to have to test for the existence of cache
1435		 * or swap pages in the backing object.  XXX but with the
1436		 * new swapper this would be pretty easy to do.
1437		 *
1438		 * XXX what about anonymous MAP_SHARED memory that hasn't
1439		 * been ZFOD faulted yet?  If we do not test for this, the
1440		 * shadow test may succeed! XXX
1441		 */
1442		if (backing_object->type != OBJT_DEFAULT) {
1443			return (0);
1444		}
1445	}
1446	if (op & OBSC_COLLAPSE_WAIT) {
1447		vm_object_set_flag(backing_object, OBJ_DEAD);
1448	}
1449
1450	/*
1451	 * Our scan
1452	 */
1453	p = TAILQ_FIRST(&backing_object->memq);
1454	while (p) {
1455		vm_page_t next = TAILQ_NEXT(p, listq);
1456		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1457
1458		if (op & OBSC_TEST_ALL_SHADOWED) {
1459			vm_page_t pp;
1460
1461			/*
1462			 * Ignore pages outside the parent object's range
1463			 * and outside the parent object's mapping of the
1464			 * backing object.
1465			 *
1466			 * note that we do not busy the backing object's
1467			 * page.
1468			 */
1469			if (
1470			    p->pindex < backing_offset_index ||
1471			    new_pindex >= object->size
1472			) {
1473				p = next;
1474				continue;
1475			}
1476
1477			/*
1478			 * See if the parent has the page or if the parent's
1479			 * object pager has the page.  If the parent has the
1480			 * page but the page is not valid, the parent's
1481			 * object pager must have the page.
1482			 *
1483			 * If this fails, the parent does not completely shadow
1484			 * the object and we might as well give up now.
1485			 */
1486
1487			pp = vm_page_lookup(object, new_pindex);
1488			if (
1489			    (pp == NULL || pp->valid == 0) &&
1490			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1491			) {
1492				r = 0;
1493				break;
1494			}
1495		}
1496
1497		/*
1498		 * Check for busy page
1499		 */
1500		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1501			vm_page_t pp;
1502
1503			if (op & OBSC_COLLAPSE_NOWAIT) {
1504				if ((p->oflags & VPO_BUSY) ||
1505				    !p->valid ||
1506				    p->busy) {
1507					p = next;
1508					continue;
1509				}
1510			} else if (op & OBSC_COLLAPSE_WAIT) {
1511				if ((p->oflags & VPO_BUSY) || p->busy) {
1512					vm_page_lock_queues();
1513					vm_page_flag_set(p, PG_REFERENCED);
1514					vm_page_unlock_queues();
1515					VM_OBJECT_UNLOCK(object);
1516					p->oflags |= VPO_WANTED;
1517					msleep(p, VM_OBJECT_MTX(backing_object),
1518					    PDROP | PVM, "vmocol", 0);
1519					VM_OBJECT_LOCK(object);
1520					VM_OBJECT_LOCK(backing_object);
1521					/*
1522					 * If we slept, anything could have
1523					 * happened.  Since the object is
1524					 * marked dead, the backing offset
1525					 * should not have changed so we
1526					 * just restart our scan.
1527					 */
1528					p = TAILQ_FIRST(&backing_object->memq);
1529					continue;
1530				}
1531			}
1532
1533			KASSERT(
1534			    p->object == backing_object,
1535			    ("vm_object_backing_scan: object mismatch")
1536			);
1537
1538			/*
1539			 * Destroy any associated swap
1540			 */
1541			if (backing_object->type == OBJT_SWAP) {
1542				swap_pager_freespace(
1543				    backing_object,
1544				    p->pindex,
1545				    1
1546				);
1547			}
1548
1549			if (
1550			    p->pindex < backing_offset_index ||
1551			    new_pindex >= object->size
1552			) {
1553				/*
1554				 * Page is out of the parent object's range, we
1555				 * can simply destroy it.
1556				 */
1557				vm_page_lock_queues();
1558				KASSERT(!pmap_page_is_mapped(p),
1559				    ("freeing mapped page %p", p));
1560				if (p->wire_count == 0)
1561					vm_page_free(p);
1562				else
1563					vm_page_remove(p);
1564				vm_page_unlock_queues();
1565				p = next;
1566				continue;
1567			}
1568
1569			pp = vm_page_lookup(object, new_pindex);
1570			if (
1571			    pp != NULL ||
1572			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1573			) {
1574				/*
1575				 * page already exists in parent OR swap exists
1576				 * for this location in the parent.  Destroy
1577				 * the original page from the backing object.
1578				 *
1579				 * Leave the parent's page alone
1580				 */
1581				vm_page_lock_queues();
1582				KASSERT(!pmap_page_is_mapped(p),
1583				    ("freeing mapped page %p", p));
1584				if (p->wire_count == 0)
1585					vm_page_free(p);
1586				else
1587					vm_page_remove(p);
1588				vm_page_unlock_queues();
1589				p = next;
1590				continue;
1591			}
1592
1593#if VM_NRESERVLEVEL > 0
1594			/*
1595			 * Rename the reservation.
1596			 */
1597			vm_reserv_rename(p, object, backing_object,
1598			    backing_offset_index);
1599#endif
1600
1601			/*
1602			 * Page does not exist in parent, rename the
1603			 * page from the backing object to the main object.
1604			 *
1605			 * If the page was mapped to a process, it can remain
1606			 * mapped through the rename.
1607			 */
1608			vm_page_lock_queues();
1609			vm_page_rename(p, object, new_pindex);
1610			vm_page_unlock_queues();
1611			/* page automatically made dirty by rename */
1612		}
1613		p = next;
1614	}
1615	return (r);
1616}
1617
1618
1619/*
1620 * this version of collapse allows the operation to occur earlier and
1621 * when paging_in_progress is true for an object...  This is not a complete
1622 * operation, but should plug 99.9% of the rest of the leaks.
1623 */
1624static void
1625vm_object_qcollapse(vm_object_t object)
1626{
1627	vm_object_t backing_object = object->backing_object;
1628
1629	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1630	VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1631
1632	if (backing_object->ref_count != 1)
1633		return;
1634
1635	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1636}
1637
1638/*
1639 *	vm_object_collapse:
1640 *
1641 *	Collapse an object with the object backing it.
1642 *	Pages in the backing object are moved into the
1643 *	parent, and the backing object is deallocated.
1644 */
1645void
1646vm_object_collapse(vm_object_t object)
1647{
1648	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1649
1650	while (TRUE) {
1651		vm_object_t backing_object;
1652
1653		/*
1654		 * Verify that the conditions are right for collapse:
1655		 *
1656		 * The object exists and the backing object exists.
1657		 */
1658		if ((backing_object = object->backing_object) == NULL)
1659			break;
1660
1661		/*
1662		 * we check the backing object first, because it is most likely
1663		 * not collapsable.
1664		 */
1665		VM_OBJECT_LOCK(backing_object);
1666		if (backing_object->handle != NULL ||
1667		    (backing_object->type != OBJT_DEFAULT &&
1668		     backing_object->type != OBJT_SWAP) ||
1669		    (backing_object->flags & OBJ_DEAD) ||
1670		    object->handle != NULL ||
1671		    (object->type != OBJT_DEFAULT &&
1672		     object->type != OBJT_SWAP) ||
1673		    (object->flags & OBJ_DEAD)) {
1674			VM_OBJECT_UNLOCK(backing_object);
1675			break;
1676		}
1677
1678		if (
1679		    object->paging_in_progress != 0 ||
1680		    backing_object->paging_in_progress != 0
1681		) {
1682			vm_object_qcollapse(object);
1683			VM_OBJECT_UNLOCK(backing_object);
1684			break;
1685		}
1686		/*
1687		 * We know that we can either collapse the backing object (if
1688		 * the parent is the only reference to it) or (perhaps) have
1689		 * the parent bypass the object if the parent happens to shadow
1690		 * all the resident pages in the entire backing object.
1691		 *
1692		 * This is ignoring pager-backed pages such as swap pages.
1693		 * vm_object_backing_scan fails the shadowing test in this
1694		 * case.
1695		 */
1696		if (backing_object->ref_count == 1) {
1697			/*
1698			 * If there is exactly one reference to the backing
1699			 * object, we can collapse it into the parent.
1700			 */
1701			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1702
1703#if VM_NRESERVLEVEL > 0
1704			/*
1705			 * Break any reservations from backing_object.
1706			 */
1707			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1708				vm_reserv_break_all(backing_object);
1709#endif
1710
1711			/*
1712			 * Move the pager from backing_object to object.
1713			 */
1714			if (backing_object->type == OBJT_SWAP) {
1715				/*
1716				 * swap_pager_copy() can sleep, in which case
1717				 * the backing_object's and object's locks are
1718				 * released and reacquired.
1719				 */
1720				swap_pager_copy(
1721				    backing_object,
1722				    object,
1723				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1724
1725				/*
1726				 * Free any cached pages from backing_object.
1727				 */
1728				if (__predict_false(backing_object->cache != NULL))
1729					vm_page_cache_free(backing_object, 0, 0);
1730			}
1731			/*
1732			 * Object now shadows whatever backing_object did.
1733			 * Note that the reference to
1734			 * backing_object->backing_object moves from within
1735			 * backing_object to within object.
1736			 */
1737			LIST_REMOVE(object, shadow_list);
1738			backing_object->shadow_count--;
1739			backing_object->generation++;
1740			if (backing_object->backing_object) {
1741				VM_OBJECT_LOCK(backing_object->backing_object);
1742				LIST_REMOVE(backing_object, shadow_list);
1743				LIST_INSERT_HEAD(
1744				    &backing_object->backing_object->shadow_head,
1745				    object, shadow_list);
1746				/*
1747				 * The shadow_count has not changed.
1748				 */
1749				backing_object->backing_object->generation++;
1750				VM_OBJECT_UNLOCK(backing_object->backing_object);
1751			}
1752			object->backing_object = backing_object->backing_object;
1753			object->backing_object_offset +=
1754			    backing_object->backing_object_offset;
1755
1756			/*
1757			 * Discard backing_object.
1758			 *
1759			 * Since the backing object has no pages, no pager left,
1760			 * and no object references within it, all that is
1761			 * necessary is to dispose of it.
1762			 */
1763			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1764			VM_OBJECT_UNLOCK(backing_object);
1765
1766			mtx_lock(&vm_object_list_mtx);
1767			TAILQ_REMOVE(
1768			    &vm_object_list,
1769			    backing_object,
1770			    object_list
1771			);
1772			mtx_unlock(&vm_object_list_mtx);
1773
1774			uma_zfree(obj_zone, backing_object);
1775
1776			object_collapses++;
1777		} else {
1778			vm_object_t new_backing_object;
1779
1780			/*
1781			 * If we do not entirely shadow the backing object,
1782			 * there is nothing we can do so we give up.
1783			 */
1784			if (object->resident_page_count != object->size &&
1785			    vm_object_backing_scan(object,
1786			    OBSC_TEST_ALL_SHADOWED) == 0) {
1787				VM_OBJECT_UNLOCK(backing_object);
1788				break;
1789			}
1790
1791			/*
1792			 * Make the parent shadow the next object in the
1793			 * chain.  Deallocating backing_object will not remove
1794			 * it, since its reference count is at least 2.
1795			 */
1796			LIST_REMOVE(object, shadow_list);
1797			backing_object->shadow_count--;
1798			backing_object->generation++;
1799
1800			new_backing_object = backing_object->backing_object;
1801			if ((object->backing_object = new_backing_object) != NULL) {
1802				VM_OBJECT_LOCK(new_backing_object);
1803				LIST_INSERT_HEAD(
1804				    &new_backing_object->shadow_head,
1805				    object,
1806				    shadow_list
1807				);
1808				new_backing_object->shadow_count++;
1809				new_backing_object->generation++;
1810				vm_object_reference_locked(new_backing_object);
1811				VM_OBJECT_UNLOCK(new_backing_object);
1812				object->backing_object_offset +=
1813					backing_object->backing_object_offset;
1814			}
1815
1816			/*
1817			 * Drop the reference count on backing_object. Since
1818			 * its ref_count was at least 2, it will not vanish.
1819			 */
1820			backing_object->ref_count--;
1821			VM_OBJECT_UNLOCK(backing_object);
1822			object_bypasses++;
1823		}
1824
1825		/*
1826		 * Try again with this object's new backing object.
1827		 */
1828	}
1829}
1830
1831/*
1832 *	vm_object_page_remove:
1833 *
1834 *	For the given object, either frees or invalidates each of the
1835 *	specified pages.  In general, a page is freed.  However, if a
1836 *	page is wired for any reason other than the existence of a
1837 *	managed, wired mapping, then it may be invalidated but not
1838 *	removed from the object.  Pages are specified by the given
1839 *	range ["start", "end") and Boolean "clean_only".  As a
1840 *	special case, if "end" is zero, then the range extends from
1841 *	"start" to the end of the object.  If "clean_only" is TRUE,
1842 *	then only the non-dirty pages within the specified range are
1843 *	affected.
1844 *
1845 *	In general, this operation should only be performed on objects
1846 *	that contain managed pages.  There are two exceptions.  First,
1847 *	it may be performed on the kernel and kmem objects.  Second,
1848 *	it may be used by msync(..., MS_INVALIDATE) to invalidate
1849 *	device-backed pages.
1850 *
1851 *	The object must be locked.
1852 */
1853void
1854vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1855    boolean_t clean_only)
1856{
1857	vm_page_t p, next;
1858	int wirings;
1859
1860	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1861	if (object->resident_page_count == 0)
1862		goto skipmemq;
1863
1864	/*
1865	 * Since physically-backed objects do not use managed pages, we can't
1866	 * remove pages from the object (we must instead remove the page
1867	 * references, and then destroy the object).
1868	 */
1869	KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
1870	    object == kmem_object,
1871	    ("attempt to remove pages from a physical object"));
1872
1873	vm_object_pip_add(object, 1);
1874again:
1875	vm_page_lock_queues();
1876	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1877		if (p->pindex < start) {
1878			p = vm_page_splay(start, object->root);
1879			if ((object->root = p)->pindex < start)
1880				p = TAILQ_NEXT(p, listq);
1881		}
1882	}
1883	/*
1884	 * Assert: the variable p is either (1) the page with the
1885	 * least pindex greater than or equal to the parameter pindex
1886	 * or (2) NULL.
1887	 */
1888	for (;
1889	     p != NULL && (p->pindex < end || end == 0);
1890	     p = next) {
1891		next = TAILQ_NEXT(p, listq);
1892
1893		/*
1894		 * If the page is wired for any reason besides the
1895		 * existence of managed, wired mappings, then it cannot
1896		 * be freed.  For example, fictitious pages, which
1897		 * represent device memory, are inherently wired and
1898		 * cannot be freed.  They can, however, be invalidated
1899		 * if "clean_only" is FALSE.
1900		 */
1901		if ((wirings = p->wire_count) != 0 &&
1902		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1903			/* Fictitious pages do not have managed mappings. */
1904			if ((p->flags & PG_FICTITIOUS) == 0)
1905				pmap_remove_all(p);
1906			/* Account for removal of managed, wired mappings. */
1907			p->wire_count -= wirings;
1908			if (!clean_only)
1909				p->valid = 0;
1910			continue;
1911		}
1912		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1913			goto again;
1914		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1915		    ("vm_object_page_remove: page %p is fictitious", p));
1916		if (clean_only && p->valid) {
1917			pmap_remove_write(p);
1918			if (p->valid & p->dirty)
1919				continue;
1920		}
1921		pmap_remove_all(p);
1922		/* Account for removal of managed, wired mappings. */
1923		if (wirings != 0)
1924			p->wire_count -= wirings;
1925		vm_page_free(p);
1926	}
1927	vm_page_unlock_queues();
1928	vm_object_pip_wakeup(object);
1929skipmemq:
1930	if (__predict_false(object->cache != NULL))
1931		vm_page_cache_free(object, start, end);
1932}
1933
1934/*
1935 *	Routine:	vm_object_coalesce
1936 *	Function:	Coalesces two objects backing up adjoining
1937 *			regions of memory into a single object.
1938 *
1939 *	returns TRUE if objects were combined.
1940 *
1941 *	NOTE:	Only works at the moment if the second object is NULL -
1942 *		if it's not, which object do we lock first?
1943 *
1944 *	Parameters:
1945 *		prev_object	First object to coalesce
1946 *		prev_offset	Offset into prev_object
1947 *		prev_size	Size of reference to prev_object
1948 *		next_size	Size of reference to the second object
1949 *
1950 *	Conditions:
1951 *	The object must *not* be locked.
1952 */
1953boolean_t
1954vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1955	vm_size_t prev_size, vm_size_t next_size)
1956{
1957	vm_pindex_t next_pindex;
1958
1959	if (prev_object == NULL)
1960		return (TRUE);
1961	VM_OBJECT_LOCK(prev_object);
1962	if (prev_object->type != OBJT_DEFAULT &&
1963	    prev_object->type != OBJT_SWAP) {
1964		VM_OBJECT_UNLOCK(prev_object);
1965		return (FALSE);
1966	}
1967
1968	/*
1969	 * Try to collapse the object first
1970	 */
1971	vm_object_collapse(prev_object);
1972
1973	/*
1974	 * Can't coalesce if: . more than one reference . paged out . shadows
1975	 * another object . has a copy elsewhere (any of which mean that the
1976	 * pages not mapped to prev_entry may be in use anyway)
1977	 */
1978	if (prev_object->backing_object != NULL) {
1979		VM_OBJECT_UNLOCK(prev_object);
1980		return (FALSE);
1981	}
1982
1983	prev_size >>= PAGE_SHIFT;
1984	next_size >>= PAGE_SHIFT;
1985	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1986
1987	if ((prev_object->ref_count > 1) &&
1988	    (prev_object->size != next_pindex)) {
1989		VM_OBJECT_UNLOCK(prev_object);
1990		return (FALSE);
1991	}
1992
1993	/*
1994	 * Remove any pages that may still be in the object from a previous
1995	 * deallocation.
1996	 */
1997	if (next_pindex < prev_object->size) {
1998		vm_object_page_remove(prev_object,
1999				      next_pindex,
2000				      next_pindex + next_size, FALSE);
2001		if (prev_object->type == OBJT_SWAP)
2002			swap_pager_freespace(prev_object,
2003					     next_pindex, next_size);
2004	}
2005
2006	/*
2007	 * Extend the object if necessary.
2008	 */
2009	if (next_pindex + next_size > prev_object->size)
2010		prev_object->size = next_pindex + next_size;
2011
2012	VM_OBJECT_UNLOCK(prev_object);
2013	return (TRUE);
2014}
2015
2016void
2017vm_object_set_writeable_dirty(vm_object_t object)
2018{
2019	struct vnode *vp;
2020
2021	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2022	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2023		return;
2024	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2025	if (object->type == OBJT_VNODE &&
2026	    (vp = (struct vnode *)object->handle) != NULL) {
2027		VI_LOCK(vp);
2028		vp->v_iflag |= VI_OBJDIRTY;
2029		VI_UNLOCK(vp);
2030	}
2031}
2032
2033#include "opt_ddb.h"
2034#ifdef DDB
2035#include <sys/kernel.h>
2036
2037#include <sys/cons.h>
2038
2039#include <ddb/ddb.h>
2040
2041static int
2042_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2043{
2044	vm_map_t tmpm;
2045	vm_map_entry_t tmpe;
2046	vm_object_t obj;
2047	int entcount;
2048
2049	if (map == 0)
2050		return 0;
2051
2052	if (entry == 0) {
2053		tmpe = map->header.next;
2054		entcount = map->nentries;
2055		while (entcount-- && (tmpe != &map->header)) {
2056			if (_vm_object_in_map(map, object, tmpe)) {
2057				return 1;
2058			}
2059			tmpe = tmpe->next;
2060		}
2061	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2062		tmpm = entry->object.sub_map;
2063		tmpe = tmpm->header.next;
2064		entcount = tmpm->nentries;
2065		while (entcount-- && tmpe != &tmpm->header) {
2066			if (_vm_object_in_map(tmpm, object, tmpe)) {
2067				return 1;
2068			}
2069			tmpe = tmpe->next;
2070		}
2071	} else if ((obj = entry->object.vm_object) != NULL) {
2072		for (; obj; obj = obj->backing_object)
2073			if (obj == object) {
2074				return 1;
2075			}
2076	}
2077	return 0;
2078}
2079
2080static int
2081vm_object_in_map(vm_object_t object)
2082{
2083	struct proc *p;
2084
2085	/* sx_slock(&allproc_lock); */
2086	FOREACH_PROC_IN_SYSTEM(p) {
2087		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2088			continue;
2089		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2090			/* sx_sunlock(&allproc_lock); */
2091			return 1;
2092		}
2093	}
2094	/* sx_sunlock(&allproc_lock); */
2095	if (_vm_object_in_map(kernel_map, object, 0))
2096		return 1;
2097	if (_vm_object_in_map(kmem_map, object, 0))
2098		return 1;
2099	if (_vm_object_in_map(pager_map, object, 0))
2100		return 1;
2101	if (_vm_object_in_map(buffer_map, object, 0))
2102		return 1;
2103	return 0;
2104}
2105
2106DB_SHOW_COMMAND(vmochk, vm_object_check)
2107{
2108	vm_object_t object;
2109
2110	/*
2111	 * make sure that internal objs are in a map somewhere
2112	 * and none have zero ref counts.
2113	 */
2114	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2115		if (object->handle == NULL &&
2116		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2117			if (object->ref_count == 0) {
2118				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2119					(long)object->size);
2120			}
2121			if (!vm_object_in_map(object)) {
2122				db_printf(
2123			"vmochk: internal obj is not in a map: "
2124			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2125				    object->ref_count, (u_long)object->size,
2126				    (u_long)object->size,
2127				    (void *)object->backing_object);
2128			}
2129		}
2130	}
2131}
2132
2133/*
2134 *	vm_object_print:	[ debug ]
2135 */
2136DB_SHOW_COMMAND(object, vm_object_print_static)
2137{
2138	/* XXX convert args. */
2139	vm_object_t object = (vm_object_t)addr;
2140	boolean_t full = have_addr;
2141
2142	vm_page_t p;
2143
2144	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2145#define	count	was_count
2146
2147	int count;
2148
2149	if (object == NULL)
2150		return;
2151
2152	db_iprintf(
2153	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2154	    object, (int)object->type, (uintmax_t)object->size,
2155	    object->resident_page_count, object->ref_count, object->flags);
2156	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2157	    object->shadow_count,
2158	    object->backing_object ? object->backing_object->ref_count : 0,
2159	    object->backing_object, (uintmax_t)object->backing_object_offset);
2160
2161	if (!full)
2162		return;
2163
2164	db_indent += 2;
2165	count = 0;
2166	TAILQ_FOREACH(p, &object->memq, listq) {
2167		if (count == 0)
2168			db_iprintf("memory:=");
2169		else if (count == 6) {
2170			db_printf("\n");
2171			db_iprintf(" ...");
2172			count = 0;
2173		} else
2174			db_printf(",");
2175		count++;
2176
2177		db_printf("(off=0x%jx,page=0x%jx)",
2178		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2179	}
2180	if (count != 0)
2181		db_printf("\n");
2182	db_indent -= 2;
2183}
2184
2185/* XXX. */
2186#undef count
2187
2188/* XXX need this non-static entry for calling from vm_map_print. */
2189void
2190vm_object_print(
2191        /* db_expr_t */ long addr,
2192	boolean_t have_addr,
2193	/* db_expr_t */ long count,
2194	char *modif)
2195{
2196	vm_object_print_static(addr, have_addr, count, modif);
2197}
2198
2199DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2200{
2201	vm_object_t object;
2202	int nl = 0;
2203	int c;
2204
2205	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2206		vm_pindex_t idx, fidx;
2207		vm_pindex_t osize;
2208		vm_paddr_t pa = -1;
2209		int rcount;
2210		vm_page_t m;
2211
2212		db_printf("new object: %p\n", (void *)object);
2213		if (nl > 18) {
2214			c = cngetc();
2215			if (c != ' ')
2216				return;
2217			nl = 0;
2218		}
2219		nl++;
2220		rcount = 0;
2221		fidx = 0;
2222		osize = object->size;
2223		if (osize > 128)
2224			osize = 128;
2225		for (idx = 0; idx < osize; idx++) {
2226			m = vm_page_lookup(object, idx);
2227			if (m == NULL) {
2228				if (rcount) {
2229					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2230						(long)fidx, rcount, (long)pa);
2231					if (nl > 18) {
2232						c = cngetc();
2233						if (c != ' ')
2234							return;
2235						nl = 0;
2236					}
2237					nl++;
2238					rcount = 0;
2239				}
2240				continue;
2241			}
2242
2243
2244			if (rcount &&
2245				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2246				++rcount;
2247				continue;
2248			}
2249			if (rcount) {
2250				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2251					(long)fidx, rcount, (long)pa);
2252				if (nl > 18) {
2253					c = cngetc();
2254					if (c != ' ')
2255						return;
2256					nl = 0;
2257				}
2258				nl++;
2259			}
2260			fidx = idx;
2261			pa = VM_PAGE_TO_PHYS(m);
2262			rcount = 1;
2263		}
2264		if (rcount) {
2265			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2266				(long)fidx, rcount, (long)pa);
2267			if (nl > 18) {
2268				c = cngetc();
2269				if (c != ' ')
2270					return;
2271				nl = 0;
2272			}
2273			nl++;
2274		}
2275	}
2276}
2277#endif /* DDB */
2278