vm_object.c revision 177704
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory object module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: head/sys/vm/vm_object.c 177704 2008-03-29 07:06:13Z jeff $");
67
68#include "opt_vm.h"
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/lock.h>
73#include <sys/mman.h>
74#include <sys/mount.h>
75#include <sys/kernel.h>
76#include <sys/sysctl.h>
77#include <sys/mutex.h>
78#include <sys/proc.h>		/* for curproc, pageproc */
79#include <sys/socket.h>
80#include <sys/vnode.h>
81#include <sys/vmmeter.h>
82#include <sys/sx.h>
83
84#include <vm/vm.h>
85#include <vm/vm_param.h>
86#include <vm/pmap.h>
87#include <vm/vm_map.h>
88#include <vm/vm_object.h>
89#include <vm/vm_page.h>
90#include <vm/vm_pageout.h>
91#include <vm/vm_pager.h>
92#include <vm/swap_pager.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vm_reserv.h>
96#include <vm/uma.h>
97
98#define EASY_SCAN_FACTOR       8
99
100#define MSYNC_FLUSH_HARDSEQ	0x01
101#define MSYNC_FLUSH_SOFTSEQ	0x02
102
103/*
104 * msync / VM object flushing optimizations
105 */
106static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
107SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
108        CTLFLAG_RW, &msync_flush_flags, 0, "");
109
110static int old_msync;
111SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
112    "Use old (insecure) msync behavior");
113
114static void	vm_object_qcollapse(vm_object_t object);
115static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
116static void	vm_object_vndeallocate(vm_object_t object);
117
118/*
119 *	Virtual memory objects maintain the actual data
120 *	associated with allocated virtual memory.  A given
121 *	page of memory exists within exactly one object.
122 *
123 *	An object is only deallocated when all "references"
124 *	are given up.  Only one "reference" to a given
125 *	region of an object should be writeable.
126 *
127 *	Associated with each object is a list of all resident
128 *	memory pages belonging to that object; this list is
129 *	maintained by the "vm_page" module, and locked by the object's
130 *	lock.
131 *
132 *	Each object also records a "pager" routine which is
133 *	used to retrieve (and store) pages to the proper backing
134 *	storage.  In addition, objects may be backed by other
135 *	objects from which they were virtual-copied.
136 *
137 *	The only items within the object structure which are
138 *	modified after time of creation are:
139 *		reference count		locked by object's lock
140 *		pager routine		locked by object's lock
141 *
142 */
143
144struct object_q vm_object_list;
145struct mtx vm_object_list_mtx;	/* lock for object list and count */
146
147struct vm_object kernel_object_store;
148struct vm_object kmem_object_store;
149
150SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
151
152static long object_collapses;
153SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
154    &object_collapses, 0, "VM object collapses");
155
156static long object_bypasses;
157SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
158    &object_bypasses, 0, "VM object bypasses");
159
160static uma_zone_t obj_zone;
161
162static int vm_object_zinit(void *mem, int size, int flags);
163
164#ifdef INVARIANTS
165static void vm_object_zdtor(void *mem, int size, void *arg);
166
167static void
168vm_object_zdtor(void *mem, int size, void *arg)
169{
170	vm_object_t object;
171
172	object = (vm_object_t)mem;
173	KASSERT(TAILQ_EMPTY(&object->memq),
174	    ("object %p has resident pages",
175	    object));
176#if VM_NRESERVLEVEL > 0
177	KASSERT(LIST_EMPTY(&object->rvq),
178	    ("object %p has reservations",
179	    object));
180#endif
181	KASSERT(object->cache == NULL,
182	    ("object %p has cached pages",
183	    object));
184	KASSERT(object->paging_in_progress == 0,
185	    ("object %p paging_in_progress = %d",
186	    object, object->paging_in_progress));
187	KASSERT(object->resident_page_count == 0,
188	    ("object %p resident_page_count = %d",
189	    object, object->resident_page_count));
190	KASSERT(object->shadow_count == 0,
191	    ("object %p shadow_count = %d",
192	    object, object->shadow_count));
193}
194#endif
195
196static int
197vm_object_zinit(void *mem, int size, int flags)
198{
199	vm_object_t object;
200
201	object = (vm_object_t)mem;
202	bzero(&object->mtx, sizeof(object->mtx));
203	VM_OBJECT_LOCK_INIT(object, "standard object");
204
205	/* These are true for any object that has been freed */
206	object->paging_in_progress = 0;
207	object->resident_page_count = 0;
208	object->shadow_count = 0;
209	return (0);
210}
211
212void
213_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
214{
215
216	TAILQ_INIT(&object->memq);
217	LIST_INIT(&object->shadow_head);
218
219	object->root = NULL;
220	object->type = type;
221	object->size = size;
222	object->generation = 1;
223	object->ref_count = 1;
224	object->flags = 0;
225	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
226		object->flags = OBJ_ONEMAPPING;
227	object->pg_color = 0;
228	object->handle = NULL;
229	object->backing_object = NULL;
230	object->backing_object_offset = (vm_ooffset_t) 0;
231#if VM_NRESERVLEVEL > 0
232	LIST_INIT(&object->rvq);
233#endif
234	object->cache = NULL;
235
236	mtx_lock(&vm_object_list_mtx);
237	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
238	mtx_unlock(&vm_object_list_mtx);
239}
240
241/*
242 *	vm_object_init:
243 *
244 *	Initialize the VM objects module.
245 */
246void
247vm_object_init(void)
248{
249	TAILQ_INIT(&vm_object_list);
250	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
251
252	VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
253	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
254	    kernel_object);
255#if VM_NRESERVLEVEL > 0
256	kernel_object->flags |= OBJ_COLORED;
257	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
258#endif
259
260	VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
261	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
262	    kmem_object);
263#if VM_NRESERVLEVEL > 0
264	kmem_object->flags |= OBJ_COLORED;
265	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
266#endif
267
268	/*
269	 * The lock portion of struct vm_object must be type stable due
270	 * to vm_pageout_fallback_object_lock locking a vm object
271	 * without holding any references to it.
272	 */
273	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
274#ifdef INVARIANTS
275	    vm_object_zdtor,
276#else
277	    NULL,
278#endif
279	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
280}
281
282void
283vm_object_clear_flag(vm_object_t object, u_short bits)
284{
285
286	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
287	object->flags &= ~bits;
288}
289
290void
291vm_object_pip_add(vm_object_t object, short i)
292{
293
294	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
295	object->paging_in_progress += i;
296}
297
298void
299vm_object_pip_subtract(vm_object_t object, short i)
300{
301
302	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
303	object->paging_in_progress -= i;
304}
305
306void
307vm_object_pip_wakeup(vm_object_t object)
308{
309
310	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
311	object->paging_in_progress--;
312	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
313		vm_object_clear_flag(object, OBJ_PIPWNT);
314		wakeup(object);
315	}
316}
317
318void
319vm_object_pip_wakeupn(vm_object_t object, short i)
320{
321
322	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
323	if (i)
324		object->paging_in_progress -= i;
325	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
326		vm_object_clear_flag(object, OBJ_PIPWNT);
327		wakeup(object);
328	}
329}
330
331void
332vm_object_pip_wait(vm_object_t object, char *waitid)
333{
334
335	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
336	while (object->paging_in_progress) {
337		object->flags |= OBJ_PIPWNT;
338		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
339	}
340}
341
342/*
343 *	vm_object_allocate:
344 *
345 *	Returns a new object with the given size.
346 */
347vm_object_t
348vm_object_allocate(objtype_t type, vm_pindex_t size)
349{
350	vm_object_t object;
351
352	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
353	_vm_object_allocate(type, size, object);
354	return (object);
355}
356
357
358/*
359 *	vm_object_reference:
360 *
361 *	Gets another reference to the given object.  Note: OBJ_DEAD
362 *	objects can be referenced during final cleaning.
363 */
364void
365vm_object_reference(vm_object_t object)
366{
367	if (object == NULL)
368		return;
369	VM_OBJECT_LOCK(object);
370	vm_object_reference_locked(object);
371	VM_OBJECT_UNLOCK(object);
372}
373
374/*
375 *	vm_object_reference_locked:
376 *
377 *	Gets another reference to the given object.
378 *
379 *	The object must be locked.
380 */
381void
382vm_object_reference_locked(vm_object_t object)
383{
384	struct vnode *vp;
385
386	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
387	object->ref_count++;
388	if (object->type == OBJT_VNODE) {
389		vp = object->handle;
390		vref(vp);
391	}
392}
393
394/*
395 * Handle deallocating an object of type OBJT_VNODE.
396 */
397static void
398vm_object_vndeallocate(vm_object_t object)
399{
400	struct vnode *vp = (struct vnode *) object->handle;
401
402	VFS_ASSERT_GIANT(vp->v_mount);
403	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
404	KASSERT(object->type == OBJT_VNODE,
405	    ("vm_object_vndeallocate: not a vnode object"));
406	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
407#ifdef INVARIANTS
408	if (object->ref_count == 0) {
409		vprint("vm_object_vndeallocate", vp);
410		panic("vm_object_vndeallocate: bad object reference count");
411	}
412#endif
413
414	object->ref_count--;
415	if (object->ref_count == 0) {
416		mp_fixme("Unlocked vflag access.");
417		vp->v_vflag &= ~VV_TEXT;
418	}
419	VM_OBJECT_UNLOCK(object);
420	/*
421	 * vrele may need a vop lock
422	 */
423	vrele(vp);
424}
425
426/*
427 *	vm_object_deallocate:
428 *
429 *	Release a reference to the specified object,
430 *	gained either through a vm_object_allocate
431 *	or a vm_object_reference call.  When all references
432 *	are gone, storage associated with this object
433 *	may be relinquished.
434 *
435 *	No object may be locked.
436 */
437void
438vm_object_deallocate(vm_object_t object)
439{
440	vm_object_t temp;
441
442	while (object != NULL) {
443		int vfslocked;
444
445		vfslocked = 0;
446	restart:
447		VM_OBJECT_LOCK(object);
448		if (object->type == OBJT_VNODE) {
449			struct vnode *vp = (struct vnode *) object->handle;
450
451			/*
452			 * Conditionally acquire Giant for a vnode-backed
453			 * object.  We have to be careful since the type of
454			 * a vnode object can change while the object is
455			 * unlocked.
456			 */
457			if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
458				vfslocked = 1;
459				if (!mtx_trylock(&Giant)) {
460					VM_OBJECT_UNLOCK(object);
461					mtx_lock(&Giant);
462					goto restart;
463				}
464			}
465			vm_object_vndeallocate(object);
466			VFS_UNLOCK_GIANT(vfslocked);
467			return;
468		} else
469			/*
470			 * This is to handle the case that the object
471			 * changed type while we dropped its lock to
472			 * obtain Giant.
473			 */
474			VFS_UNLOCK_GIANT(vfslocked);
475
476		KASSERT(object->ref_count != 0,
477			("vm_object_deallocate: object deallocated too many times: %d", object->type));
478
479		/*
480		 * If the reference count goes to 0 we start calling
481		 * vm_object_terminate() on the object chain.
482		 * A ref count of 1 may be a special case depending on the
483		 * shadow count being 0 or 1.
484		 */
485		object->ref_count--;
486		if (object->ref_count > 1) {
487			VM_OBJECT_UNLOCK(object);
488			return;
489		} else if (object->ref_count == 1) {
490			if (object->shadow_count == 0 &&
491			    object->handle == NULL &&
492			    (object->type == OBJT_DEFAULT ||
493			     object->type == OBJT_SWAP)) {
494				vm_object_set_flag(object, OBJ_ONEMAPPING);
495			} else if ((object->shadow_count == 1) &&
496			    (object->handle == NULL) &&
497			    (object->type == OBJT_DEFAULT ||
498			     object->type == OBJT_SWAP)) {
499				vm_object_t robject;
500
501				robject = LIST_FIRST(&object->shadow_head);
502				KASSERT(robject != NULL,
503				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
504					 object->ref_count,
505					 object->shadow_count));
506				if (!VM_OBJECT_TRYLOCK(robject)) {
507					/*
508					 * Avoid a potential deadlock.
509					 */
510					object->ref_count++;
511					VM_OBJECT_UNLOCK(object);
512					/*
513					 * More likely than not the thread
514					 * holding robject's lock has lower
515					 * priority than the current thread.
516					 * Let the lower priority thread run.
517					 */
518					pause("vmo_de", 1);
519					continue;
520				}
521				/*
522				 * Collapse object into its shadow unless its
523				 * shadow is dead.  In that case, object will
524				 * be deallocated by the thread that is
525				 * deallocating its shadow.
526				 */
527				if ((robject->flags & OBJ_DEAD) == 0 &&
528				    (robject->handle == NULL) &&
529				    (robject->type == OBJT_DEFAULT ||
530				     robject->type == OBJT_SWAP)) {
531
532					robject->ref_count++;
533retry:
534					if (robject->paging_in_progress) {
535						VM_OBJECT_UNLOCK(object);
536						vm_object_pip_wait(robject,
537						    "objde1");
538						temp = robject->backing_object;
539						if (object == temp) {
540							VM_OBJECT_LOCK(object);
541							goto retry;
542						}
543					} else if (object->paging_in_progress) {
544						VM_OBJECT_UNLOCK(robject);
545						object->flags |= OBJ_PIPWNT;
546						msleep(object,
547						    VM_OBJECT_MTX(object),
548						    PDROP | PVM, "objde2", 0);
549						VM_OBJECT_LOCK(robject);
550						temp = robject->backing_object;
551						if (object == temp) {
552							VM_OBJECT_LOCK(object);
553							goto retry;
554						}
555					} else
556						VM_OBJECT_UNLOCK(object);
557
558					if (robject->ref_count == 1) {
559						robject->ref_count--;
560						object = robject;
561						goto doterm;
562					}
563					object = robject;
564					vm_object_collapse(object);
565					VM_OBJECT_UNLOCK(object);
566					continue;
567				}
568				VM_OBJECT_UNLOCK(robject);
569			}
570			VM_OBJECT_UNLOCK(object);
571			return;
572		}
573doterm:
574		temp = object->backing_object;
575		if (temp != NULL) {
576			VM_OBJECT_LOCK(temp);
577			LIST_REMOVE(object, shadow_list);
578			temp->shadow_count--;
579			temp->generation++;
580			VM_OBJECT_UNLOCK(temp);
581			object->backing_object = NULL;
582		}
583		/*
584		 * Don't double-terminate, we could be in a termination
585		 * recursion due to the terminate having to sync data
586		 * to disk.
587		 */
588		if ((object->flags & OBJ_DEAD) == 0)
589			vm_object_terminate(object);
590		else
591			VM_OBJECT_UNLOCK(object);
592		object = temp;
593	}
594}
595
596/*
597 *	vm_object_terminate actually destroys the specified object, freeing
598 *	up all previously used resources.
599 *
600 *	The object must be locked.
601 *	This routine may block.
602 */
603void
604vm_object_terminate(vm_object_t object)
605{
606	vm_page_t p;
607
608	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
609
610	/*
611	 * Make sure no one uses us.
612	 */
613	vm_object_set_flag(object, OBJ_DEAD);
614
615	/*
616	 * wait for the pageout daemon to be done with the object
617	 */
618	vm_object_pip_wait(object, "objtrm");
619
620	KASSERT(!object->paging_in_progress,
621		("vm_object_terminate: pageout in progress"));
622
623	/*
624	 * Clean and free the pages, as appropriate. All references to the
625	 * object are gone, so we don't need to lock it.
626	 */
627	if (object->type == OBJT_VNODE) {
628		struct vnode *vp = (struct vnode *)object->handle;
629
630		/*
631		 * Clean pages and flush buffers.
632		 */
633		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
634		VM_OBJECT_UNLOCK(object);
635
636		vinvalbuf(vp, V_SAVE, NULL, 0, 0);
637
638		VM_OBJECT_LOCK(object);
639	}
640
641	KASSERT(object->ref_count == 0,
642		("vm_object_terminate: object with references, ref_count=%d",
643		object->ref_count));
644
645	/*
646	 * Now free any remaining pages. For internal objects, this also
647	 * removes them from paging queues. Don't free wired pages, just
648	 * remove them from the object.
649	 */
650	vm_page_lock_queues();
651	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
652		KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
653			("vm_object_terminate: freeing busy page %p "
654			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
655		if (p->wire_count == 0) {
656			vm_page_free(p);
657			cnt.v_pfree++;
658		} else {
659			vm_page_remove(p);
660		}
661	}
662	vm_page_unlock_queues();
663
664#if VM_NRESERVLEVEL > 0
665	if (__predict_false(!LIST_EMPTY(&object->rvq)))
666		vm_reserv_break_all(object);
667#endif
668	if (__predict_false(object->cache != NULL))
669		vm_page_cache_free(object, 0, 0);
670
671	/*
672	 * Let the pager know object is dead.
673	 */
674	vm_pager_deallocate(object);
675	VM_OBJECT_UNLOCK(object);
676
677	/*
678	 * Remove the object from the global object list.
679	 */
680	mtx_lock(&vm_object_list_mtx);
681	TAILQ_REMOVE(&vm_object_list, object, object_list);
682	mtx_unlock(&vm_object_list_mtx);
683
684	/*
685	 * Free the space for the object.
686	 */
687	uma_zfree(obj_zone, object);
688}
689
690/*
691 *	vm_object_page_clean
692 *
693 *	Clean all dirty pages in the specified range of object.  Leaves page
694 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
695 *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
696 *	leaving the object dirty.
697 *
698 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
699 *	synchronous clustering mode implementation.
700 *
701 *	Odd semantics: if start == end, we clean everything.
702 *
703 *	The object must be locked.
704 */
705void
706vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
707{
708	vm_page_t p, np;
709	vm_pindex_t tstart, tend;
710	vm_pindex_t pi;
711	int clearobjflags;
712	int pagerflags;
713	int curgeneration;
714
715	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
716	if (object->type != OBJT_VNODE ||
717		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
718		return;
719
720	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
721	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
722
723	vm_object_set_flag(object, OBJ_CLEANING);
724
725	tstart = start;
726	if (end == 0) {
727		tend = object->size;
728	} else {
729		tend = end;
730	}
731
732	vm_page_lock_queues();
733	/*
734	 * If the caller is smart and only msync()s a range he knows is
735	 * dirty, we may be able to avoid an object scan.  This results in
736	 * a phenominal improvement in performance.  We cannot do this
737	 * as a matter of course because the object may be huge - e.g.
738	 * the size might be in the gigabytes or terrabytes.
739	 */
740	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
741		vm_pindex_t tscan;
742		int scanlimit;
743		int scanreset;
744
745		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
746		if (scanreset < 16)
747			scanreset = 16;
748		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
749
750		scanlimit = scanreset;
751		tscan = tstart;
752		while (tscan < tend) {
753			curgeneration = object->generation;
754			p = vm_page_lookup(object, tscan);
755			if (p == NULL || p->valid == 0) {
756				if (--scanlimit == 0)
757					break;
758				++tscan;
759				continue;
760			}
761			vm_page_test_dirty(p);
762			if ((p->dirty & p->valid) == 0) {
763				if (--scanlimit == 0)
764					break;
765				++tscan;
766				continue;
767			}
768			/*
769			 * If we have been asked to skip nosync pages and
770			 * this is a nosync page, we can't continue.
771			 */
772			if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
773				if (--scanlimit == 0)
774					break;
775				++tscan;
776				continue;
777			}
778			scanlimit = scanreset;
779
780			/*
781			 * This returns 0 if it was unable to busy the first
782			 * page (i.e. had to sleep).
783			 */
784			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
785		}
786
787		/*
788		 * If everything was dirty and we flushed it successfully,
789		 * and the requested range is not the entire object, we
790		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
791		 * return immediately.
792		 */
793		if (tscan >= tend && (tstart || tend < object->size)) {
794			vm_page_unlock_queues();
795			vm_object_clear_flag(object, OBJ_CLEANING);
796			return;
797		}
798		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
799	}
800
801	/*
802	 * Generally set CLEANCHK interlock and make the page read-only so
803	 * we can then clear the object flags.
804	 *
805	 * However, if this is a nosync mmap then the object is likely to
806	 * stay dirty so do not mess with the page and do not clear the
807	 * object flags.
808	 */
809	clearobjflags = 1;
810	TAILQ_FOREACH(p, &object->memq, listq) {
811		p->oflags |= VPO_CLEANCHK;
812		if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC))
813			clearobjflags = 0;
814		else
815			pmap_remove_write(p);
816	}
817
818	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
819		struct vnode *vp;
820
821		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
822		if (object->type == OBJT_VNODE &&
823		    (vp = (struct vnode *)object->handle) != NULL) {
824			VI_LOCK(vp);
825			if (vp->v_iflag & VI_OBJDIRTY)
826				vp->v_iflag &= ~VI_OBJDIRTY;
827			VI_UNLOCK(vp);
828		}
829	}
830
831rescan:
832	curgeneration = object->generation;
833
834	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
835		int n;
836
837		np = TAILQ_NEXT(p, listq);
838
839again:
840		pi = p->pindex;
841		if ((p->oflags & VPO_CLEANCHK) == 0 ||
842			(pi < tstart) || (pi >= tend) ||
843		    p->valid == 0) {
844			p->oflags &= ~VPO_CLEANCHK;
845			continue;
846		}
847
848		vm_page_test_dirty(p);
849		if ((p->dirty & p->valid) == 0) {
850			p->oflags &= ~VPO_CLEANCHK;
851			continue;
852		}
853
854		/*
855		 * If we have been asked to skip nosync pages and this is a
856		 * nosync page, skip it.  Note that the object flags were
857		 * not cleared in this case so we do not have to set them.
858		 */
859		if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
860			p->oflags &= ~VPO_CLEANCHK;
861			continue;
862		}
863
864		n = vm_object_page_collect_flush(object, p,
865			curgeneration, pagerflags);
866		if (n == 0)
867			goto rescan;
868
869		if (object->generation != curgeneration)
870			goto rescan;
871
872		/*
873		 * Try to optimize the next page.  If we can't we pick up
874		 * our (random) scan where we left off.
875		 */
876		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
877			if ((p = vm_page_lookup(object, pi + n)) != NULL)
878				goto again;
879		}
880	}
881	vm_page_unlock_queues();
882#if 0
883	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
884#endif
885
886	vm_object_clear_flag(object, OBJ_CLEANING);
887	return;
888}
889
890static int
891vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
892{
893	int runlen;
894	int maxf;
895	int chkb;
896	int maxb;
897	int i;
898	vm_pindex_t pi;
899	vm_page_t maf[vm_pageout_page_count];
900	vm_page_t mab[vm_pageout_page_count];
901	vm_page_t ma[vm_pageout_page_count];
902
903	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
904	pi = p->pindex;
905	while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
906		vm_page_lock_queues();
907		if (object->generation != curgeneration) {
908			return(0);
909		}
910	}
911	maxf = 0;
912	for(i = 1; i < vm_pageout_page_count; i++) {
913		vm_page_t tp;
914
915		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
916			if ((tp->oflags & VPO_BUSY) ||
917				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
918				 (tp->oflags & VPO_CLEANCHK) == 0) ||
919				(tp->busy != 0))
920				break;
921			vm_page_test_dirty(tp);
922			if ((tp->dirty & tp->valid) == 0) {
923				tp->oflags &= ~VPO_CLEANCHK;
924				break;
925			}
926			maf[ i - 1 ] = tp;
927			maxf++;
928			continue;
929		}
930		break;
931	}
932
933	maxb = 0;
934	chkb = vm_pageout_page_count -  maxf;
935	if (chkb) {
936		for(i = 1; i < chkb;i++) {
937			vm_page_t tp;
938
939			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
940				if ((tp->oflags & VPO_BUSY) ||
941					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
942					 (tp->oflags & VPO_CLEANCHK) == 0) ||
943					(tp->busy != 0))
944					break;
945				vm_page_test_dirty(tp);
946				if ((tp->dirty & tp->valid) == 0) {
947					tp->oflags &= ~VPO_CLEANCHK;
948					break;
949				}
950				mab[ i - 1 ] = tp;
951				maxb++;
952				continue;
953			}
954			break;
955		}
956	}
957
958	for(i = 0; i < maxb; i++) {
959		int index = (maxb - i) - 1;
960		ma[index] = mab[i];
961		ma[index]->oflags &= ~VPO_CLEANCHK;
962	}
963	p->oflags &= ~VPO_CLEANCHK;
964	ma[maxb] = p;
965	for(i = 0; i < maxf; i++) {
966		int index = (maxb + i) + 1;
967		ma[index] = maf[i];
968		ma[index]->oflags &= ~VPO_CLEANCHK;
969	}
970	runlen = maxb + maxf + 1;
971
972	vm_pageout_flush(ma, runlen, pagerflags);
973	for (i = 0; i < runlen; i++) {
974		if (ma[i]->valid & ma[i]->dirty) {
975			pmap_remove_write(ma[i]);
976			ma[i]->oflags |= VPO_CLEANCHK;
977
978			/*
979			 * maxf will end up being the actual number of pages
980			 * we wrote out contiguously, non-inclusive of the
981			 * first page.  We do not count look-behind pages.
982			 */
983			if (i >= maxb + 1 && (maxf > i - maxb - 1))
984				maxf = i - maxb - 1;
985		}
986	}
987	return(maxf + 1);
988}
989
990/*
991 * Note that there is absolutely no sense in writing out
992 * anonymous objects, so we track down the vnode object
993 * to write out.
994 * We invalidate (remove) all pages from the address space
995 * for semantic correctness.
996 *
997 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
998 * may start out with a NULL object.
999 */
1000void
1001vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1002    boolean_t syncio, boolean_t invalidate)
1003{
1004	vm_object_t backing_object;
1005	struct vnode *vp;
1006	struct mount *mp;
1007	int flags;
1008
1009	if (object == NULL)
1010		return;
1011	VM_OBJECT_LOCK(object);
1012	while ((backing_object = object->backing_object) != NULL) {
1013		VM_OBJECT_LOCK(backing_object);
1014		offset += object->backing_object_offset;
1015		VM_OBJECT_UNLOCK(object);
1016		object = backing_object;
1017		if (object->size < OFF_TO_IDX(offset + size))
1018			size = IDX_TO_OFF(object->size) - offset;
1019	}
1020	/*
1021	 * Flush pages if writing is allowed, invalidate them
1022	 * if invalidation requested.  Pages undergoing I/O
1023	 * will be ignored by vm_object_page_remove().
1024	 *
1025	 * We cannot lock the vnode and then wait for paging
1026	 * to complete without deadlocking against vm_fault.
1027	 * Instead we simply call vm_object_page_remove() and
1028	 * allow it to block internally on a page-by-page
1029	 * basis when it encounters pages undergoing async
1030	 * I/O.
1031	 */
1032	if (object->type == OBJT_VNODE &&
1033	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1034		int vfslocked;
1035		vp = object->handle;
1036		VM_OBJECT_UNLOCK(object);
1037		(void) vn_start_write(vp, &mp, V_WAIT);
1038		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1039		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1040		flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1041		flags |= invalidate ? OBJPC_INVAL : 0;
1042		VM_OBJECT_LOCK(object);
1043		vm_object_page_clean(object,
1044		    OFF_TO_IDX(offset),
1045		    OFF_TO_IDX(offset + size + PAGE_MASK),
1046		    flags);
1047		VM_OBJECT_UNLOCK(object);
1048		VOP_UNLOCK(vp, 0);
1049		VFS_UNLOCK_GIANT(vfslocked);
1050		vn_finished_write(mp);
1051		VM_OBJECT_LOCK(object);
1052	}
1053	if ((object->type == OBJT_VNODE ||
1054	     object->type == OBJT_DEVICE) && invalidate) {
1055		boolean_t purge;
1056		purge = old_msync || (object->type == OBJT_DEVICE);
1057		vm_object_page_remove(object,
1058		    OFF_TO_IDX(offset),
1059		    OFF_TO_IDX(offset + size + PAGE_MASK),
1060		    purge ? FALSE : TRUE);
1061	}
1062	VM_OBJECT_UNLOCK(object);
1063}
1064
1065/*
1066 *	vm_object_madvise:
1067 *
1068 *	Implements the madvise function at the object/page level.
1069 *
1070 *	MADV_WILLNEED	(any object)
1071 *
1072 *	    Activate the specified pages if they are resident.
1073 *
1074 *	MADV_DONTNEED	(any object)
1075 *
1076 *	    Deactivate the specified pages if they are resident.
1077 *
1078 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1079 *			 OBJ_ONEMAPPING only)
1080 *
1081 *	    Deactivate and clean the specified pages if they are
1082 *	    resident.  This permits the process to reuse the pages
1083 *	    without faulting or the kernel to reclaim the pages
1084 *	    without I/O.
1085 */
1086void
1087vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1088{
1089	vm_pindex_t end, tpindex;
1090	vm_object_t backing_object, tobject;
1091	vm_page_t m;
1092
1093	if (object == NULL)
1094		return;
1095	VM_OBJECT_LOCK(object);
1096	end = pindex + count;
1097	/*
1098	 * Locate and adjust resident pages
1099	 */
1100	for (; pindex < end; pindex += 1) {
1101relookup:
1102		tobject = object;
1103		tpindex = pindex;
1104shadowlookup:
1105		/*
1106		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1107		 * and those pages must be OBJ_ONEMAPPING.
1108		 */
1109		if (advise == MADV_FREE) {
1110			if ((tobject->type != OBJT_DEFAULT &&
1111			     tobject->type != OBJT_SWAP) ||
1112			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1113				goto unlock_tobject;
1114			}
1115		}
1116		m = vm_page_lookup(tobject, tpindex);
1117		if (m == NULL && advise == MADV_WILLNEED) {
1118			/*
1119			 * If the page is cached, reactivate it.
1120			 */
1121			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1122			    VM_ALLOC_NOBUSY);
1123		}
1124		if (m == NULL) {
1125			/*
1126			 * There may be swap even if there is no backing page
1127			 */
1128			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1129				swap_pager_freespace(tobject, tpindex, 1);
1130			/*
1131			 * next object
1132			 */
1133			backing_object = tobject->backing_object;
1134			if (backing_object == NULL)
1135				goto unlock_tobject;
1136			VM_OBJECT_LOCK(backing_object);
1137			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1138			if (tobject != object)
1139				VM_OBJECT_UNLOCK(tobject);
1140			tobject = backing_object;
1141			goto shadowlookup;
1142		}
1143		/*
1144		 * If the page is busy or not in a normal active state,
1145		 * we skip it.  If the page is not managed there are no
1146		 * page queues to mess with.  Things can break if we mess
1147		 * with pages in any of the below states.
1148		 */
1149		vm_page_lock_queues();
1150		if (m->hold_count ||
1151		    m->wire_count ||
1152		    (m->flags & PG_UNMANAGED) ||
1153		    m->valid != VM_PAGE_BITS_ALL) {
1154			vm_page_unlock_queues();
1155			goto unlock_tobject;
1156		}
1157		if ((m->oflags & VPO_BUSY) || m->busy) {
1158			vm_page_flag_set(m, PG_REFERENCED);
1159			vm_page_unlock_queues();
1160			if (object != tobject)
1161				VM_OBJECT_UNLOCK(object);
1162			m->oflags |= VPO_WANTED;
1163			msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo", 0);
1164			VM_OBJECT_LOCK(object);
1165  			goto relookup;
1166		}
1167		if (advise == MADV_WILLNEED) {
1168			vm_page_activate(m);
1169		} else if (advise == MADV_DONTNEED) {
1170			vm_page_dontneed(m);
1171		} else if (advise == MADV_FREE) {
1172			/*
1173			 * Mark the page clean.  This will allow the page
1174			 * to be freed up by the system.  However, such pages
1175			 * are often reused quickly by malloc()/free()
1176			 * so we do not do anything that would cause
1177			 * a page fault if we can help it.
1178			 *
1179			 * Specifically, we do not try to actually free
1180			 * the page now nor do we try to put it in the
1181			 * cache (which would cause a page fault on reuse).
1182			 *
1183			 * But we do make the page is freeable as we
1184			 * can without actually taking the step of unmapping
1185			 * it.
1186			 */
1187			pmap_clear_modify(m);
1188			m->dirty = 0;
1189			m->act_count = 0;
1190			vm_page_dontneed(m);
1191		}
1192		vm_page_unlock_queues();
1193		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1194			swap_pager_freespace(tobject, tpindex, 1);
1195unlock_tobject:
1196		if (tobject != object)
1197			VM_OBJECT_UNLOCK(tobject);
1198	}
1199	VM_OBJECT_UNLOCK(object);
1200}
1201
1202/*
1203 *	vm_object_shadow:
1204 *
1205 *	Create a new object which is backed by the
1206 *	specified existing object range.  The source
1207 *	object reference is deallocated.
1208 *
1209 *	The new object and offset into that object
1210 *	are returned in the source parameters.
1211 */
1212void
1213vm_object_shadow(
1214	vm_object_t *object,	/* IN/OUT */
1215	vm_ooffset_t *offset,	/* IN/OUT */
1216	vm_size_t length)
1217{
1218	vm_object_t source;
1219	vm_object_t result;
1220
1221	source = *object;
1222
1223	/*
1224	 * Don't create the new object if the old object isn't shared.
1225	 */
1226	if (source != NULL) {
1227		VM_OBJECT_LOCK(source);
1228		if (source->ref_count == 1 &&
1229		    source->handle == NULL &&
1230		    (source->type == OBJT_DEFAULT ||
1231		     source->type == OBJT_SWAP)) {
1232			VM_OBJECT_UNLOCK(source);
1233			return;
1234		}
1235		VM_OBJECT_UNLOCK(source);
1236	}
1237
1238	/*
1239	 * Allocate a new object with the given length.
1240	 */
1241	result = vm_object_allocate(OBJT_DEFAULT, length);
1242
1243	/*
1244	 * The new object shadows the source object, adding a reference to it.
1245	 * Our caller changes his reference to point to the new object,
1246	 * removing a reference to the source object.  Net result: no change
1247	 * of reference count.
1248	 *
1249	 * Try to optimize the result object's page color when shadowing
1250	 * in order to maintain page coloring consistency in the combined
1251	 * shadowed object.
1252	 */
1253	result->backing_object = source;
1254	/*
1255	 * Store the offset into the source object, and fix up the offset into
1256	 * the new object.
1257	 */
1258	result->backing_object_offset = *offset;
1259	if (source != NULL) {
1260		VM_OBJECT_LOCK(source);
1261		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1262		source->shadow_count++;
1263		source->generation++;
1264#if VM_NRESERVLEVEL > 0
1265		result->flags |= source->flags & (OBJ_NEEDGIANT | OBJ_COLORED);
1266		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1267		    ((1 << (VM_NFREEORDER - 1)) - 1);
1268#else
1269		result->flags |= source->flags & OBJ_NEEDGIANT;
1270#endif
1271		VM_OBJECT_UNLOCK(source);
1272	}
1273
1274
1275	/*
1276	 * Return the new things
1277	 */
1278	*offset = 0;
1279	*object = result;
1280}
1281
1282/*
1283 *	vm_object_split:
1284 *
1285 * Split the pages in a map entry into a new object.  This affords
1286 * easier removal of unused pages, and keeps object inheritance from
1287 * being a negative impact on memory usage.
1288 */
1289void
1290vm_object_split(vm_map_entry_t entry)
1291{
1292	vm_page_t m, m_next;
1293	vm_object_t orig_object, new_object, source;
1294	vm_pindex_t idx, offidxstart;
1295	vm_size_t size;
1296
1297	orig_object = entry->object.vm_object;
1298	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1299		return;
1300	if (orig_object->ref_count <= 1)
1301		return;
1302	VM_OBJECT_UNLOCK(orig_object);
1303
1304	offidxstart = OFF_TO_IDX(entry->offset);
1305	size = atop(entry->end - entry->start);
1306
1307	/*
1308	 * If swap_pager_copy() is later called, it will convert new_object
1309	 * into a swap object.
1310	 */
1311	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1312
1313	/*
1314	 * At this point, the new object is still private, so the order in
1315	 * which the original and new objects are locked does not matter.
1316	 */
1317	VM_OBJECT_LOCK(new_object);
1318	VM_OBJECT_LOCK(orig_object);
1319	source = orig_object->backing_object;
1320	if (source != NULL) {
1321		VM_OBJECT_LOCK(source);
1322		if ((source->flags & OBJ_DEAD) != 0) {
1323			VM_OBJECT_UNLOCK(source);
1324			VM_OBJECT_UNLOCK(orig_object);
1325			VM_OBJECT_UNLOCK(new_object);
1326			vm_object_deallocate(new_object);
1327			VM_OBJECT_LOCK(orig_object);
1328			return;
1329		}
1330		LIST_INSERT_HEAD(&source->shadow_head,
1331				  new_object, shadow_list);
1332		source->shadow_count++;
1333		source->generation++;
1334		vm_object_reference_locked(source);	/* for new_object */
1335		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1336		VM_OBJECT_UNLOCK(source);
1337		new_object->backing_object_offset =
1338			orig_object->backing_object_offset + entry->offset;
1339		new_object->backing_object = source;
1340	}
1341	new_object->flags |= orig_object->flags & OBJ_NEEDGIANT;
1342retry:
1343	if ((m = TAILQ_FIRST(&orig_object->memq)) != NULL) {
1344		if (m->pindex < offidxstart) {
1345			m = vm_page_splay(offidxstart, orig_object->root);
1346			if ((orig_object->root = m)->pindex < offidxstart)
1347				m = TAILQ_NEXT(m, listq);
1348		}
1349	}
1350	vm_page_lock_queues();
1351	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1352	    m = m_next) {
1353		m_next = TAILQ_NEXT(m, listq);
1354
1355		/*
1356		 * We must wait for pending I/O to complete before we can
1357		 * rename the page.
1358		 *
1359		 * We do not have to VM_PROT_NONE the page as mappings should
1360		 * not be changed by this operation.
1361		 */
1362		if ((m->oflags & VPO_BUSY) || m->busy) {
1363			vm_page_flag_set(m, PG_REFERENCED);
1364			vm_page_unlock_queues();
1365			VM_OBJECT_UNLOCK(new_object);
1366			m->oflags |= VPO_WANTED;
1367			msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1368			VM_OBJECT_LOCK(new_object);
1369			goto retry;
1370		}
1371		vm_page_rename(m, new_object, idx);
1372		/* page automatically made dirty by rename and cache handled */
1373		vm_page_busy(m);
1374	}
1375	vm_page_unlock_queues();
1376	if (orig_object->type == OBJT_SWAP) {
1377		/*
1378		 * swap_pager_copy() can sleep, in which case the orig_object's
1379		 * and new_object's locks are released and reacquired.
1380		 */
1381		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1382
1383		/*
1384		 * Transfer any cached pages from orig_object to new_object.
1385		 */
1386		if (__predict_false(orig_object->cache != NULL))
1387			vm_page_cache_transfer(orig_object, offidxstart,
1388			    new_object);
1389	}
1390	VM_OBJECT_UNLOCK(orig_object);
1391	TAILQ_FOREACH(m, &new_object->memq, listq)
1392		vm_page_wakeup(m);
1393	VM_OBJECT_UNLOCK(new_object);
1394	entry->object.vm_object = new_object;
1395	entry->offset = 0LL;
1396	vm_object_deallocate(orig_object);
1397	VM_OBJECT_LOCK(new_object);
1398}
1399
1400#define	OBSC_TEST_ALL_SHADOWED	0x0001
1401#define	OBSC_COLLAPSE_NOWAIT	0x0002
1402#define	OBSC_COLLAPSE_WAIT	0x0004
1403
1404static int
1405vm_object_backing_scan(vm_object_t object, int op)
1406{
1407	int r = 1;
1408	vm_page_t p;
1409	vm_object_t backing_object;
1410	vm_pindex_t backing_offset_index;
1411
1412	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1413	VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1414
1415	backing_object = object->backing_object;
1416	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1417
1418	/*
1419	 * Initial conditions
1420	 */
1421	if (op & OBSC_TEST_ALL_SHADOWED) {
1422		/*
1423		 * We do not want to have to test for the existence of cache
1424		 * or swap pages in the backing object.  XXX but with the
1425		 * new swapper this would be pretty easy to do.
1426		 *
1427		 * XXX what about anonymous MAP_SHARED memory that hasn't
1428		 * been ZFOD faulted yet?  If we do not test for this, the
1429		 * shadow test may succeed! XXX
1430		 */
1431		if (backing_object->type != OBJT_DEFAULT) {
1432			return (0);
1433		}
1434	}
1435	if (op & OBSC_COLLAPSE_WAIT) {
1436		vm_object_set_flag(backing_object, OBJ_DEAD);
1437	}
1438
1439	/*
1440	 * Our scan
1441	 */
1442	p = TAILQ_FIRST(&backing_object->memq);
1443	while (p) {
1444		vm_page_t next = TAILQ_NEXT(p, listq);
1445		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1446
1447		if (op & OBSC_TEST_ALL_SHADOWED) {
1448			vm_page_t pp;
1449
1450			/*
1451			 * Ignore pages outside the parent object's range
1452			 * and outside the parent object's mapping of the
1453			 * backing object.
1454			 *
1455			 * note that we do not busy the backing object's
1456			 * page.
1457			 */
1458			if (
1459			    p->pindex < backing_offset_index ||
1460			    new_pindex >= object->size
1461			) {
1462				p = next;
1463				continue;
1464			}
1465
1466			/*
1467			 * See if the parent has the page or if the parent's
1468			 * object pager has the page.  If the parent has the
1469			 * page but the page is not valid, the parent's
1470			 * object pager must have the page.
1471			 *
1472			 * If this fails, the parent does not completely shadow
1473			 * the object and we might as well give up now.
1474			 */
1475
1476			pp = vm_page_lookup(object, new_pindex);
1477			if (
1478			    (pp == NULL || pp->valid == 0) &&
1479			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1480			) {
1481				r = 0;
1482				break;
1483			}
1484		}
1485
1486		/*
1487		 * Check for busy page
1488		 */
1489		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1490			vm_page_t pp;
1491
1492			if (op & OBSC_COLLAPSE_NOWAIT) {
1493				if ((p->oflags & VPO_BUSY) ||
1494				    !p->valid ||
1495				    p->busy) {
1496					p = next;
1497					continue;
1498				}
1499			} else if (op & OBSC_COLLAPSE_WAIT) {
1500				if ((p->oflags & VPO_BUSY) || p->busy) {
1501					vm_page_lock_queues();
1502					vm_page_flag_set(p, PG_REFERENCED);
1503					vm_page_unlock_queues();
1504					VM_OBJECT_UNLOCK(object);
1505					p->oflags |= VPO_WANTED;
1506					msleep(p, VM_OBJECT_MTX(backing_object),
1507					    PDROP | PVM, "vmocol", 0);
1508					VM_OBJECT_LOCK(object);
1509					VM_OBJECT_LOCK(backing_object);
1510					/*
1511					 * If we slept, anything could have
1512					 * happened.  Since the object is
1513					 * marked dead, the backing offset
1514					 * should not have changed so we
1515					 * just restart our scan.
1516					 */
1517					p = TAILQ_FIRST(&backing_object->memq);
1518					continue;
1519				}
1520			}
1521
1522			KASSERT(
1523			    p->object == backing_object,
1524			    ("vm_object_backing_scan: object mismatch")
1525			);
1526
1527			/*
1528			 * Destroy any associated swap
1529			 */
1530			if (backing_object->type == OBJT_SWAP) {
1531				swap_pager_freespace(
1532				    backing_object,
1533				    p->pindex,
1534				    1
1535				);
1536			}
1537
1538			if (
1539			    p->pindex < backing_offset_index ||
1540			    new_pindex >= object->size
1541			) {
1542				/*
1543				 * Page is out of the parent object's range, we
1544				 * can simply destroy it.
1545				 */
1546				vm_page_lock_queues();
1547				KASSERT(!pmap_page_is_mapped(p),
1548				    ("freeing mapped page %p", p));
1549				if (p->wire_count == 0)
1550					vm_page_free(p);
1551				else
1552					vm_page_remove(p);
1553				vm_page_unlock_queues();
1554				p = next;
1555				continue;
1556			}
1557
1558			pp = vm_page_lookup(object, new_pindex);
1559			if (
1560			    pp != NULL ||
1561			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1562			) {
1563				/*
1564				 * page already exists in parent OR swap exists
1565				 * for this location in the parent.  Destroy
1566				 * the original page from the backing object.
1567				 *
1568				 * Leave the parent's page alone
1569				 */
1570				vm_page_lock_queues();
1571				KASSERT(!pmap_page_is_mapped(p),
1572				    ("freeing mapped page %p", p));
1573				if (p->wire_count == 0)
1574					vm_page_free(p);
1575				else
1576					vm_page_remove(p);
1577				vm_page_unlock_queues();
1578				p = next;
1579				continue;
1580			}
1581
1582#if VM_NRESERVLEVEL > 0
1583			/*
1584			 * Rename the reservation.
1585			 */
1586			vm_reserv_rename(p, object, backing_object,
1587			    backing_offset_index);
1588#endif
1589
1590			/*
1591			 * Page does not exist in parent, rename the
1592			 * page from the backing object to the main object.
1593			 *
1594			 * If the page was mapped to a process, it can remain
1595			 * mapped through the rename.
1596			 */
1597			vm_page_lock_queues();
1598			vm_page_rename(p, object, new_pindex);
1599			vm_page_unlock_queues();
1600			/* page automatically made dirty by rename */
1601		}
1602		p = next;
1603	}
1604	return (r);
1605}
1606
1607
1608/*
1609 * this version of collapse allows the operation to occur earlier and
1610 * when paging_in_progress is true for an object...  This is not a complete
1611 * operation, but should plug 99.9% of the rest of the leaks.
1612 */
1613static void
1614vm_object_qcollapse(vm_object_t object)
1615{
1616	vm_object_t backing_object = object->backing_object;
1617
1618	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1619	VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1620
1621	if (backing_object->ref_count != 1)
1622		return;
1623
1624	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1625}
1626
1627/*
1628 *	vm_object_collapse:
1629 *
1630 *	Collapse an object with the object backing it.
1631 *	Pages in the backing object are moved into the
1632 *	parent, and the backing object is deallocated.
1633 */
1634void
1635vm_object_collapse(vm_object_t object)
1636{
1637	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1638
1639	while (TRUE) {
1640		vm_object_t backing_object;
1641
1642		/*
1643		 * Verify that the conditions are right for collapse:
1644		 *
1645		 * The object exists and the backing object exists.
1646		 */
1647		if ((backing_object = object->backing_object) == NULL)
1648			break;
1649
1650		/*
1651		 * we check the backing object first, because it is most likely
1652		 * not collapsable.
1653		 */
1654		VM_OBJECT_LOCK(backing_object);
1655		if (backing_object->handle != NULL ||
1656		    (backing_object->type != OBJT_DEFAULT &&
1657		     backing_object->type != OBJT_SWAP) ||
1658		    (backing_object->flags & OBJ_DEAD) ||
1659		    object->handle != NULL ||
1660		    (object->type != OBJT_DEFAULT &&
1661		     object->type != OBJT_SWAP) ||
1662		    (object->flags & OBJ_DEAD)) {
1663			VM_OBJECT_UNLOCK(backing_object);
1664			break;
1665		}
1666
1667		if (
1668		    object->paging_in_progress != 0 ||
1669		    backing_object->paging_in_progress != 0
1670		) {
1671			vm_object_qcollapse(object);
1672			VM_OBJECT_UNLOCK(backing_object);
1673			break;
1674		}
1675		/*
1676		 * We know that we can either collapse the backing object (if
1677		 * the parent is the only reference to it) or (perhaps) have
1678		 * the parent bypass the object if the parent happens to shadow
1679		 * all the resident pages in the entire backing object.
1680		 *
1681		 * This is ignoring pager-backed pages such as swap pages.
1682		 * vm_object_backing_scan fails the shadowing test in this
1683		 * case.
1684		 */
1685		if (backing_object->ref_count == 1) {
1686			/*
1687			 * If there is exactly one reference to the backing
1688			 * object, we can collapse it into the parent.
1689			 */
1690			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1691
1692#if VM_NRESERVLEVEL > 0
1693			/*
1694			 * Break any reservations from backing_object.
1695			 */
1696			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1697				vm_reserv_break_all(backing_object);
1698#endif
1699
1700			/*
1701			 * Move the pager from backing_object to object.
1702			 */
1703			if (backing_object->type == OBJT_SWAP) {
1704				/*
1705				 * swap_pager_copy() can sleep, in which case
1706				 * the backing_object's and object's locks are
1707				 * released and reacquired.
1708				 */
1709				swap_pager_copy(
1710				    backing_object,
1711				    object,
1712				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1713
1714				/*
1715				 * Free any cached pages from backing_object.
1716				 */
1717				if (__predict_false(backing_object->cache != NULL))
1718					vm_page_cache_free(backing_object, 0, 0);
1719			}
1720			/*
1721			 * Object now shadows whatever backing_object did.
1722			 * Note that the reference to
1723			 * backing_object->backing_object moves from within
1724			 * backing_object to within object.
1725			 */
1726			LIST_REMOVE(object, shadow_list);
1727			backing_object->shadow_count--;
1728			backing_object->generation++;
1729			if (backing_object->backing_object) {
1730				VM_OBJECT_LOCK(backing_object->backing_object);
1731				LIST_REMOVE(backing_object, shadow_list);
1732				LIST_INSERT_HEAD(
1733				    &backing_object->backing_object->shadow_head,
1734				    object, shadow_list);
1735				/*
1736				 * The shadow_count has not changed.
1737				 */
1738				backing_object->backing_object->generation++;
1739				VM_OBJECT_UNLOCK(backing_object->backing_object);
1740			}
1741			object->backing_object = backing_object->backing_object;
1742			object->backing_object_offset +=
1743			    backing_object->backing_object_offset;
1744
1745			/*
1746			 * Discard backing_object.
1747			 *
1748			 * Since the backing object has no pages, no pager left,
1749			 * and no object references within it, all that is
1750			 * necessary is to dispose of it.
1751			 */
1752			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1753			VM_OBJECT_UNLOCK(backing_object);
1754
1755			mtx_lock(&vm_object_list_mtx);
1756			TAILQ_REMOVE(
1757			    &vm_object_list,
1758			    backing_object,
1759			    object_list
1760			);
1761			mtx_unlock(&vm_object_list_mtx);
1762
1763			uma_zfree(obj_zone, backing_object);
1764
1765			object_collapses++;
1766		} else {
1767			vm_object_t new_backing_object;
1768
1769			/*
1770			 * If we do not entirely shadow the backing object,
1771			 * there is nothing we can do so we give up.
1772			 */
1773			if (object->resident_page_count != object->size &&
1774			    vm_object_backing_scan(object,
1775			    OBSC_TEST_ALL_SHADOWED) == 0) {
1776				VM_OBJECT_UNLOCK(backing_object);
1777				break;
1778			}
1779
1780			/*
1781			 * Make the parent shadow the next object in the
1782			 * chain.  Deallocating backing_object will not remove
1783			 * it, since its reference count is at least 2.
1784			 */
1785			LIST_REMOVE(object, shadow_list);
1786			backing_object->shadow_count--;
1787			backing_object->generation++;
1788
1789			new_backing_object = backing_object->backing_object;
1790			if ((object->backing_object = new_backing_object) != NULL) {
1791				VM_OBJECT_LOCK(new_backing_object);
1792				LIST_INSERT_HEAD(
1793				    &new_backing_object->shadow_head,
1794				    object,
1795				    shadow_list
1796				);
1797				new_backing_object->shadow_count++;
1798				new_backing_object->generation++;
1799				vm_object_reference_locked(new_backing_object);
1800				VM_OBJECT_UNLOCK(new_backing_object);
1801				object->backing_object_offset +=
1802					backing_object->backing_object_offset;
1803			}
1804
1805			/*
1806			 * Drop the reference count on backing_object. Since
1807			 * its ref_count was at least 2, it will not vanish.
1808			 */
1809			backing_object->ref_count--;
1810			VM_OBJECT_UNLOCK(backing_object);
1811			object_bypasses++;
1812		}
1813
1814		/*
1815		 * Try again with this object's new backing object.
1816		 */
1817	}
1818}
1819
1820/*
1821 *	vm_object_page_remove:
1822 *
1823 *	For the given object, either frees or invalidates each of the
1824 *	specified pages.  In general, a page is freed.  However, if a
1825 *	page is wired for any reason other than the existence of a
1826 *	managed, wired mapping, then it may be invalidated but not
1827 *	removed from the object.  Pages are specified by the given
1828 *	range ["start", "end") and Boolean "clean_only".  As a
1829 *	special case, if "end" is zero, then the range extends from
1830 *	"start" to the end of the object.  If "clean_only" is TRUE,
1831 *	then only the non-dirty pages within the specified range are
1832 *	affected.
1833 *
1834 *	In general, this operation should only be performed on objects
1835 *	that contain managed pages.  There are two exceptions.  First,
1836 *	it may be performed on the kernel and kmem objects.  Second,
1837 *	it may be used by msync(..., MS_INVALIDATE) to invalidate
1838 *	device-backed pages.
1839 *
1840 *	The object must be locked.
1841 */
1842void
1843vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1844    boolean_t clean_only)
1845{
1846	vm_page_t p, next;
1847	int wirings;
1848
1849	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1850	if (object->resident_page_count == 0)
1851		goto skipmemq;
1852
1853	/*
1854	 * Since physically-backed objects do not use managed pages, we can't
1855	 * remove pages from the object (we must instead remove the page
1856	 * references, and then destroy the object).
1857	 */
1858	KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
1859	    object == kmem_object,
1860	    ("attempt to remove pages from a physical object"));
1861
1862	vm_object_pip_add(object, 1);
1863again:
1864	vm_page_lock_queues();
1865	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1866		if (p->pindex < start) {
1867			p = vm_page_splay(start, object->root);
1868			if ((object->root = p)->pindex < start)
1869				p = TAILQ_NEXT(p, listq);
1870		}
1871	}
1872	/*
1873	 * Assert: the variable p is either (1) the page with the
1874	 * least pindex greater than or equal to the parameter pindex
1875	 * or (2) NULL.
1876	 */
1877	for (;
1878	     p != NULL && (p->pindex < end || end == 0);
1879	     p = next) {
1880		next = TAILQ_NEXT(p, listq);
1881
1882		/*
1883		 * If the page is wired for any reason besides the
1884		 * existence of managed, wired mappings, then it cannot
1885		 * be freed.  For example, fictitious pages, which
1886		 * represent device memory, are inherently wired and
1887		 * cannot be freed.  They can, however, be invalidated
1888		 * if "clean_only" is FALSE.
1889		 */
1890		if ((wirings = p->wire_count) != 0 &&
1891		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1892			/* Fictitious pages do not have managed mappings. */
1893			if ((p->flags & PG_FICTITIOUS) == 0)
1894				pmap_remove_all(p);
1895			/* Account for removal of managed, wired mappings. */
1896			p->wire_count -= wirings;
1897			if (!clean_only)
1898				p->valid = 0;
1899			continue;
1900		}
1901		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1902			goto again;
1903		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1904		    ("vm_object_page_remove: page %p is fictitious", p));
1905		if (clean_only && p->valid) {
1906			pmap_remove_write(p);
1907			if (p->valid & p->dirty)
1908				continue;
1909		}
1910		pmap_remove_all(p);
1911		/* Account for removal of managed, wired mappings. */
1912		if (wirings != 0)
1913			p->wire_count -= wirings;
1914		vm_page_free(p);
1915	}
1916	vm_page_unlock_queues();
1917	vm_object_pip_wakeup(object);
1918skipmemq:
1919	if (__predict_false(object->cache != NULL))
1920		vm_page_cache_free(object, start, end);
1921}
1922
1923/*
1924 *	Routine:	vm_object_coalesce
1925 *	Function:	Coalesces two objects backing up adjoining
1926 *			regions of memory into a single object.
1927 *
1928 *	returns TRUE if objects were combined.
1929 *
1930 *	NOTE:	Only works at the moment if the second object is NULL -
1931 *		if it's not, which object do we lock first?
1932 *
1933 *	Parameters:
1934 *		prev_object	First object to coalesce
1935 *		prev_offset	Offset into prev_object
1936 *		prev_size	Size of reference to prev_object
1937 *		next_size	Size of reference to the second object
1938 *
1939 *	Conditions:
1940 *	The object must *not* be locked.
1941 */
1942boolean_t
1943vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1944	vm_size_t prev_size, vm_size_t next_size)
1945{
1946	vm_pindex_t next_pindex;
1947
1948	if (prev_object == NULL)
1949		return (TRUE);
1950	VM_OBJECT_LOCK(prev_object);
1951	if (prev_object->type != OBJT_DEFAULT &&
1952	    prev_object->type != OBJT_SWAP) {
1953		VM_OBJECT_UNLOCK(prev_object);
1954		return (FALSE);
1955	}
1956
1957	/*
1958	 * Try to collapse the object first
1959	 */
1960	vm_object_collapse(prev_object);
1961
1962	/*
1963	 * Can't coalesce if: . more than one reference . paged out . shadows
1964	 * another object . has a copy elsewhere (any of which mean that the
1965	 * pages not mapped to prev_entry may be in use anyway)
1966	 */
1967	if (prev_object->backing_object != NULL) {
1968		VM_OBJECT_UNLOCK(prev_object);
1969		return (FALSE);
1970	}
1971
1972	prev_size >>= PAGE_SHIFT;
1973	next_size >>= PAGE_SHIFT;
1974	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1975
1976	if ((prev_object->ref_count > 1) &&
1977	    (prev_object->size != next_pindex)) {
1978		VM_OBJECT_UNLOCK(prev_object);
1979		return (FALSE);
1980	}
1981
1982	/*
1983	 * Remove any pages that may still be in the object from a previous
1984	 * deallocation.
1985	 */
1986	if (next_pindex < prev_object->size) {
1987		vm_object_page_remove(prev_object,
1988				      next_pindex,
1989				      next_pindex + next_size, FALSE);
1990		if (prev_object->type == OBJT_SWAP)
1991			swap_pager_freespace(prev_object,
1992					     next_pindex, next_size);
1993	}
1994
1995	/*
1996	 * Extend the object if necessary.
1997	 */
1998	if (next_pindex + next_size > prev_object->size)
1999		prev_object->size = next_pindex + next_size;
2000
2001	VM_OBJECT_UNLOCK(prev_object);
2002	return (TRUE);
2003}
2004
2005void
2006vm_object_set_writeable_dirty(vm_object_t object)
2007{
2008	struct vnode *vp;
2009
2010	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2011	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2012		return;
2013	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2014	if (object->type == OBJT_VNODE &&
2015	    (vp = (struct vnode *)object->handle) != NULL) {
2016		VI_LOCK(vp);
2017		vp->v_iflag |= VI_OBJDIRTY;
2018		VI_UNLOCK(vp);
2019	}
2020}
2021
2022#include "opt_ddb.h"
2023#ifdef DDB
2024#include <sys/kernel.h>
2025
2026#include <sys/cons.h>
2027
2028#include <ddb/ddb.h>
2029
2030static int
2031_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2032{
2033	vm_map_t tmpm;
2034	vm_map_entry_t tmpe;
2035	vm_object_t obj;
2036	int entcount;
2037
2038	if (map == 0)
2039		return 0;
2040
2041	if (entry == 0) {
2042		tmpe = map->header.next;
2043		entcount = map->nentries;
2044		while (entcount-- && (tmpe != &map->header)) {
2045			if (_vm_object_in_map(map, object, tmpe)) {
2046				return 1;
2047			}
2048			tmpe = tmpe->next;
2049		}
2050	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2051		tmpm = entry->object.sub_map;
2052		tmpe = tmpm->header.next;
2053		entcount = tmpm->nentries;
2054		while (entcount-- && tmpe != &tmpm->header) {
2055			if (_vm_object_in_map(tmpm, object, tmpe)) {
2056				return 1;
2057			}
2058			tmpe = tmpe->next;
2059		}
2060	} else if ((obj = entry->object.vm_object) != NULL) {
2061		for (; obj; obj = obj->backing_object)
2062			if (obj == object) {
2063				return 1;
2064			}
2065	}
2066	return 0;
2067}
2068
2069static int
2070vm_object_in_map(vm_object_t object)
2071{
2072	struct proc *p;
2073
2074	/* sx_slock(&allproc_lock); */
2075	FOREACH_PROC_IN_SYSTEM(p) {
2076		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2077			continue;
2078		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2079			/* sx_sunlock(&allproc_lock); */
2080			return 1;
2081		}
2082	}
2083	/* sx_sunlock(&allproc_lock); */
2084	if (_vm_object_in_map(kernel_map, object, 0))
2085		return 1;
2086	if (_vm_object_in_map(kmem_map, object, 0))
2087		return 1;
2088	if (_vm_object_in_map(pager_map, object, 0))
2089		return 1;
2090	if (_vm_object_in_map(buffer_map, object, 0))
2091		return 1;
2092	return 0;
2093}
2094
2095DB_SHOW_COMMAND(vmochk, vm_object_check)
2096{
2097	vm_object_t object;
2098
2099	/*
2100	 * make sure that internal objs are in a map somewhere
2101	 * and none have zero ref counts.
2102	 */
2103	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2104		if (object->handle == NULL &&
2105		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2106			if (object->ref_count == 0) {
2107				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2108					(long)object->size);
2109			}
2110			if (!vm_object_in_map(object)) {
2111				db_printf(
2112			"vmochk: internal obj is not in a map: "
2113			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2114				    object->ref_count, (u_long)object->size,
2115				    (u_long)object->size,
2116				    (void *)object->backing_object);
2117			}
2118		}
2119	}
2120}
2121
2122/*
2123 *	vm_object_print:	[ debug ]
2124 */
2125DB_SHOW_COMMAND(object, vm_object_print_static)
2126{
2127	/* XXX convert args. */
2128	vm_object_t object = (vm_object_t)addr;
2129	boolean_t full = have_addr;
2130
2131	vm_page_t p;
2132
2133	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2134#define	count	was_count
2135
2136	int count;
2137
2138	if (object == NULL)
2139		return;
2140
2141	db_iprintf(
2142	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2143	    object, (int)object->type, (uintmax_t)object->size,
2144	    object->resident_page_count, object->ref_count, object->flags);
2145	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2146	    object->shadow_count,
2147	    object->backing_object ? object->backing_object->ref_count : 0,
2148	    object->backing_object, (uintmax_t)object->backing_object_offset);
2149
2150	if (!full)
2151		return;
2152
2153	db_indent += 2;
2154	count = 0;
2155	TAILQ_FOREACH(p, &object->memq, listq) {
2156		if (count == 0)
2157			db_iprintf("memory:=");
2158		else if (count == 6) {
2159			db_printf("\n");
2160			db_iprintf(" ...");
2161			count = 0;
2162		} else
2163			db_printf(",");
2164		count++;
2165
2166		db_printf("(off=0x%jx,page=0x%jx)",
2167		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2168	}
2169	if (count != 0)
2170		db_printf("\n");
2171	db_indent -= 2;
2172}
2173
2174/* XXX. */
2175#undef count
2176
2177/* XXX need this non-static entry for calling from vm_map_print. */
2178void
2179vm_object_print(
2180        /* db_expr_t */ long addr,
2181	boolean_t have_addr,
2182	/* db_expr_t */ long count,
2183	char *modif)
2184{
2185	vm_object_print_static(addr, have_addr, count, modif);
2186}
2187
2188DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2189{
2190	vm_object_t object;
2191	int nl = 0;
2192	int c;
2193
2194	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2195		vm_pindex_t idx, fidx;
2196		vm_pindex_t osize;
2197		vm_paddr_t pa = -1;
2198		int rcount;
2199		vm_page_t m;
2200
2201		db_printf("new object: %p\n", (void *)object);
2202		if (nl > 18) {
2203			c = cngetc();
2204			if (c != ' ')
2205				return;
2206			nl = 0;
2207		}
2208		nl++;
2209		rcount = 0;
2210		fidx = 0;
2211		osize = object->size;
2212		if (osize > 128)
2213			osize = 128;
2214		for (idx = 0; idx < osize; idx++) {
2215			m = vm_page_lookup(object, idx);
2216			if (m == NULL) {
2217				if (rcount) {
2218					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2219						(long)fidx, rcount, (long)pa);
2220					if (nl > 18) {
2221						c = cngetc();
2222						if (c != ' ')
2223							return;
2224						nl = 0;
2225					}
2226					nl++;
2227					rcount = 0;
2228				}
2229				continue;
2230			}
2231
2232
2233			if (rcount &&
2234				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2235				++rcount;
2236				continue;
2237			}
2238			if (rcount) {
2239				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2240					(long)fidx, rcount, (long)pa);
2241				if (nl > 18) {
2242					c = cngetc();
2243					if (c != ' ')
2244						return;
2245					nl = 0;
2246				}
2247				nl++;
2248			}
2249			fidx = idx;
2250			pa = VM_PAGE_TO_PHYS(m);
2251			rcount = 1;
2252		}
2253		if (rcount) {
2254			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2255				(long)fidx, rcount, (long)pa);
2256			if (nl > 18) {
2257				c = cngetc();
2258				if (c != ' ')
2259					return;
2260				nl = 0;
2261			}
2262			nl++;
2263		}
2264	}
2265}
2266#endif /* DDB */
2267