vm_object.c revision 172780
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory object module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: head/sys/vm/vm_object.c 172780 2007-10-18 23:02:18Z alc $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/lock.h>
71#include <sys/mman.h>
72#include <sys/mount.h>
73#include <sys/kernel.h>
74#include <sys/sysctl.h>
75#include <sys/mutex.h>
76#include <sys/proc.h>		/* for curproc, pageproc */
77#include <sys/socket.h>
78#include <sys/vnode.h>
79#include <sys/vmmeter.h>
80#include <sys/sx.h>
81
82#include <vm/vm.h>
83#include <vm/vm_param.h>
84#include <vm/pmap.h>
85#include <vm/vm_map.h>
86#include <vm/vm_object.h>
87#include <vm/vm_page.h>
88#include <vm/vm_pageout.h>
89#include <vm/vm_pager.h>
90#include <vm/swap_pager.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_extern.h>
93#include <vm/uma.h>
94
95#define EASY_SCAN_FACTOR       8
96
97#define MSYNC_FLUSH_HARDSEQ	0x01
98#define MSYNC_FLUSH_SOFTSEQ	0x02
99
100/*
101 * msync / VM object flushing optimizations
102 */
103static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
104SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
105        CTLFLAG_RW, &msync_flush_flags, 0, "");
106
107static int old_msync;
108SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
109    "Use old (insecure) msync behavior");
110
111static void	vm_object_qcollapse(vm_object_t object);
112static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
113static void	vm_object_vndeallocate(vm_object_t object);
114
115/*
116 *	Virtual memory objects maintain the actual data
117 *	associated with allocated virtual memory.  A given
118 *	page of memory exists within exactly one object.
119 *
120 *	An object is only deallocated when all "references"
121 *	are given up.  Only one "reference" to a given
122 *	region of an object should be writeable.
123 *
124 *	Associated with each object is a list of all resident
125 *	memory pages belonging to that object; this list is
126 *	maintained by the "vm_page" module, and locked by the object's
127 *	lock.
128 *
129 *	Each object also records a "pager" routine which is
130 *	used to retrieve (and store) pages to the proper backing
131 *	storage.  In addition, objects may be backed by other
132 *	objects from which they were virtual-copied.
133 *
134 *	The only items within the object structure which are
135 *	modified after time of creation are:
136 *		reference count		locked by object's lock
137 *		pager routine		locked by object's lock
138 *
139 */
140
141struct object_q vm_object_list;
142struct mtx vm_object_list_mtx;	/* lock for object list and count */
143
144struct vm_object kernel_object_store;
145struct vm_object kmem_object_store;
146
147SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
148
149static long object_collapses;
150SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
151    &object_collapses, 0, "VM object collapses");
152
153static long object_bypasses;
154SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
155    &object_bypasses, 0, "VM object bypasses");
156
157static uma_zone_t obj_zone;
158
159static int vm_object_zinit(void *mem, int size, int flags);
160
161#ifdef INVARIANTS
162static void vm_object_zdtor(void *mem, int size, void *arg);
163
164static void
165vm_object_zdtor(void *mem, int size, void *arg)
166{
167	vm_object_t object;
168
169	object = (vm_object_t)mem;
170	KASSERT(TAILQ_EMPTY(&object->memq),
171	    ("object %p has resident pages",
172	    object));
173	KASSERT(object->cache == NULL,
174	    ("object %p has cached pages",
175	    object));
176	KASSERT(object->paging_in_progress == 0,
177	    ("object %p paging_in_progress = %d",
178	    object, object->paging_in_progress));
179	KASSERT(object->resident_page_count == 0,
180	    ("object %p resident_page_count = %d",
181	    object, object->resident_page_count));
182	KASSERT(object->shadow_count == 0,
183	    ("object %p shadow_count = %d",
184	    object, object->shadow_count));
185}
186#endif
187
188static int
189vm_object_zinit(void *mem, int size, int flags)
190{
191	vm_object_t object;
192
193	object = (vm_object_t)mem;
194	bzero(&object->mtx, sizeof(object->mtx));
195	VM_OBJECT_LOCK_INIT(object, "standard object");
196
197	/* These are true for any object that has been freed */
198	object->paging_in_progress = 0;
199	object->resident_page_count = 0;
200	object->shadow_count = 0;
201	return (0);
202}
203
204void
205_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
206{
207
208	TAILQ_INIT(&object->memq);
209	LIST_INIT(&object->shadow_head);
210
211	object->root = NULL;
212	object->type = type;
213	object->size = size;
214	object->generation = 1;
215	object->ref_count = 1;
216	object->flags = 0;
217	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
218		object->flags = OBJ_ONEMAPPING;
219	object->pg_color = 0;
220	object->handle = NULL;
221	object->backing_object = NULL;
222	object->backing_object_offset = (vm_ooffset_t) 0;
223	object->cache = NULL;
224
225	mtx_lock(&vm_object_list_mtx);
226	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
227	mtx_unlock(&vm_object_list_mtx);
228}
229
230/*
231 *	vm_object_init:
232 *
233 *	Initialize the VM objects module.
234 */
235void
236vm_object_init(void)
237{
238	TAILQ_INIT(&vm_object_list);
239	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
240
241	VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
242	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
243	    kernel_object);
244
245	VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
246	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
247	    kmem_object);
248
249	/*
250	 * The lock portion of struct vm_object must be type stable due
251	 * to vm_pageout_fallback_object_lock locking a vm object
252	 * without holding any references to it.
253	 */
254	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
255#ifdef INVARIANTS
256	    vm_object_zdtor,
257#else
258	    NULL,
259#endif
260	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
261}
262
263void
264vm_object_clear_flag(vm_object_t object, u_short bits)
265{
266
267	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
268	object->flags &= ~bits;
269}
270
271void
272vm_object_pip_add(vm_object_t object, short i)
273{
274
275	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
276	object->paging_in_progress += i;
277}
278
279void
280vm_object_pip_subtract(vm_object_t object, short i)
281{
282
283	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
284	object->paging_in_progress -= i;
285}
286
287void
288vm_object_pip_wakeup(vm_object_t object)
289{
290
291	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
292	object->paging_in_progress--;
293	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
294		vm_object_clear_flag(object, OBJ_PIPWNT);
295		wakeup(object);
296	}
297}
298
299void
300vm_object_pip_wakeupn(vm_object_t object, short i)
301{
302
303	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
304	if (i)
305		object->paging_in_progress -= i;
306	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
307		vm_object_clear_flag(object, OBJ_PIPWNT);
308		wakeup(object);
309	}
310}
311
312void
313vm_object_pip_wait(vm_object_t object, char *waitid)
314{
315
316	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
317	while (object->paging_in_progress) {
318		object->flags |= OBJ_PIPWNT;
319		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
320	}
321}
322
323/*
324 *	vm_object_allocate:
325 *
326 *	Returns a new object with the given size.
327 */
328vm_object_t
329vm_object_allocate(objtype_t type, vm_pindex_t size)
330{
331	vm_object_t object;
332
333	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
334	_vm_object_allocate(type, size, object);
335	return (object);
336}
337
338
339/*
340 *	vm_object_reference:
341 *
342 *	Gets another reference to the given object.  Note: OBJ_DEAD
343 *	objects can be referenced during final cleaning.
344 */
345void
346vm_object_reference(vm_object_t object)
347{
348	struct vnode *vp;
349
350	if (object == NULL)
351		return;
352	VM_OBJECT_LOCK(object);
353	object->ref_count++;
354	if (object->type == OBJT_VNODE) {
355		int vfslocked;
356
357		vp = object->handle;
358		VM_OBJECT_UNLOCK(object);
359		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
360		vget(vp, LK_RETRY, curthread);
361		VFS_UNLOCK_GIANT(vfslocked);
362	} else
363		VM_OBJECT_UNLOCK(object);
364}
365
366/*
367 *	vm_object_reference_locked:
368 *
369 *	Gets another reference to the given object.
370 *
371 *	The object must be locked.
372 */
373void
374vm_object_reference_locked(vm_object_t object)
375{
376	struct vnode *vp;
377
378	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
379	KASSERT((object->flags & OBJ_DEAD) == 0,
380	    ("vm_object_reference_locked: dead object referenced"));
381	object->ref_count++;
382	if (object->type == OBJT_VNODE) {
383		vp = object->handle;
384		vref(vp);
385	}
386}
387
388/*
389 * Handle deallocating an object of type OBJT_VNODE.
390 */
391static void
392vm_object_vndeallocate(vm_object_t object)
393{
394	struct vnode *vp = (struct vnode *) object->handle;
395
396	VFS_ASSERT_GIANT(vp->v_mount);
397	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
398	KASSERT(object->type == OBJT_VNODE,
399	    ("vm_object_vndeallocate: not a vnode object"));
400	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
401#ifdef INVARIANTS
402	if (object->ref_count == 0) {
403		vprint("vm_object_vndeallocate", vp);
404		panic("vm_object_vndeallocate: bad object reference count");
405	}
406#endif
407
408	object->ref_count--;
409	if (object->ref_count == 0) {
410		mp_fixme("Unlocked vflag access.");
411		vp->v_vflag &= ~VV_TEXT;
412	}
413	VM_OBJECT_UNLOCK(object);
414	/*
415	 * vrele may need a vop lock
416	 */
417	vrele(vp);
418}
419
420/*
421 *	vm_object_deallocate:
422 *
423 *	Release a reference to the specified object,
424 *	gained either through a vm_object_allocate
425 *	or a vm_object_reference call.  When all references
426 *	are gone, storage associated with this object
427 *	may be relinquished.
428 *
429 *	No object may be locked.
430 */
431void
432vm_object_deallocate(vm_object_t object)
433{
434	vm_object_t temp;
435
436	while (object != NULL) {
437		int vfslocked;
438
439		vfslocked = 0;
440	restart:
441		VM_OBJECT_LOCK(object);
442		if (object->type == OBJT_VNODE) {
443			struct vnode *vp = (struct vnode *) object->handle;
444
445			/*
446			 * Conditionally acquire Giant for a vnode-backed
447			 * object.  We have to be careful since the type of
448			 * a vnode object can change while the object is
449			 * unlocked.
450			 */
451			if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
452				vfslocked = 1;
453				if (!mtx_trylock(&Giant)) {
454					VM_OBJECT_UNLOCK(object);
455					mtx_lock(&Giant);
456					goto restart;
457				}
458			}
459			vm_object_vndeallocate(object);
460			VFS_UNLOCK_GIANT(vfslocked);
461			return;
462		} else
463			/*
464			 * This is to handle the case that the object
465			 * changed type while we dropped its lock to
466			 * obtain Giant.
467			 */
468			VFS_UNLOCK_GIANT(vfslocked);
469
470		KASSERT(object->ref_count != 0,
471			("vm_object_deallocate: object deallocated too many times: %d", object->type));
472
473		/*
474		 * If the reference count goes to 0 we start calling
475		 * vm_object_terminate() on the object chain.
476		 * A ref count of 1 may be a special case depending on the
477		 * shadow count being 0 or 1.
478		 */
479		object->ref_count--;
480		if (object->ref_count > 1) {
481			VM_OBJECT_UNLOCK(object);
482			return;
483		} else if (object->ref_count == 1) {
484			if (object->shadow_count == 0) {
485				vm_object_set_flag(object, OBJ_ONEMAPPING);
486			} else if ((object->shadow_count == 1) &&
487			    (object->handle == NULL) &&
488			    (object->type == OBJT_DEFAULT ||
489			     object->type == OBJT_SWAP)) {
490				vm_object_t robject;
491
492				robject = LIST_FIRST(&object->shadow_head);
493				KASSERT(robject != NULL,
494				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
495					 object->ref_count,
496					 object->shadow_count));
497				if (!VM_OBJECT_TRYLOCK(robject)) {
498					/*
499					 * Avoid a potential deadlock.
500					 */
501					object->ref_count++;
502					VM_OBJECT_UNLOCK(object);
503					/*
504					 * More likely than not the thread
505					 * holding robject's lock has lower
506					 * priority than the current thread.
507					 * Let the lower priority thread run.
508					 */
509					pause("vmo_de", 1);
510					continue;
511				}
512				/*
513				 * Collapse object into its shadow unless its
514				 * shadow is dead.  In that case, object will
515				 * be deallocated by the thread that is
516				 * deallocating its shadow.
517				 */
518				if ((robject->flags & OBJ_DEAD) == 0 &&
519				    (robject->handle == NULL) &&
520				    (robject->type == OBJT_DEFAULT ||
521				     robject->type == OBJT_SWAP)) {
522
523					robject->ref_count++;
524retry:
525					if (robject->paging_in_progress) {
526						VM_OBJECT_UNLOCK(object);
527						vm_object_pip_wait(robject,
528						    "objde1");
529						temp = robject->backing_object;
530						if (object == temp) {
531							VM_OBJECT_LOCK(object);
532							goto retry;
533						}
534					} else if (object->paging_in_progress) {
535						VM_OBJECT_UNLOCK(robject);
536						object->flags |= OBJ_PIPWNT;
537						msleep(object,
538						    VM_OBJECT_MTX(object),
539						    PDROP | PVM, "objde2", 0);
540						VM_OBJECT_LOCK(robject);
541						temp = robject->backing_object;
542						if (object == temp) {
543							VM_OBJECT_LOCK(object);
544							goto retry;
545						}
546					} else
547						VM_OBJECT_UNLOCK(object);
548
549					if (robject->ref_count == 1) {
550						robject->ref_count--;
551						object = robject;
552						goto doterm;
553					}
554					object = robject;
555					vm_object_collapse(object);
556					VM_OBJECT_UNLOCK(object);
557					continue;
558				}
559				VM_OBJECT_UNLOCK(robject);
560			}
561			VM_OBJECT_UNLOCK(object);
562			return;
563		}
564doterm:
565		temp = object->backing_object;
566		if (temp != NULL) {
567			VM_OBJECT_LOCK(temp);
568			LIST_REMOVE(object, shadow_list);
569			temp->shadow_count--;
570			temp->generation++;
571			VM_OBJECT_UNLOCK(temp);
572			object->backing_object = NULL;
573		}
574		/*
575		 * Don't double-terminate, we could be in a termination
576		 * recursion due to the terminate having to sync data
577		 * to disk.
578		 */
579		if ((object->flags & OBJ_DEAD) == 0)
580			vm_object_terminate(object);
581		else
582			VM_OBJECT_UNLOCK(object);
583		object = temp;
584	}
585}
586
587/*
588 *	vm_object_terminate actually destroys the specified object, freeing
589 *	up all previously used resources.
590 *
591 *	The object must be locked.
592 *	This routine may block.
593 */
594void
595vm_object_terminate(vm_object_t object)
596{
597	vm_page_t p;
598
599	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
600
601	/*
602	 * Make sure no one uses us.
603	 */
604	vm_object_set_flag(object, OBJ_DEAD);
605
606	/*
607	 * wait for the pageout daemon to be done with the object
608	 */
609	vm_object_pip_wait(object, "objtrm");
610
611	KASSERT(!object->paging_in_progress,
612		("vm_object_terminate: pageout in progress"));
613
614	/*
615	 * Clean and free the pages, as appropriate. All references to the
616	 * object are gone, so we don't need to lock it.
617	 */
618	if (object->type == OBJT_VNODE) {
619		struct vnode *vp = (struct vnode *)object->handle;
620
621		/*
622		 * Clean pages and flush buffers.
623		 */
624		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
625		VM_OBJECT_UNLOCK(object);
626
627		vinvalbuf(vp, V_SAVE, NULL, 0, 0);
628
629		VM_OBJECT_LOCK(object);
630	}
631
632	KASSERT(object->ref_count == 0,
633		("vm_object_terminate: object with references, ref_count=%d",
634		object->ref_count));
635
636	/*
637	 * Now free any remaining pages. For internal objects, this also
638	 * removes them from paging queues. Don't free wired pages, just
639	 * remove them from the object.
640	 */
641	vm_page_lock_queues();
642	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
643		KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
644			("vm_object_terminate: freeing busy page %p "
645			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
646		if (p->wire_count == 0) {
647			vm_page_free(p);
648			cnt.v_pfree++;
649		} else {
650			vm_page_remove(p);
651		}
652	}
653	vm_page_unlock_queues();
654
655	if (__predict_false(object->cache != NULL))
656		vm_page_cache_free(object, 0, 0);
657
658	/*
659	 * Let the pager know object is dead.
660	 */
661	vm_pager_deallocate(object);
662	VM_OBJECT_UNLOCK(object);
663
664	/*
665	 * Remove the object from the global object list.
666	 */
667	mtx_lock(&vm_object_list_mtx);
668	TAILQ_REMOVE(&vm_object_list, object, object_list);
669	mtx_unlock(&vm_object_list_mtx);
670
671	/*
672	 * Free the space for the object.
673	 */
674	uma_zfree(obj_zone, object);
675}
676
677/*
678 *	vm_object_page_clean
679 *
680 *	Clean all dirty pages in the specified range of object.  Leaves page
681 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
682 *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
683 *	leaving the object dirty.
684 *
685 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
686 *	synchronous clustering mode implementation.
687 *
688 *	Odd semantics: if start == end, we clean everything.
689 *
690 *	The object must be locked.
691 */
692void
693vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
694{
695	vm_page_t p, np;
696	vm_pindex_t tstart, tend;
697	vm_pindex_t pi;
698	int clearobjflags;
699	int pagerflags;
700	int curgeneration;
701
702	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
703	if (object->type != OBJT_VNODE ||
704		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
705		return;
706
707	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
708	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
709
710	vm_object_set_flag(object, OBJ_CLEANING);
711
712	tstart = start;
713	if (end == 0) {
714		tend = object->size;
715	} else {
716		tend = end;
717	}
718
719	vm_page_lock_queues();
720	/*
721	 * If the caller is smart and only msync()s a range he knows is
722	 * dirty, we may be able to avoid an object scan.  This results in
723	 * a phenominal improvement in performance.  We cannot do this
724	 * as a matter of course because the object may be huge - e.g.
725	 * the size might be in the gigabytes or terrabytes.
726	 */
727	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
728		vm_pindex_t tscan;
729		int scanlimit;
730		int scanreset;
731
732		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
733		if (scanreset < 16)
734			scanreset = 16;
735		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
736
737		scanlimit = scanreset;
738		tscan = tstart;
739		while (tscan < tend) {
740			curgeneration = object->generation;
741			p = vm_page_lookup(object, tscan);
742			if (p == NULL || p->valid == 0) {
743				if (--scanlimit == 0)
744					break;
745				++tscan;
746				continue;
747			}
748			vm_page_test_dirty(p);
749			if ((p->dirty & p->valid) == 0) {
750				if (--scanlimit == 0)
751					break;
752				++tscan;
753				continue;
754			}
755			/*
756			 * If we have been asked to skip nosync pages and
757			 * this is a nosync page, we can't continue.
758			 */
759			if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
760				if (--scanlimit == 0)
761					break;
762				++tscan;
763				continue;
764			}
765			scanlimit = scanreset;
766
767			/*
768			 * This returns 0 if it was unable to busy the first
769			 * page (i.e. had to sleep).
770			 */
771			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
772		}
773
774		/*
775		 * If everything was dirty and we flushed it successfully,
776		 * and the requested range is not the entire object, we
777		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
778		 * return immediately.
779		 */
780		if (tscan >= tend && (tstart || tend < object->size)) {
781			vm_page_unlock_queues();
782			vm_object_clear_flag(object, OBJ_CLEANING);
783			return;
784		}
785		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
786	}
787
788	/*
789	 * Generally set CLEANCHK interlock and make the page read-only so
790	 * we can then clear the object flags.
791	 *
792	 * However, if this is a nosync mmap then the object is likely to
793	 * stay dirty so do not mess with the page and do not clear the
794	 * object flags.
795	 */
796	clearobjflags = 1;
797	TAILQ_FOREACH(p, &object->memq, listq) {
798		p->oflags |= VPO_CLEANCHK;
799		if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC))
800			clearobjflags = 0;
801		else
802			pmap_remove_write(p);
803	}
804
805	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
806		struct vnode *vp;
807
808		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
809		if (object->type == OBJT_VNODE &&
810		    (vp = (struct vnode *)object->handle) != NULL) {
811			VI_LOCK(vp);
812			if (vp->v_iflag & VI_OBJDIRTY)
813				vp->v_iflag &= ~VI_OBJDIRTY;
814			VI_UNLOCK(vp);
815		}
816	}
817
818rescan:
819	curgeneration = object->generation;
820
821	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
822		int n;
823
824		np = TAILQ_NEXT(p, listq);
825
826again:
827		pi = p->pindex;
828		if ((p->oflags & VPO_CLEANCHK) == 0 ||
829			(pi < tstart) || (pi >= tend) ||
830		    p->valid == 0) {
831			p->oflags &= ~VPO_CLEANCHK;
832			continue;
833		}
834
835		vm_page_test_dirty(p);
836		if ((p->dirty & p->valid) == 0) {
837			p->oflags &= ~VPO_CLEANCHK;
838			continue;
839		}
840
841		/*
842		 * If we have been asked to skip nosync pages and this is a
843		 * nosync page, skip it.  Note that the object flags were
844		 * not cleared in this case so we do not have to set them.
845		 */
846		if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
847			p->oflags &= ~VPO_CLEANCHK;
848			continue;
849		}
850
851		n = vm_object_page_collect_flush(object, p,
852			curgeneration, pagerflags);
853		if (n == 0)
854			goto rescan;
855
856		if (object->generation != curgeneration)
857			goto rescan;
858
859		/*
860		 * Try to optimize the next page.  If we can't we pick up
861		 * our (random) scan where we left off.
862		 */
863		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
864			if ((p = vm_page_lookup(object, pi + n)) != NULL)
865				goto again;
866		}
867	}
868	vm_page_unlock_queues();
869#if 0
870	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
871#endif
872
873	vm_object_clear_flag(object, OBJ_CLEANING);
874	return;
875}
876
877static int
878vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
879{
880	int runlen;
881	int maxf;
882	int chkb;
883	int maxb;
884	int i;
885	vm_pindex_t pi;
886	vm_page_t maf[vm_pageout_page_count];
887	vm_page_t mab[vm_pageout_page_count];
888	vm_page_t ma[vm_pageout_page_count];
889
890	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
891	pi = p->pindex;
892	while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
893		vm_page_lock_queues();
894		if (object->generation != curgeneration) {
895			return(0);
896		}
897	}
898	maxf = 0;
899	for(i = 1; i < vm_pageout_page_count; i++) {
900		vm_page_t tp;
901
902		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
903			if ((tp->oflags & VPO_BUSY) ||
904				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
905				 (tp->oflags & VPO_CLEANCHK) == 0) ||
906				(tp->busy != 0))
907				break;
908			vm_page_test_dirty(tp);
909			if ((tp->dirty & tp->valid) == 0) {
910				tp->oflags &= ~VPO_CLEANCHK;
911				break;
912			}
913			maf[ i - 1 ] = tp;
914			maxf++;
915			continue;
916		}
917		break;
918	}
919
920	maxb = 0;
921	chkb = vm_pageout_page_count -  maxf;
922	if (chkb) {
923		for(i = 1; i < chkb;i++) {
924			vm_page_t tp;
925
926			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
927				if ((tp->oflags & VPO_BUSY) ||
928					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
929					 (tp->oflags & VPO_CLEANCHK) == 0) ||
930					(tp->busy != 0))
931					break;
932				vm_page_test_dirty(tp);
933				if ((tp->dirty & tp->valid) == 0) {
934					tp->oflags &= ~VPO_CLEANCHK;
935					break;
936				}
937				mab[ i - 1 ] = tp;
938				maxb++;
939				continue;
940			}
941			break;
942		}
943	}
944
945	for(i = 0; i < maxb; i++) {
946		int index = (maxb - i) - 1;
947		ma[index] = mab[i];
948		ma[index]->oflags &= ~VPO_CLEANCHK;
949	}
950	p->oflags &= ~VPO_CLEANCHK;
951	ma[maxb] = p;
952	for(i = 0; i < maxf; i++) {
953		int index = (maxb + i) + 1;
954		ma[index] = maf[i];
955		ma[index]->oflags &= ~VPO_CLEANCHK;
956	}
957	runlen = maxb + maxf + 1;
958
959	vm_pageout_flush(ma, runlen, pagerflags);
960	for (i = 0; i < runlen; i++) {
961		if (ma[i]->valid & ma[i]->dirty) {
962			pmap_remove_write(ma[i]);
963			ma[i]->oflags |= VPO_CLEANCHK;
964
965			/*
966			 * maxf will end up being the actual number of pages
967			 * we wrote out contiguously, non-inclusive of the
968			 * first page.  We do not count look-behind pages.
969			 */
970			if (i >= maxb + 1 && (maxf > i - maxb - 1))
971				maxf = i - maxb - 1;
972		}
973	}
974	return(maxf + 1);
975}
976
977/*
978 * Note that there is absolutely no sense in writing out
979 * anonymous objects, so we track down the vnode object
980 * to write out.
981 * We invalidate (remove) all pages from the address space
982 * for semantic correctness.
983 *
984 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
985 * may start out with a NULL object.
986 */
987void
988vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
989    boolean_t syncio, boolean_t invalidate)
990{
991	vm_object_t backing_object;
992	struct vnode *vp;
993	struct mount *mp;
994	int flags;
995
996	if (object == NULL)
997		return;
998	VM_OBJECT_LOCK(object);
999	while ((backing_object = object->backing_object) != NULL) {
1000		VM_OBJECT_LOCK(backing_object);
1001		offset += object->backing_object_offset;
1002		VM_OBJECT_UNLOCK(object);
1003		object = backing_object;
1004		if (object->size < OFF_TO_IDX(offset + size))
1005			size = IDX_TO_OFF(object->size) - offset;
1006	}
1007	/*
1008	 * Flush pages if writing is allowed, invalidate them
1009	 * if invalidation requested.  Pages undergoing I/O
1010	 * will be ignored by vm_object_page_remove().
1011	 *
1012	 * We cannot lock the vnode and then wait for paging
1013	 * to complete without deadlocking against vm_fault.
1014	 * Instead we simply call vm_object_page_remove() and
1015	 * allow it to block internally on a page-by-page
1016	 * basis when it encounters pages undergoing async
1017	 * I/O.
1018	 */
1019	if (object->type == OBJT_VNODE &&
1020	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1021		int vfslocked;
1022		vp = object->handle;
1023		VM_OBJECT_UNLOCK(object);
1024		(void) vn_start_write(vp, &mp, V_WAIT);
1025		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1026		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
1027		flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1028		flags |= invalidate ? OBJPC_INVAL : 0;
1029		VM_OBJECT_LOCK(object);
1030		vm_object_page_clean(object,
1031		    OFF_TO_IDX(offset),
1032		    OFF_TO_IDX(offset + size + PAGE_MASK),
1033		    flags);
1034		VM_OBJECT_UNLOCK(object);
1035		VOP_UNLOCK(vp, 0, curthread);
1036		VFS_UNLOCK_GIANT(vfslocked);
1037		vn_finished_write(mp);
1038		VM_OBJECT_LOCK(object);
1039	}
1040	if ((object->type == OBJT_VNODE ||
1041	     object->type == OBJT_DEVICE) && invalidate) {
1042		boolean_t purge;
1043		purge = old_msync || (object->type == OBJT_DEVICE);
1044		vm_object_page_remove(object,
1045		    OFF_TO_IDX(offset),
1046		    OFF_TO_IDX(offset + size + PAGE_MASK),
1047		    purge ? FALSE : TRUE);
1048	}
1049	VM_OBJECT_UNLOCK(object);
1050}
1051
1052/*
1053 *	vm_object_madvise:
1054 *
1055 *	Implements the madvise function at the object/page level.
1056 *
1057 *	MADV_WILLNEED	(any object)
1058 *
1059 *	    Activate the specified pages if they are resident.
1060 *
1061 *	MADV_DONTNEED	(any object)
1062 *
1063 *	    Deactivate the specified pages if they are resident.
1064 *
1065 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1066 *			 OBJ_ONEMAPPING only)
1067 *
1068 *	    Deactivate and clean the specified pages if they are
1069 *	    resident.  This permits the process to reuse the pages
1070 *	    without faulting or the kernel to reclaim the pages
1071 *	    without I/O.
1072 */
1073void
1074vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1075{
1076	vm_pindex_t end, tpindex;
1077	vm_object_t backing_object, tobject;
1078	vm_page_t m;
1079
1080	if (object == NULL)
1081		return;
1082	VM_OBJECT_LOCK(object);
1083	end = pindex + count;
1084	/*
1085	 * Locate and adjust resident pages
1086	 */
1087	for (; pindex < end; pindex += 1) {
1088relookup:
1089		tobject = object;
1090		tpindex = pindex;
1091shadowlookup:
1092		/*
1093		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1094		 * and those pages must be OBJ_ONEMAPPING.
1095		 */
1096		if (advise == MADV_FREE) {
1097			if ((tobject->type != OBJT_DEFAULT &&
1098			     tobject->type != OBJT_SWAP) ||
1099			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1100				goto unlock_tobject;
1101			}
1102		}
1103		m = vm_page_lookup(tobject, tpindex);
1104		if (m == NULL && advise == MADV_WILLNEED) {
1105			/*
1106			 * If the page is cached, reactivate it.
1107			 */
1108			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1109			    VM_ALLOC_NOBUSY);
1110		}
1111		if (m == NULL) {
1112			/*
1113			 * There may be swap even if there is no backing page
1114			 */
1115			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1116				swap_pager_freespace(tobject, tpindex, 1);
1117			/*
1118			 * next object
1119			 */
1120			backing_object = tobject->backing_object;
1121			if (backing_object == NULL)
1122				goto unlock_tobject;
1123			VM_OBJECT_LOCK(backing_object);
1124			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1125			if (tobject != object)
1126				VM_OBJECT_UNLOCK(tobject);
1127			tobject = backing_object;
1128			goto shadowlookup;
1129		}
1130		/*
1131		 * If the page is busy or not in a normal active state,
1132		 * we skip it.  If the page is not managed there are no
1133		 * page queues to mess with.  Things can break if we mess
1134		 * with pages in any of the below states.
1135		 */
1136		vm_page_lock_queues();
1137		if (m->hold_count ||
1138		    m->wire_count ||
1139		    (m->flags & PG_UNMANAGED) ||
1140		    m->valid != VM_PAGE_BITS_ALL) {
1141			vm_page_unlock_queues();
1142			goto unlock_tobject;
1143		}
1144		if ((m->oflags & VPO_BUSY) || m->busy) {
1145			vm_page_flag_set(m, PG_REFERENCED);
1146			vm_page_unlock_queues();
1147			if (object != tobject)
1148				VM_OBJECT_UNLOCK(object);
1149			m->oflags |= VPO_WANTED;
1150			msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo", 0);
1151			VM_OBJECT_LOCK(object);
1152  			goto relookup;
1153		}
1154		if (advise == MADV_WILLNEED) {
1155			vm_page_activate(m);
1156		} else if (advise == MADV_DONTNEED) {
1157			vm_page_dontneed(m);
1158		} else if (advise == MADV_FREE) {
1159			/*
1160			 * Mark the page clean.  This will allow the page
1161			 * to be freed up by the system.  However, such pages
1162			 * are often reused quickly by malloc()/free()
1163			 * so we do not do anything that would cause
1164			 * a page fault if we can help it.
1165			 *
1166			 * Specifically, we do not try to actually free
1167			 * the page now nor do we try to put it in the
1168			 * cache (which would cause a page fault on reuse).
1169			 *
1170			 * But we do make the page is freeable as we
1171			 * can without actually taking the step of unmapping
1172			 * it.
1173			 */
1174			pmap_clear_modify(m);
1175			m->dirty = 0;
1176			m->act_count = 0;
1177			vm_page_dontneed(m);
1178		}
1179		vm_page_unlock_queues();
1180		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1181			swap_pager_freespace(tobject, tpindex, 1);
1182unlock_tobject:
1183		if (tobject != object)
1184			VM_OBJECT_UNLOCK(tobject);
1185	}
1186	VM_OBJECT_UNLOCK(object);
1187}
1188
1189/*
1190 *	vm_object_shadow:
1191 *
1192 *	Create a new object which is backed by the
1193 *	specified existing object range.  The source
1194 *	object reference is deallocated.
1195 *
1196 *	The new object and offset into that object
1197 *	are returned in the source parameters.
1198 */
1199void
1200vm_object_shadow(
1201	vm_object_t *object,	/* IN/OUT */
1202	vm_ooffset_t *offset,	/* IN/OUT */
1203	vm_size_t length)
1204{
1205	vm_object_t source;
1206	vm_object_t result;
1207
1208	source = *object;
1209
1210	/*
1211	 * Don't create the new object if the old object isn't shared.
1212	 */
1213	if (source != NULL) {
1214		VM_OBJECT_LOCK(source);
1215		if (source->ref_count == 1 &&
1216		    source->handle == NULL &&
1217		    (source->type == OBJT_DEFAULT ||
1218		     source->type == OBJT_SWAP)) {
1219			VM_OBJECT_UNLOCK(source);
1220			return;
1221		}
1222		VM_OBJECT_UNLOCK(source);
1223	}
1224
1225	/*
1226	 * Allocate a new object with the given length.
1227	 */
1228	result = vm_object_allocate(OBJT_DEFAULT, length);
1229
1230	/*
1231	 * The new object shadows the source object, adding a reference to it.
1232	 * Our caller changes his reference to point to the new object,
1233	 * removing a reference to the source object.  Net result: no change
1234	 * of reference count.
1235	 *
1236	 * Try to optimize the result object's page color when shadowing
1237	 * in order to maintain page coloring consistency in the combined
1238	 * shadowed object.
1239	 */
1240	result->backing_object = source;
1241	/*
1242	 * Store the offset into the source object, and fix up the offset into
1243	 * the new object.
1244	 */
1245	result->backing_object_offset = *offset;
1246	if (source != NULL) {
1247		VM_OBJECT_LOCK(source);
1248		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1249		source->shadow_count++;
1250		source->generation++;
1251		result->flags |= source->flags & OBJ_NEEDGIANT;
1252		VM_OBJECT_UNLOCK(source);
1253	}
1254
1255
1256	/*
1257	 * Return the new things
1258	 */
1259	*offset = 0;
1260	*object = result;
1261}
1262
1263/*
1264 *	vm_object_split:
1265 *
1266 * Split the pages in a map entry into a new object.  This affords
1267 * easier removal of unused pages, and keeps object inheritance from
1268 * being a negative impact on memory usage.
1269 */
1270void
1271vm_object_split(vm_map_entry_t entry)
1272{
1273	vm_page_t m, m_next;
1274	vm_object_t orig_object, new_object, source;
1275	vm_pindex_t idx, offidxstart;
1276	vm_size_t size;
1277
1278	orig_object = entry->object.vm_object;
1279	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1280		return;
1281	if (orig_object->ref_count <= 1)
1282		return;
1283	VM_OBJECT_UNLOCK(orig_object);
1284
1285	offidxstart = OFF_TO_IDX(entry->offset);
1286	size = atop(entry->end - entry->start);
1287
1288	/*
1289	 * If swap_pager_copy() is later called, it will convert new_object
1290	 * into a swap object.
1291	 */
1292	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1293
1294	/*
1295	 * At this point, the new object is still private, so the order in
1296	 * which the original and new objects are locked does not matter.
1297	 */
1298	VM_OBJECT_LOCK(new_object);
1299	VM_OBJECT_LOCK(orig_object);
1300	source = orig_object->backing_object;
1301	if (source != NULL) {
1302		VM_OBJECT_LOCK(source);
1303		if ((source->flags & OBJ_DEAD) != 0) {
1304			VM_OBJECT_UNLOCK(source);
1305			VM_OBJECT_UNLOCK(orig_object);
1306			VM_OBJECT_UNLOCK(new_object);
1307			vm_object_deallocate(new_object);
1308			VM_OBJECT_LOCK(orig_object);
1309			return;
1310		}
1311		LIST_INSERT_HEAD(&source->shadow_head,
1312				  new_object, shadow_list);
1313		source->shadow_count++;
1314		source->generation++;
1315		vm_object_reference_locked(source);	/* for new_object */
1316		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1317		VM_OBJECT_UNLOCK(source);
1318		new_object->backing_object_offset =
1319			orig_object->backing_object_offset + entry->offset;
1320		new_object->backing_object = source;
1321	}
1322	new_object->flags |= orig_object->flags & OBJ_NEEDGIANT;
1323retry:
1324	if ((m = TAILQ_FIRST(&orig_object->memq)) != NULL) {
1325		if (m->pindex < offidxstart) {
1326			m = vm_page_splay(offidxstart, orig_object->root);
1327			if ((orig_object->root = m)->pindex < offidxstart)
1328				m = TAILQ_NEXT(m, listq);
1329		}
1330	}
1331	vm_page_lock_queues();
1332	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1333	    m = m_next) {
1334		m_next = TAILQ_NEXT(m, listq);
1335
1336		/*
1337		 * We must wait for pending I/O to complete before we can
1338		 * rename the page.
1339		 *
1340		 * We do not have to VM_PROT_NONE the page as mappings should
1341		 * not be changed by this operation.
1342		 */
1343		if ((m->oflags & VPO_BUSY) || m->busy) {
1344			vm_page_flag_set(m, PG_REFERENCED);
1345			vm_page_unlock_queues();
1346			VM_OBJECT_UNLOCK(new_object);
1347			m->oflags |= VPO_WANTED;
1348			msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1349			VM_OBJECT_LOCK(new_object);
1350			goto retry;
1351		}
1352		vm_page_rename(m, new_object, idx);
1353		/* page automatically made dirty by rename and cache handled */
1354		vm_page_busy(m);
1355	}
1356	vm_page_unlock_queues();
1357	if (orig_object->type == OBJT_SWAP) {
1358		/*
1359		 * swap_pager_copy() can sleep, in which case the orig_object's
1360		 * and new_object's locks are released and reacquired.
1361		 */
1362		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1363
1364		/*
1365		 * Transfer any cached pages from orig_object to new_object.
1366		 */
1367		if (__predict_false(orig_object->cache != NULL))
1368			vm_page_cache_transfer(orig_object, offidxstart,
1369			    new_object);
1370	}
1371	VM_OBJECT_UNLOCK(orig_object);
1372	TAILQ_FOREACH(m, &new_object->memq, listq)
1373		vm_page_wakeup(m);
1374	VM_OBJECT_UNLOCK(new_object);
1375	entry->object.vm_object = new_object;
1376	entry->offset = 0LL;
1377	vm_object_deallocate(orig_object);
1378	VM_OBJECT_LOCK(new_object);
1379}
1380
1381#define	OBSC_TEST_ALL_SHADOWED	0x0001
1382#define	OBSC_COLLAPSE_NOWAIT	0x0002
1383#define	OBSC_COLLAPSE_WAIT	0x0004
1384
1385static int
1386vm_object_backing_scan(vm_object_t object, int op)
1387{
1388	int r = 1;
1389	vm_page_t p;
1390	vm_object_t backing_object;
1391	vm_pindex_t backing_offset_index;
1392
1393	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1394	VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1395
1396	backing_object = object->backing_object;
1397	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1398
1399	/*
1400	 * Initial conditions
1401	 */
1402	if (op & OBSC_TEST_ALL_SHADOWED) {
1403		/*
1404		 * We do not want to have to test for the existence of cache
1405		 * or swap pages in the backing object.  XXX but with the
1406		 * new swapper this would be pretty easy to do.
1407		 *
1408		 * XXX what about anonymous MAP_SHARED memory that hasn't
1409		 * been ZFOD faulted yet?  If we do not test for this, the
1410		 * shadow test may succeed! XXX
1411		 */
1412		if (backing_object->type != OBJT_DEFAULT) {
1413			return (0);
1414		}
1415	}
1416	if (op & OBSC_COLLAPSE_WAIT) {
1417		vm_object_set_flag(backing_object, OBJ_DEAD);
1418	}
1419
1420	/*
1421	 * Our scan
1422	 */
1423	p = TAILQ_FIRST(&backing_object->memq);
1424	while (p) {
1425		vm_page_t next = TAILQ_NEXT(p, listq);
1426		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1427
1428		if (op & OBSC_TEST_ALL_SHADOWED) {
1429			vm_page_t pp;
1430
1431			/*
1432			 * Ignore pages outside the parent object's range
1433			 * and outside the parent object's mapping of the
1434			 * backing object.
1435			 *
1436			 * note that we do not busy the backing object's
1437			 * page.
1438			 */
1439			if (
1440			    p->pindex < backing_offset_index ||
1441			    new_pindex >= object->size
1442			) {
1443				p = next;
1444				continue;
1445			}
1446
1447			/*
1448			 * See if the parent has the page or if the parent's
1449			 * object pager has the page.  If the parent has the
1450			 * page but the page is not valid, the parent's
1451			 * object pager must have the page.
1452			 *
1453			 * If this fails, the parent does not completely shadow
1454			 * the object and we might as well give up now.
1455			 */
1456
1457			pp = vm_page_lookup(object, new_pindex);
1458			if (
1459			    (pp == NULL || pp->valid == 0) &&
1460			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1461			) {
1462				r = 0;
1463				break;
1464			}
1465		}
1466
1467		/*
1468		 * Check for busy page
1469		 */
1470		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1471			vm_page_t pp;
1472
1473			if (op & OBSC_COLLAPSE_NOWAIT) {
1474				if ((p->oflags & VPO_BUSY) ||
1475				    !p->valid ||
1476				    p->busy) {
1477					p = next;
1478					continue;
1479				}
1480			} else if (op & OBSC_COLLAPSE_WAIT) {
1481				if ((p->oflags & VPO_BUSY) || p->busy) {
1482					vm_page_lock_queues();
1483					vm_page_flag_set(p, PG_REFERENCED);
1484					vm_page_unlock_queues();
1485					VM_OBJECT_UNLOCK(object);
1486					p->oflags |= VPO_WANTED;
1487					msleep(p, VM_OBJECT_MTX(backing_object),
1488					    PDROP | PVM, "vmocol", 0);
1489					VM_OBJECT_LOCK(object);
1490					VM_OBJECT_LOCK(backing_object);
1491					/*
1492					 * If we slept, anything could have
1493					 * happened.  Since the object is
1494					 * marked dead, the backing offset
1495					 * should not have changed so we
1496					 * just restart our scan.
1497					 */
1498					p = TAILQ_FIRST(&backing_object->memq);
1499					continue;
1500				}
1501			}
1502
1503			KASSERT(
1504			    p->object == backing_object,
1505			    ("vm_object_backing_scan: object mismatch")
1506			);
1507
1508			/*
1509			 * Destroy any associated swap
1510			 */
1511			if (backing_object->type == OBJT_SWAP) {
1512				swap_pager_freespace(
1513				    backing_object,
1514				    p->pindex,
1515				    1
1516				);
1517			}
1518
1519			if (
1520			    p->pindex < backing_offset_index ||
1521			    new_pindex >= object->size
1522			) {
1523				/*
1524				 * Page is out of the parent object's range, we
1525				 * can simply destroy it.
1526				 */
1527				vm_page_lock_queues();
1528				KASSERT(!pmap_page_is_mapped(p),
1529				    ("freeing mapped page %p", p));
1530				if (p->wire_count == 0)
1531					vm_page_free(p);
1532				else
1533					vm_page_remove(p);
1534				vm_page_unlock_queues();
1535				p = next;
1536				continue;
1537			}
1538
1539			pp = vm_page_lookup(object, new_pindex);
1540			if (
1541			    pp != NULL ||
1542			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1543			) {
1544				/*
1545				 * page already exists in parent OR swap exists
1546				 * for this location in the parent.  Destroy
1547				 * the original page from the backing object.
1548				 *
1549				 * Leave the parent's page alone
1550				 */
1551				vm_page_lock_queues();
1552				KASSERT(!pmap_page_is_mapped(p),
1553				    ("freeing mapped page %p", p));
1554				if (p->wire_count == 0)
1555					vm_page_free(p);
1556				else
1557					vm_page_remove(p);
1558				vm_page_unlock_queues();
1559				p = next;
1560				continue;
1561			}
1562
1563			/*
1564			 * Page does not exist in parent, rename the
1565			 * page from the backing object to the main object.
1566			 *
1567			 * If the page was mapped to a process, it can remain
1568			 * mapped through the rename.
1569			 */
1570			vm_page_lock_queues();
1571			vm_page_rename(p, object, new_pindex);
1572			vm_page_unlock_queues();
1573			/* page automatically made dirty by rename */
1574		}
1575		p = next;
1576	}
1577	return (r);
1578}
1579
1580
1581/*
1582 * this version of collapse allows the operation to occur earlier and
1583 * when paging_in_progress is true for an object...  This is not a complete
1584 * operation, but should plug 99.9% of the rest of the leaks.
1585 */
1586static void
1587vm_object_qcollapse(vm_object_t object)
1588{
1589	vm_object_t backing_object = object->backing_object;
1590
1591	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1592	VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1593
1594	if (backing_object->ref_count != 1)
1595		return;
1596
1597	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1598}
1599
1600/*
1601 *	vm_object_collapse:
1602 *
1603 *	Collapse an object with the object backing it.
1604 *	Pages in the backing object are moved into the
1605 *	parent, and the backing object is deallocated.
1606 */
1607void
1608vm_object_collapse(vm_object_t object)
1609{
1610	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1611
1612	while (TRUE) {
1613		vm_object_t backing_object;
1614
1615		/*
1616		 * Verify that the conditions are right for collapse:
1617		 *
1618		 * The object exists and the backing object exists.
1619		 */
1620		if ((backing_object = object->backing_object) == NULL)
1621			break;
1622
1623		/*
1624		 * we check the backing object first, because it is most likely
1625		 * not collapsable.
1626		 */
1627		VM_OBJECT_LOCK(backing_object);
1628		if (backing_object->handle != NULL ||
1629		    (backing_object->type != OBJT_DEFAULT &&
1630		     backing_object->type != OBJT_SWAP) ||
1631		    (backing_object->flags & OBJ_DEAD) ||
1632		    object->handle != NULL ||
1633		    (object->type != OBJT_DEFAULT &&
1634		     object->type != OBJT_SWAP) ||
1635		    (object->flags & OBJ_DEAD)) {
1636			VM_OBJECT_UNLOCK(backing_object);
1637			break;
1638		}
1639
1640		if (
1641		    object->paging_in_progress != 0 ||
1642		    backing_object->paging_in_progress != 0
1643		) {
1644			vm_object_qcollapse(object);
1645			VM_OBJECT_UNLOCK(backing_object);
1646			break;
1647		}
1648		/*
1649		 * We know that we can either collapse the backing object (if
1650		 * the parent is the only reference to it) or (perhaps) have
1651		 * the parent bypass the object if the parent happens to shadow
1652		 * all the resident pages in the entire backing object.
1653		 *
1654		 * This is ignoring pager-backed pages such as swap pages.
1655		 * vm_object_backing_scan fails the shadowing test in this
1656		 * case.
1657		 */
1658		if (backing_object->ref_count == 1) {
1659			/*
1660			 * If there is exactly one reference to the backing
1661			 * object, we can collapse it into the parent.
1662			 */
1663			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1664
1665			/*
1666			 * Move the pager from backing_object to object.
1667			 */
1668			if (backing_object->type == OBJT_SWAP) {
1669				/*
1670				 * swap_pager_copy() can sleep, in which case
1671				 * the backing_object's and object's locks are
1672				 * released and reacquired.
1673				 */
1674				swap_pager_copy(
1675				    backing_object,
1676				    object,
1677				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1678
1679				/*
1680				 * Free any cached pages from backing_object.
1681				 */
1682				if (__predict_false(backing_object->cache != NULL))
1683					vm_page_cache_free(backing_object, 0, 0);
1684			}
1685			/*
1686			 * Object now shadows whatever backing_object did.
1687			 * Note that the reference to
1688			 * backing_object->backing_object moves from within
1689			 * backing_object to within object.
1690			 */
1691			LIST_REMOVE(object, shadow_list);
1692			backing_object->shadow_count--;
1693			backing_object->generation++;
1694			if (backing_object->backing_object) {
1695				VM_OBJECT_LOCK(backing_object->backing_object);
1696				LIST_REMOVE(backing_object, shadow_list);
1697				LIST_INSERT_HEAD(
1698				    &backing_object->backing_object->shadow_head,
1699				    object, shadow_list);
1700				/*
1701				 * The shadow_count has not changed.
1702				 */
1703				backing_object->backing_object->generation++;
1704				VM_OBJECT_UNLOCK(backing_object->backing_object);
1705			}
1706			object->backing_object = backing_object->backing_object;
1707			object->backing_object_offset +=
1708			    backing_object->backing_object_offset;
1709
1710			/*
1711			 * Discard backing_object.
1712			 *
1713			 * Since the backing object has no pages, no pager left,
1714			 * and no object references within it, all that is
1715			 * necessary is to dispose of it.
1716			 */
1717			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1718			VM_OBJECT_UNLOCK(backing_object);
1719
1720			mtx_lock(&vm_object_list_mtx);
1721			TAILQ_REMOVE(
1722			    &vm_object_list,
1723			    backing_object,
1724			    object_list
1725			);
1726			mtx_unlock(&vm_object_list_mtx);
1727
1728			uma_zfree(obj_zone, backing_object);
1729
1730			object_collapses++;
1731		} else {
1732			vm_object_t new_backing_object;
1733
1734			/*
1735			 * If we do not entirely shadow the backing object,
1736			 * there is nothing we can do so we give up.
1737			 */
1738			if (object->resident_page_count != object->size &&
1739			    vm_object_backing_scan(object,
1740			    OBSC_TEST_ALL_SHADOWED) == 0) {
1741				VM_OBJECT_UNLOCK(backing_object);
1742				break;
1743			}
1744
1745			/*
1746			 * Make the parent shadow the next object in the
1747			 * chain.  Deallocating backing_object will not remove
1748			 * it, since its reference count is at least 2.
1749			 */
1750			LIST_REMOVE(object, shadow_list);
1751			backing_object->shadow_count--;
1752			backing_object->generation++;
1753
1754			new_backing_object = backing_object->backing_object;
1755			if ((object->backing_object = new_backing_object) != NULL) {
1756				VM_OBJECT_LOCK(new_backing_object);
1757				LIST_INSERT_HEAD(
1758				    &new_backing_object->shadow_head,
1759				    object,
1760				    shadow_list
1761				);
1762				new_backing_object->shadow_count++;
1763				new_backing_object->generation++;
1764				vm_object_reference_locked(new_backing_object);
1765				VM_OBJECT_UNLOCK(new_backing_object);
1766				object->backing_object_offset +=
1767					backing_object->backing_object_offset;
1768			}
1769
1770			/*
1771			 * Drop the reference count on backing_object. Since
1772			 * its ref_count was at least 2, it will not vanish.
1773			 */
1774			backing_object->ref_count--;
1775			VM_OBJECT_UNLOCK(backing_object);
1776			object_bypasses++;
1777		}
1778
1779		/*
1780		 * Try again with this object's new backing object.
1781		 */
1782	}
1783}
1784
1785/*
1786 *	vm_object_page_remove:
1787 *
1788 *	Removes all physical pages in the given range from the
1789 *	object's list of pages.  If the range's end is zero, all
1790 *	physical pages from the range's start to the end of the object
1791 *	are deleted.
1792 *
1793 *	The object must be locked.
1794 */
1795void
1796vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1797    boolean_t clean_only)
1798{
1799	vm_page_t p, next;
1800
1801	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1802	if (object->resident_page_count == 0)
1803		goto skipmemq;
1804
1805	/*
1806	 * Since physically-backed objects do not use managed pages, we can't
1807	 * remove pages from the object (we must instead remove the page
1808	 * references, and then destroy the object).
1809	 */
1810	KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
1811	    object == kmem_object,
1812	    ("attempt to remove pages from a physical object"));
1813
1814	vm_object_pip_add(object, 1);
1815again:
1816	vm_page_lock_queues();
1817	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1818		if (p->pindex < start) {
1819			p = vm_page_splay(start, object->root);
1820			if ((object->root = p)->pindex < start)
1821				p = TAILQ_NEXT(p, listq);
1822		}
1823	}
1824	/*
1825	 * Assert: the variable p is either (1) the page with the
1826	 * least pindex greater than or equal to the parameter pindex
1827	 * or (2) NULL.
1828	 */
1829	for (;
1830	     p != NULL && (p->pindex < end || end == 0);
1831	     p = next) {
1832		next = TAILQ_NEXT(p, listq);
1833
1834		if (p->wire_count != 0) {
1835			pmap_remove_all(p);
1836			if (!clean_only)
1837				p->valid = 0;
1838			continue;
1839		}
1840		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1841			goto again;
1842		if (clean_only && p->valid) {
1843			pmap_remove_write(p);
1844			if (p->valid & p->dirty)
1845				continue;
1846		}
1847		pmap_remove_all(p);
1848		vm_page_free(p);
1849	}
1850	vm_page_unlock_queues();
1851	vm_object_pip_wakeup(object);
1852skipmemq:
1853	if (__predict_false(object->cache != NULL))
1854		vm_page_cache_free(object, start, end);
1855}
1856
1857/*
1858 *	Routine:	vm_object_coalesce
1859 *	Function:	Coalesces two objects backing up adjoining
1860 *			regions of memory into a single object.
1861 *
1862 *	returns TRUE if objects were combined.
1863 *
1864 *	NOTE:	Only works at the moment if the second object is NULL -
1865 *		if it's not, which object do we lock first?
1866 *
1867 *	Parameters:
1868 *		prev_object	First object to coalesce
1869 *		prev_offset	Offset into prev_object
1870 *		prev_size	Size of reference to prev_object
1871 *		next_size	Size of reference to the second object
1872 *
1873 *	Conditions:
1874 *	The object must *not* be locked.
1875 */
1876boolean_t
1877vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1878	vm_size_t prev_size, vm_size_t next_size)
1879{
1880	vm_pindex_t next_pindex;
1881
1882	if (prev_object == NULL)
1883		return (TRUE);
1884	VM_OBJECT_LOCK(prev_object);
1885	if (prev_object->type != OBJT_DEFAULT &&
1886	    prev_object->type != OBJT_SWAP) {
1887		VM_OBJECT_UNLOCK(prev_object);
1888		return (FALSE);
1889	}
1890
1891	/*
1892	 * Try to collapse the object first
1893	 */
1894	vm_object_collapse(prev_object);
1895
1896	/*
1897	 * Can't coalesce if: . more than one reference . paged out . shadows
1898	 * another object . has a copy elsewhere (any of which mean that the
1899	 * pages not mapped to prev_entry may be in use anyway)
1900	 */
1901	if (prev_object->backing_object != NULL) {
1902		VM_OBJECT_UNLOCK(prev_object);
1903		return (FALSE);
1904	}
1905
1906	prev_size >>= PAGE_SHIFT;
1907	next_size >>= PAGE_SHIFT;
1908	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1909
1910	if ((prev_object->ref_count > 1) &&
1911	    (prev_object->size != next_pindex)) {
1912		VM_OBJECT_UNLOCK(prev_object);
1913		return (FALSE);
1914	}
1915
1916	/*
1917	 * Remove any pages that may still be in the object from a previous
1918	 * deallocation.
1919	 */
1920	if (next_pindex < prev_object->size) {
1921		vm_object_page_remove(prev_object,
1922				      next_pindex,
1923				      next_pindex + next_size, FALSE);
1924		if (prev_object->type == OBJT_SWAP)
1925			swap_pager_freespace(prev_object,
1926					     next_pindex, next_size);
1927	}
1928
1929	/*
1930	 * Extend the object if necessary.
1931	 */
1932	if (next_pindex + next_size > prev_object->size)
1933		prev_object->size = next_pindex + next_size;
1934
1935	VM_OBJECT_UNLOCK(prev_object);
1936	return (TRUE);
1937}
1938
1939void
1940vm_object_set_writeable_dirty(vm_object_t object)
1941{
1942	struct vnode *vp;
1943
1944	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1945	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
1946		return;
1947	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
1948	if (object->type == OBJT_VNODE &&
1949	    (vp = (struct vnode *)object->handle) != NULL) {
1950		VI_LOCK(vp);
1951		vp->v_iflag |= VI_OBJDIRTY;
1952		VI_UNLOCK(vp);
1953	}
1954}
1955
1956#include "opt_ddb.h"
1957#ifdef DDB
1958#include <sys/kernel.h>
1959
1960#include <sys/cons.h>
1961
1962#include <ddb/ddb.h>
1963
1964static int
1965_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1966{
1967	vm_map_t tmpm;
1968	vm_map_entry_t tmpe;
1969	vm_object_t obj;
1970	int entcount;
1971
1972	if (map == 0)
1973		return 0;
1974
1975	if (entry == 0) {
1976		tmpe = map->header.next;
1977		entcount = map->nentries;
1978		while (entcount-- && (tmpe != &map->header)) {
1979			if (_vm_object_in_map(map, object, tmpe)) {
1980				return 1;
1981			}
1982			tmpe = tmpe->next;
1983		}
1984	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1985		tmpm = entry->object.sub_map;
1986		tmpe = tmpm->header.next;
1987		entcount = tmpm->nentries;
1988		while (entcount-- && tmpe != &tmpm->header) {
1989			if (_vm_object_in_map(tmpm, object, tmpe)) {
1990				return 1;
1991			}
1992			tmpe = tmpe->next;
1993		}
1994	} else if ((obj = entry->object.vm_object) != NULL) {
1995		for (; obj; obj = obj->backing_object)
1996			if (obj == object) {
1997				return 1;
1998			}
1999	}
2000	return 0;
2001}
2002
2003static int
2004vm_object_in_map(vm_object_t object)
2005{
2006	struct proc *p;
2007
2008	/* sx_slock(&allproc_lock); */
2009	FOREACH_PROC_IN_SYSTEM(p) {
2010		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2011			continue;
2012		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2013			/* sx_sunlock(&allproc_lock); */
2014			return 1;
2015		}
2016	}
2017	/* sx_sunlock(&allproc_lock); */
2018	if (_vm_object_in_map(kernel_map, object, 0))
2019		return 1;
2020	if (_vm_object_in_map(kmem_map, object, 0))
2021		return 1;
2022	if (_vm_object_in_map(pager_map, object, 0))
2023		return 1;
2024	if (_vm_object_in_map(buffer_map, object, 0))
2025		return 1;
2026	return 0;
2027}
2028
2029DB_SHOW_COMMAND(vmochk, vm_object_check)
2030{
2031	vm_object_t object;
2032
2033	/*
2034	 * make sure that internal objs are in a map somewhere
2035	 * and none have zero ref counts.
2036	 */
2037	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2038		if (object->handle == NULL &&
2039		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2040			if (object->ref_count == 0) {
2041				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2042					(long)object->size);
2043			}
2044			if (!vm_object_in_map(object)) {
2045				db_printf(
2046			"vmochk: internal obj is not in a map: "
2047			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2048				    object->ref_count, (u_long)object->size,
2049				    (u_long)object->size,
2050				    (void *)object->backing_object);
2051			}
2052		}
2053	}
2054}
2055
2056/*
2057 *	vm_object_print:	[ debug ]
2058 */
2059DB_SHOW_COMMAND(object, vm_object_print_static)
2060{
2061	/* XXX convert args. */
2062	vm_object_t object = (vm_object_t)addr;
2063	boolean_t full = have_addr;
2064
2065	vm_page_t p;
2066
2067	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2068#define	count	was_count
2069
2070	int count;
2071
2072	if (object == NULL)
2073		return;
2074
2075	db_iprintf(
2076	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2077	    object, (int)object->type, (uintmax_t)object->size,
2078	    object->resident_page_count, object->ref_count, object->flags);
2079	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2080	    object->shadow_count,
2081	    object->backing_object ? object->backing_object->ref_count : 0,
2082	    object->backing_object, (uintmax_t)object->backing_object_offset);
2083
2084	if (!full)
2085		return;
2086
2087	db_indent += 2;
2088	count = 0;
2089	TAILQ_FOREACH(p, &object->memq, listq) {
2090		if (count == 0)
2091			db_iprintf("memory:=");
2092		else if (count == 6) {
2093			db_printf("\n");
2094			db_iprintf(" ...");
2095			count = 0;
2096		} else
2097			db_printf(",");
2098		count++;
2099
2100		db_printf("(off=0x%jx,page=0x%jx)",
2101		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2102	}
2103	if (count != 0)
2104		db_printf("\n");
2105	db_indent -= 2;
2106}
2107
2108/* XXX. */
2109#undef count
2110
2111/* XXX need this non-static entry for calling from vm_map_print. */
2112void
2113vm_object_print(
2114        /* db_expr_t */ long addr,
2115	boolean_t have_addr,
2116	/* db_expr_t */ long count,
2117	char *modif)
2118{
2119	vm_object_print_static(addr, have_addr, count, modif);
2120}
2121
2122DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2123{
2124	vm_object_t object;
2125	int nl = 0;
2126	int c;
2127
2128	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2129		vm_pindex_t idx, fidx;
2130		vm_pindex_t osize;
2131		vm_paddr_t pa = -1;
2132		int rcount;
2133		vm_page_t m;
2134
2135		db_printf("new object: %p\n", (void *)object);
2136		if (nl > 18) {
2137			c = cngetc();
2138			if (c != ' ')
2139				return;
2140			nl = 0;
2141		}
2142		nl++;
2143		rcount = 0;
2144		fidx = 0;
2145		osize = object->size;
2146		if (osize > 128)
2147			osize = 128;
2148		for (idx = 0; idx < osize; idx++) {
2149			m = vm_page_lookup(object, idx);
2150			if (m == NULL) {
2151				if (rcount) {
2152					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2153						(long)fidx, rcount, (long)pa);
2154					if (nl > 18) {
2155						c = cngetc();
2156						if (c != ' ')
2157							return;
2158						nl = 0;
2159					}
2160					nl++;
2161					rcount = 0;
2162				}
2163				continue;
2164			}
2165
2166
2167			if (rcount &&
2168				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2169				++rcount;
2170				continue;
2171			}
2172			if (rcount) {
2173				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2174					(long)fidx, rcount, (long)pa);
2175				if (nl > 18) {
2176					c = cngetc();
2177					if (c != ' ')
2178						return;
2179					nl = 0;
2180				}
2181				nl++;
2182			}
2183			fidx = idx;
2184			pa = VM_PAGE_TO_PHYS(m);
2185			rcount = 1;
2186		}
2187		if (rcount) {
2188			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2189				(long)fidx, rcount, (long)pa);
2190			if (nl > 18) {
2191				c = cngetc();
2192				if (c != ' ')
2193					return;
2194				nl = 0;
2195			}
2196			nl++;
2197		}
2198	}
2199}
2200#endif /* DDB */
2201