vm_object.c revision 141068
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory object module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: head/sys/vm/vm_object.c 141068 2005-01-30 21:29:47Z alc $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/lock.h>
71#include <sys/mman.h>
72#include <sys/mount.h>
73#include <sys/kernel.h>
74#include <sys/sysctl.h>
75#include <sys/mutex.h>
76#include <sys/proc.h>		/* for curproc, pageproc */
77#include <sys/socket.h>
78#include <sys/vnode.h>
79#include <sys/vmmeter.h>
80#include <sys/sx.h>
81
82#include <vm/vm.h>
83#include <vm/vm_param.h>
84#include <vm/pmap.h>
85#include <vm/vm_map.h>
86#include <vm/vm_object.h>
87#include <vm/vm_page.h>
88#include <vm/vm_pageout.h>
89#include <vm/vm_pager.h>
90#include <vm/swap_pager.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_extern.h>
93#include <vm/uma.h>
94
95#define EASY_SCAN_FACTOR       8
96
97#define MSYNC_FLUSH_HARDSEQ	0x01
98#define MSYNC_FLUSH_SOFTSEQ	0x02
99
100/*
101 * msync / VM object flushing optimizations
102 */
103static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
104SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
105        CTLFLAG_RW, &msync_flush_flags, 0, "");
106
107static int old_msync;
108SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
109    "Use old (insecure) msync behavior");
110
111static void	vm_object_qcollapse(vm_object_t object);
112static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
113
114/*
115 *	Virtual memory objects maintain the actual data
116 *	associated with allocated virtual memory.  A given
117 *	page of memory exists within exactly one object.
118 *
119 *	An object is only deallocated when all "references"
120 *	are given up.  Only one "reference" to a given
121 *	region of an object should be writeable.
122 *
123 *	Associated with each object is a list of all resident
124 *	memory pages belonging to that object; this list is
125 *	maintained by the "vm_page" module, and locked by the object's
126 *	lock.
127 *
128 *	Each object also records a "pager" routine which is
129 *	used to retrieve (and store) pages to the proper backing
130 *	storage.  In addition, objects may be backed by other
131 *	objects from which they were virtual-copied.
132 *
133 *	The only items within the object structure which are
134 *	modified after time of creation are:
135 *		reference count		locked by object's lock
136 *		pager routine		locked by object's lock
137 *
138 */
139
140struct object_q vm_object_list;
141struct mtx vm_object_list_mtx;	/* lock for object list and count */
142
143struct vm_object kernel_object_store;
144struct vm_object kmem_object_store;
145
146static long object_collapses;
147static long object_bypasses;
148
149/*
150 * next_index determines the page color that is assigned to the next
151 * allocated object.  Accesses to next_index are not synchronized
152 * because the effects of two or more object allocations using
153 * next_index simultaneously are inconsequential.  At any given time,
154 * numerous objects have the same page color.
155 */
156static int next_index;
157
158static uma_zone_t obj_zone;
159#define VM_OBJECTS_INIT 256
160
161static int vm_object_zinit(void *mem, int size, int flags);
162
163#ifdef INVARIANTS
164static void vm_object_zdtor(void *mem, int size, void *arg);
165
166static void
167vm_object_zdtor(void *mem, int size, void *arg)
168{
169	vm_object_t object;
170
171	object = (vm_object_t)mem;
172	KASSERT(TAILQ_EMPTY(&object->memq),
173	    ("object %p has resident pages",
174	    object));
175	KASSERT(object->paging_in_progress == 0,
176	    ("object %p paging_in_progress = %d",
177	    object, object->paging_in_progress));
178	KASSERT(object->resident_page_count == 0,
179	    ("object %p resident_page_count = %d",
180	    object, object->resident_page_count));
181	KASSERT(object->shadow_count == 0,
182	    ("object %p shadow_count = %d",
183	    object, object->shadow_count));
184}
185#endif
186
187static int
188vm_object_zinit(void *mem, int size, int flags)
189{
190	vm_object_t object;
191
192	object = (vm_object_t)mem;
193	bzero(&object->mtx, sizeof(object->mtx));
194	VM_OBJECT_LOCK_INIT(object, "standard object");
195
196	/* These are true for any object that has been freed */
197	object->paging_in_progress = 0;
198	object->resident_page_count = 0;
199	object->shadow_count = 0;
200	return (0);
201}
202
203void
204_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
205{
206	int incr;
207
208	TAILQ_INIT(&object->memq);
209	LIST_INIT(&object->shadow_head);
210
211	object->root = NULL;
212	object->type = type;
213	object->size = size;
214	object->generation = 1;
215	object->ref_count = 1;
216	object->flags = 0;
217	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
218		object->flags = OBJ_ONEMAPPING;
219	if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
220		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
221	else
222		incr = size;
223	object->pg_color = next_index;
224	next_index = (object->pg_color + incr) & PQ_L2_MASK;
225	object->handle = NULL;
226	object->backing_object = NULL;
227	object->backing_object_offset = (vm_ooffset_t) 0;
228
229	mtx_lock(&vm_object_list_mtx);
230	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
231	mtx_unlock(&vm_object_list_mtx);
232}
233
234/*
235 *	vm_object_init:
236 *
237 *	Initialize the VM objects module.
238 */
239void
240vm_object_init(void)
241{
242	TAILQ_INIT(&vm_object_list);
243	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
244
245	VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
246	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
247	    kernel_object);
248
249	VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
250	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
251	    kmem_object);
252
253	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
254#ifdef INVARIANTS
255	    vm_object_zdtor,
256#else
257	    NULL,
258#endif
259	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
260	uma_prealloc(obj_zone, VM_OBJECTS_INIT);
261}
262
263void
264vm_object_clear_flag(vm_object_t object, u_short bits)
265{
266
267	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
268	object->flags &= ~bits;
269}
270
271void
272vm_object_pip_add(vm_object_t object, short i)
273{
274
275	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
276	object->paging_in_progress += i;
277}
278
279void
280vm_object_pip_subtract(vm_object_t object, short i)
281{
282
283	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
284	object->paging_in_progress -= i;
285}
286
287void
288vm_object_pip_wakeup(vm_object_t object)
289{
290
291	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
292	object->paging_in_progress--;
293	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
294		vm_object_clear_flag(object, OBJ_PIPWNT);
295		wakeup(object);
296	}
297}
298
299void
300vm_object_pip_wakeupn(vm_object_t object, short i)
301{
302
303	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
304	if (i)
305		object->paging_in_progress -= i;
306	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
307		vm_object_clear_flag(object, OBJ_PIPWNT);
308		wakeup(object);
309	}
310}
311
312void
313vm_object_pip_wait(vm_object_t object, char *waitid)
314{
315
316	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
317	while (object->paging_in_progress) {
318		object->flags |= OBJ_PIPWNT;
319		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
320	}
321}
322
323/*
324 *	vm_object_allocate:
325 *
326 *	Returns a new object with the given size.
327 */
328vm_object_t
329vm_object_allocate(objtype_t type, vm_pindex_t size)
330{
331	vm_object_t object;
332
333	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
334	_vm_object_allocate(type, size, object);
335	return (object);
336}
337
338
339/*
340 *	vm_object_reference:
341 *
342 *	Gets another reference to the given object.  Note: OBJ_DEAD
343 *	objects can be referenced during final cleaning.
344 */
345void
346vm_object_reference(vm_object_t object)
347{
348	struct vnode *vp;
349	int flags;
350
351	if (object == NULL)
352		return;
353	VM_OBJECT_LOCK(object);
354	object->ref_count++;
355	if (object->type == OBJT_VNODE) {
356		vp = object->handle;
357		VI_LOCK(vp);
358		VM_OBJECT_UNLOCK(object);
359		for (flags = LK_INTERLOCK; vget(vp, flags, curthread);
360		     flags = 0)
361			printf("vm_object_reference: delay in vget\n");
362	} else
363		VM_OBJECT_UNLOCK(object);
364}
365
366/*
367 *	vm_object_reference_locked:
368 *
369 *	Gets another reference to the given object.
370 *
371 *	The object must be locked.
372 */
373void
374vm_object_reference_locked(vm_object_t object)
375{
376	struct vnode *vp;
377
378	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
379	KASSERT((object->flags & OBJ_DEAD) == 0,
380	    ("vm_object_reference_locked: dead object referenced"));
381	object->ref_count++;
382	if (object->type == OBJT_VNODE) {
383		vp = object->handle;
384		vref(vp);
385	}
386}
387
388/*
389 * Handle deallocating an object of type OBJT_VNODE.
390 */
391void
392vm_object_vndeallocate(vm_object_t object)
393{
394	struct vnode *vp = (struct vnode *) object->handle;
395
396	VFS_ASSERT_GIANT(vp->v_mount);
397	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
398	KASSERT(object->type == OBJT_VNODE,
399	    ("vm_object_vndeallocate: not a vnode object"));
400	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
401#ifdef INVARIANTS
402	if (object->ref_count == 0) {
403		vprint("vm_object_vndeallocate", vp);
404		panic("vm_object_vndeallocate: bad object reference count");
405	}
406#endif
407
408	object->ref_count--;
409	if (object->ref_count == 0) {
410		mp_fixme("Unlocked vflag access.");
411		vp->v_vflag &= ~VV_TEXT;
412	}
413	VM_OBJECT_UNLOCK(object);
414	/*
415	 * vrele may need a vop lock
416	 */
417	vrele(vp);
418}
419
420/*
421 *	vm_object_deallocate:
422 *
423 *	Release a reference to the specified object,
424 *	gained either through a vm_object_allocate
425 *	or a vm_object_reference call.  When all references
426 *	are gone, storage associated with this object
427 *	may be relinquished.
428 *
429 *	No object may be locked.
430 */
431void
432vm_object_deallocate(vm_object_t object)
433{
434	vm_object_t temp;
435
436	while (object != NULL) {
437		int vfslocked;
438		/*
439		 * In general, the object should be locked when working with
440		 * its type.  In this case, in order to maintain proper lock
441		 * ordering, an exception is possible because a vnode-backed
442		 * object never changes its type.
443		 */
444		vfslocked = 0;
445		if (object->type == OBJT_VNODE) {
446			struct vnode *vp = (struct vnode *) object->handle;
447			vfslocked = VFS_LOCK_GIANT(vp->v_mount);
448		}
449		VM_OBJECT_LOCK(object);
450		if (object->type == OBJT_VNODE) {
451			vm_object_vndeallocate(object);
452			VFS_UNLOCK_GIANT(vfslocked);
453			return;
454		}
455
456		KASSERT(object->ref_count != 0,
457			("vm_object_deallocate: object deallocated too many times: %d", object->type));
458
459		/*
460		 * If the reference count goes to 0 we start calling
461		 * vm_object_terminate() on the object chain.
462		 * A ref count of 1 may be a special case depending on the
463		 * shadow count being 0 or 1.
464		 */
465		object->ref_count--;
466		if (object->ref_count > 1) {
467			VM_OBJECT_UNLOCK(object);
468			return;
469		} else if (object->ref_count == 1) {
470			if (object->shadow_count == 0) {
471				vm_object_set_flag(object, OBJ_ONEMAPPING);
472			} else if ((object->shadow_count == 1) &&
473			    (object->handle == NULL) &&
474			    (object->type == OBJT_DEFAULT ||
475			     object->type == OBJT_SWAP)) {
476				vm_object_t robject;
477
478				robject = LIST_FIRST(&object->shadow_head);
479				KASSERT(robject != NULL,
480				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
481					 object->ref_count,
482					 object->shadow_count));
483				if (!VM_OBJECT_TRYLOCK(robject)) {
484					/*
485					 * Avoid a potential deadlock.
486					 */
487					object->ref_count++;
488					VM_OBJECT_UNLOCK(object);
489					/*
490					 * More likely than not the thread
491					 * holding robject's lock has lower
492					 * priority than the current thread.
493					 * Let the lower priority thread run.
494					 */
495					tsleep(&proc0, PVM, "vmo_de", 1);
496					continue;
497				}
498				/*
499				 * Collapse object into its shadow unless its
500				 * shadow is dead.  In that case, object will
501				 * be deallocated by the thread that is
502				 * deallocating its shadow.
503				 */
504				if ((robject->flags & OBJ_DEAD) == 0 &&
505				    (robject->handle == NULL) &&
506				    (robject->type == OBJT_DEFAULT ||
507				     robject->type == OBJT_SWAP)) {
508
509					robject->ref_count++;
510retry:
511					if (robject->paging_in_progress) {
512						VM_OBJECT_UNLOCK(object);
513						vm_object_pip_wait(robject,
514						    "objde1");
515						VM_OBJECT_LOCK(object);
516						goto retry;
517					} else if (object->paging_in_progress) {
518						VM_OBJECT_UNLOCK(robject);
519						object->flags |= OBJ_PIPWNT;
520						msleep(object,
521						    VM_OBJECT_MTX(object),
522						    PDROP | PVM, "objde2", 0);
523						VM_OBJECT_LOCK(robject);
524						VM_OBJECT_LOCK(object);
525						goto retry;
526					}
527					VM_OBJECT_UNLOCK(object);
528					if (robject->ref_count == 1) {
529						robject->ref_count--;
530						object = robject;
531						goto doterm;
532					}
533					object = robject;
534					vm_object_collapse(object);
535					VM_OBJECT_UNLOCK(object);
536					continue;
537				}
538				VM_OBJECT_UNLOCK(robject);
539			}
540			VM_OBJECT_UNLOCK(object);
541			return;
542		}
543doterm:
544		temp = object->backing_object;
545		if (temp != NULL) {
546			VM_OBJECT_LOCK(temp);
547			LIST_REMOVE(object, shadow_list);
548			temp->shadow_count--;
549			temp->generation++;
550			VM_OBJECT_UNLOCK(temp);
551			object->backing_object = NULL;
552		}
553		/*
554		 * Don't double-terminate, we could be in a termination
555		 * recursion due to the terminate having to sync data
556		 * to disk.
557		 */
558		if ((object->flags & OBJ_DEAD) == 0)
559			vm_object_terminate(object);
560		else
561			VM_OBJECT_UNLOCK(object);
562		object = temp;
563	}
564}
565
566/*
567 *	vm_object_terminate actually destroys the specified object, freeing
568 *	up all previously used resources.
569 *
570 *	The object must be locked.
571 *	This routine may block.
572 */
573void
574vm_object_terminate(vm_object_t object)
575{
576	vm_page_t p;
577
578	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
579
580	/*
581	 * Make sure no one uses us.
582	 */
583	vm_object_set_flag(object, OBJ_DEAD);
584
585	/*
586	 * wait for the pageout daemon to be done with the object
587	 */
588	vm_object_pip_wait(object, "objtrm");
589
590	KASSERT(!object->paging_in_progress,
591		("vm_object_terminate: pageout in progress"));
592
593	/*
594	 * Clean and free the pages, as appropriate. All references to the
595	 * object are gone, so we don't need to lock it.
596	 */
597	if (object->type == OBJT_VNODE) {
598		struct vnode *vp = (struct vnode *)object->handle;
599
600		/*
601		 * Clean pages and flush buffers.
602		 */
603		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
604		VM_OBJECT_UNLOCK(object);
605
606		vinvalbuf(vp, V_SAVE, NULL, 0, 0);
607
608		VM_OBJECT_LOCK(object);
609	}
610
611	KASSERT(object->ref_count == 0,
612		("vm_object_terminate: object with references, ref_count=%d",
613		object->ref_count));
614
615	/*
616	 * Now free any remaining pages. For internal objects, this also
617	 * removes them from paging queues. Don't free wired pages, just
618	 * remove them from the object.
619	 */
620	vm_page_lock_queues();
621	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
622		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
623			("vm_object_terminate: freeing busy page %p "
624			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
625		if (p->wire_count == 0) {
626			vm_page_free(p);
627			cnt.v_pfree++;
628		} else {
629			vm_page_remove(p);
630		}
631	}
632	vm_page_unlock_queues();
633
634	/*
635	 * Let the pager know object is dead.
636	 */
637	vm_pager_deallocate(object);
638	VM_OBJECT_UNLOCK(object);
639
640	/*
641	 * Remove the object from the global object list.
642	 */
643	mtx_lock(&vm_object_list_mtx);
644	TAILQ_REMOVE(&vm_object_list, object, object_list);
645	mtx_unlock(&vm_object_list_mtx);
646
647	/*
648	 * Free the space for the object.
649	 */
650	uma_zfree(obj_zone, object);
651}
652
653/*
654 *	vm_object_page_clean
655 *
656 *	Clean all dirty pages in the specified range of object.  Leaves page
657 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
658 *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
659 *	leaving the object dirty.
660 *
661 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
662 *	synchronous clustering mode implementation.
663 *
664 *	Odd semantics: if start == end, we clean everything.
665 *
666 *	The object must be locked.
667 */
668void
669vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
670{
671	vm_page_t p, np;
672	vm_pindex_t tstart, tend;
673	vm_pindex_t pi;
674	int clearobjflags;
675	int pagerflags;
676	int curgeneration;
677
678	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
679	if (object->type != OBJT_VNODE ||
680		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
681		return;
682
683	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
684	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
685
686	vm_object_set_flag(object, OBJ_CLEANING);
687
688	tstart = start;
689	if (end == 0) {
690		tend = object->size;
691	} else {
692		tend = end;
693	}
694
695	vm_page_lock_queues();
696	/*
697	 * If the caller is smart and only msync()s a range he knows is
698	 * dirty, we may be able to avoid an object scan.  This results in
699	 * a phenominal improvement in performance.  We cannot do this
700	 * as a matter of course because the object may be huge - e.g.
701	 * the size might be in the gigabytes or terrabytes.
702	 */
703	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
704		vm_pindex_t tscan;
705		int scanlimit;
706		int scanreset;
707
708		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
709		if (scanreset < 16)
710			scanreset = 16;
711		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
712
713		scanlimit = scanreset;
714		tscan = tstart;
715		while (tscan < tend) {
716			curgeneration = object->generation;
717			p = vm_page_lookup(object, tscan);
718			if (p == NULL || p->valid == 0 ||
719			    (p->queue - p->pc) == PQ_CACHE) {
720				if (--scanlimit == 0)
721					break;
722				++tscan;
723				continue;
724			}
725			vm_page_test_dirty(p);
726			if ((p->dirty & p->valid) == 0) {
727				if (--scanlimit == 0)
728					break;
729				++tscan;
730				continue;
731			}
732			/*
733			 * If we have been asked to skip nosync pages and
734			 * this is a nosync page, we can't continue.
735			 */
736			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
737				if (--scanlimit == 0)
738					break;
739				++tscan;
740				continue;
741			}
742			scanlimit = scanreset;
743
744			/*
745			 * This returns 0 if it was unable to busy the first
746			 * page (i.e. had to sleep).
747			 */
748			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
749		}
750
751		/*
752		 * If everything was dirty and we flushed it successfully,
753		 * and the requested range is not the entire object, we
754		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
755		 * return immediately.
756		 */
757		if (tscan >= tend && (tstart || tend < object->size)) {
758			vm_page_unlock_queues();
759			vm_object_clear_flag(object, OBJ_CLEANING);
760			return;
761		}
762		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
763	}
764
765	/*
766	 * Generally set CLEANCHK interlock and make the page read-only so
767	 * we can then clear the object flags.
768	 *
769	 * However, if this is a nosync mmap then the object is likely to
770	 * stay dirty so do not mess with the page and do not clear the
771	 * object flags.
772	 */
773	clearobjflags = 1;
774	TAILQ_FOREACH(p, &object->memq, listq) {
775		vm_page_flag_set(p, PG_CLEANCHK);
776		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
777			clearobjflags = 0;
778		else
779			pmap_page_protect(p, VM_PROT_READ);
780	}
781
782	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
783		struct vnode *vp;
784
785		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
786		if (object->type == OBJT_VNODE &&
787		    (vp = (struct vnode *)object->handle) != NULL) {
788			VI_LOCK(vp);
789			if (vp->v_iflag & VI_OBJDIRTY)
790				vp->v_iflag &= ~VI_OBJDIRTY;
791			VI_UNLOCK(vp);
792		}
793	}
794
795rescan:
796	curgeneration = object->generation;
797
798	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
799		int n;
800
801		np = TAILQ_NEXT(p, listq);
802
803again:
804		pi = p->pindex;
805		if (((p->flags & PG_CLEANCHK) == 0) ||
806			(pi < tstart) || (pi >= tend) ||
807			(p->valid == 0) ||
808			((p->queue - p->pc) == PQ_CACHE)) {
809			vm_page_flag_clear(p, PG_CLEANCHK);
810			continue;
811		}
812
813		vm_page_test_dirty(p);
814		if ((p->dirty & p->valid) == 0) {
815			vm_page_flag_clear(p, PG_CLEANCHK);
816			continue;
817		}
818
819		/*
820		 * If we have been asked to skip nosync pages and this is a
821		 * nosync page, skip it.  Note that the object flags were
822		 * not cleared in this case so we do not have to set them.
823		 */
824		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
825			vm_page_flag_clear(p, PG_CLEANCHK);
826			continue;
827		}
828
829		n = vm_object_page_collect_flush(object, p,
830			curgeneration, pagerflags);
831		if (n == 0)
832			goto rescan;
833
834		if (object->generation != curgeneration)
835			goto rescan;
836
837		/*
838		 * Try to optimize the next page.  If we can't we pick up
839		 * our (random) scan where we left off.
840		 */
841		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
842			if ((p = vm_page_lookup(object, pi + n)) != NULL)
843				goto again;
844		}
845	}
846	vm_page_unlock_queues();
847#if 0
848	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
849#endif
850
851	vm_object_clear_flag(object, OBJ_CLEANING);
852	return;
853}
854
855static int
856vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
857{
858	int runlen;
859	int maxf;
860	int chkb;
861	int maxb;
862	int i;
863	vm_pindex_t pi;
864	vm_page_t maf[vm_pageout_page_count];
865	vm_page_t mab[vm_pageout_page_count];
866	vm_page_t ma[vm_pageout_page_count];
867
868	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
869	pi = p->pindex;
870	while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
871		vm_page_lock_queues();
872		if (object->generation != curgeneration) {
873			return(0);
874		}
875	}
876	maxf = 0;
877	for(i = 1; i < vm_pageout_page_count; i++) {
878		vm_page_t tp;
879
880		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
881			if ((tp->flags & PG_BUSY) ||
882				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
883				 (tp->flags & PG_CLEANCHK) == 0) ||
884				(tp->busy != 0))
885				break;
886			if((tp->queue - tp->pc) == PQ_CACHE) {
887				vm_page_flag_clear(tp, PG_CLEANCHK);
888				break;
889			}
890			vm_page_test_dirty(tp);
891			if ((tp->dirty & tp->valid) == 0) {
892				vm_page_flag_clear(tp, PG_CLEANCHK);
893				break;
894			}
895			maf[ i - 1 ] = tp;
896			maxf++;
897			continue;
898		}
899		break;
900	}
901
902	maxb = 0;
903	chkb = vm_pageout_page_count -  maxf;
904	if (chkb) {
905		for(i = 1; i < chkb;i++) {
906			vm_page_t tp;
907
908			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
909				if ((tp->flags & PG_BUSY) ||
910					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
911					 (tp->flags & PG_CLEANCHK) == 0) ||
912					(tp->busy != 0))
913					break;
914				if ((tp->queue - tp->pc) == PQ_CACHE) {
915					vm_page_flag_clear(tp, PG_CLEANCHK);
916					break;
917				}
918				vm_page_test_dirty(tp);
919				if ((tp->dirty & tp->valid) == 0) {
920					vm_page_flag_clear(tp, PG_CLEANCHK);
921					break;
922				}
923				mab[ i - 1 ] = tp;
924				maxb++;
925				continue;
926			}
927			break;
928		}
929	}
930
931	for(i = 0; i < maxb; i++) {
932		int index = (maxb - i) - 1;
933		ma[index] = mab[i];
934		vm_page_flag_clear(ma[index], PG_CLEANCHK);
935	}
936	vm_page_flag_clear(p, PG_CLEANCHK);
937	ma[maxb] = p;
938	for(i = 0; i < maxf; i++) {
939		int index = (maxb + i) + 1;
940		ma[index] = maf[i];
941		vm_page_flag_clear(ma[index], PG_CLEANCHK);
942	}
943	runlen = maxb + maxf + 1;
944
945	vm_pageout_flush(ma, runlen, pagerflags);
946	for (i = 0; i < runlen; i++) {
947		if (ma[i]->valid & ma[i]->dirty) {
948			pmap_page_protect(ma[i], VM_PROT_READ);
949			vm_page_flag_set(ma[i], PG_CLEANCHK);
950
951			/*
952			 * maxf will end up being the actual number of pages
953			 * we wrote out contiguously, non-inclusive of the
954			 * first page.  We do not count look-behind pages.
955			 */
956			if (i >= maxb + 1 && (maxf > i - maxb - 1))
957				maxf = i - maxb - 1;
958		}
959	}
960	return(maxf + 1);
961}
962
963/*
964 * Note that there is absolutely no sense in writing out
965 * anonymous objects, so we track down the vnode object
966 * to write out.
967 * We invalidate (remove) all pages from the address space
968 * for semantic correctness.
969 *
970 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
971 * may start out with a NULL object.
972 */
973void
974vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
975    boolean_t syncio, boolean_t invalidate)
976{
977	vm_object_t backing_object;
978	struct vnode *vp;
979	int flags;
980
981	if (object == NULL)
982		return;
983	VM_OBJECT_LOCK(object);
984	while ((backing_object = object->backing_object) != NULL) {
985		VM_OBJECT_LOCK(backing_object);
986		offset += object->backing_object_offset;
987		VM_OBJECT_UNLOCK(object);
988		object = backing_object;
989		if (object->size < OFF_TO_IDX(offset + size))
990			size = IDX_TO_OFF(object->size) - offset;
991	}
992	/*
993	 * Flush pages if writing is allowed, invalidate them
994	 * if invalidation requested.  Pages undergoing I/O
995	 * will be ignored by vm_object_page_remove().
996	 *
997	 * We cannot lock the vnode and then wait for paging
998	 * to complete without deadlocking against vm_fault.
999	 * Instead we simply call vm_object_page_remove() and
1000	 * allow it to block internally on a page-by-page
1001	 * basis when it encounters pages undergoing async
1002	 * I/O.
1003	 */
1004	if (object->type == OBJT_VNODE &&
1005	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1006		int vfslocked;
1007		vp = object->handle;
1008		VM_OBJECT_UNLOCK(object);
1009		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1010		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
1011		flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1012		flags |= invalidate ? OBJPC_INVAL : 0;
1013		VM_OBJECT_LOCK(object);
1014		vm_object_page_clean(object,
1015		    OFF_TO_IDX(offset),
1016		    OFF_TO_IDX(offset + size + PAGE_MASK),
1017		    flags);
1018		VM_OBJECT_UNLOCK(object);
1019		VOP_UNLOCK(vp, 0, curthread);
1020		VFS_UNLOCK_GIANT(vfslocked);
1021		VM_OBJECT_LOCK(object);
1022	}
1023	if ((object->type == OBJT_VNODE ||
1024	     object->type == OBJT_DEVICE) && invalidate) {
1025		boolean_t purge;
1026		purge = old_msync || (object->type == OBJT_DEVICE);
1027		vm_object_page_remove(object,
1028		    OFF_TO_IDX(offset),
1029		    OFF_TO_IDX(offset + size + PAGE_MASK),
1030		    purge ? FALSE : TRUE);
1031	}
1032	VM_OBJECT_UNLOCK(object);
1033}
1034
1035/*
1036 *	vm_object_madvise:
1037 *
1038 *	Implements the madvise function at the object/page level.
1039 *
1040 *	MADV_WILLNEED	(any object)
1041 *
1042 *	    Activate the specified pages if they are resident.
1043 *
1044 *	MADV_DONTNEED	(any object)
1045 *
1046 *	    Deactivate the specified pages if they are resident.
1047 *
1048 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1049 *			 OBJ_ONEMAPPING only)
1050 *
1051 *	    Deactivate and clean the specified pages if they are
1052 *	    resident.  This permits the process to reuse the pages
1053 *	    without faulting or the kernel to reclaim the pages
1054 *	    without I/O.
1055 */
1056void
1057vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1058{
1059	vm_pindex_t end, tpindex;
1060	vm_object_t backing_object, tobject;
1061	vm_page_t m;
1062
1063	if (object == NULL)
1064		return;
1065	VM_OBJECT_LOCK(object);
1066	end = pindex + count;
1067	/*
1068	 * Locate and adjust resident pages
1069	 */
1070	for (; pindex < end; pindex += 1) {
1071relookup:
1072		tobject = object;
1073		tpindex = pindex;
1074shadowlookup:
1075		/*
1076		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1077		 * and those pages must be OBJ_ONEMAPPING.
1078		 */
1079		if (advise == MADV_FREE) {
1080			if ((tobject->type != OBJT_DEFAULT &&
1081			     tobject->type != OBJT_SWAP) ||
1082			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1083				goto unlock_tobject;
1084			}
1085		}
1086		m = vm_page_lookup(tobject, tpindex);
1087		if (m == NULL) {
1088			/*
1089			 * There may be swap even if there is no backing page
1090			 */
1091			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1092				swap_pager_freespace(tobject, tpindex, 1);
1093			/*
1094			 * next object
1095			 */
1096			backing_object = tobject->backing_object;
1097			if (backing_object == NULL)
1098				goto unlock_tobject;
1099			VM_OBJECT_LOCK(backing_object);
1100			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1101			if (tobject != object)
1102				VM_OBJECT_UNLOCK(tobject);
1103			tobject = backing_object;
1104			goto shadowlookup;
1105		}
1106		/*
1107		 * If the page is busy or not in a normal active state,
1108		 * we skip it.  If the page is not managed there are no
1109		 * page queues to mess with.  Things can break if we mess
1110		 * with pages in any of the below states.
1111		 */
1112		vm_page_lock_queues();
1113		if (m->hold_count ||
1114		    m->wire_count ||
1115		    (m->flags & PG_UNMANAGED) ||
1116		    m->valid != VM_PAGE_BITS_ALL) {
1117			vm_page_unlock_queues();
1118			goto unlock_tobject;
1119		}
1120		if ((m->flags & PG_BUSY) || m->busy) {
1121			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1122			if (object != tobject)
1123				VM_OBJECT_UNLOCK(object);
1124			VM_OBJECT_UNLOCK(tobject);
1125			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "madvpo", 0);
1126			VM_OBJECT_LOCK(object);
1127  			goto relookup;
1128		}
1129		if (advise == MADV_WILLNEED) {
1130			vm_page_activate(m);
1131		} else if (advise == MADV_DONTNEED) {
1132			vm_page_dontneed(m);
1133		} else if (advise == MADV_FREE) {
1134			/*
1135			 * Mark the page clean.  This will allow the page
1136			 * to be freed up by the system.  However, such pages
1137			 * are often reused quickly by malloc()/free()
1138			 * so we do not do anything that would cause
1139			 * a page fault if we can help it.
1140			 *
1141			 * Specifically, we do not try to actually free
1142			 * the page now nor do we try to put it in the
1143			 * cache (which would cause a page fault on reuse).
1144			 *
1145			 * But we do make the page is freeable as we
1146			 * can without actually taking the step of unmapping
1147			 * it.
1148			 */
1149			pmap_clear_modify(m);
1150			m->dirty = 0;
1151			m->act_count = 0;
1152			vm_page_dontneed(m);
1153		}
1154		vm_page_unlock_queues();
1155		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1156			swap_pager_freespace(tobject, tpindex, 1);
1157unlock_tobject:
1158		if (tobject != object)
1159			VM_OBJECT_UNLOCK(tobject);
1160	}
1161	VM_OBJECT_UNLOCK(object);
1162}
1163
1164/*
1165 *	vm_object_shadow:
1166 *
1167 *	Create a new object which is backed by the
1168 *	specified existing object range.  The source
1169 *	object reference is deallocated.
1170 *
1171 *	The new object and offset into that object
1172 *	are returned in the source parameters.
1173 */
1174void
1175vm_object_shadow(
1176	vm_object_t *object,	/* IN/OUT */
1177	vm_ooffset_t *offset,	/* IN/OUT */
1178	vm_size_t length)
1179{
1180	vm_object_t source;
1181	vm_object_t result;
1182
1183	source = *object;
1184
1185	/*
1186	 * Don't create the new object if the old object isn't shared.
1187	 */
1188	if (source != NULL) {
1189		VM_OBJECT_LOCK(source);
1190		if (source->ref_count == 1 &&
1191		    source->handle == NULL &&
1192		    (source->type == OBJT_DEFAULT ||
1193		     source->type == OBJT_SWAP)) {
1194			VM_OBJECT_UNLOCK(source);
1195			return;
1196		}
1197		VM_OBJECT_UNLOCK(source);
1198	}
1199
1200	/*
1201	 * Allocate a new object with the given length.
1202	 */
1203	result = vm_object_allocate(OBJT_DEFAULT, length);
1204
1205	/*
1206	 * The new object shadows the source object, adding a reference to it.
1207	 * Our caller changes his reference to point to the new object,
1208	 * removing a reference to the source object.  Net result: no change
1209	 * of reference count.
1210	 *
1211	 * Try to optimize the result object's page color when shadowing
1212	 * in order to maintain page coloring consistency in the combined
1213	 * shadowed object.
1214	 */
1215	result->backing_object = source;
1216	/*
1217	 * Store the offset into the source object, and fix up the offset into
1218	 * the new object.
1219	 */
1220	result->backing_object_offset = *offset;
1221	if (source != NULL) {
1222		VM_OBJECT_LOCK(source);
1223		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1224		source->shadow_count++;
1225		source->generation++;
1226		if (length < source->size)
1227			length = source->size;
1228		if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1229		    source->generation > 1)
1230			length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1231		result->pg_color = (source->pg_color +
1232		    length * source->generation) & PQ_L2_MASK;
1233		VM_OBJECT_UNLOCK(source);
1234		next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1235		    PQ_L2_MASK;
1236	}
1237
1238
1239	/*
1240	 * Return the new things
1241	 */
1242	*offset = 0;
1243	*object = result;
1244}
1245
1246/*
1247 *	vm_object_split:
1248 *
1249 * Split the pages in a map entry into a new object.  This affords
1250 * easier removal of unused pages, and keeps object inheritance from
1251 * being a negative impact on memory usage.
1252 */
1253void
1254vm_object_split(vm_map_entry_t entry)
1255{
1256	vm_page_t m;
1257	vm_object_t orig_object, new_object, source;
1258	vm_pindex_t offidxstart, offidxend;
1259	vm_size_t idx, size;
1260
1261	orig_object = entry->object.vm_object;
1262	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1263		return;
1264	if (orig_object->ref_count <= 1)
1265		return;
1266	VM_OBJECT_UNLOCK(orig_object);
1267
1268	offidxstart = OFF_TO_IDX(entry->offset);
1269	offidxend = offidxstart + OFF_TO_IDX(entry->end - entry->start);
1270	size = offidxend - offidxstart;
1271
1272	/*
1273	 * If swap_pager_copy() is later called, it will convert new_object
1274	 * into a swap object.
1275	 */
1276	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1277
1278	VM_OBJECT_LOCK(new_object);
1279	VM_OBJECT_LOCK(orig_object);
1280	source = orig_object->backing_object;
1281	if (source != NULL) {
1282		VM_OBJECT_LOCK(source);
1283		LIST_INSERT_HEAD(&source->shadow_head,
1284				  new_object, shadow_list);
1285		source->shadow_count++;
1286		source->generation++;
1287		vm_object_reference_locked(source);	/* for new_object */
1288		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1289		VM_OBJECT_UNLOCK(source);
1290		new_object->backing_object_offset =
1291			orig_object->backing_object_offset + entry->offset;
1292		new_object->backing_object = source;
1293	}
1294	vm_page_lock_queues();
1295	for (idx = 0; idx < size; idx++) {
1296	retry:
1297		m = vm_page_lookup(orig_object, offidxstart + idx);
1298		if (m == NULL)
1299			continue;
1300
1301		/*
1302		 * We must wait for pending I/O to complete before we can
1303		 * rename the page.
1304		 *
1305		 * We do not have to VM_PROT_NONE the page as mappings should
1306		 * not be changed by this operation.
1307		 */
1308		if ((m->flags & PG_BUSY) || m->busy) {
1309			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1310			VM_OBJECT_UNLOCK(orig_object);
1311			VM_OBJECT_UNLOCK(new_object);
1312			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "spltwt", 0);
1313			VM_OBJECT_LOCK(new_object);
1314			VM_OBJECT_LOCK(orig_object);
1315			vm_page_lock_queues();
1316			goto retry;
1317		}
1318		vm_page_rename(m, new_object, idx);
1319		/* page automatically made dirty by rename and cache handled */
1320		vm_page_busy(m);
1321	}
1322	vm_page_unlock_queues();
1323	if (orig_object->type == OBJT_SWAP) {
1324		/*
1325		 * swap_pager_copy() can sleep, in which case the orig_object's
1326		 * and new_object's locks are released and reacquired.
1327		 */
1328		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1329	}
1330	VM_OBJECT_UNLOCK(orig_object);
1331	vm_page_lock_queues();
1332	TAILQ_FOREACH(m, &new_object->memq, listq)
1333		vm_page_wakeup(m);
1334	vm_page_unlock_queues();
1335	VM_OBJECT_UNLOCK(new_object);
1336	entry->object.vm_object = new_object;
1337	entry->offset = 0LL;
1338	vm_object_deallocate(orig_object);
1339	VM_OBJECT_LOCK(new_object);
1340}
1341
1342#define	OBSC_TEST_ALL_SHADOWED	0x0001
1343#define	OBSC_COLLAPSE_NOWAIT	0x0002
1344#define	OBSC_COLLAPSE_WAIT	0x0004
1345
1346static int
1347vm_object_backing_scan(vm_object_t object, int op)
1348{
1349	int r = 1;
1350	vm_page_t p;
1351	vm_object_t backing_object;
1352	vm_pindex_t backing_offset_index;
1353
1354	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1355	VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1356
1357	backing_object = object->backing_object;
1358	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1359
1360	/*
1361	 * Initial conditions
1362	 */
1363	if (op & OBSC_TEST_ALL_SHADOWED) {
1364		/*
1365		 * We do not want to have to test for the existence of
1366		 * swap pages in the backing object.  XXX but with the
1367		 * new swapper this would be pretty easy to do.
1368		 *
1369		 * XXX what about anonymous MAP_SHARED memory that hasn't
1370		 * been ZFOD faulted yet?  If we do not test for this, the
1371		 * shadow test may succeed! XXX
1372		 */
1373		if (backing_object->type != OBJT_DEFAULT) {
1374			return (0);
1375		}
1376	}
1377	if (op & OBSC_COLLAPSE_WAIT) {
1378		vm_object_set_flag(backing_object, OBJ_DEAD);
1379	}
1380
1381	/*
1382	 * Our scan
1383	 */
1384	p = TAILQ_FIRST(&backing_object->memq);
1385	while (p) {
1386		vm_page_t next = TAILQ_NEXT(p, listq);
1387		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1388
1389		if (op & OBSC_TEST_ALL_SHADOWED) {
1390			vm_page_t pp;
1391
1392			/*
1393			 * Ignore pages outside the parent object's range
1394			 * and outside the parent object's mapping of the
1395			 * backing object.
1396			 *
1397			 * note that we do not busy the backing object's
1398			 * page.
1399			 */
1400			if (
1401			    p->pindex < backing_offset_index ||
1402			    new_pindex >= object->size
1403			) {
1404				p = next;
1405				continue;
1406			}
1407
1408			/*
1409			 * See if the parent has the page or if the parent's
1410			 * object pager has the page.  If the parent has the
1411			 * page but the page is not valid, the parent's
1412			 * object pager must have the page.
1413			 *
1414			 * If this fails, the parent does not completely shadow
1415			 * the object and we might as well give up now.
1416			 */
1417
1418			pp = vm_page_lookup(object, new_pindex);
1419			if (
1420			    (pp == NULL || pp->valid == 0) &&
1421			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1422			) {
1423				r = 0;
1424				break;
1425			}
1426		}
1427
1428		/*
1429		 * Check for busy page
1430		 */
1431		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1432			vm_page_t pp;
1433
1434			vm_page_lock_queues();
1435			if (op & OBSC_COLLAPSE_NOWAIT) {
1436				if ((p->flags & PG_BUSY) ||
1437				    !p->valid ||
1438				    p->hold_count ||
1439				    p->wire_count ||
1440				    p->busy) {
1441					vm_page_unlock_queues();
1442					p = next;
1443					continue;
1444				}
1445			} else if (op & OBSC_COLLAPSE_WAIT) {
1446				if ((p->flags & PG_BUSY) || p->busy) {
1447					vm_page_flag_set(p,
1448					    PG_WANTED | PG_REFERENCED);
1449					VM_OBJECT_UNLOCK(backing_object);
1450					VM_OBJECT_UNLOCK(object);
1451					msleep(p, &vm_page_queue_mtx,
1452					    PDROP | PVM, "vmocol", 0);
1453					VM_OBJECT_LOCK(object);
1454					VM_OBJECT_LOCK(backing_object);
1455					/*
1456					 * If we slept, anything could have
1457					 * happened.  Since the object is
1458					 * marked dead, the backing offset
1459					 * should not have changed so we
1460					 * just restart our scan.
1461					 */
1462					p = TAILQ_FIRST(&backing_object->memq);
1463					continue;
1464				}
1465			}
1466			vm_page_unlock_queues();
1467
1468			KASSERT(
1469			    p->object == backing_object,
1470			    ("vm_object_backing_scan: object mismatch")
1471			);
1472
1473			/*
1474			 * Destroy any associated swap
1475			 */
1476			if (backing_object->type == OBJT_SWAP) {
1477				swap_pager_freespace(
1478				    backing_object,
1479				    p->pindex,
1480				    1
1481				);
1482			}
1483
1484			if (
1485			    p->pindex < backing_offset_index ||
1486			    new_pindex >= object->size
1487			) {
1488				/*
1489				 * Page is out of the parent object's range, we
1490				 * can simply destroy it.
1491				 */
1492				vm_page_lock_queues();
1493				pmap_remove_all(p);
1494				vm_page_free(p);
1495				vm_page_unlock_queues();
1496				p = next;
1497				continue;
1498			}
1499
1500			pp = vm_page_lookup(object, new_pindex);
1501			if (
1502			    pp != NULL ||
1503			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1504			) {
1505				/*
1506				 * page already exists in parent OR swap exists
1507				 * for this location in the parent.  Destroy
1508				 * the original page from the backing object.
1509				 *
1510				 * Leave the parent's page alone
1511				 */
1512				vm_page_lock_queues();
1513				pmap_remove_all(p);
1514				vm_page_free(p);
1515				vm_page_unlock_queues();
1516				p = next;
1517				continue;
1518			}
1519
1520			/*
1521			 * Page does not exist in parent, rename the
1522			 * page from the backing object to the main object.
1523			 *
1524			 * If the page was mapped to a process, it can remain
1525			 * mapped through the rename.
1526			 */
1527			vm_page_lock_queues();
1528			vm_page_rename(p, object, new_pindex);
1529			vm_page_unlock_queues();
1530			/* page automatically made dirty by rename */
1531		}
1532		p = next;
1533	}
1534	return (r);
1535}
1536
1537
1538/*
1539 * this version of collapse allows the operation to occur earlier and
1540 * when paging_in_progress is true for an object...  This is not a complete
1541 * operation, but should plug 99.9% of the rest of the leaks.
1542 */
1543static void
1544vm_object_qcollapse(vm_object_t object)
1545{
1546	vm_object_t backing_object = object->backing_object;
1547
1548	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1549	VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1550
1551	if (backing_object->ref_count != 1)
1552		return;
1553
1554	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1555}
1556
1557/*
1558 *	vm_object_collapse:
1559 *
1560 *	Collapse an object with the object backing it.
1561 *	Pages in the backing object are moved into the
1562 *	parent, and the backing object is deallocated.
1563 */
1564void
1565vm_object_collapse(vm_object_t object)
1566{
1567	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1568
1569	while (TRUE) {
1570		vm_object_t backing_object;
1571
1572		/*
1573		 * Verify that the conditions are right for collapse:
1574		 *
1575		 * The object exists and the backing object exists.
1576		 */
1577		if ((backing_object = object->backing_object) == NULL)
1578			break;
1579
1580		/*
1581		 * we check the backing object first, because it is most likely
1582		 * not collapsable.
1583		 */
1584		VM_OBJECT_LOCK(backing_object);
1585		if (backing_object->handle != NULL ||
1586		    (backing_object->type != OBJT_DEFAULT &&
1587		     backing_object->type != OBJT_SWAP) ||
1588		    (backing_object->flags & OBJ_DEAD) ||
1589		    object->handle != NULL ||
1590		    (object->type != OBJT_DEFAULT &&
1591		     object->type != OBJT_SWAP) ||
1592		    (object->flags & OBJ_DEAD)) {
1593			VM_OBJECT_UNLOCK(backing_object);
1594			break;
1595		}
1596
1597		if (
1598		    object->paging_in_progress != 0 ||
1599		    backing_object->paging_in_progress != 0
1600		) {
1601			vm_object_qcollapse(object);
1602			VM_OBJECT_UNLOCK(backing_object);
1603			break;
1604		}
1605		/*
1606		 * We know that we can either collapse the backing object (if
1607		 * the parent is the only reference to it) or (perhaps) have
1608		 * the parent bypass the object if the parent happens to shadow
1609		 * all the resident pages in the entire backing object.
1610		 *
1611		 * This is ignoring pager-backed pages such as swap pages.
1612		 * vm_object_backing_scan fails the shadowing test in this
1613		 * case.
1614		 */
1615		if (backing_object->ref_count == 1) {
1616			/*
1617			 * If there is exactly one reference to the backing
1618			 * object, we can collapse it into the parent.
1619			 */
1620			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1621
1622			/*
1623			 * Move the pager from backing_object to object.
1624			 */
1625			if (backing_object->type == OBJT_SWAP) {
1626				/*
1627				 * swap_pager_copy() can sleep, in which case
1628				 * the backing_object's and object's locks are
1629				 * released and reacquired.
1630				 */
1631				swap_pager_copy(
1632				    backing_object,
1633				    object,
1634				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1635			}
1636			/*
1637			 * Object now shadows whatever backing_object did.
1638			 * Note that the reference to
1639			 * backing_object->backing_object moves from within
1640			 * backing_object to within object.
1641			 */
1642			LIST_REMOVE(object, shadow_list);
1643			backing_object->shadow_count--;
1644			backing_object->generation++;
1645			if (backing_object->backing_object) {
1646				VM_OBJECT_LOCK(backing_object->backing_object);
1647				LIST_REMOVE(backing_object, shadow_list);
1648				LIST_INSERT_HEAD(
1649				    &backing_object->backing_object->shadow_head,
1650				    object, shadow_list);
1651				/*
1652				 * The shadow_count has not changed.
1653				 */
1654				backing_object->backing_object->generation++;
1655				VM_OBJECT_UNLOCK(backing_object->backing_object);
1656			}
1657			object->backing_object = backing_object->backing_object;
1658			object->backing_object_offset +=
1659			    backing_object->backing_object_offset;
1660
1661			/*
1662			 * Discard backing_object.
1663			 *
1664			 * Since the backing object has no pages, no pager left,
1665			 * and no object references within it, all that is
1666			 * necessary is to dispose of it.
1667			 */
1668			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1669			VM_OBJECT_UNLOCK(backing_object);
1670
1671			mtx_lock(&vm_object_list_mtx);
1672			TAILQ_REMOVE(
1673			    &vm_object_list,
1674			    backing_object,
1675			    object_list
1676			);
1677			mtx_unlock(&vm_object_list_mtx);
1678
1679			uma_zfree(obj_zone, backing_object);
1680
1681			object_collapses++;
1682		} else {
1683			vm_object_t new_backing_object;
1684
1685			/*
1686			 * If we do not entirely shadow the backing object,
1687			 * there is nothing we can do so we give up.
1688			 */
1689			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1690				VM_OBJECT_UNLOCK(backing_object);
1691				break;
1692			}
1693
1694			/*
1695			 * Make the parent shadow the next object in the
1696			 * chain.  Deallocating backing_object will not remove
1697			 * it, since its reference count is at least 2.
1698			 */
1699			LIST_REMOVE(object, shadow_list);
1700			backing_object->shadow_count--;
1701			backing_object->generation++;
1702
1703			new_backing_object = backing_object->backing_object;
1704			if ((object->backing_object = new_backing_object) != NULL) {
1705				VM_OBJECT_LOCK(new_backing_object);
1706				LIST_INSERT_HEAD(
1707				    &new_backing_object->shadow_head,
1708				    object,
1709				    shadow_list
1710				);
1711				new_backing_object->shadow_count++;
1712				new_backing_object->generation++;
1713				vm_object_reference_locked(new_backing_object);
1714				VM_OBJECT_UNLOCK(new_backing_object);
1715				object->backing_object_offset +=
1716					backing_object->backing_object_offset;
1717			}
1718
1719			/*
1720			 * Drop the reference count on backing_object. Since
1721			 * its ref_count was at least 2, it will not vanish.
1722			 */
1723			backing_object->ref_count--;
1724			VM_OBJECT_UNLOCK(backing_object);
1725			object_bypasses++;
1726		}
1727
1728		/*
1729		 * Try again with this object's new backing object.
1730		 */
1731	}
1732}
1733
1734/*
1735 *	vm_object_page_remove:
1736 *
1737 *	Removes all physical pages in the given range from the
1738 *	object's list of pages.  If the range's end is zero, all
1739 *	physical pages from the range's start to the end of the object
1740 *	are deleted.
1741 *
1742 *	The object must be locked.
1743 */
1744void
1745vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1746    boolean_t clean_only)
1747{
1748	vm_page_t p, next;
1749
1750	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1751	if (object->resident_page_count == 0)
1752		return;
1753
1754	/*
1755	 * Since physically-backed objects do not use managed pages, we can't
1756	 * remove pages from the object (we must instead remove the page
1757	 * references, and then destroy the object).
1758	 */
1759	KASSERT(object->type != OBJT_PHYS,
1760	    ("attempt to remove pages from a physical object"));
1761
1762	vm_object_pip_add(object, 1);
1763again:
1764	vm_page_lock_queues();
1765	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1766		if (p->pindex < start) {
1767			p = vm_page_splay(start, object->root);
1768			if ((object->root = p)->pindex < start)
1769				p = TAILQ_NEXT(p, listq);
1770		}
1771	}
1772	/*
1773	 * Assert: the variable p is either (1) the page with the
1774	 * least pindex greater than or equal to the parameter pindex
1775	 * or (2) NULL.
1776	 */
1777	for (;
1778	     p != NULL && (p->pindex < end || end == 0);
1779	     p = next) {
1780		next = TAILQ_NEXT(p, listq);
1781
1782		if (p->wire_count != 0) {
1783			pmap_remove_all(p);
1784			if (!clean_only)
1785				p->valid = 0;
1786			continue;
1787		}
1788		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1789			goto again;
1790		if (clean_only && p->valid) {
1791			pmap_page_protect(p, VM_PROT_READ | VM_PROT_EXECUTE);
1792			if (p->valid & p->dirty)
1793				continue;
1794		}
1795		pmap_remove_all(p);
1796		vm_page_free(p);
1797	}
1798	vm_page_unlock_queues();
1799	vm_object_pip_wakeup(object);
1800}
1801
1802/*
1803 *	Routine:	vm_object_coalesce
1804 *	Function:	Coalesces two objects backing up adjoining
1805 *			regions of memory into a single object.
1806 *
1807 *	returns TRUE if objects were combined.
1808 *
1809 *	NOTE:	Only works at the moment if the second object is NULL -
1810 *		if it's not, which object do we lock first?
1811 *
1812 *	Parameters:
1813 *		prev_object	First object to coalesce
1814 *		prev_offset	Offset into prev_object
1815 *		prev_size	Size of reference to prev_object
1816 *		next_size	Size of reference to the second object
1817 *
1818 *	Conditions:
1819 *	The object must *not* be locked.
1820 */
1821boolean_t
1822vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1823	vm_size_t prev_size, vm_size_t next_size)
1824{
1825	vm_pindex_t next_pindex;
1826
1827	if (prev_object == NULL)
1828		return (TRUE);
1829	VM_OBJECT_LOCK(prev_object);
1830	if (prev_object->type != OBJT_DEFAULT &&
1831	    prev_object->type != OBJT_SWAP) {
1832		VM_OBJECT_UNLOCK(prev_object);
1833		return (FALSE);
1834	}
1835
1836	/*
1837	 * Try to collapse the object first
1838	 */
1839	vm_object_collapse(prev_object);
1840
1841	/*
1842	 * Can't coalesce if: . more than one reference . paged out . shadows
1843	 * another object . has a copy elsewhere (any of which mean that the
1844	 * pages not mapped to prev_entry may be in use anyway)
1845	 */
1846	if (prev_object->backing_object != NULL) {
1847		VM_OBJECT_UNLOCK(prev_object);
1848		return (FALSE);
1849	}
1850
1851	prev_size >>= PAGE_SHIFT;
1852	next_size >>= PAGE_SHIFT;
1853	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1854
1855	if ((prev_object->ref_count > 1) &&
1856	    (prev_object->size != next_pindex)) {
1857		VM_OBJECT_UNLOCK(prev_object);
1858		return (FALSE);
1859	}
1860
1861	/*
1862	 * Remove any pages that may still be in the object from a previous
1863	 * deallocation.
1864	 */
1865	if (next_pindex < prev_object->size) {
1866		vm_object_page_remove(prev_object,
1867				      next_pindex,
1868				      next_pindex + next_size, FALSE);
1869		if (prev_object->type == OBJT_SWAP)
1870			swap_pager_freespace(prev_object,
1871					     next_pindex, next_size);
1872	}
1873
1874	/*
1875	 * Extend the object if necessary.
1876	 */
1877	if (next_pindex + next_size > prev_object->size)
1878		prev_object->size = next_pindex + next_size;
1879
1880	VM_OBJECT_UNLOCK(prev_object);
1881	return (TRUE);
1882}
1883
1884void
1885vm_object_set_writeable_dirty(vm_object_t object)
1886{
1887	struct vnode *vp;
1888
1889	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1890	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1891	if (object->type == OBJT_VNODE &&
1892	    (vp = (struct vnode *)object->handle) != NULL) {
1893		VI_LOCK(vp);
1894		if ((vp->v_iflag & VI_OBJDIRTY) == 0)
1895			vp->v_iflag |= VI_OBJDIRTY;
1896		VI_UNLOCK(vp);
1897	}
1898}
1899
1900#include "opt_ddb.h"
1901#ifdef DDB
1902#include <sys/kernel.h>
1903
1904#include <sys/cons.h>
1905
1906#include <ddb/ddb.h>
1907
1908static int
1909_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1910{
1911	vm_map_t tmpm;
1912	vm_map_entry_t tmpe;
1913	vm_object_t obj;
1914	int entcount;
1915
1916	if (map == 0)
1917		return 0;
1918
1919	if (entry == 0) {
1920		tmpe = map->header.next;
1921		entcount = map->nentries;
1922		while (entcount-- && (tmpe != &map->header)) {
1923			if (_vm_object_in_map(map, object, tmpe)) {
1924				return 1;
1925			}
1926			tmpe = tmpe->next;
1927		}
1928	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1929		tmpm = entry->object.sub_map;
1930		tmpe = tmpm->header.next;
1931		entcount = tmpm->nentries;
1932		while (entcount-- && tmpe != &tmpm->header) {
1933			if (_vm_object_in_map(tmpm, object, tmpe)) {
1934				return 1;
1935			}
1936			tmpe = tmpe->next;
1937		}
1938	} else if ((obj = entry->object.vm_object) != NULL) {
1939		for (; obj; obj = obj->backing_object)
1940			if (obj == object) {
1941				return 1;
1942			}
1943	}
1944	return 0;
1945}
1946
1947static int
1948vm_object_in_map(vm_object_t object)
1949{
1950	struct proc *p;
1951
1952	/* sx_slock(&allproc_lock); */
1953	LIST_FOREACH(p, &allproc, p_list) {
1954		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1955			continue;
1956		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
1957			/* sx_sunlock(&allproc_lock); */
1958			return 1;
1959		}
1960	}
1961	/* sx_sunlock(&allproc_lock); */
1962	if (_vm_object_in_map(kernel_map, object, 0))
1963		return 1;
1964	if (_vm_object_in_map(kmem_map, object, 0))
1965		return 1;
1966	if (_vm_object_in_map(pager_map, object, 0))
1967		return 1;
1968	if (_vm_object_in_map(buffer_map, object, 0))
1969		return 1;
1970	return 0;
1971}
1972
1973DB_SHOW_COMMAND(vmochk, vm_object_check)
1974{
1975	vm_object_t object;
1976
1977	/*
1978	 * make sure that internal objs are in a map somewhere
1979	 * and none have zero ref counts.
1980	 */
1981	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1982		if (object->handle == NULL &&
1983		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1984			if (object->ref_count == 0) {
1985				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1986					(long)object->size);
1987			}
1988			if (!vm_object_in_map(object)) {
1989				db_printf(
1990			"vmochk: internal obj is not in a map: "
1991			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1992				    object->ref_count, (u_long)object->size,
1993				    (u_long)object->size,
1994				    (void *)object->backing_object);
1995			}
1996		}
1997	}
1998}
1999
2000/*
2001 *	vm_object_print:	[ debug ]
2002 */
2003DB_SHOW_COMMAND(object, vm_object_print_static)
2004{
2005	/* XXX convert args. */
2006	vm_object_t object = (vm_object_t)addr;
2007	boolean_t full = have_addr;
2008
2009	vm_page_t p;
2010
2011	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2012#define	count	was_count
2013
2014	int count;
2015
2016	if (object == NULL)
2017		return;
2018
2019	db_iprintf(
2020	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2021	    object, (int)object->type, (uintmax_t)object->size,
2022	    object->resident_page_count, object->ref_count, object->flags);
2023	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2024	    object->shadow_count,
2025	    object->backing_object ? object->backing_object->ref_count : 0,
2026	    object->backing_object, (uintmax_t)object->backing_object_offset);
2027
2028	if (!full)
2029		return;
2030
2031	db_indent += 2;
2032	count = 0;
2033	TAILQ_FOREACH(p, &object->memq, listq) {
2034		if (count == 0)
2035			db_iprintf("memory:=");
2036		else if (count == 6) {
2037			db_printf("\n");
2038			db_iprintf(" ...");
2039			count = 0;
2040		} else
2041			db_printf(",");
2042		count++;
2043
2044		db_printf("(off=0x%jx,page=0x%jx)",
2045		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2046	}
2047	if (count != 0)
2048		db_printf("\n");
2049	db_indent -= 2;
2050}
2051
2052/* XXX. */
2053#undef count
2054
2055/* XXX need this non-static entry for calling from vm_map_print. */
2056void
2057vm_object_print(
2058        /* db_expr_t */ long addr,
2059	boolean_t have_addr,
2060	/* db_expr_t */ long count,
2061	char *modif)
2062{
2063	vm_object_print_static(addr, have_addr, count, modif);
2064}
2065
2066DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2067{
2068	vm_object_t object;
2069	int nl = 0;
2070	int c;
2071
2072	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2073		vm_pindex_t idx, fidx;
2074		vm_pindex_t osize;
2075		vm_paddr_t pa = -1, padiff;
2076		int rcount;
2077		vm_page_t m;
2078
2079		db_printf("new object: %p\n", (void *)object);
2080		if (nl > 18) {
2081			c = cngetc();
2082			if (c != ' ')
2083				return;
2084			nl = 0;
2085		}
2086		nl++;
2087		rcount = 0;
2088		fidx = 0;
2089		osize = object->size;
2090		if (osize > 128)
2091			osize = 128;
2092		for (idx = 0; idx < osize; idx++) {
2093			m = vm_page_lookup(object, idx);
2094			if (m == NULL) {
2095				if (rcount) {
2096					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2097						(long)fidx, rcount, (long)pa);
2098					if (nl > 18) {
2099						c = cngetc();
2100						if (c != ' ')
2101							return;
2102						nl = 0;
2103					}
2104					nl++;
2105					rcount = 0;
2106				}
2107				continue;
2108			}
2109
2110
2111			if (rcount &&
2112				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2113				++rcount;
2114				continue;
2115			}
2116			if (rcount) {
2117				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2118				padiff >>= PAGE_SHIFT;
2119				padiff &= PQ_L2_MASK;
2120				if (padiff == 0) {
2121					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2122					++rcount;
2123					continue;
2124				}
2125				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2126					(long)fidx, rcount, (long)pa);
2127				db_printf("pd(%ld)\n", (long)padiff);
2128				if (nl > 18) {
2129					c = cngetc();
2130					if (c != ' ')
2131						return;
2132					nl = 0;
2133				}
2134				nl++;
2135			}
2136			fidx = idx;
2137			pa = VM_PAGE_TO_PHYS(m);
2138			rcount = 1;
2139		}
2140		if (rcount) {
2141			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2142				(long)fidx, rcount, (long)pa);
2143			if (nl > 18) {
2144				c = cngetc();
2145				if (c != ' ')
2146					return;
2147				nl = 0;
2148			}
2149			nl++;
2150		}
2151	}
2152}
2153#endif /* DDB */
2154