vm_object.c revision 139825
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory object module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: head/sys/vm/vm_object.c 139825 2005-01-07 02:29:27Z imp $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/lock.h>
71#include <sys/mman.h>
72#include <sys/mount.h>
73#include <sys/kernel.h>
74#include <sys/sysctl.h>
75#include <sys/mutex.h>
76#include <sys/proc.h>		/* for curproc, pageproc */
77#include <sys/socket.h>
78#include <sys/vnode.h>
79#include <sys/vmmeter.h>
80#include <sys/sx.h>
81
82#include <vm/vm.h>
83#include <vm/vm_param.h>
84#include <vm/pmap.h>
85#include <vm/vm_map.h>
86#include <vm/vm_object.h>
87#include <vm/vm_page.h>
88#include <vm/vm_pageout.h>
89#include <vm/vm_pager.h>
90#include <vm/swap_pager.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_extern.h>
93#include <vm/uma.h>
94
95#define EASY_SCAN_FACTOR       8
96
97#define MSYNC_FLUSH_HARDSEQ	0x01
98#define MSYNC_FLUSH_SOFTSEQ	0x02
99
100/*
101 * msync / VM object flushing optimizations
102 */
103static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
104SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
105        CTLFLAG_RW, &msync_flush_flags, 0, "");
106
107static int old_msync;
108SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
109    "Use old (insecure) msync behavior");
110
111static void	vm_object_qcollapse(vm_object_t object);
112static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
113
114/*
115 *	Virtual memory objects maintain the actual data
116 *	associated with allocated virtual memory.  A given
117 *	page of memory exists within exactly one object.
118 *
119 *	An object is only deallocated when all "references"
120 *	are given up.  Only one "reference" to a given
121 *	region of an object should be writeable.
122 *
123 *	Associated with each object is a list of all resident
124 *	memory pages belonging to that object; this list is
125 *	maintained by the "vm_page" module, and locked by the object's
126 *	lock.
127 *
128 *	Each object also records a "pager" routine which is
129 *	used to retrieve (and store) pages to the proper backing
130 *	storage.  In addition, objects may be backed by other
131 *	objects from which they were virtual-copied.
132 *
133 *	The only items within the object structure which are
134 *	modified after time of creation are:
135 *		reference count		locked by object's lock
136 *		pager routine		locked by object's lock
137 *
138 */
139
140struct object_q vm_object_list;
141struct mtx vm_object_list_mtx;	/* lock for object list and count */
142
143struct vm_object kernel_object_store;
144struct vm_object kmem_object_store;
145
146static long object_collapses;
147static long object_bypasses;
148
149/*
150 * next_index determines the page color that is assigned to the next
151 * allocated object.  Accesses to next_index are not synchronized
152 * because the effects of two or more object allocations using
153 * next_index simultaneously are inconsequential.  At any given time,
154 * numerous objects have the same page color.
155 */
156static int next_index;
157
158static uma_zone_t obj_zone;
159#define VM_OBJECTS_INIT 256
160
161static int vm_object_zinit(void *mem, int size, int flags);
162
163#ifdef INVARIANTS
164static void vm_object_zdtor(void *mem, int size, void *arg);
165
166static void
167vm_object_zdtor(void *mem, int size, void *arg)
168{
169	vm_object_t object;
170
171	object = (vm_object_t)mem;
172	KASSERT(TAILQ_EMPTY(&object->memq),
173	    ("object %p has resident pages",
174	    object));
175	KASSERT(object->paging_in_progress == 0,
176	    ("object %p paging_in_progress = %d",
177	    object, object->paging_in_progress));
178	KASSERT(object->resident_page_count == 0,
179	    ("object %p resident_page_count = %d",
180	    object, object->resident_page_count));
181	KASSERT(object->shadow_count == 0,
182	    ("object %p shadow_count = %d",
183	    object, object->shadow_count));
184}
185#endif
186
187static int
188vm_object_zinit(void *mem, int size, int flags)
189{
190	vm_object_t object;
191
192	object = (vm_object_t)mem;
193	bzero(&object->mtx, sizeof(object->mtx));
194	VM_OBJECT_LOCK_INIT(object, "standard object");
195
196	/* These are true for any object that has been freed */
197	object->paging_in_progress = 0;
198	object->resident_page_count = 0;
199	object->shadow_count = 0;
200	return (0);
201}
202
203void
204_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
205{
206	int incr;
207
208	TAILQ_INIT(&object->memq);
209	LIST_INIT(&object->shadow_head);
210
211	object->root = NULL;
212	object->type = type;
213	object->size = size;
214	object->generation = 1;
215	object->ref_count = 1;
216	object->flags = 0;
217	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
218		object->flags = OBJ_ONEMAPPING;
219	if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
220		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
221	else
222		incr = size;
223	object->pg_color = next_index;
224	next_index = (object->pg_color + incr) & PQ_L2_MASK;
225	object->handle = NULL;
226	object->backing_object = NULL;
227	object->backing_object_offset = (vm_ooffset_t) 0;
228
229	mtx_lock(&vm_object_list_mtx);
230	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
231	mtx_unlock(&vm_object_list_mtx);
232}
233
234/*
235 *	vm_object_init:
236 *
237 *	Initialize the VM objects module.
238 */
239void
240vm_object_init(void)
241{
242	TAILQ_INIT(&vm_object_list);
243	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
244
245	VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
246	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
247	    kernel_object);
248
249	VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
250	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
251	    kmem_object);
252
253	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
254#ifdef INVARIANTS
255	    vm_object_zdtor,
256#else
257	    NULL,
258#endif
259	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
260	uma_prealloc(obj_zone, VM_OBJECTS_INIT);
261}
262
263void
264vm_object_clear_flag(vm_object_t object, u_short bits)
265{
266
267	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
268	object->flags &= ~bits;
269}
270
271void
272vm_object_pip_add(vm_object_t object, short i)
273{
274
275	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
276	object->paging_in_progress += i;
277}
278
279void
280vm_object_pip_subtract(vm_object_t object, short i)
281{
282
283	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
284	object->paging_in_progress -= i;
285}
286
287void
288vm_object_pip_wakeup(vm_object_t object)
289{
290
291	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
292	object->paging_in_progress--;
293	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
294		vm_object_clear_flag(object, OBJ_PIPWNT);
295		wakeup(object);
296	}
297}
298
299void
300vm_object_pip_wakeupn(vm_object_t object, short i)
301{
302
303	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
304	if (i)
305		object->paging_in_progress -= i;
306	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
307		vm_object_clear_flag(object, OBJ_PIPWNT);
308		wakeup(object);
309	}
310}
311
312void
313vm_object_pip_wait(vm_object_t object, char *waitid)
314{
315
316	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
317	while (object->paging_in_progress) {
318		object->flags |= OBJ_PIPWNT;
319		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
320	}
321}
322
323/*
324 *	vm_object_allocate:
325 *
326 *	Returns a new object with the given size.
327 */
328vm_object_t
329vm_object_allocate(objtype_t type, vm_pindex_t size)
330{
331	vm_object_t object;
332
333	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
334	_vm_object_allocate(type, size, object);
335	return (object);
336}
337
338
339/*
340 *	vm_object_reference:
341 *
342 *	Gets another reference to the given object.  Note: OBJ_DEAD
343 *	objects can be referenced during final cleaning.
344 */
345void
346vm_object_reference(vm_object_t object)
347{
348	struct vnode *vp;
349	int flags;
350
351	if (object == NULL)
352		return;
353	VM_OBJECT_LOCK(object);
354	object->ref_count++;
355	if (object->type == OBJT_VNODE) {
356		vp = object->handle;
357		VI_LOCK(vp);
358		VM_OBJECT_UNLOCK(object);
359		for (flags = LK_INTERLOCK; vget(vp, flags, curthread);
360		     flags = 0)
361			printf("vm_object_reference: delay in vget\n");
362	} else
363		VM_OBJECT_UNLOCK(object);
364}
365
366/*
367 *	vm_object_reference_locked:
368 *
369 *	Gets another reference to the given object.
370 *
371 *	The object must be locked.
372 */
373void
374vm_object_reference_locked(vm_object_t object)
375{
376	struct vnode *vp;
377
378	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
379	KASSERT((object->flags & OBJ_DEAD) == 0,
380	    ("vm_object_reference_locked: dead object referenced"));
381	object->ref_count++;
382	if (object->type == OBJT_VNODE) {
383		vp = object->handle;
384		vref(vp);
385	}
386}
387
388/*
389 * Handle deallocating an object of type OBJT_VNODE.
390 */
391void
392vm_object_vndeallocate(vm_object_t object)
393{
394	struct vnode *vp = (struct vnode *) object->handle;
395
396	GIANT_REQUIRED;
397	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
398	KASSERT(object->type == OBJT_VNODE,
399	    ("vm_object_vndeallocate: not a vnode object"));
400	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
401#ifdef INVARIANTS
402	if (object->ref_count == 0) {
403		vprint("vm_object_vndeallocate", vp);
404		panic("vm_object_vndeallocate: bad object reference count");
405	}
406#endif
407
408	object->ref_count--;
409	if (object->ref_count == 0) {
410		mp_fixme("Unlocked vflag access.");
411		vp->v_vflag &= ~VV_TEXT;
412	}
413	VM_OBJECT_UNLOCK(object);
414	/*
415	 * vrele may need a vop lock
416	 */
417	vrele(vp);
418}
419
420/*
421 *	vm_object_deallocate:
422 *
423 *	Release a reference to the specified object,
424 *	gained either through a vm_object_allocate
425 *	or a vm_object_reference call.  When all references
426 *	are gone, storage associated with this object
427 *	may be relinquished.
428 *
429 *	No object may be locked.
430 */
431void
432vm_object_deallocate(vm_object_t object)
433{
434	vm_object_t temp;
435
436	while (object != NULL) {
437		/*
438		 * In general, the object should be locked when working with
439		 * its type.  In this case, in order to maintain proper lock
440		 * ordering, an exception is possible because a vnode-backed
441		 * object never changes its type.
442		 */
443		if (object->type == OBJT_VNODE)
444			mtx_lock(&Giant);
445		VM_OBJECT_LOCK(object);
446		if (object->type == OBJT_VNODE) {
447			vm_object_vndeallocate(object);
448			mtx_unlock(&Giant);
449			return;
450		}
451
452		KASSERT(object->ref_count != 0,
453			("vm_object_deallocate: object deallocated too many times: %d", object->type));
454
455		/*
456		 * If the reference count goes to 0 we start calling
457		 * vm_object_terminate() on the object chain.
458		 * A ref count of 1 may be a special case depending on the
459		 * shadow count being 0 or 1.
460		 */
461		object->ref_count--;
462		if (object->ref_count > 1) {
463			VM_OBJECT_UNLOCK(object);
464			return;
465		} else if (object->ref_count == 1) {
466			if (object->shadow_count == 0) {
467				vm_object_set_flag(object, OBJ_ONEMAPPING);
468			} else if ((object->shadow_count == 1) &&
469			    (object->handle == NULL) &&
470			    (object->type == OBJT_DEFAULT ||
471			     object->type == OBJT_SWAP)) {
472				vm_object_t robject;
473
474				robject = LIST_FIRST(&object->shadow_head);
475				KASSERT(robject != NULL,
476				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
477					 object->ref_count,
478					 object->shadow_count));
479				if (!VM_OBJECT_TRYLOCK(robject)) {
480					/*
481					 * Avoid a potential deadlock.
482					 */
483					object->ref_count++;
484					VM_OBJECT_UNLOCK(object);
485					/*
486					 * More likely than not the thread
487					 * holding robject's lock has lower
488					 * priority than the current thread.
489					 * Let the lower priority thread run.
490					 */
491					tsleep(&proc0, PVM, "vmo_de", 1);
492					continue;
493				}
494				if ((robject->handle == NULL) &&
495				    (robject->type == OBJT_DEFAULT ||
496				     robject->type == OBJT_SWAP)) {
497
498					robject->ref_count++;
499retry:
500					if (robject->paging_in_progress) {
501						VM_OBJECT_UNLOCK(object);
502						vm_object_pip_wait(robject,
503						    "objde1");
504						VM_OBJECT_LOCK(object);
505						goto retry;
506					} else if (object->paging_in_progress) {
507						VM_OBJECT_UNLOCK(robject);
508						object->flags |= OBJ_PIPWNT;
509						msleep(object,
510						    VM_OBJECT_MTX(object),
511						    PDROP | PVM, "objde2", 0);
512						VM_OBJECT_LOCK(robject);
513						VM_OBJECT_LOCK(object);
514						goto retry;
515					}
516					VM_OBJECT_UNLOCK(object);
517					if (robject->ref_count == 1) {
518						robject->ref_count--;
519						object = robject;
520						goto doterm;
521					}
522					object = robject;
523					vm_object_collapse(object);
524					VM_OBJECT_UNLOCK(object);
525					continue;
526				}
527				VM_OBJECT_UNLOCK(robject);
528			}
529			VM_OBJECT_UNLOCK(object);
530			return;
531		}
532doterm:
533		temp = object->backing_object;
534		if (temp != NULL) {
535			VM_OBJECT_LOCK(temp);
536			LIST_REMOVE(object, shadow_list);
537			temp->shadow_count--;
538			temp->generation++;
539			VM_OBJECT_UNLOCK(temp);
540			object->backing_object = NULL;
541		}
542		/*
543		 * Don't double-terminate, we could be in a termination
544		 * recursion due to the terminate having to sync data
545		 * to disk.
546		 */
547		if ((object->flags & OBJ_DEAD) == 0)
548			vm_object_terminate(object);
549		else
550			VM_OBJECT_UNLOCK(object);
551		object = temp;
552	}
553}
554
555/*
556 *	vm_object_terminate actually destroys the specified object, freeing
557 *	up all previously used resources.
558 *
559 *	The object must be locked.
560 *	This routine may block.
561 */
562void
563vm_object_terminate(vm_object_t object)
564{
565	vm_page_t p;
566
567	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
568
569	/*
570	 * Make sure no one uses us.
571	 */
572	vm_object_set_flag(object, OBJ_DEAD);
573
574	/*
575	 * wait for the pageout daemon to be done with the object
576	 */
577	vm_object_pip_wait(object, "objtrm");
578
579	KASSERT(!object->paging_in_progress,
580		("vm_object_terminate: pageout in progress"));
581
582	/*
583	 * Clean and free the pages, as appropriate. All references to the
584	 * object are gone, so we don't need to lock it.
585	 */
586	if (object->type == OBJT_VNODE) {
587		struct vnode *vp = (struct vnode *)object->handle;
588
589		/*
590		 * Clean pages and flush buffers.
591		 */
592		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
593		VM_OBJECT_UNLOCK(object);
594
595		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
596
597		VM_OBJECT_LOCK(object);
598	}
599
600	KASSERT(object->ref_count == 0,
601		("vm_object_terminate: object with references, ref_count=%d",
602		object->ref_count));
603
604	/*
605	 * Now free any remaining pages. For internal objects, this also
606	 * removes them from paging queues. Don't free wired pages, just
607	 * remove them from the object.
608	 */
609	vm_page_lock_queues();
610	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
611		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
612			("vm_object_terminate: freeing busy page %p "
613			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
614		if (p->wire_count == 0) {
615			vm_page_free(p);
616			cnt.v_pfree++;
617		} else {
618			vm_page_remove(p);
619		}
620	}
621	vm_page_unlock_queues();
622
623	/*
624	 * Let the pager know object is dead.
625	 */
626	vm_pager_deallocate(object);
627	VM_OBJECT_UNLOCK(object);
628
629	/*
630	 * Remove the object from the global object list.
631	 */
632	mtx_lock(&vm_object_list_mtx);
633	TAILQ_REMOVE(&vm_object_list, object, object_list);
634	mtx_unlock(&vm_object_list_mtx);
635
636	/*
637	 * Free the space for the object.
638	 */
639	uma_zfree(obj_zone, object);
640}
641
642/*
643 *	vm_object_page_clean
644 *
645 *	Clean all dirty pages in the specified range of object.  Leaves page
646 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
647 *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
648 *	leaving the object dirty.
649 *
650 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
651 *	synchronous clustering mode implementation.
652 *
653 *	Odd semantics: if start == end, we clean everything.
654 *
655 *	The object must be locked.
656 */
657void
658vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
659{
660	vm_page_t p, np;
661	vm_pindex_t tstart, tend;
662	vm_pindex_t pi;
663	int clearobjflags;
664	int pagerflags;
665	int curgeneration;
666
667	GIANT_REQUIRED;
668	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
669	if (object->type != OBJT_VNODE ||
670		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
671		return;
672
673	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
674	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
675
676	vm_object_set_flag(object, OBJ_CLEANING);
677
678	tstart = start;
679	if (end == 0) {
680		tend = object->size;
681	} else {
682		tend = end;
683	}
684
685	vm_page_lock_queues();
686	/*
687	 * If the caller is smart and only msync()s a range he knows is
688	 * dirty, we may be able to avoid an object scan.  This results in
689	 * a phenominal improvement in performance.  We cannot do this
690	 * as a matter of course because the object may be huge - e.g.
691	 * the size might be in the gigabytes or terrabytes.
692	 */
693	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
694		vm_pindex_t tscan;
695		int scanlimit;
696		int scanreset;
697
698		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
699		if (scanreset < 16)
700			scanreset = 16;
701		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
702
703		scanlimit = scanreset;
704		tscan = tstart;
705		while (tscan < tend) {
706			curgeneration = object->generation;
707			p = vm_page_lookup(object, tscan);
708			if (p == NULL || p->valid == 0 ||
709			    (p->queue - p->pc) == PQ_CACHE) {
710				if (--scanlimit == 0)
711					break;
712				++tscan;
713				continue;
714			}
715			vm_page_test_dirty(p);
716			if ((p->dirty & p->valid) == 0) {
717				if (--scanlimit == 0)
718					break;
719				++tscan;
720				continue;
721			}
722			/*
723			 * If we have been asked to skip nosync pages and
724			 * this is a nosync page, we can't continue.
725			 */
726			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
727				if (--scanlimit == 0)
728					break;
729				++tscan;
730				continue;
731			}
732			scanlimit = scanreset;
733
734			/*
735			 * This returns 0 if it was unable to busy the first
736			 * page (i.e. had to sleep).
737			 */
738			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
739		}
740
741		/*
742		 * If everything was dirty and we flushed it successfully,
743		 * and the requested range is not the entire object, we
744		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
745		 * return immediately.
746		 */
747		if (tscan >= tend && (tstart || tend < object->size)) {
748			vm_page_unlock_queues();
749			vm_object_clear_flag(object, OBJ_CLEANING);
750			return;
751		}
752		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
753	}
754
755	/*
756	 * Generally set CLEANCHK interlock and make the page read-only so
757	 * we can then clear the object flags.
758	 *
759	 * However, if this is a nosync mmap then the object is likely to
760	 * stay dirty so do not mess with the page and do not clear the
761	 * object flags.
762	 */
763	clearobjflags = 1;
764	TAILQ_FOREACH(p, &object->memq, listq) {
765		vm_page_flag_set(p, PG_CLEANCHK);
766		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
767			clearobjflags = 0;
768		else
769			pmap_page_protect(p, VM_PROT_READ);
770	}
771
772	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
773		struct vnode *vp;
774
775		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
776		if (object->type == OBJT_VNODE &&
777		    (vp = (struct vnode *)object->handle) != NULL) {
778			VI_LOCK(vp);
779			if (vp->v_iflag & VI_OBJDIRTY)
780				vp->v_iflag &= ~VI_OBJDIRTY;
781			VI_UNLOCK(vp);
782		}
783	}
784
785rescan:
786	curgeneration = object->generation;
787
788	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
789		int n;
790
791		np = TAILQ_NEXT(p, listq);
792
793again:
794		pi = p->pindex;
795		if (((p->flags & PG_CLEANCHK) == 0) ||
796			(pi < tstart) || (pi >= tend) ||
797			(p->valid == 0) ||
798			((p->queue - p->pc) == PQ_CACHE)) {
799			vm_page_flag_clear(p, PG_CLEANCHK);
800			continue;
801		}
802
803		vm_page_test_dirty(p);
804		if ((p->dirty & p->valid) == 0) {
805			vm_page_flag_clear(p, PG_CLEANCHK);
806			continue;
807		}
808
809		/*
810		 * If we have been asked to skip nosync pages and this is a
811		 * nosync page, skip it.  Note that the object flags were
812		 * not cleared in this case so we do not have to set them.
813		 */
814		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
815			vm_page_flag_clear(p, PG_CLEANCHK);
816			continue;
817		}
818
819		n = vm_object_page_collect_flush(object, p,
820			curgeneration, pagerflags);
821		if (n == 0)
822			goto rescan;
823
824		if (object->generation != curgeneration)
825			goto rescan;
826
827		/*
828		 * Try to optimize the next page.  If we can't we pick up
829		 * our (random) scan where we left off.
830		 */
831		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
832			if ((p = vm_page_lookup(object, pi + n)) != NULL)
833				goto again;
834		}
835	}
836	vm_page_unlock_queues();
837#if 0
838	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
839#endif
840
841	vm_object_clear_flag(object, OBJ_CLEANING);
842	return;
843}
844
845static int
846vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
847{
848	int runlen;
849	int maxf;
850	int chkb;
851	int maxb;
852	int i;
853	vm_pindex_t pi;
854	vm_page_t maf[vm_pageout_page_count];
855	vm_page_t mab[vm_pageout_page_count];
856	vm_page_t ma[vm_pageout_page_count];
857
858	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
859	pi = p->pindex;
860	while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
861		vm_page_lock_queues();
862		if (object->generation != curgeneration) {
863			return(0);
864		}
865	}
866	maxf = 0;
867	for(i = 1; i < vm_pageout_page_count; i++) {
868		vm_page_t tp;
869
870		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
871			if ((tp->flags & PG_BUSY) ||
872				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
873				 (tp->flags & PG_CLEANCHK) == 0) ||
874				(tp->busy != 0))
875				break;
876			if((tp->queue - tp->pc) == PQ_CACHE) {
877				vm_page_flag_clear(tp, PG_CLEANCHK);
878				break;
879			}
880			vm_page_test_dirty(tp);
881			if ((tp->dirty & tp->valid) == 0) {
882				vm_page_flag_clear(tp, PG_CLEANCHK);
883				break;
884			}
885			maf[ i - 1 ] = tp;
886			maxf++;
887			continue;
888		}
889		break;
890	}
891
892	maxb = 0;
893	chkb = vm_pageout_page_count -  maxf;
894	if (chkb) {
895		for(i = 1; i < chkb;i++) {
896			vm_page_t tp;
897
898			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
899				if ((tp->flags & PG_BUSY) ||
900					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
901					 (tp->flags & PG_CLEANCHK) == 0) ||
902					(tp->busy != 0))
903					break;
904				if ((tp->queue - tp->pc) == PQ_CACHE) {
905					vm_page_flag_clear(tp, PG_CLEANCHK);
906					break;
907				}
908				vm_page_test_dirty(tp);
909				if ((tp->dirty & tp->valid) == 0) {
910					vm_page_flag_clear(tp, PG_CLEANCHK);
911					break;
912				}
913				mab[ i - 1 ] = tp;
914				maxb++;
915				continue;
916			}
917			break;
918		}
919	}
920
921	for(i = 0; i < maxb; i++) {
922		int index = (maxb - i) - 1;
923		ma[index] = mab[i];
924		vm_page_flag_clear(ma[index], PG_CLEANCHK);
925	}
926	vm_page_flag_clear(p, PG_CLEANCHK);
927	ma[maxb] = p;
928	for(i = 0; i < maxf; i++) {
929		int index = (maxb + i) + 1;
930		ma[index] = maf[i];
931		vm_page_flag_clear(ma[index], PG_CLEANCHK);
932	}
933	runlen = maxb + maxf + 1;
934
935	vm_pageout_flush(ma, runlen, pagerflags);
936	for (i = 0; i < runlen; i++) {
937		if (ma[i]->valid & ma[i]->dirty) {
938			pmap_page_protect(ma[i], VM_PROT_READ);
939			vm_page_flag_set(ma[i], PG_CLEANCHK);
940
941			/*
942			 * maxf will end up being the actual number of pages
943			 * we wrote out contiguously, non-inclusive of the
944			 * first page.  We do not count look-behind pages.
945			 */
946			if (i >= maxb + 1 && (maxf > i - maxb - 1))
947				maxf = i - maxb - 1;
948		}
949	}
950	return(maxf + 1);
951}
952
953/*
954 * Note that there is absolutely no sense in writing out
955 * anonymous objects, so we track down the vnode object
956 * to write out.
957 * We invalidate (remove) all pages from the address space
958 * for semantic correctness.
959 *
960 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
961 * may start out with a NULL object.
962 */
963void
964vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
965    boolean_t syncio, boolean_t invalidate)
966{
967	vm_object_t backing_object;
968	struct vnode *vp;
969	int flags;
970
971	if (object == NULL)
972		return;
973	VM_OBJECT_LOCK(object);
974	while ((backing_object = object->backing_object) != NULL) {
975		VM_OBJECT_LOCK(backing_object);
976		offset += object->backing_object_offset;
977		VM_OBJECT_UNLOCK(object);
978		object = backing_object;
979		if (object->size < OFF_TO_IDX(offset + size))
980			size = IDX_TO_OFF(object->size) - offset;
981	}
982	/*
983	 * Flush pages if writing is allowed, invalidate them
984	 * if invalidation requested.  Pages undergoing I/O
985	 * will be ignored by vm_object_page_remove().
986	 *
987	 * We cannot lock the vnode and then wait for paging
988	 * to complete without deadlocking against vm_fault.
989	 * Instead we simply call vm_object_page_remove() and
990	 * allow it to block internally on a page-by-page
991	 * basis when it encounters pages undergoing async
992	 * I/O.
993	 */
994	if (object->type == OBJT_VNODE &&
995	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
996		vp = object->handle;
997		VM_OBJECT_UNLOCK(object);
998		mtx_lock(&Giant);
999		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
1000		flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1001		flags |= invalidate ? OBJPC_INVAL : 0;
1002		VM_OBJECT_LOCK(object);
1003		vm_object_page_clean(object,
1004		    OFF_TO_IDX(offset),
1005		    OFF_TO_IDX(offset + size + PAGE_MASK),
1006		    flags);
1007		VM_OBJECT_UNLOCK(object);
1008		VOP_UNLOCK(vp, 0, curthread);
1009		mtx_unlock(&Giant);
1010		VM_OBJECT_LOCK(object);
1011	}
1012	if ((object->type == OBJT_VNODE ||
1013	     object->type == OBJT_DEVICE) && invalidate) {
1014		boolean_t purge;
1015		purge = old_msync || (object->type == OBJT_DEVICE);
1016		vm_object_page_remove(object,
1017		    OFF_TO_IDX(offset),
1018		    OFF_TO_IDX(offset + size + PAGE_MASK),
1019		    purge ? FALSE : TRUE);
1020	}
1021	VM_OBJECT_UNLOCK(object);
1022}
1023
1024/*
1025 *	vm_object_madvise:
1026 *
1027 *	Implements the madvise function at the object/page level.
1028 *
1029 *	MADV_WILLNEED	(any object)
1030 *
1031 *	    Activate the specified pages if they are resident.
1032 *
1033 *	MADV_DONTNEED	(any object)
1034 *
1035 *	    Deactivate the specified pages if they are resident.
1036 *
1037 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1038 *			 OBJ_ONEMAPPING only)
1039 *
1040 *	    Deactivate and clean the specified pages if they are
1041 *	    resident.  This permits the process to reuse the pages
1042 *	    without faulting or the kernel to reclaim the pages
1043 *	    without I/O.
1044 */
1045void
1046vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1047{
1048	vm_pindex_t end, tpindex;
1049	vm_object_t backing_object, tobject;
1050	vm_page_t m;
1051
1052	if (object == NULL)
1053		return;
1054	VM_OBJECT_LOCK(object);
1055	end = pindex + count;
1056	/*
1057	 * Locate and adjust resident pages
1058	 */
1059	for (; pindex < end; pindex += 1) {
1060relookup:
1061		tobject = object;
1062		tpindex = pindex;
1063shadowlookup:
1064		/*
1065		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1066		 * and those pages must be OBJ_ONEMAPPING.
1067		 */
1068		if (advise == MADV_FREE) {
1069			if ((tobject->type != OBJT_DEFAULT &&
1070			     tobject->type != OBJT_SWAP) ||
1071			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1072				goto unlock_tobject;
1073			}
1074		}
1075		m = vm_page_lookup(tobject, tpindex);
1076		if (m == NULL) {
1077			/*
1078			 * There may be swap even if there is no backing page
1079			 */
1080			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1081				swap_pager_freespace(tobject, tpindex, 1);
1082			/*
1083			 * next object
1084			 */
1085			backing_object = tobject->backing_object;
1086			if (backing_object == NULL)
1087				goto unlock_tobject;
1088			VM_OBJECT_LOCK(backing_object);
1089			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1090			if (tobject != object)
1091				VM_OBJECT_UNLOCK(tobject);
1092			tobject = backing_object;
1093			goto shadowlookup;
1094		}
1095		/*
1096		 * If the page is busy or not in a normal active state,
1097		 * we skip it.  If the page is not managed there are no
1098		 * page queues to mess with.  Things can break if we mess
1099		 * with pages in any of the below states.
1100		 */
1101		vm_page_lock_queues();
1102		if (m->hold_count ||
1103		    m->wire_count ||
1104		    (m->flags & PG_UNMANAGED) ||
1105		    m->valid != VM_PAGE_BITS_ALL) {
1106			vm_page_unlock_queues();
1107			goto unlock_tobject;
1108		}
1109		if ((m->flags & PG_BUSY) || m->busy) {
1110			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1111			if (object != tobject)
1112				VM_OBJECT_UNLOCK(object);
1113			VM_OBJECT_UNLOCK(tobject);
1114			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "madvpo", 0);
1115			VM_OBJECT_LOCK(object);
1116  			goto relookup;
1117		}
1118		if (advise == MADV_WILLNEED) {
1119			vm_page_activate(m);
1120		} else if (advise == MADV_DONTNEED) {
1121			vm_page_dontneed(m);
1122		} else if (advise == MADV_FREE) {
1123			/*
1124			 * Mark the page clean.  This will allow the page
1125			 * to be freed up by the system.  However, such pages
1126			 * are often reused quickly by malloc()/free()
1127			 * so we do not do anything that would cause
1128			 * a page fault if we can help it.
1129			 *
1130			 * Specifically, we do not try to actually free
1131			 * the page now nor do we try to put it in the
1132			 * cache (which would cause a page fault on reuse).
1133			 *
1134			 * But we do make the page is freeable as we
1135			 * can without actually taking the step of unmapping
1136			 * it.
1137			 */
1138			pmap_clear_modify(m);
1139			m->dirty = 0;
1140			m->act_count = 0;
1141			vm_page_dontneed(m);
1142		}
1143		vm_page_unlock_queues();
1144		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1145			swap_pager_freespace(tobject, tpindex, 1);
1146unlock_tobject:
1147		if (tobject != object)
1148			VM_OBJECT_UNLOCK(tobject);
1149	}
1150	VM_OBJECT_UNLOCK(object);
1151}
1152
1153/*
1154 *	vm_object_shadow:
1155 *
1156 *	Create a new object which is backed by the
1157 *	specified existing object range.  The source
1158 *	object reference is deallocated.
1159 *
1160 *	The new object and offset into that object
1161 *	are returned in the source parameters.
1162 */
1163void
1164vm_object_shadow(
1165	vm_object_t *object,	/* IN/OUT */
1166	vm_ooffset_t *offset,	/* IN/OUT */
1167	vm_size_t length)
1168{
1169	vm_object_t source;
1170	vm_object_t result;
1171
1172	source = *object;
1173
1174	/*
1175	 * Don't create the new object if the old object isn't shared.
1176	 */
1177	if (source != NULL) {
1178		VM_OBJECT_LOCK(source);
1179		if (source->ref_count == 1 &&
1180		    source->handle == NULL &&
1181		    (source->type == OBJT_DEFAULT ||
1182		     source->type == OBJT_SWAP)) {
1183			VM_OBJECT_UNLOCK(source);
1184			return;
1185		}
1186		VM_OBJECT_UNLOCK(source);
1187	}
1188
1189	/*
1190	 * Allocate a new object with the given length.
1191	 */
1192	result = vm_object_allocate(OBJT_DEFAULT, length);
1193
1194	/*
1195	 * The new object shadows the source object, adding a reference to it.
1196	 * Our caller changes his reference to point to the new object,
1197	 * removing a reference to the source object.  Net result: no change
1198	 * of reference count.
1199	 *
1200	 * Try to optimize the result object's page color when shadowing
1201	 * in order to maintain page coloring consistency in the combined
1202	 * shadowed object.
1203	 */
1204	result->backing_object = source;
1205	/*
1206	 * Store the offset into the source object, and fix up the offset into
1207	 * the new object.
1208	 */
1209	result->backing_object_offset = *offset;
1210	if (source != NULL) {
1211		VM_OBJECT_LOCK(source);
1212		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1213		source->shadow_count++;
1214		source->generation++;
1215		if (length < source->size)
1216			length = source->size;
1217		if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1218		    source->generation > 1)
1219			length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1220		result->pg_color = (source->pg_color +
1221		    length * source->generation) & PQ_L2_MASK;
1222		VM_OBJECT_UNLOCK(source);
1223		next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1224		    PQ_L2_MASK;
1225	}
1226
1227
1228	/*
1229	 * Return the new things
1230	 */
1231	*offset = 0;
1232	*object = result;
1233}
1234
1235/*
1236 *	vm_object_split:
1237 *
1238 * Split the pages in a map entry into a new object.  This affords
1239 * easier removal of unused pages, and keeps object inheritance from
1240 * being a negative impact on memory usage.
1241 */
1242void
1243vm_object_split(vm_map_entry_t entry)
1244{
1245	vm_page_t m;
1246	vm_object_t orig_object, new_object, source;
1247	vm_pindex_t offidxstart, offidxend;
1248	vm_size_t idx, size;
1249
1250	orig_object = entry->object.vm_object;
1251	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1252		return;
1253	if (orig_object->ref_count <= 1)
1254		return;
1255	VM_OBJECT_UNLOCK(orig_object);
1256
1257	offidxstart = OFF_TO_IDX(entry->offset);
1258	offidxend = offidxstart + OFF_TO_IDX(entry->end - entry->start);
1259	size = offidxend - offidxstart;
1260
1261	/*
1262	 * If swap_pager_copy() is later called, it will convert new_object
1263	 * into a swap object.
1264	 */
1265	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1266
1267	VM_OBJECT_LOCK(new_object);
1268	VM_OBJECT_LOCK(orig_object);
1269	source = orig_object->backing_object;
1270	if (source != NULL) {
1271		VM_OBJECT_LOCK(source);
1272		LIST_INSERT_HEAD(&source->shadow_head,
1273				  new_object, shadow_list);
1274		source->shadow_count++;
1275		source->generation++;
1276		vm_object_reference_locked(source);	/* for new_object */
1277		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1278		VM_OBJECT_UNLOCK(source);
1279		new_object->backing_object_offset =
1280			orig_object->backing_object_offset + entry->offset;
1281		new_object->backing_object = source;
1282	}
1283	for (idx = 0; idx < size; idx++) {
1284	retry:
1285		m = vm_page_lookup(orig_object, offidxstart + idx);
1286		if (m == NULL)
1287			continue;
1288
1289		/*
1290		 * We must wait for pending I/O to complete before we can
1291		 * rename the page.
1292		 *
1293		 * We do not have to VM_PROT_NONE the page as mappings should
1294		 * not be changed by this operation.
1295		 */
1296		vm_page_lock_queues();
1297		if ((m->flags & PG_BUSY) || m->busy) {
1298			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1299			VM_OBJECT_UNLOCK(orig_object);
1300			VM_OBJECT_UNLOCK(new_object);
1301			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "spltwt", 0);
1302			VM_OBJECT_LOCK(new_object);
1303			VM_OBJECT_LOCK(orig_object);
1304			goto retry;
1305		}
1306		vm_page_rename(m, new_object, idx);
1307		/* page automatically made dirty by rename and cache handled */
1308		vm_page_busy(m);
1309		vm_page_unlock_queues();
1310	}
1311	if (orig_object->type == OBJT_SWAP) {
1312		/*
1313		 * swap_pager_copy() can sleep, in which case the orig_object's
1314		 * and new_object's locks are released and reacquired.
1315		 */
1316		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1317	}
1318	VM_OBJECT_UNLOCK(orig_object);
1319	vm_page_lock_queues();
1320	TAILQ_FOREACH(m, &new_object->memq, listq)
1321		vm_page_wakeup(m);
1322	vm_page_unlock_queues();
1323	VM_OBJECT_UNLOCK(new_object);
1324	entry->object.vm_object = new_object;
1325	entry->offset = 0LL;
1326	vm_object_deallocate(orig_object);
1327	VM_OBJECT_LOCK(new_object);
1328}
1329
1330#define	OBSC_TEST_ALL_SHADOWED	0x0001
1331#define	OBSC_COLLAPSE_NOWAIT	0x0002
1332#define	OBSC_COLLAPSE_WAIT	0x0004
1333
1334static int
1335vm_object_backing_scan(vm_object_t object, int op)
1336{
1337	int r = 1;
1338	vm_page_t p;
1339	vm_object_t backing_object;
1340	vm_pindex_t backing_offset_index;
1341
1342	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1343	VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1344
1345	backing_object = object->backing_object;
1346	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1347
1348	/*
1349	 * Initial conditions
1350	 */
1351	if (op & OBSC_TEST_ALL_SHADOWED) {
1352		/*
1353		 * We do not want to have to test for the existence of
1354		 * swap pages in the backing object.  XXX but with the
1355		 * new swapper this would be pretty easy to do.
1356		 *
1357		 * XXX what about anonymous MAP_SHARED memory that hasn't
1358		 * been ZFOD faulted yet?  If we do not test for this, the
1359		 * shadow test may succeed! XXX
1360		 */
1361		if (backing_object->type != OBJT_DEFAULT) {
1362			return (0);
1363		}
1364	}
1365	if (op & OBSC_COLLAPSE_WAIT) {
1366		vm_object_set_flag(backing_object, OBJ_DEAD);
1367	}
1368
1369	/*
1370	 * Our scan
1371	 */
1372	p = TAILQ_FIRST(&backing_object->memq);
1373	while (p) {
1374		vm_page_t next = TAILQ_NEXT(p, listq);
1375		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1376
1377		if (op & OBSC_TEST_ALL_SHADOWED) {
1378			vm_page_t pp;
1379
1380			/*
1381			 * Ignore pages outside the parent object's range
1382			 * and outside the parent object's mapping of the
1383			 * backing object.
1384			 *
1385			 * note that we do not busy the backing object's
1386			 * page.
1387			 */
1388			if (
1389			    p->pindex < backing_offset_index ||
1390			    new_pindex >= object->size
1391			) {
1392				p = next;
1393				continue;
1394			}
1395
1396			/*
1397			 * See if the parent has the page or if the parent's
1398			 * object pager has the page.  If the parent has the
1399			 * page but the page is not valid, the parent's
1400			 * object pager must have the page.
1401			 *
1402			 * If this fails, the parent does not completely shadow
1403			 * the object and we might as well give up now.
1404			 */
1405
1406			pp = vm_page_lookup(object, new_pindex);
1407			if (
1408			    (pp == NULL || pp->valid == 0) &&
1409			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1410			) {
1411				r = 0;
1412				break;
1413			}
1414		}
1415
1416		/*
1417		 * Check for busy page
1418		 */
1419		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1420			vm_page_t pp;
1421
1422			vm_page_lock_queues();
1423			if (op & OBSC_COLLAPSE_NOWAIT) {
1424				if ((p->flags & PG_BUSY) ||
1425				    !p->valid ||
1426				    p->hold_count ||
1427				    p->wire_count ||
1428				    p->busy) {
1429					vm_page_unlock_queues();
1430					p = next;
1431					continue;
1432				}
1433			} else if (op & OBSC_COLLAPSE_WAIT) {
1434				if ((p->flags & PG_BUSY) || p->busy) {
1435					vm_page_flag_set(p,
1436					    PG_WANTED | PG_REFERENCED);
1437					VM_OBJECT_UNLOCK(backing_object);
1438					VM_OBJECT_UNLOCK(object);
1439					msleep(p, &vm_page_queue_mtx,
1440					    PDROP | PVM, "vmocol", 0);
1441					VM_OBJECT_LOCK(object);
1442					VM_OBJECT_LOCK(backing_object);
1443					/*
1444					 * If we slept, anything could have
1445					 * happened.  Since the object is
1446					 * marked dead, the backing offset
1447					 * should not have changed so we
1448					 * just restart our scan.
1449					 */
1450					p = TAILQ_FIRST(&backing_object->memq);
1451					continue;
1452				}
1453			}
1454			vm_page_unlock_queues();
1455
1456			KASSERT(
1457			    p->object == backing_object,
1458			    ("vm_object_qcollapse(): object mismatch")
1459			);
1460
1461			/*
1462			 * Destroy any associated swap
1463			 */
1464			if (backing_object->type == OBJT_SWAP) {
1465				swap_pager_freespace(
1466				    backing_object,
1467				    p->pindex,
1468				    1
1469				);
1470			}
1471
1472			if (
1473			    p->pindex < backing_offset_index ||
1474			    new_pindex >= object->size
1475			) {
1476				/*
1477				 * Page is out of the parent object's range, we
1478				 * can simply destroy it.
1479				 */
1480				vm_page_lock_queues();
1481				pmap_remove_all(p);
1482				vm_page_free(p);
1483				vm_page_unlock_queues();
1484				p = next;
1485				continue;
1486			}
1487
1488			pp = vm_page_lookup(object, new_pindex);
1489			if (
1490			    pp != NULL ||
1491			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1492			) {
1493				/*
1494				 * page already exists in parent OR swap exists
1495				 * for this location in the parent.  Destroy
1496				 * the original page from the backing object.
1497				 *
1498				 * Leave the parent's page alone
1499				 */
1500				vm_page_lock_queues();
1501				pmap_remove_all(p);
1502				vm_page_free(p);
1503				vm_page_unlock_queues();
1504				p = next;
1505				continue;
1506			}
1507
1508			/*
1509			 * Page does not exist in parent, rename the
1510			 * page from the backing object to the main object.
1511			 *
1512			 * If the page was mapped to a process, it can remain
1513			 * mapped through the rename.
1514			 */
1515			vm_page_lock_queues();
1516			vm_page_rename(p, object, new_pindex);
1517			vm_page_unlock_queues();
1518			/* page automatically made dirty by rename */
1519		}
1520		p = next;
1521	}
1522	return (r);
1523}
1524
1525
1526/*
1527 * this version of collapse allows the operation to occur earlier and
1528 * when paging_in_progress is true for an object...  This is not a complete
1529 * operation, but should plug 99.9% of the rest of the leaks.
1530 */
1531static void
1532vm_object_qcollapse(vm_object_t object)
1533{
1534	vm_object_t backing_object = object->backing_object;
1535
1536	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1537	VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1538
1539	if (backing_object->ref_count != 1)
1540		return;
1541
1542	backing_object->ref_count += 2;
1543
1544	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1545
1546	backing_object->ref_count -= 2;
1547}
1548
1549/*
1550 *	vm_object_collapse:
1551 *
1552 *	Collapse an object with the object backing it.
1553 *	Pages in the backing object are moved into the
1554 *	parent, and the backing object is deallocated.
1555 */
1556void
1557vm_object_collapse(vm_object_t object)
1558{
1559	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1560
1561	while (TRUE) {
1562		vm_object_t backing_object;
1563
1564		/*
1565		 * Verify that the conditions are right for collapse:
1566		 *
1567		 * The object exists and the backing object exists.
1568		 */
1569		if ((backing_object = object->backing_object) == NULL)
1570			break;
1571
1572		/*
1573		 * we check the backing object first, because it is most likely
1574		 * not collapsable.
1575		 */
1576		VM_OBJECT_LOCK(backing_object);
1577		if (backing_object->handle != NULL ||
1578		    (backing_object->type != OBJT_DEFAULT &&
1579		     backing_object->type != OBJT_SWAP) ||
1580		    (backing_object->flags & OBJ_DEAD) ||
1581		    object->handle != NULL ||
1582		    (object->type != OBJT_DEFAULT &&
1583		     object->type != OBJT_SWAP) ||
1584		    (object->flags & OBJ_DEAD)) {
1585			VM_OBJECT_UNLOCK(backing_object);
1586			break;
1587		}
1588
1589		if (
1590		    object->paging_in_progress != 0 ||
1591		    backing_object->paging_in_progress != 0
1592		) {
1593			vm_object_qcollapse(object);
1594			VM_OBJECT_UNLOCK(backing_object);
1595			break;
1596		}
1597		/*
1598		 * We know that we can either collapse the backing object (if
1599		 * the parent is the only reference to it) or (perhaps) have
1600		 * the parent bypass the object if the parent happens to shadow
1601		 * all the resident pages in the entire backing object.
1602		 *
1603		 * This is ignoring pager-backed pages such as swap pages.
1604		 * vm_object_backing_scan fails the shadowing test in this
1605		 * case.
1606		 */
1607		if (backing_object->ref_count == 1) {
1608			/*
1609			 * If there is exactly one reference to the backing
1610			 * object, we can collapse it into the parent.
1611			 */
1612			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1613
1614			/*
1615			 * Move the pager from backing_object to object.
1616			 */
1617			if (backing_object->type == OBJT_SWAP) {
1618				/*
1619				 * swap_pager_copy() can sleep, in which case
1620				 * the backing_object's and object's locks are
1621				 * released and reacquired.
1622				 */
1623				swap_pager_copy(
1624				    backing_object,
1625				    object,
1626				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1627			}
1628			/*
1629			 * Object now shadows whatever backing_object did.
1630			 * Note that the reference to
1631			 * backing_object->backing_object moves from within
1632			 * backing_object to within object.
1633			 */
1634			LIST_REMOVE(object, shadow_list);
1635			backing_object->shadow_count--;
1636			backing_object->generation++;
1637			if (backing_object->backing_object) {
1638				VM_OBJECT_LOCK(backing_object->backing_object);
1639				LIST_REMOVE(backing_object, shadow_list);
1640				LIST_INSERT_HEAD(
1641				    &backing_object->backing_object->shadow_head,
1642				    object, shadow_list);
1643				/*
1644				 * The shadow_count has not changed.
1645				 */
1646				backing_object->backing_object->generation++;
1647				VM_OBJECT_UNLOCK(backing_object->backing_object);
1648			}
1649			object->backing_object = backing_object->backing_object;
1650			object->backing_object_offset +=
1651			    backing_object->backing_object_offset;
1652
1653			/*
1654			 * Discard backing_object.
1655			 *
1656			 * Since the backing object has no pages, no pager left,
1657			 * and no object references within it, all that is
1658			 * necessary is to dispose of it.
1659			 */
1660			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1661			VM_OBJECT_UNLOCK(backing_object);
1662
1663			mtx_lock(&vm_object_list_mtx);
1664			TAILQ_REMOVE(
1665			    &vm_object_list,
1666			    backing_object,
1667			    object_list
1668			);
1669			mtx_unlock(&vm_object_list_mtx);
1670
1671			uma_zfree(obj_zone, backing_object);
1672
1673			object_collapses++;
1674		} else {
1675			vm_object_t new_backing_object;
1676
1677			/*
1678			 * If we do not entirely shadow the backing object,
1679			 * there is nothing we can do so we give up.
1680			 */
1681			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1682				VM_OBJECT_UNLOCK(backing_object);
1683				break;
1684			}
1685
1686			/*
1687			 * Make the parent shadow the next object in the
1688			 * chain.  Deallocating backing_object will not remove
1689			 * it, since its reference count is at least 2.
1690			 */
1691			LIST_REMOVE(object, shadow_list);
1692			backing_object->shadow_count--;
1693			backing_object->generation++;
1694
1695			new_backing_object = backing_object->backing_object;
1696			if ((object->backing_object = new_backing_object) != NULL) {
1697				VM_OBJECT_LOCK(new_backing_object);
1698				LIST_INSERT_HEAD(
1699				    &new_backing_object->shadow_head,
1700				    object,
1701				    shadow_list
1702				);
1703				new_backing_object->shadow_count++;
1704				new_backing_object->generation++;
1705				vm_object_reference_locked(new_backing_object);
1706				VM_OBJECT_UNLOCK(new_backing_object);
1707				object->backing_object_offset +=
1708					backing_object->backing_object_offset;
1709			}
1710
1711			/*
1712			 * Drop the reference count on backing_object. Since
1713			 * its ref_count was at least 2, it will not vanish.
1714			 */
1715			backing_object->ref_count--;
1716			VM_OBJECT_UNLOCK(backing_object);
1717			object_bypasses++;
1718		}
1719
1720		/*
1721		 * Try again with this object's new backing object.
1722		 */
1723	}
1724}
1725
1726/*
1727 *	vm_object_page_remove:
1728 *
1729 *	Removes all physical pages in the given range from the
1730 *	object's list of pages.  If the range's end is zero, all
1731 *	physical pages from the range's start to the end of the object
1732 *	are deleted.
1733 *
1734 *	The object must be locked.
1735 */
1736void
1737vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1738    boolean_t clean_only)
1739{
1740	vm_page_t p, next;
1741
1742	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1743	if (object->resident_page_count == 0)
1744		return;
1745
1746	/*
1747	 * Since physically-backed objects do not use managed pages, we can't
1748	 * remove pages from the object (we must instead remove the page
1749	 * references, and then destroy the object).
1750	 */
1751	KASSERT(object->type != OBJT_PHYS,
1752	    ("attempt to remove pages from a physical object"));
1753
1754	vm_object_pip_add(object, 1);
1755again:
1756	vm_page_lock_queues();
1757	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1758		if (p->pindex < start) {
1759			p = vm_page_splay(start, object->root);
1760			if ((object->root = p)->pindex < start)
1761				p = TAILQ_NEXT(p, listq);
1762		}
1763	}
1764	/*
1765	 * Assert: the variable p is either (1) the page with the
1766	 * least pindex greater than or equal to the parameter pindex
1767	 * or (2) NULL.
1768	 */
1769	for (;
1770	     p != NULL && (p->pindex < end || end == 0);
1771	     p = next) {
1772		next = TAILQ_NEXT(p, listq);
1773
1774		if (p->wire_count != 0) {
1775			pmap_remove_all(p);
1776			if (!clean_only)
1777				p->valid = 0;
1778			continue;
1779		}
1780		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1781			goto again;
1782		if (clean_only && p->valid) {
1783			pmap_page_protect(p, VM_PROT_READ | VM_PROT_EXECUTE);
1784			if (p->valid & p->dirty)
1785				continue;
1786		}
1787		pmap_remove_all(p);
1788		vm_page_free(p);
1789	}
1790	vm_page_unlock_queues();
1791	vm_object_pip_wakeup(object);
1792}
1793
1794/*
1795 *	Routine:	vm_object_coalesce
1796 *	Function:	Coalesces two objects backing up adjoining
1797 *			regions of memory into a single object.
1798 *
1799 *	returns TRUE if objects were combined.
1800 *
1801 *	NOTE:	Only works at the moment if the second object is NULL -
1802 *		if it's not, which object do we lock first?
1803 *
1804 *	Parameters:
1805 *		prev_object	First object to coalesce
1806 *		prev_offset	Offset into prev_object
1807 *		prev_size	Size of reference to prev_object
1808 *		next_size	Size of reference to the second object
1809 *
1810 *	Conditions:
1811 *	The object must *not* be locked.
1812 */
1813boolean_t
1814vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1815	vm_size_t prev_size, vm_size_t next_size)
1816{
1817	vm_pindex_t next_pindex;
1818
1819	if (prev_object == NULL)
1820		return (TRUE);
1821	VM_OBJECT_LOCK(prev_object);
1822	if (prev_object->type != OBJT_DEFAULT &&
1823	    prev_object->type != OBJT_SWAP) {
1824		VM_OBJECT_UNLOCK(prev_object);
1825		return (FALSE);
1826	}
1827
1828	/*
1829	 * Try to collapse the object first
1830	 */
1831	vm_object_collapse(prev_object);
1832
1833	/*
1834	 * Can't coalesce if: . more than one reference . paged out . shadows
1835	 * another object . has a copy elsewhere (any of which mean that the
1836	 * pages not mapped to prev_entry may be in use anyway)
1837	 */
1838	if (prev_object->backing_object != NULL) {
1839		VM_OBJECT_UNLOCK(prev_object);
1840		return (FALSE);
1841	}
1842
1843	prev_size >>= PAGE_SHIFT;
1844	next_size >>= PAGE_SHIFT;
1845	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1846
1847	if ((prev_object->ref_count > 1) &&
1848	    (prev_object->size != next_pindex)) {
1849		VM_OBJECT_UNLOCK(prev_object);
1850		return (FALSE);
1851	}
1852
1853	/*
1854	 * Remove any pages that may still be in the object from a previous
1855	 * deallocation.
1856	 */
1857	if (next_pindex < prev_object->size) {
1858		vm_object_page_remove(prev_object,
1859				      next_pindex,
1860				      next_pindex + next_size, FALSE);
1861		if (prev_object->type == OBJT_SWAP)
1862			swap_pager_freespace(prev_object,
1863					     next_pindex, next_size);
1864	}
1865
1866	/*
1867	 * Extend the object if necessary.
1868	 */
1869	if (next_pindex + next_size > prev_object->size)
1870		prev_object->size = next_pindex + next_size;
1871
1872	VM_OBJECT_UNLOCK(prev_object);
1873	return (TRUE);
1874}
1875
1876void
1877vm_object_set_writeable_dirty(vm_object_t object)
1878{
1879	struct vnode *vp;
1880
1881	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1882	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1883	if (object->type == OBJT_VNODE &&
1884	    (vp = (struct vnode *)object->handle) != NULL) {
1885		VI_LOCK(vp);
1886		if ((vp->v_iflag & VI_OBJDIRTY) == 0)
1887			vp->v_iflag |= VI_OBJDIRTY;
1888		VI_UNLOCK(vp);
1889	}
1890}
1891
1892#include "opt_ddb.h"
1893#ifdef DDB
1894#include <sys/kernel.h>
1895
1896#include <sys/cons.h>
1897
1898#include <ddb/ddb.h>
1899
1900static int
1901_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1902{
1903	vm_map_t tmpm;
1904	vm_map_entry_t tmpe;
1905	vm_object_t obj;
1906	int entcount;
1907
1908	if (map == 0)
1909		return 0;
1910
1911	if (entry == 0) {
1912		tmpe = map->header.next;
1913		entcount = map->nentries;
1914		while (entcount-- && (tmpe != &map->header)) {
1915			if (_vm_object_in_map(map, object, tmpe)) {
1916				return 1;
1917			}
1918			tmpe = tmpe->next;
1919		}
1920	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1921		tmpm = entry->object.sub_map;
1922		tmpe = tmpm->header.next;
1923		entcount = tmpm->nentries;
1924		while (entcount-- && tmpe != &tmpm->header) {
1925			if (_vm_object_in_map(tmpm, object, tmpe)) {
1926				return 1;
1927			}
1928			tmpe = tmpe->next;
1929		}
1930	} else if ((obj = entry->object.vm_object) != NULL) {
1931		for (; obj; obj = obj->backing_object)
1932			if (obj == object) {
1933				return 1;
1934			}
1935	}
1936	return 0;
1937}
1938
1939static int
1940vm_object_in_map(vm_object_t object)
1941{
1942	struct proc *p;
1943
1944	/* sx_slock(&allproc_lock); */
1945	LIST_FOREACH(p, &allproc, p_list) {
1946		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1947			continue;
1948		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
1949			/* sx_sunlock(&allproc_lock); */
1950			return 1;
1951		}
1952	}
1953	/* sx_sunlock(&allproc_lock); */
1954	if (_vm_object_in_map(kernel_map, object, 0))
1955		return 1;
1956	if (_vm_object_in_map(kmem_map, object, 0))
1957		return 1;
1958	if (_vm_object_in_map(pager_map, object, 0))
1959		return 1;
1960	if (_vm_object_in_map(buffer_map, object, 0))
1961		return 1;
1962	return 0;
1963}
1964
1965DB_SHOW_COMMAND(vmochk, vm_object_check)
1966{
1967	vm_object_t object;
1968
1969	/*
1970	 * make sure that internal objs are in a map somewhere
1971	 * and none have zero ref counts.
1972	 */
1973	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1974		if (object->handle == NULL &&
1975		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1976			if (object->ref_count == 0) {
1977				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1978					(long)object->size);
1979			}
1980			if (!vm_object_in_map(object)) {
1981				db_printf(
1982			"vmochk: internal obj is not in a map: "
1983			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1984				    object->ref_count, (u_long)object->size,
1985				    (u_long)object->size,
1986				    (void *)object->backing_object);
1987			}
1988		}
1989	}
1990}
1991
1992/*
1993 *	vm_object_print:	[ debug ]
1994 */
1995DB_SHOW_COMMAND(object, vm_object_print_static)
1996{
1997	/* XXX convert args. */
1998	vm_object_t object = (vm_object_t)addr;
1999	boolean_t full = have_addr;
2000
2001	vm_page_t p;
2002
2003	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2004#define	count	was_count
2005
2006	int count;
2007
2008	if (object == NULL)
2009		return;
2010
2011	db_iprintf(
2012	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2013	    object, (int)object->type, (uintmax_t)object->size,
2014	    object->resident_page_count, object->ref_count, object->flags);
2015	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2016	    object->shadow_count,
2017	    object->backing_object ? object->backing_object->ref_count : 0,
2018	    object->backing_object, (uintmax_t)object->backing_object_offset);
2019
2020	if (!full)
2021		return;
2022
2023	db_indent += 2;
2024	count = 0;
2025	TAILQ_FOREACH(p, &object->memq, listq) {
2026		if (count == 0)
2027			db_iprintf("memory:=");
2028		else if (count == 6) {
2029			db_printf("\n");
2030			db_iprintf(" ...");
2031			count = 0;
2032		} else
2033			db_printf(",");
2034		count++;
2035
2036		db_printf("(off=0x%jx,page=0x%jx)",
2037		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2038	}
2039	if (count != 0)
2040		db_printf("\n");
2041	db_indent -= 2;
2042}
2043
2044/* XXX. */
2045#undef count
2046
2047/* XXX need this non-static entry for calling from vm_map_print. */
2048void
2049vm_object_print(
2050        /* db_expr_t */ long addr,
2051	boolean_t have_addr,
2052	/* db_expr_t */ long count,
2053	char *modif)
2054{
2055	vm_object_print_static(addr, have_addr, count, modif);
2056}
2057
2058DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2059{
2060	vm_object_t object;
2061	int nl = 0;
2062	int c;
2063
2064	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2065		vm_pindex_t idx, fidx;
2066		vm_pindex_t osize;
2067		vm_paddr_t pa = -1, padiff;
2068		int rcount;
2069		vm_page_t m;
2070
2071		db_printf("new object: %p\n", (void *)object);
2072		if (nl > 18) {
2073			c = cngetc();
2074			if (c != ' ')
2075				return;
2076			nl = 0;
2077		}
2078		nl++;
2079		rcount = 0;
2080		fidx = 0;
2081		osize = object->size;
2082		if (osize > 128)
2083			osize = 128;
2084		for (idx = 0; idx < osize; idx++) {
2085			m = vm_page_lookup(object, idx);
2086			if (m == NULL) {
2087				if (rcount) {
2088					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2089						(long)fidx, rcount, (long)pa);
2090					if (nl > 18) {
2091						c = cngetc();
2092						if (c != ' ')
2093							return;
2094						nl = 0;
2095					}
2096					nl++;
2097					rcount = 0;
2098				}
2099				continue;
2100			}
2101
2102
2103			if (rcount &&
2104				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2105				++rcount;
2106				continue;
2107			}
2108			if (rcount) {
2109				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2110				padiff >>= PAGE_SHIFT;
2111				padiff &= PQ_L2_MASK;
2112				if (padiff == 0) {
2113					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2114					++rcount;
2115					continue;
2116				}
2117				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2118					(long)fidx, rcount, (long)pa);
2119				db_printf("pd(%ld)\n", (long)padiff);
2120				if (nl > 18) {
2121					c = cngetc();
2122					if (c != ' ')
2123						return;
2124					nl = 0;
2125				}
2126				nl++;
2127			}
2128			fidx = idx;
2129			pa = VM_PAGE_TO_PHYS(m);
2130			rcount = 1;
2131		}
2132		if (rcount) {
2133			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2134				(long)fidx, rcount, (long)pa);
2135			if (nl > 18) {
2136				c = cngetc();
2137				if (c != ' ')
2138					return;
2139				nl = 0;
2140			}
2141			nl++;
2142		}
2143	}
2144}
2145#endif /* DDB */
2146