vm_object.c revision 137324
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory object module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: head/sys/vm/vm_object.c 137324 2004-11-06 21:48:45Z alc $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/lock.h>
71#include <sys/mman.h>
72#include <sys/mount.h>
73#include <sys/kernel.h>
74#include <sys/sysctl.h>
75#include <sys/mutex.h>
76#include <sys/proc.h>		/* for curproc, pageproc */
77#include <sys/socket.h>
78#include <sys/vnode.h>
79#include <sys/vmmeter.h>
80#include <sys/sx.h>
81
82#include <vm/vm.h>
83#include <vm/vm_param.h>
84#include <vm/pmap.h>
85#include <vm/vm_map.h>
86#include <vm/vm_object.h>
87#include <vm/vm_page.h>
88#include <vm/vm_pageout.h>
89#include <vm/vm_pager.h>
90#include <vm/swap_pager.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_extern.h>
93#include <vm/uma.h>
94
95#define EASY_SCAN_FACTOR       8
96
97#define MSYNC_FLUSH_HARDSEQ	0x01
98#define MSYNC_FLUSH_SOFTSEQ	0x02
99
100/*
101 * msync / VM object flushing optimizations
102 */
103static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
104SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
105        CTLFLAG_RW, &msync_flush_flags, 0, "");
106
107static int old_msync;
108SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
109    "Use old (insecure) msync behavior");
110
111static void	vm_object_qcollapse(vm_object_t object);
112static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
113
114/*
115 *	Virtual memory objects maintain the actual data
116 *	associated with allocated virtual memory.  A given
117 *	page of memory exists within exactly one object.
118 *
119 *	An object is only deallocated when all "references"
120 *	are given up.  Only one "reference" to a given
121 *	region of an object should be writeable.
122 *
123 *	Associated with each object is a list of all resident
124 *	memory pages belonging to that object; this list is
125 *	maintained by the "vm_page" module, and locked by the object's
126 *	lock.
127 *
128 *	Each object also records a "pager" routine which is
129 *	used to retrieve (and store) pages to the proper backing
130 *	storage.  In addition, objects may be backed by other
131 *	objects from which they were virtual-copied.
132 *
133 *	The only items within the object structure which are
134 *	modified after time of creation are:
135 *		reference count		locked by object's lock
136 *		pager routine		locked by object's lock
137 *
138 */
139
140struct object_q vm_object_list;
141struct mtx vm_object_list_mtx;	/* lock for object list and count */
142
143struct vm_object kernel_object_store;
144struct vm_object kmem_object_store;
145
146static long object_collapses;
147static long object_bypasses;
148
149/*
150 * next_index determines the page color that is assigned to the next
151 * allocated object.  Accesses to next_index are not synchronized
152 * because the effects of two or more object allocations using
153 * next_index simultaneously are inconsequential.  At any given time,
154 * numerous objects have the same page color.
155 */
156static int next_index;
157
158static uma_zone_t obj_zone;
159#define VM_OBJECTS_INIT 256
160
161static int vm_object_zinit(void *mem, int size, int flags);
162
163#ifdef INVARIANTS
164static void vm_object_zdtor(void *mem, int size, void *arg);
165
166static void
167vm_object_zdtor(void *mem, int size, void *arg)
168{
169	vm_object_t object;
170
171	object = (vm_object_t)mem;
172	KASSERT(TAILQ_EMPTY(&object->memq),
173	    ("object %p has resident pages",
174	    object));
175	KASSERT(object->paging_in_progress == 0,
176	    ("object %p paging_in_progress = %d",
177	    object, object->paging_in_progress));
178	KASSERT(object->resident_page_count == 0,
179	    ("object %p resident_page_count = %d",
180	    object, object->resident_page_count));
181	KASSERT(object->shadow_count == 0,
182	    ("object %p shadow_count = %d",
183	    object, object->shadow_count));
184}
185#endif
186
187static int
188vm_object_zinit(void *mem, int size, int flags)
189{
190	vm_object_t object;
191
192	object = (vm_object_t)mem;
193	bzero(&object->mtx, sizeof(object->mtx));
194	VM_OBJECT_LOCK_INIT(object, "standard object");
195
196	/* These are true for any object that has been freed */
197	object->paging_in_progress = 0;
198	object->resident_page_count = 0;
199	object->shadow_count = 0;
200	return (0);
201}
202
203void
204_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
205{
206	int incr;
207
208	TAILQ_INIT(&object->memq);
209	LIST_INIT(&object->shadow_head);
210
211	object->root = NULL;
212	object->type = type;
213	object->size = size;
214	object->generation = 1;
215	object->ref_count = 1;
216	object->flags = 0;
217	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
218		object->flags = OBJ_ONEMAPPING;
219	if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
220		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
221	else
222		incr = size;
223	object->pg_color = next_index;
224	next_index = (object->pg_color + incr) & PQ_L2_MASK;
225	object->handle = NULL;
226	object->backing_object = NULL;
227	object->backing_object_offset = (vm_ooffset_t) 0;
228
229	mtx_lock(&vm_object_list_mtx);
230	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
231	mtx_unlock(&vm_object_list_mtx);
232}
233
234/*
235 *	vm_object_init:
236 *
237 *	Initialize the VM objects module.
238 */
239void
240vm_object_init(void)
241{
242	TAILQ_INIT(&vm_object_list);
243	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
244
245	VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
246	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
247	    kernel_object);
248
249	VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
250	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
251	    kmem_object);
252
253	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
254#ifdef INVARIANTS
255	    vm_object_zdtor,
256#else
257	    NULL,
258#endif
259	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
260	uma_prealloc(obj_zone, VM_OBJECTS_INIT);
261}
262
263void
264vm_object_clear_flag(vm_object_t object, u_short bits)
265{
266
267	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
268	object->flags &= ~bits;
269}
270
271void
272vm_object_pip_add(vm_object_t object, short i)
273{
274
275	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
276	object->paging_in_progress += i;
277}
278
279void
280vm_object_pip_subtract(vm_object_t object, short i)
281{
282
283	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
284	object->paging_in_progress -= i;
285}
286
287void
288vm_object_pip_wakeup(vm_object_t object)
289{
290
291	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
292	object->paging_in_progress--;
293	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
294		vm_object_clear_flag(object, OBJ_PIPWNT);
295		wakeup(object);
296	}
297}
298
299void
300vm_object_pip_wakeupn(vm_object_t object, short i)
301{
302
303	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
304	if (i)
305		object->paging_in_progress -= i;
306	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
307		vm_object_clear_flag(object, OBJ_PIPWNT);
308		wakeup(object);
309	}
310}
311
312void
313vm_object_pip_wait(vm_object_t object, char *waitid)
314{
315
316	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
317	while (object->paging_in_progress) {
318		object->flags |= OBJ_PIPWNT;
319		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
320	}
321}
322
323/*
324 *	vm_object_allocate_wait
325 *
326 *	Return a new object with the given size, and give the user the
327 *	option of waiting for it to complete or failing if the needed
328 *	memory isn't available.
329 */
330vm_object_t
331vm_object_allocate_wait(objtype_t type, vm_pindex_t size, int flags)
332{
333	vm_object_t result;
334
335	result = (vm_object_t) uma_zalloc(obj_zone, flags);
336
337	if (result != NULL)
338		_vm_object_allocate(type, size, result);
339
340	return (result);
341}
342
343/*
344 *	vm_object_allocate:
345 *
346 *	Returns a new object with the given size.
347 */
348vm_object_t
349vm_object_allocate(objtype_t type, vm_pindex_t size)
350{
351	return(vm_object_allocate_wait(type, size, M_WAITOK));
352}
353
354
355/*
356 *	vm_object_reference:
357 *
358 *	Gets another reference to the given object.  Note: OBJ_DEAD
359 *	objects can be referenced during final cleaning.
360 */
361void
362vm_object_reference(vm_object_t object)
363{
364	struct vnode *vp;
365	int flags;
366
367	if (object == NULL)
368		return;
369	VM_OBJECT_LOCK(object);
370	object->ref_count++;
371	if (object->type == OBJT_VNODE) {
372		vp = object->handle;
373		VI_LOCK(vp);
374		VM_OBJECT_UNLOCK(object);
375		for (flags = LK_INTERLOCK; vget(vp, flags, curthread);
376		     flags = 0)
377			printf("vm_object_reference: delay in vget\n");
378	} else
379		VM_OBJECT_UNLOCK(object);
380}
381
382/*
383 *	vm_object_reference_locked:
384 *
385 *	Gets another reference to the given object.
386 *
387 *	The object must be locked.
388 */
389void
390vm_object_reference_locked(vm_object_t object)
391{
392	struct vnode *vp;
393
394	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
395	KASSERT((object->flags & OBJ_DEAD) == 0,
396	    ("vm_object_reference_locked: dead object referenced"));
397	object->ref_count++;
398	if (object->type == OBJT_VNODE) {
399		vp = object->handle;
400		vref(vp);
401	}
402}
403
404/*
405 * Handle deallocating an object of type OBJT_VNODE.
406 */
407void
408vm_object_vndeallocate(vm_object_t object)
409{
410	struct vnode *vp = (struct vnode *) object->handle;
411
412	GIANT_REQUIRED;
413	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
414	KASSERT(object->type == OBJT_VNODE,
415	    ("vm_object_vndeallocate: not a vnode object"));
416	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
417#ifdef INVARIANTS
418	if (object->ref_count == 0) {
419		vprint("vm_object_vndeallocate", vp);
420		panic("vm_object_vndeallocate: bad object reference count");
421	}
422#endif
423
424	object->ref_count--;
425	if (object->ref_count == 0) {
426		mp_fixme("Unlocked vflag access.");
427		vp->v_vflag &= ~VV_TEXT;
428	}
429	VM_OBJECT_UNLOCK(object);
430	/*
431	 * vrele may need a vop lock
432	 */
433	vrele(vp);
434}
435
436/*
437 *	vm_object_deallocate:
438 *
439 *	Release a reference to the specified object,
440 *	gained either through a vm_object_allocate
441 *	or a vm_object_reference call.  When all references
442 *	are gone, storage associated with this object
443 *	may be relinquished.
444 *
445 *	No object may be locked.
446 */
447void
448vm_object_deallocate(vm_object_t object)
449{
450	vm_object_t temp;
451
452	while (object != NULL) {
453		/*
454		 * In general, the object should be locked when working with
455		 * its type.  In this case, in order to maintain proper lock
456		 * ordering, an exception is possible because a vnode-backed
457		 * object never changes its type.
458		 */
459		if (object->type == OBJT_VNODE)
460			mtx_lock(&Giant);
461		VM_OBJECT_LOCK(object);
462		if (object->type == OBJT_VNODE) {
463			vm_object_vndeallocate(object);
464			mtx_unlock(&Giant);
465			return;
466		}
467
468		KASSERT(object->ref_count != 0,
469			("vm_object_deallocate: object deallocated too many times: %d", object->type));
470
471		/*
472		 * If the reference count goes to 0 we start calling
473		 * vm_object_terminate() on the object chain.
474		 * A ref count of 1 may be a special case depending on the
475		 * shadow count being 0 or 1.
476		 */
477		object->ref_count--;
478		if (object->ref_count > 1) {
479			VM_OBJECT_UNLOCK(object);
480			return;
481		} else if (object->ref_count == 1) {
482			if (object->shadow_count == 0) {
483				vm_object_set_flag(object, OBJ_ONEMAPPING);
484			} else if ((object->shadow_count == 1) &&
485			    (object->handle == NULL) &&
486			    (object->type == OBJT_DEFAULT ||
487			     object->type == OBJT_SWAP)) {
488				vm_object_t robject;
489
490				robject = LIST_FIRST(&object->shadow_head);
491				KASSERT(robject != NULL,
492				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
493					 object->ref_count,
494					 object->shadow_count));
495				if (!VM_OBJECT_TRYLOCK(robject)) {
496					/*
497					 * Avoid a potential deadlock.
498					 */
499					object->ref_count++;
500					VM_OBJECT_UNLOCK(object);
501					/*
502					 * More likely than not the thread
503					 * holding robject's lock has lower
504					 * priority than the current thread.
505					 * Let the lower priority thread run.
506					 */
507					tsleep(&proc0, PVM, "vmo_de", 1);
508					continue;
509				}
510				if ((robject->handle == NULL) &&
511				    (robject->type == OBJT_DEFAULT ||
512				     robject->type == OBJT_SWAP)) {
513
514					robject->ref_count++;
515retry:
516					if (robject->paging_in_progress) {
517						VM_OBJECT_UNLOCK(object);
518						vm_object_pip_wait(robject,
519						    "objde1");
520						VM_OBJECT_LOCK(object);
521						goto retry;
522					} else if (object->paging_in_progress) {
523						VM_OBJECT_UNLOCK(robject);
524						object->flags |= OBJ_PIPWNT;
525						msleep(object,
526						    VM_OBJECT_MTX(object),
527						    PDROP | PVM, "objde2", 0);
528						VM_OBJECT_LOCK(robject);
529						VM_OBJECT_LOCK(object);
530						goto retry;
531					}
532					VM_OBJECT_UNLOCK(object);
533					if (robject->ref_count == 1) {
534						robject->ref_count--;
535						object = robject;
536						goto doterm;
537					}
538					object = robject;
539					vm_object_collapse(object);
540					VM_OBJECT_UNLOCK(object);
541					continue;
542				}
543				VM_OBJECT_UNLOCK(robject);
544			}
545			VM_OBJECT_UNLOCK(object);
546			return;
547		}
548doterm:
549		temp = object->backing_object;
550		if (temp != NULL) {
551			VM_OBJECT_LOCK(temp);
552			LIST_REMOVE(object, shadow_list);
553			temp->shadow_count--;
554			temp->generation++;
555			VM_OBJECT_UNLOCK(temp);
556			object->backing_object = NULL;
557		}
558		/*
559		 * Don't double-terminate, we could be in a termination
560		 * recursion due to the terminate having to sync data
561		 * to disk.
562		 */
563		if ((object->flags & OBJ_DEAD) == 0)
564			vm_object_terminate(object);
565		else
566			VM_OBJECT_UNLOCK(object);
567		object = temp;
568	}
569}
570
571/*
572 *	vm_object_terminate actually destroys the specified object, freeing
573 *	up all previously used resources.
574 *
575 *	The object must be locked.
576 *	This routine may block.
577 */
578void
579vm_object_terminate(vm_object_t object)
580{
581	vm_page_t p;
582
583	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
584
585	/*
586	 * Make sure no one uses us.
587	 */
588	vm_object_set_flag(object, OBJ_DEAD);
589
590	/*
591	 * wait for the pageout daemon to be done with the object
592	 */
593	vm_object_pip_wait(object, "objtrm");
594
595	KASSERT(!object->paging_in_progress,
596		("vm_object_terminate: pageout in progress"));
597
598	/*
599	 * Clean and free the pages, as appropriate. All references to the
600	 * object are gone, so we don't need to lock it.
601	 */
602	if (object->type == OBJT_VNODE) {
603		struct vnode *vp = (struct vnode *)object->handle;
604
605		/*
606		 * Clean pages and flush buffers.
607		 */
608		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
609		VM_OBJECT_UNLOCK(object);
610
611		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
612
613		VM_OBJECT_LOCK(object);
614	}
615
616	KASSERT(object->ref_count == 0,
617		("vm_object_terminate: object with references, ref_count=%d",
618		object->ref_count));
619
620	/*
621	 * Now free any remaining pages. For internal objects, this also
622	 * removes them from paging queues. Don't free wired pages, just
623	 * remove them from the object.
624	 */
625	vm_page_lock_queues();
626	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
627		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
628			("vm_object_terminate: freeing busy page %p "
629			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
630		if (p->wire_count == 0) {
631			vm_page_free(p);
632			cnt.v_pfree++;
633		} else {
634			vm_page_remove(p);
635		}
636	}
637	vm_page_unlock_queues();
638
639	/*
640	 * Let the pager know object is dead.
641	 */
642	vm_pager_deallocate(object);
643	VM_OBJECT_UNLOCK(object);
644
645	/*
646	 * Remove the object from the global object list.
647	 */
648	mtx_lock(&vm_object_list_mtx);
649	TAILQ_REMOVE(&vm_object_list, object, object_list);
650	mtx_unlock(&vm_object_list_mtx);
651
652	/*
653	 * Free the space for the object.
654	 */
655	uma_zfree(obj_zone, object);
656}
657
658/*
659 *	vm_object_page_clean
660 *
661 *	Clean all dirty pages in the specified range of object.  Leaves page
662 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
663 *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
664 *	leaving the object dirty.
665 *
666 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
667 *	synchronous clustering mode implementation.
668 *
669 *	Odd semantics: if start == end, we clean everything.
670 *
671 *	The object must be locked.
672 */
673void
674vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
675{
676	vm_page_t p, np;
677	vm_pindex_t tstart, tend;
678	vm_pindex_t pi;
679	int clearobjflags;
680	int pagerflags;
681	int curgeneration;
682
683	GIANT_REQUIRED;
684	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
685	if (object->type != OBJT_VNODE ||
686		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
687		return;
688
689	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
690	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
691
692	vm_object_set_flag(object, OBJ_CLEANING);
693
694	tstart = start;
695	if (end == 0) {
696		tend = object->size;
697	} else {
698		tend = end;
699	}
700
701	vm_page_lock_queues();
702	/*
703	 * If the caller is smart and only msync()s a range he knows is
704	 * dirty, we may be able to avoid an object scan.  This results in
705	 * a phenominal improvement in performance.  We cannot do this
706	 * as a matter of course because the object may be huge - e.g.
707	 * the size might be in the gigabytes or terrabytes.
708	 */
709	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
710		vm_pindex_t tscan;
711		int scanlimit;
712		int scanreset;
713
714		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
715		if (scanreset < 16)
716			scanreset = 16;
717		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
718
719		scanlimit = scanreset;
720		tscan = tstart;
721		while (tscan < tend) {
722			curgeneration = object->generation;
723			p = vm_page_lookup(object, tscan);
724			if (p == NULL || p->valid == 0 ||
725			    (p->queue - p->pc) == PQ_CACHE) {
726				if (--scanlimit == 0)
727					break;
728				++tscan;
729				continue;
730			}
731			vm_page_test_dirty(p);
732			if ((p->dirty & p->valid) == 0) {
733				if (--scanlimit == 0)
734					break;
735				++tscan;
736				continue;
737			}
738			/*
739			 * If we have been asked to skip nosync pages and
740			 * this is a nosync page, we can't continue.
741			 */
742			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
743				if (--scanlimit == 0)
744					break;
745				++tscan;
746				continue;
747			}
748			scanlimit = scanreset;
749
750			/*
751			 * This returns 0 if it was unable to busy the first
752			 * page (i.e. had to sleep).
753			 */
754			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
755		}
756
757		/*
758		 * If everything was dirty and we flushed it successfully,
759		 * and the requested range is not the entire object, we
760		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
761		 * return immediately.
762		 */
763		if (tscan >= tend && (tstart || tend < object->size)) {
764			vm_page_unlock_queues();
765			vm_object_clear_flag(object, OBJ_CLEANING);
766			return;
767		}
768		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
769	}
770
771	/*
772	 * Generally set CLEANCHK interlock and make the page read-only so
773	 * we can then clear the object flags.
774	 *
775	 * However, if this is a nosync mmap then the object is likely to
776	 * stay dirty so do not mess with the page and do not clear the
777	 * object flags.
778	 */
779	clearobjflags = 1;
780	TAILQ_FOREACH(p, &object->memq, listq) {
781		vm_page_flag_set(p, PG_CLEANCHK);
782		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
783			clearobjflags = 0;
784		else
785			pmap_page_protect(p, VM_PROT_READ);
786	}
787
788	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
789		struct vnode *vp;
790
791		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
792		if (object->type == OBJT_VNODE &&
793		    (vp = (struct vnode *)object->handle) != NULL) {
794			VI_LOCK(vp);
795			if (vp->v_iflag & VI_OBJDIRTY)
796				vp->v_iflag &= ~VI_OBJDIRTY;
797			VI_UNLOCK(vp);
798		}
799	}
800
801rescan:
802	curgeneration = object->generation;
803
804	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
805		int n;
806
807		np = TAILQ_NEXT(p, listq);
808
809again:
810		pi = p->pindex;
811		if (((p->flags & PG_CLEANCHK) == 0) ||
812			(pi < tstart) || (pi >= tend) ||
813			(p->valid == 0) ||
814			((p->queue - p->pc) == PQ_CACHE)) {
815			vm_page_flag_clear(p, PG_CLEANCHK);
816			continue;
817		}
818
819		vm_page_test_dirty(p);
820		if ((p->dirty & p->valid) == 0) {
821			vm_page_flag_clear(p, PG_CLEANCHK);
822			continue;
823		}
824
825		/*
826		 * If we have been asked to skip nosync pages and this is a
827		 * nosync page, skip it.  Note that the object flags were
828		 * not cleared in this case so we do not have to set them.
829		 */
830		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
831			vm_page_flag_clear(p, PG_CLEANCHK);
832			continue;
833		}
834
835		n = vm_object_page_collect_flush(object, p,
836			curgeneration, pagerflags);
837		if (n == 0)
838			goto rescan;
839
840		if (object->generation != curgeneration)
841			goto rescan;
842
843		/*
844		 * Try to optimize the next page.  If we can't we pick up
845		 * our (random) scan where we left off.
846		 */
847		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
848			if ((p = vm_page_lookup(object, pi + n)) != NULL)
849				goto again;
850		}
851	}
852	vm_page_unlock_queues();
853#if 0
854	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
855#endif
856
857	vm_object_clear_flag(object, OBJ_CLEANING);
858	return;
859}
860
861static int
862vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
863{
864	int runlen;
865	int maxf;
866	int chkb;
867	int maxb;
868	int i;
869	vm_pindex_t pi;
870	vm_page_t maf[vm_pageout_page_count];
871	vm_page_t mab[vm_pageout_page_count];
872	vm_page_t ma[vm_pageout_page_count];
873
874	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
875	pi = p->pindex;
876	while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
877		vm_page_lock_queues();
878		if (object->generation != curgeneration) {
879			return(0);
880		}
881	}
882	maxf = 0;
883	for(i = 1; i < vm_pageout_page_count; i++) {
884		vm_page_t tp;
885
886		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
887			if ((tp->flags & PG_BUSY) ||
888				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
889				 (tp->flags & PG_CLEANCHK) == 0) ||
890				(tp->busy != 0))
891				break;
892			if((tp->queue - tp->pc) == PQ_CACHE) {
893				vm_page_flag_clear(tp, PG_CLEANCHK);
894				break;
895			}
896			vm_page_test_dirty(tp);
897			if ((tp->dirty & tp->valid) == 0) {
898				vm_page_flag_clear(tp, PG_CLEANCHK);
899				break;
900			}
901			maf[ i - 1 ] = tp;
902			maxf++;
903			continue;
904		}
905		break;
906	}
907
908	maxb = 0;
909	chkb = vm_pageout_page_count -  maxf;
910	if (chkb) {
911		for(i = 1; i < chkb;i++) {
912			vm_page_t tp;
913
914			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
915				if ((tp->flags & PG_BUSY) ||
916					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
917					 (tp->flags & PG_CLEANCHK) == 0) ||
918					(tp->busy != 0))
919					break;
920				if ((tp->queue - tp->pc) == PQ_CACHE) {
921					vm_page_flag_clear(tp, PG_CLEANCHK);
922					break;
923				}
924				vm_page_test_dirty(tp);
925				if ((tp->dirty & tp->valid) == 0) {
926					vm_page_flag_clear(tp, PG_CLEANCHK);
927					break;
928				}
929				mab[ i - 1 ] = tp;
930				maxb++;
931				continue;
932			}
933			break;
934		}
935	}
936
937	for(i = 0; i < maxb; i++) {
938		int index = (maxb - i) - 1;
939		ma[index] = mab[i];
940		vm_page_flag_clear(ma[index], PG_CLEANCHK);
941	}
942	vm_page_flag_clear(p, PG_CLEANCHK);
943	ma[maxb] = p;
944	for(i = 0; i < maxf; i++) {
945		int index = (maxb + i) + 1;
946		ma[index] = maf[i];
947		vm_page_flag_clear(ma[index], PG_CLEANCHK);
948	}
949	runlen = maxb + maxf + 1;
950
951	vm_pageout_flush(ma, runlen, pagerflags);
952	for (i = 0; i < runlen; i++) {
953		if (ma[i]->valid & ma[i]->dirty) {
954			pmap_page_protect(ma[i], VM_PROT_READ);
955			vm_page_flag_set(ma[i], PG_CLEANCHK);
956
957			/*
958			 * maxf will end up being the actual number of pages
959			 * we wrote out contiguously, non-inclusive of the
960			 * first page.  We do not count look-behind pages.
961			 */
962			if (i >= maxb + 1 && (maxf > i - maxb - 1))
963				maxf = i - maxb - 1;
964		}
965	}
966	return(maxf + 1);
967}
968
969/*
970 * Note that there is absolutely no sense in writing out
971 * anonymous objects, so we track down the vnode object
972 * to write out.
973 * We invalidate (remove) all pages from the address space
974 * for semantic correctness.
975 *
976 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
977 * may start out with a NULL object.
978 */
979void
980vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
981    boolean_t syncio, boolean_t invalidate)
982{
983	vm_object_t backing_object;
984	struct vnode *vp;
985	int flags;
986
987	if (object == NULL)
988		return;
989	VM_OBJECT_LOCK(object);
990	while ((backing_object = object->backing_object) != NULL) {
991		VM_OBJECT_LOCK(backing_object);
992		offset += object->backing_object_offset;
993		VM_OBJECT_UNLOCK(object);
994		object = backing_object;
995		if (object->size < OFF_TO_IDX(offset + size))
996			size = IDX_TO_OFF(object->size) - offset;
997	}
998	/*
999	 * Flush pages if writing is allowed, invalidate them
1000	 * if invalidation requested.  Pages undergoing I/O
1001	 * will be ignored by vm_object_page_remove().
1002	 *
1003	 * We cannot lock the vnode and then wait for paging
1004	 * to complete without deadlocking against vm_fault.
1005	 * Instead we simply call vm_object_page_remove() and
1006	 * allow it to block internally on a page-by-page
1007	 * basis when it encounters pages undergoing async
1008	 * I/O.
1009	 */
1010	if (object->type == OBJT_VNODE &&
1011	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1012		vp = object->handle;
1013		VM_OBJECT_UNLOCK(object);
1014		mtx_lock(&Giant);
1015		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
1016		flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1017		flags |= invalidate ? OBJPC_INVAL : 0;
1018		VM_OBJECT_LOCK(object);
1019		vm_object_page_clean(object,
1020		    OFF_TO_IDX(offset),
1021		    OFF_TO_IDX(offset + size + PAGE_MASK),
1022		    flags);
1023		VM_OBJECT_UNLOCK(object);
1024		VOP_UNLOCK(vp, 0, curthread);
1025		mtx_unlock(&Giant);
1026		VM_OBJECT_LOCK(object);
1027	}
1028	if ((object->type == OBJT_VNODE ||
1029	     object->type == OBJT_DEVICE) && invalidate) {
1030		boolean_t purge;
1031		purge = old_msync || (object->type == OBJT_DEVICE);
1032		vm_object_page_remove(object,
1033		    OFF_TO_IDX(offset),
1034		    OFF_TO_IDX(offset + size + PAGE_MASK),
1035		    purge ? FALSE : TRUE);
1036	}
1037	VM_OBJECT_UNLOCK(object);
1038}
1039
1040/*
1041 *	vm_object_madvise:
1042 *
1043 *	Implements the madvise function at the object/page level.
1044 *
1045 *	MADV_WILLNEED	(any object)
1046 *
1047 *	    Activate the specified pages if they are resident.
1048 *
1049 *	MADV_DONTNEED	(any object)
1050 *
1051 *	    Deactivate the specified pages if they are resident.
1052 *
1053 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1054 *			 OBJ_ONEMAPPING only)
1055 *
1056 *	    Deactivate and clean the specified pages if they are
1057 *	    resident.  This permits the process to reuse the pages
1058 *	    without faulting or the kernel to reclaim the pages
1059 *	    without I/O.
1060 */
1061void
1062vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1063{
1064	vm_pindex_t end, tpindex;
1065	vm_object_t backing_object, tobject;
1066	vm_page_t m;
1067
1068	if (object == NULL)
1069		return;
1070	VM_OBJECT_LOCK(object);
1071	end = pindex + count;
1072	/*
1073	 * Locate and adjust resident pages
1074	 */
1075	for (; pindex < end; pindex += 1) {
1076relookup:
1077		tobject = object;
1078		tpindex = pindex;
1079shadowlookup:
1080		/*
1081		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1082		 * and those pages must be OBJ_ONEMAPPING.
1083		 */
1084		if (advise == MADV_FREE) {
1085			if ((tobject->type != OBJT_DEFAULT &&
1086			     tobject->type != OBJT_SWAP) ||
1087			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1088				goto unlock_tobject;
1089			}
1090		}
1091		m = vm_page_lookup(tobject, tpindex);
1092		if (m == NULL) {
1093			/*
1094			 * There may be swap even if there is no backing page
1095			 */
1096			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1097				swap_pager_freespace(tobject, tpindex, 1);
1098			/*
1099			 * next object
1100			 */
1101			backing_object = tobject->backing_object;
1102			if (backing_object == NULL)
1103				goto unlock_tobject;
1104			VM_OBJECT_LOCK(backing_object);
1105			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1106			if (tobject != object)
1107				VM_OBJECT_UNLOCK(tobject);
1108			tobject = backing_object;
1109			goto shadowlookup;
1110		}
1111		/*
1112		 * If the page is busy or not in a normal active state,
1113		 * we skip it.  If the page is not managed there are no
1114		 * page queues to mess with.  Things can break if we mess
1115		 * with pages in any of the below states.
1116		 */
1117		vm_page_lock_queues();
1118		if (m->hold_count ||
1119		    m->wire_count ||
1120		    (m->flags & PG_UNMANAGED) ||
1121		    m->valid != VM_PAGE_BITS_ALL) {
1122			vm_page_unlock_queues();
1123			goto unlock_tobject;
1124		}
1125		if ((m->flags & PG_BUSY) || m->busy) {
1126			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1127			if (object != tobject)
1128				VM_OBJECT_UNLOCK(object);
1129			VM_OBJECT_UNLOCK(tobject);
1130			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "madvpo", 0);
1131			VM_OBJECT_LOCK(object);
1132  			goto relookup;
1133		}
1134		if (advise == MADV_WILLNEED) {
1135			vm_page_activate(m);
1136		} else if (advise == MADV_DONTNEED) {
1137			vm_page_dontneed(m);
1138		} else if (advise == MADV_FREE) {
1139			/*
1140			 * Mark the page clean.  This will allow the page
1141			 * to be freed up by the system.  However, such pages
1142			 * are often reused quickly by malloc()/free()
1143			 * so we do not do anything that would cause
1144			 * a page fault if we can help it.
1145			 *
1146			 * Specifically, we do not try to actually free
1147			 * the page now nor do we try to put it in the
1148			 * cache (which would cause a page fault on reuse).
1149			 *
1150			 * But we do make the page is freeable as we
1151			 * can without actually taking the step of unmapping
1152			 * it.
1153			 */
1154			pmap_clear_modify(m);
1155			m->dirty = 0;
1156			m->act_count = 0;
1157			vm_page_dontneed(m);
1158		}
1159		vm_page_unlock_queues();
1160		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1161			swap_pager_freespace(tobject, tpindex, 1);
1162unlock_tobject:
1163		if (tobject != object)
1164			VM_OBJECT_UNLOCK(tobject);
1165	}
1166	VM_OBJECT_UNLOCK(object);
1167}
1168
1169/*
1170 *	vm_object_shadow:
1171 *
1172 *	Create a new object which is backed by the
1173 *	specified existing object range.  The source
1174 *	object reference is deallocated.
1175 *
1176 *	The new object and offset into that object
1177 *	are returned in the source parameters.
1178 */
1179void
1180vm_object_shadow(
1181	vm_object_t *object,	/* IN/OUT */
1182	vm_ooffset_t *offset,	/* IN/OUT */
1183	vm_size_t length)
1184{
1185	vm_object_t source;
1186	vm_object_t result;
1187
1188	source = *object;
1189
1190	/*
1191	 * Don't create the new object if the old object isn't shared.
1192	 */
1193	if (source != NULL) {
1194		VM_OBJECT_LOCK(source);
1195		if (source->ref_count == 1 &&
1196		    source->handle == NULL &&
1197		    (source->type == OBJT_DEFAULT ||
1198		     source->type == OBJT_SWAP)) {
1199			VM_OBJECT_UNLOCK(source);
1200			return;
1201		}
1202		VM_OBJECT_UNLOCK(source);
1203	}
1204
1205	/*
1206	 * Allocate a new object with the given length.
1207	 */
1208	result = vm_object_allocate(OBJT_DEFAULT, length);
1209
1210	/*
1211	 * The new object shadows the source object, adding a reference to it.
1212	 * Our caller changes his reference to point to the new object,
1213	 * removing a reference to the source object.  Net result: no change
1214	 * of reference count.
1215	 *
1216	 * Try to optimize the result object's page color when shadowing
1217	 * in order to maintain page coloring consistency in the combined
1218	 * shadowed object.
1219	 */
1220	result->backing_object = source;
1221	/*
1222	 * Store the offset into the source object, and fix up the offset into
1223	 * the new object.
1224	 */
1225	result->backing_object_offset = *offset;
1226	if (source != NULL) {
1227		VM_OBJECT_LOCK(source);
1228		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1229		source->shadow_count++;
1230		source->generation++;
1231		if (length < source->size)
1232			length = source->size;
1233		if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1234		    source->generation > 1)
1235			length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1236		result->pg_color = (source->pg_color +
1237		    length * source->generation) & PQ_L2_MASK;
1238		VM_OBJECT_UNLOCK(source);
1239		next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1240		    PQ_L2_MASK;
1241	}
1242
1243
1244	/*
1245	 * Return the new things
1246	 */
1247	*offset = 0;
1248	*object = result;
1249}
1250
1251/*
1252 *	vm_object_split:
1253 *
1254 * Split the pages in a map entry into a new object.  This affords
1255 * easier removal of unused pages, and keeps object inheritance from
1256 * being a negative impact on memory usage.
1257 */
1258void
1259vm_object_split(vm_map_entry_t entry)
1260{
1261	vm_page_t m;
1262	vm_object_t orig_object, new_object, source;
1263	vm_pindex_t offidxstart, offidxend;
1264	vm_size_t idx, size;
1265
1266	orig_object = entry->object.vm_object;
1267	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1268		return;
1269	if (orig_object->ref_count <= 1)
1270		return;
1271	VM_OBJECT_UNLOCK(orig_object);
1272
1273	offidxstart = OFF_TO_IDX(entry->offset);
1274	offidxend = offidxstart + OFF_TO_IDX(entry->end - entry->start);
1275	size = offidxend - offidxstart;
1276
1277	/*
1278	 * If swap_pager_copy() is later called, it will convert new_object
1279	 * into a swap object.
1280	 */
1281	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1282
1283	VM_OBJECT_LOCK(new_object);
1284	VM_OBJECT_LOCK(orig_object);
1285	source = orig_object->backing_object;
1286	if (source != NULL) {
1287		VM_OBJECT_LOCK(source);
1288		LIST_INSERT_HEAD(&source->shadow_head,
1289				  new_object, shadow_list);
1290		source->shadow_count++;
1291		source->generation++;
1292		vm_object_reference_locked(source);	/* for new_object */
1293		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1294		VM_OBJECT_UNLOCK(source);
1295		new_object->backing_object_offset =
1296			orig_object->backing_object_offset + entry->offset;
1297		new_object->backing_object = source;
1298	}
1299	for (idx = 0; idx < size; idx++) {
1300	retry:
1301		m = vm_page_lookup(orig_object, offidxstart + idx);
1302		if (m == NULL)
1303			continue;
1304
1305		/*
1306		 * We must wait for pending I/O to complete before we can
1307		 * rename the page.
1308		 *
1309		 * We do not have to VM_PROT_NONE the page as mappings should
1310		 * not be changed by this operation.
1311		 */
1312		vm_page_lock_queues();
1313		if ((m->flags & PG_BUSY) || m->busy) {
1314			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1315			VM_OBJECT_UNLOCK(orig_object);
1316			VM_OBJECT_UNLOCK(new_object);
1317			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "spltwt", 0);
1318			VM_OBJECT_LOCK(new_object);
1319			VM_OBJECT_LOCK(orig_object);
1320			goto retry;
1321		}
1322		vm_page_rename(m, new_object, idx);
1323		/* page automatically made dirty by rename and cache handled */
1324		vm_page_busy(m);
1325		vm_page_unlock_queues();
1326	}
1327	if (orig_object->type == OBJT_SWAP) {
1328		/*
1329		 * swap_pager_copy() can sleep, in which case the orig_object's
1330		 * and new_object's locks are released and reacquired.
1331		 */
1332		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1333	}
1334	VM_OBJECT_UNLOCK(orig_object);
1335	vm_page_lock_queues();
1336	TAILQ_FOREACH(m, &new_object->memq, listq)
1337		vm_page_wakeup(m);
1338	vm_page_unlock_queues();
1339	VM_OBJECT_UNLOCK(new_object);
1340	entry->object.vm_object = new_object;
1341	entry->offset = 0LL;
1342	vm_object_deallocate(orig_object);
1343	VM_OBJECT_LOCK(new_object);
1344}
1345
1346#define	OBSC_TEST_ALL_SHADOWED	0x0001
1347#define	OBSC_COLLAPSE_NOWAIT	0x0002
1348#define	OBSC_COLLAPSE_WAIT	0x0004
1349
1350static int
1351vm_object_backing_scan(vm_object_t object, int op)
1352{
1353	int r = 1;
1354	vm_page_t p;
1355	vm_object_t backing_object;
1356	vm_pindex_t backing_offset_index;
1357
1358	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1359	VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1360
1361	backing_object = object->backing_object;
1362	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1363
1364	/*
1365	 * Initial conditions
1366	 */
1367	if (op & OBSC_TEST_ALL_SHADOWED) {
1368		/*
1369		 * We do not want to have to test for the existence of
1370		 * swap pages in the backing object.  XXX but with the
1371		 * new swapper this would be pretty easy to do.
1372		 *
1373		 * XXX what about anonymous MAP_SHARED memory that hasn't
1374		 * been ZFOD faulted yet?  If we do not test for this, the
1375		 * shadow test may succeed! XXX
1376		 */
1377		if (backing_object->type != OBJT_DEFAULT) {
1378			return (0);
1379		}
1380	}
1381	if (op & OBSC_COLLAPSE_WAIT) {
1382		vm_object_set_flag(backing_object, OBJ_DEAD);
1383	}
1384
1385	/*
1386	 * Our scan
1387	 */
1388	p = TAILQ_FIRST(&backing_object->memq);
1389	while (p) {
1390		vm_page_t next = TAILQ_NEXT(p, listq);
1391		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1392
1393		if (op & OBSC_TEST_ALL_SHADOWED) {
1394			vm_page_t pp;
1395
1396			/*
1397			 * Ignore pages outside the parent object's range
1398			 * and outside the parent object's mapping of the
1399			 * backing object.
1400			 *
1401			 * note that we do not busy the backing object's
1402			 * page.
1403			 */
1404			if (
1405			    p->pindex < backing_offset_index ||
1406			    new_pindex >= object->size
1407			) {
1408				p = next;
1409				continue;
1410			}
1411
1412			/*
1413			 * See if the parent has the page or if the parent's
1414			 * object pager has the page.  If the parent has the
1415			 * page but the page is not valid, the parent's
1416			 * object pager must have the page.
1417			 *
1418			 * If this fails, the parent does not completely shadow
1419			 * the object and we might as well give up now.
1420			 */
1421
1422			pp = vm_page_lookup(object, new_pindex);
1423			if (
1424			    (pp == NULL || pp->valid == 0) &&
1425			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1426			) {
1427				r = 0;
1428				break;
1429			}
1430		}
1431
1432		/*
1433		 * Check for busy page
1434		 */
1435		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1436			vm_page_t pp;
1437
1438			vm_page_lock_queues();
1439			if (op & OBSC_COLLAPSE_NOWAIT) {
1440				if ((p->flags & PG_BUSY) ||
1441				    !p->valid ||
1442				    p->hold_count ||
1443				    p->wire_count ||
1444				    p->busy) {
1445					vm_page_unlock_queues();
1446					p = next;
1447					continue;
1448				}
1449			} else if (op & OBSC_COLLAPSE_WAIT) {
1450				if ((p->flags & PG_BUSY) || p->busy) {
1451					vm_page_flag_set(p,
1452					    PG_WANTED | PG_REFERENCED);
1453					VM_OBJECT_UNLOCK(backing_object);
1454					VM_OBJECT_UNLOCK(object);
1455					msleep(p, &vm_page_queue_mtx,
1456					    PDROP | PVM, "vmocol", 0);
1457					VM_OBJECT_LOCK(object);
1458					VM_OBJECT_LOCK(backing_object);
1459					/*
1460					 * If we slept, anything could have
1461					 * happened.  Since the object is
1462					 * marked dead, the backing offset
1463					 * should not have changed so we
1464					 * just restart our scan.
1465					 */
1466					p = TAILQ_FIRST(&backing_object->memq);
1467					continue;
1468				}
1469			}
1470
1471			/*
1472			 * Busy the page
1473			 */
1474			vm_page_busy(p);
1475			vm_page_unlock_queues();
1476
1477			KASSERT(
1478			    p->object == backing_object,
1479			    ("vm_object_qcollapse(): object mismatch")
1480			);
1481
1482			/*
1483			 * Destroy any associated swap
1484			 */
1485			if (backing_object->type == OBJT_SWAP) {
1486				swap_pager_freespace(
1487				    backing_object,
1488				    p->pindex,
1489				    1
1490				);
1491			}
1492
1493			if (
1494			    p->pindex < backing_offset_index ||
1495			    new_pindex >= object->size
1496			) {
1497				/*
1498				 * Page is out of the parent object's range, we
1499				 * can simply destroy it.
1500				 */
1501				vm_page_lock_queues();
1502				pmap_remove_all(p);
1503				vm_page_free(p);
1504				vm_page_unlock_queues();
1505				p = next;
1506				continue;
1507			}
1508
1509			pp = vm_page_lookup(object, new_pindex);
1510			if (
1511			    pp != NULL ||
1512			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1513			) {
1514				/*
1515				 * page already exists in parent OR swap exists
1516				 * for this location in the parent.  Destroy
1517				 * the original page from the backing object.
1518				 *
1519				 * Leave the parent's page alone
1520				 */
1521				vm_page_lock_queues();
1522				pmap_remove_all(p);
1523				vm_page_free(p);
1524				vm_page_unlock_queues();
1525				p = next;
1526				continue;
1527			}
1528
1529			/*
1530			 * Page does not exist in parent, rename the
1531			 * page from the backing object to the main object.
1532			 *
1533			 * If the page was mapped to a process, it can remain
1534			 * mapped through the rename.
1535			 */
1536			vm_page_lock_queues();
1537			vm_page_rename(p, object, new_pindex);
1538			vm_page_unlock_queues();
1539			/* page automatically made dirty by rename */
1540		}
1541		p = next;
1542	}
1543	return (r);
1544}
1545
1546
1547/*
1548 * this version of collapse allows the operation to occur earlier and
1549 * when paging_in_progress is true for an object...  This is not a complete
1550 * operation, but should plug 99.9% of the rest of the leaks.
1551 */
1552static void
1553vm_object_qcollapse(vm_object_t object)
1554{
1555	vm_object_t backing_object = object->backing_object;
1556
1557	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1558	VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1559
1560	if (backing_object->ref_count != 1)
1561		return;
1562
1563	backing_object->ref_count += 2;
1564
1565	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1566
1567	backing_object->ref_count -= 2;
1568}
1569
1570/*
1571 *	vm_object_collapse:
1572 *
1573 *	Collapse an object with the object backing it.
1574 *	Pages in the backing object are moved into the
1575 *	parent, and the backing object is deallocated.
1576 */
1577void
1578vm_object_collapse(vm_object_t object)
1579{
1580	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1581
1582	while (TRUE) {
1583		vm_object_t backing_object;
1584
1585		/*
1586		 * Verify that the conditions are right for collapse:
1587		 *
1588		 * The object exists and the backing object exists.
1589		 */
1590		if ((backing_object = object->backing_object) == NULL)
1591			break;
1592
1593		/*
1594		 * we check the backing object first, because it is most likely
1595		 * not collapsable.
1596		 */
1597		VM_OBJECT_LOCK(backing_object);
1598		if (backing_object->handle != NULL ||
1599		    (backing_object->type != OBJT_DEFAULT &&
1600		     backing_object->type != OBJT_SWAP) ||
1601		    (backing_object->flags & OBJ_DEAD) ||
1602		    object->handle != NULL ||
1603		    (object->type != OBJT_DEFAULT &&
1604		     object->type != OBJT_SWAP) ||
1605		    (object->flags & OBJ_DEAD)) {
1606			VM_OBJECT_UNLOCK(backing_object);
1607			break;
1608		}
1609
1610		if (
1611		    object->paging_in_progress != 0 ||
1612		    backing_object->paging_in_progress != 0
1613		) {
1614			vm_object_qcollapse(object);
1615			VM_OBJECT_UNLOCK(backing_object);
1616			break;
1617		}
1618		/*
1619		 * We know that we can either collapse the backing object (if
1620		 * the parent is the only reference to it) or (perhaps) have
1621		 * the parent bypass the object if the parent happens to shadow
1622		 * all the resident pages in the entire backing object.
1623		 *
1624		 * This is ignoring pager-backed pages such as swap pages.
1625		 * vm_object_backing_scan fails the shadowing test in this
1626		 * case.
1627		 */
1628		if (backing_object->ref_count == 1) {
1629			/*
1630			 * If there is exactly one reference to the backing
1631			 * object, we can collapse it into the parent.
1632			 */
1633			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1634
1635			/*
1636			 * Move the pager from backing_object to object.
1637			 */
1638			if (backing_object->type == OBJT_SWAP) {
1639				/*
1640				 * swap_pager_copy() can sleep, in which case
1641				 * the backing_object's and object's locks are
1642				 * released and reacquired.
1643				 */
1644				swap_pager_copy(
1645				    backing_object,
1646				    object,
1647				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1648			}
1649			/*
1650			 * Object now shadows whatever backing_object did.
1651			 * Note that the reference to
1652			 * backing_object->backing_object moves from within
1653			 * backing_object to within object.
1654			 */
1655			LIST_REMOVE(object, shadow_list);
1656			backing_object->shadow_count--;
1657			backing_object->generation++;
1658			if (backing_object->backing_object) {
1659				VM_OBJECT_LOCK(backing_object->backing_object);
1660				LIST_REMOVE(backing_object, shadow_list);
1661				LIST_INSERT_HEAD(
1662				    &backing_object->backing_object->shadow_head,
1663				    object, shadow_list);
1664				/*
1665				 * The shadow_count has not changed.
1666				 */
1667				backing_object->backing_object->generation++;
1668				VM_OBJECT_UNLOCK(backing_object->backing_object);
1669			}
1670			object->backing_object = backing_object->backing_object;
1671			object->backing_object_offset +=
1672			    backing_object->backing_object_offset;
1673
1674			/*
1675			 * Discard backing_object.
1676			 *
1677			 * Since the backing object has no pages, no pager left,
1678			 * and no object references within it, all that is
1679			 * necessary is to dispose of it.
1680			 */
1681			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1682			VM_OBJECT_UNLOCK(backing_object);
1683
1684			mtx_lock(&vm_object_list_mtx);
1685			TAILQ_REMOVE(
1686			    &vm_object_list,
1687			    backing_object,
1688			    object_list
1689			);
1690			mtx_unlock(&vm_object_list_mtx);
1691
1692			uma_zfree(obj_zone, backing_object);
1693
1694			object_collapses++;
1695		} else {
1696			vm_object_t new_backing_object;
1697
1698			/*
1699			 * If we do not entirely shadow the backing object,
1700			 * there is nothing we can do so we give up.
1701			 */
1702			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1703				VM_OBJECT_UNLOCK(backing_object);
1704				break;
1705			}
1706
1707			/*
1708			 * Make the parent shadow the next object in the
1709			 * chain.  Deallocating backing_object will not remove
1710			 * it, since its reference count is at least 2.
1711			 */
1712			LIST_REMOVE(object, shadow_list);
1713			backing_object->shadow_count--;
1714			backing_object->generation++;
1715
1716			new_backing_object = backing_object->backing_object;
1717			if ((object->backing_object = new_backing_object) != NULL) {
1718				VM_OBJECT_LOCK(new_backing_object);
1719				LIST_INSERT_HEAD(
1720				    &new_backing_object->shadow_head,
1721				    object,
1722				    shadow_list
1723				);
1724				new_backing_object->shadow_count++;
1725				new_backing_object->generation++;
1726				vm_object_reference_locked(new_backing_object);
1727				VM_OBJECT_UNLOCK(new_backing_object);
1728				object->backing_object_offset +=
1729					backing_object->backing_object_offset;
1730			}
1731
1732			/*
1733			 * Drop the reference count on backing_object. Since
1734			 * its ref_count was at least 2, it will not vanish.
1735			 */
1736			backing_object->ref_count--;
1737			VM_OBJECT_UNLOCK(backing_object);
1738			object_bypasses++;
1739		}
1740
1741		/*
1742		 * Try again with this object's new backing object.
1743		 */
1744	}
1745}
1746
1747/*
1748 *	vm_object_page_remove:
1749 *
1750 *	Removes all physical pages in the given range from the
1751 *	object's list of pages.  If the range's end is zero, all
1752 *	physical pages from the range's start to the end of the object
1753 *	are deleted.
1754 *
1755 *	The object must be locked.
1756 */
1757void
1758vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1759    boolean_t clean_only)
1760{
1761	vm_page_t p, next;
1762
1763	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1764	if (object->resident_page_count == 0)
1765		return;
1766
1767	/*
1768	 * Since physically-backed objects do not use managed pages, we can't
1769	 * remove pages from the object (we must instead remove the page
1770	 * references, and then destroy the object).
1771	 */
1772	KASSERT(object->type != OBJT_PHYS,
1773	    ("attempt to remove pages from a physical object"));
1774
1775	vm_object_pip_add(object, 1);
1776again:
1777	vm_page_lock_queues();
1778	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1779		if (p->pindex < start) {
1780			p = vm_page_splay(start, object->root);
1781			if ((object->root = p)->pindex < start)
1782				p = TAILQ_NEXT(p, listq);
1783		}
1784	}
1785	/*
1786	 * Assert: the variable p is either (1) the page with the
1787	 * least pindex greater than or equal to the parameter pindex
1788	 * or (2) NULL.
1789	 */
1790	for (;
1791	     p != NULL && (p->pindex < end || end == 0);
1792	     p = next) {
1793		next = TAILQ_NEXT(p, listq);
1794
1795		if (p->wire_count != 0) {
1796			pmap_remove_all(p);
1797			if (!clean_only)
1798				p->valid = 0;
1799			continue;
1800		}
1801		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1802			goto again;
1803		if (clean_only && p->valid) {
1804			pmap_page_protect(p, VM_PROT_READ | VM_PROT_EXECUTE);
1805			if (p->valid & p->dirty)
1806				continue;
1807		}
1808		pmap_remove_all(p);
1809		vm_page_free(p);
1810	}
1811	vm_page_unlock_queues();
1812	vm_object_pip_wakeup(object);
1813}
1814
1815/*
1816 *	Routine:	vm_object_coalesce
1817 *	Function:	Coalesces two objects backing up adjoining
1818 *			regions of memory into a single object.
1819 *
1820 *	returns TRUE if objects were combined.
1821 *
1822 *	NOTE:	Only works at the moment if the second object is NULL -
1823 *		if it's not, which object do we lock first?
1824 *
1825 *	Parameters:
1826 *		prev_object	First object to coalesce
1827 *		prev_offset	Offset into prev_object
1828 *		prev_size	Size of reference to prev_object
1829 *		next_size	Size of reference to the second object
1830 *
1831 *	Conditions:
1832 *	The object must *not* be locked.
1833 */
1834boolean_t
1835vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1836	vm_size_t prev_size, vm_size_t next_size)
1837{
1838	vm_pindex_t next_pindex;
1839
1840	if (prev_object == NULL)
1841		return (TRUE);
1842	VM_OBJECT_LOCK(prev_object);
1843	if (prev_object->type != OBJT_DEFAULT &&
1844	    prev_object->type != OBJT_SWAP) {
1845		VM_OBJECT_UNLOCK(prev_object);
1846		return (FALSE);
1847	}
1848
1849	/*
1850	 * Try to collapse the object first
1851	 */
1852	vm_object_collapse(prev_object);
1853
1854	/*
1855	 * Can't coalesce if: . more than one reference . paged out . shadows
1856	 * another object . has a copy elsewhere (any of which mean that the
1857	 * pages not mapped to prev_entry may be in use anyway)
1858	 */
1859	if (prev_object->backing_object != NULL) {
1860		VM_OBJECT_UNLOCK(prev_object);
1861		return (FALSE);
1862	}
1863
1864	prev_size >>= PAGE_SHIFT;
1865	next_size >>= PAGE_SHIFT;
1866	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1867
1868	if ((prev_object->ref_count > 1) &&
1869	    (prev_object->size != next_pindex)) {
1870		VM_OBJECT_UNLOCK(prev_object);
1871		return (FALSE);
1872	}
1873
1874	/*
1875	 * Remove any pages that may still be in the object from a previous
1876	 * deallocation.
1877	 */
1878	if (next_pindex < prev_object->size) {
1879		vm_object_page_remove(prev_object,
1880				      next_pindex,
1881				      next_pindex + next_size, FALSE);
1882		if (prev_object->type == OBJT_SWAP)
1883			swap_pager_freespace(prev_object,
1884					     next_pindex, next_size);
1885	}
1886
1887	/*
1888	 * Extend the object if necessary.
1889	 */
1890	if (next_pindex + next_size > prev_object->size)
1891		prev_object->size = next_pindex + next_size;
1892
1893	VM_OBJECT_UNLOCK(prev_object);
1894	return (TRUE);
1895}
1896
1897void
1898vm_object_set_writeable_dirty(vm_object_t object)
1899{
1900	struct vnode *vp;
1901
1902	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1903	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1904	if (object->type == OBJT_VNODE &&
1905	    (vp = (struct vnode *)object->handle) != NULL) {
1906		VI_LOCK(vp);
1907		if ((vp->v_iflag & VI_OBJDIRTY) == 0)
1908			vp->v_iflag |= VI_OBJDIRTY;
1909		VI_UNLOCK(vp);
1910	}
1911}
1912
1913#include "opt_ddb.h"
1914#ifdef DDB
1915#include <sys/kernel.h>
1916
1917#include <sys/cons.h>
1918
1919#include <ddb/ddb.h>
1920
1921static int
1922_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1923{
1924	vm_map_t tmpm;
1925	vm_map_entry_t tmpe;
1926	vm_object_t obj;
1927	int entcount;
1928
1929	if (map == 0)
1930		return 0;
1931
1932	if (entry == 0) {
1933		tmpe = map->header.next;
1934		entcount = map->nentries;
1935		while (entcount-- && (tmpe != &map->header)) {
1936			if (_vm_object_in_map(map, object, tmpe)) {
1937				return 1;
1938			}
1939			tmpe = tmpe->next;
1940		}
1941	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1942		tmpm = entry->object.sub_map;
1943		tmpe = tmpm->header.next;
1944		entcount = tmpm->nentries;
1945		while (entcount-- && tmpe != &tmpm->header) {
1946			if (_vm_object_in_map(tmpm, object, tmpe)) {
1947				return 1;
1948			}
1949			tmpe = tmpe->next;
1950		}
1951	} else if ((obj = entry->object.vm_object) != NULL) {
1952		for (; obj; obj = obj->backing_object)
1953			if (obj == object) {
1954				return 1;
1955			}
1956	}
1957	return 0;
1958}
1959
1960static int
1961vm_object_in_map(vm_object_t object)
1962{
1963	struct proc *p;
1964
1965	/* sx_slock(&allproc_lock); */
1966	LIST_FOREACH(p, &allproc, p_list) {
1967		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1968			continue;
1969		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
1970			/* sx_sunlock(&allproc_lock); */
1971			return 1;
1972		}
1973	}
1974	/* sx_sunlock(&allproc_lock); */
1975	if (_vm_object_in_map(kernel_map, object, 0))
1976		return 1;
1977	if (_vm_object_in_map(kmem_map, object, 0))
1978		return 1;
1979	if (_vm_object_in_map(pager_map, object, 0))
1980		return 1;
1981	if (_vm_object_in_map(buffer_map, object, 0))
1982		return 1;
1983	return 0;
1984}
1985
1986DB_SHOW_COMMAND(vmochk, vm_object_check)
1987{
1988	vm_object_t object;
1989
1990	/*
1991	 * make sure that internal objs are in a map somewhere
1992	 * and none have zero ref counts.
1993	 */
1994	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1995		if (object->handle == NULL &&
1996		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1997			if (object->ref_count == 0) {
1998				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1999					(long)object->size);
2000			}
2001			if (!vm_object_in_map(object)) {
2002				db_printf(
2003			"vmochk: internal obj is not in a map: "
2004			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2005				    object->ref_count, (u_long)object->size,
2006				    (u_long)object->size,
2007				    (void *)object->backing_object);
2008			}
2009		}
2010	}
2011}
2012
2013/*
2014 *	vm_object_print:	[ debug ]
2015 */
2016DB_SHOW_COMMAND(object, vm_object_print_static)
2017{
2018	/* XXX convert args. */
2019	vm_object_t object = (vm_object_t)addr;
2020	boolean_t full = have_addr;
2021
2022	vm_page_t p;
2023
2024	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2025#define	count	was_count
2026
2027	int count;
2028
2029	if (object == NULL)
2030		return;
2031
2032	db_iprintf(
2033	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2034	    object, (int)object->type, (uintmax_t)object->size,
2035	    object->resident_page_count, object->ref_count, object->flags);
2036	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2037	    object->shadow_count,
2038	    object->backing_object ? object->backing_object->ref_count : 0,
2039	    object->backing_object, (uintmax_t)object->backing_object_offset);
2040
2041	if (!full)
2042		return;
2043
2044	db_indent += 2;
2045	count = 0;
2046	TAILQ_FOREACH(p, &object->memq, listq) {
2047		if (count == 0)
2048			db_iprintf("memory:=");
2049		else if (count == 6) {
2050			db_printf("\n");
2051			db_iprintf(" ...");
2052			count = 0;
2053		} else
2054			db_printf(",");
2055		count++;
2056
2057		db_printf("(off=0x%jx,page=0x%jx)",
2058		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2059	}
2060	if (count != 0)
2061		db_printf("\n");
2062	db_indent -= 2;
2063}
2064
2065/* XXX. */
2066#undef count
2067
2068/* XXX need this non-static entry for calling from vm_map_print. */
2069void
2070vm_object_print(
2071        /* db_expr_t */ long addr,
2072	boolean_t have_addr,
2073	/* db_expr_t */ long count,
2074	char *modif)
2075{
2076	vm_object_print_static(addr, have_addr, count, modif);
2077}
2078
2079DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2080{
2081	vm_object_t object;
2082	int nl = 0;
2083	int c;
2084
2085	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2086		vm_pindex_t idx, fidx;
2087		vm_pindex_t osize;
2088		vm_paddr_t pa = -1, padiff;
2089		int rcount;
2090		vm_page_t m;
2091
2092		db_printf("new object: %p\n", (void *)object);
2093		if (nl > 18) {
2094			c = cngetc();
2095			if (c != ' ')
2096				return;
2097			nl = 0;
2098		}
2099		nl++;
2100		rcount = 0;
2101		fidx = 0;
2102		osize = object->size;
2103		if (osize > 128)
2104			osize = 128;
2105		for (idx = 0; idx < osize; idx++) {
2106			m = vm_page_lookup(object, idx);
2107			if (m == NULL) {
2108				if (rcount) {
2109					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2110						(long)fidx, rcount, (long)pa);
2111					if (nl > 18) {
2112						c = cngetc();
2113						if (c != ' ')
2114							return;
2115						nl = 0;
2116					}
2117					nl++;
2118					rcount = 0;
2119				}
2120				continue;
2121			}
2122
2123
2124			if (rcount &&
2125				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2126				++rcount;
2127				continue;
2128			}
2129			if (rcount) {
2130				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2131				padiff >>= PAGE_SHIFT;
2132				padiff &= PQ_L2_MASK;
2133				if (padiff == 0) {
2134					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2135					++rcount;
2136					continue;
2137				}
2138				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2139					(long)fidx, rcount, (long)pa);
2140				db_printf("pd(%ld)\n", (long)padiff);
2141				if (nl > 18) {
2142					c = cngetc();
2143					if (c != ' ')
2144						return;
2145					nl = 0;
2146				}
2147				nl++;
2148			}
2149			fidx = idx;
2150			pa = VM_PAGE_TO_PHYS(m);
2151			rcount = 1;
2152		}
2153		if (rcount) {
2154			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2155				(long)fidx, rcount, (long)pa);
2156			if (nl > 18) {
2157				c = cngetc();
2158				if (c != ' ')
2159					return;
2160				nl = 0;
2161			}
2162			nl++;
2163		}
2164	}
2165}
2166#endif /* DDB */
2167