vm_object.c revision 132636
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory object module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: head/sys/vm/vm_object.c 132636 2004-07-25 19:28:10Z alc $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/lock.h>
71#include <sys/mman.h>
72#include <sys/mount.h>
73#include <sys/kernel.h>
74#include <sys/sysctl.h>
75#include <sys/mutex.h>
76#include <sys/proc.h>		/* for curproc, pageproc */
77#include <sys/socket.h>
78#include <sys/vnode.h>
79#include <sys/vmmeter.h>
80#include <sys/sx.h>
81
82#include <vm/vm.h>
83#include <vm/vm_param.h>
84#include <vm/pmap.h>
85#include <vm/vm_map.h>
86#include <vm/vm_object.h>
87#include <vm/vm_page.h>
88#include <vm/vm_pageout.h>
89#include <vm/vm_pager.h>
90#include <vm/swap_pager.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_extern.h>
93#include <vm/uma.h>
94
95#define EASY_SCAN_FACTOR       8
96
97#define MSYNC_FLUSH_HARDSEQ	0x01
98#define MSYNC_FLUSH_SOFTSEQ	0x02
99
100/*
101 * msync / VM object flushing optimizations
102 */
103static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
104SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
105        CTLFLAG_RW, &msync_flush_flags, 0, "");
106
107static int old_msync;
108SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
109    "Use old (insecure) msync behavior");
110
111static void	vm_object_qcollapse(vm_object_t object);
112static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
113
114/*
115 *	Virtual memory objects maintain the actual data
116 *	associated with allocated virtual memory.  A given
117 *	page of memory exists within exactly one object.
118 *
119 *	An object is only deallocated when all "references"
120 *	are given up.  Only one "reference" to a given
121 *	region of an object should be writeable.
122 *
123 *	Associated with each object is a list of all resident
124 *	memory pages belonging to that object; this list is
125 *	maintained by the "vm_page" module, and locked by the object's
126 *	lock.
127 *
128 *	Each object also records a "pager" routine which is
129 *	used to retrieve (and store) pages to the proper backing
130 *	storage.  In addition, objects may be backed by other
131 *	objects from which they were virtual-copied.
132 *
133 *	The only items within the object structure which are
134 *	modified after time of creation are:
135 *		reference count		locked by object's lock
136 *		pager routine		locked by object's lock
137 *
138 */
139
140struct object_q vm_object_list;
141struct mtx vm_object_list_mtx;	/* lock for object list and count */
142
143struct vm_object kernel_object_store;
144struct vm_object kmem_object_store;
145
146static long object_collapses;
147static long object_bypasses;
148static int next_index;
149static uma_zone_t obj_zone;
150#define VM_OBJECTS_INIT 256
151
152static void vm_object_zinit(void *mem, int size);
153
154#ifdef INVARIANTS
155static void vm_object_zdtor(void *mem, int size, void *arg);
156
157static void
158vm_object_zdtor(void *mem, int size, void *arg)
159{
160	vm_object_t object;
161
162	object = (vm_object_t)mem;
163	KASSERT(TAILQ_EMPTY(&object->memq),
164	    ("object %p has resident pages",
165	    object));
166	KASSERT(object->paging_in_progress == 0,
167	    ("object %p paging_in_progress = %d",
168	    object, object->paging_in_progress));
169	KASSERT(object->resident_page_count == 0,
170	    ("object %p resident_page_count = %d",
171	    object, object->resident_page_count));
172	KASSERT(object->shadow_count == 0,
173	    ("object %p shadow_count = %d",
174	    object, object->shadow_count));
175}
176#endif
177
178static void
179vm_object_zinit(void *mem, int size)
180{
181	vm_object_t object;
182
183	object = (vm_object_t)mem;
184	bzero(&object->mtx, sizeof(object->mtx));
185	VM_OBJECT_LOCK_INIT(object, "standard object");
186
187	/* These are true for any object that has been freed */
188	object->paging_in_progress = 0;
189	object->resident_page_count = 0;
190	object->shadow_count = 0;
191}
192
193void
194_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
195{
196	int incr;
197
198	TAILQ_INIT(&object->memq);
199	LIST_INIT(&object->shadow_head);
200
201	object->root = NULL;
202	object->type = type;
203	object->size = size;
204	object->generation = 1;
205	object->ref_count = 1;
206	object->flags = 0;
207	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
208		object->flags = OBJ_ONEMAPPING;
209	if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
210		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
211	else
212		incr = size;
213	do
214		object->pg_color = next_index;
215	while (!atomic_cmpset_int(&next_index, object->pg_color,
216				  (object->pg_color + incr) & PQ_L2_MASK));
217	object->handle = NULL;
218	object->backing_object = NULL;
219	object->backing_object_offset = (vm_ooffset_t) 0;
220
221	mtx_lock(&vm_object_list_mtx);
222	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
223	mtx_unlock(&vm_object_list_mtx);
224}
225
226/*
227 *	vm_object_init:
228 *
229 *	Initialize the VM objects module.
230 */
231void
232vm_object_init(void)
233{
234	TAILQ_INIT(&vm_object_list);
235	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
236
237	VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
238	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
239	    kernel_object);
240
241	VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
242	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
243	    kmem_object);
244
245	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
246#ifdef INVARIANTS
247	    vm_object_zdtor,
248#else
249	    NULL,
250#endif
251	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
252	uma_prealloc(obj_zone, VM_OBJECTS_INIT);
253}
254
255void
256vm_object_clear_flag(vm_object_t object, u_short bits)
257{
258
259	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
260	object->flags &= ~bits;
261}
262
263void
264vm_object_pip_add(vm_object_t object, short i)
265{
266
267	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
268	object->paging_in_progress += i;
269}
270
271void
272vm_object_pip_subtract(vm_object_t object, short i)
273{
274
275	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
276	object->paging_in_progress -= i;
277}
278
279void
280vm_object_pip_wakeup(vm_object_t object)
281{
282
283	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
284	object->paging_in_progress--;
285	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
286		vm_object_clear_flag(object, OBJ_PIPWNT);
287		wakeup(object);
288	}
289}
290
291void
292vm_object_pip_wakeupn(vm_object_t object, short i)
293{
294
295	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
296	if (i)
297		object->paging_in_progress -= i;
298	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
299		vm_object_clear_flag(object, OBJ_PIPWNT);
300		wakeup(object);
301	}
302}
303
304void
305vm_object_pip_wait(vm_object_t object, char *waitid)
306{
307
308	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
309	while (object->paging_in_progress) {
310		object->flags |= OBJ_PIPWNT;
311		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
312	}
313}
314
315/*
316 *	vm_object_allocate_wait
317 *
318 *	Return a new object with the given size, and give the user the
319 *	option of waiting for it to complete or failing if the needed
320 *	memory isn't available.
321 */
322vm_object_t
323vm_object_allocate_wait(objtype_t type, vm_pindex_t size, int flags)
324{
325	vm_object_t result;
326
327	result = (vm_object_t) uma_zalloc(obj_zone, flags);
328
329	if (result != NULL)
330		_vm_object_allocate(type, size, result);
331
332	return (result);
333}
334
335/*
336 *	vm_object_allocate:
337 *
338 *	Returns a new object with the given size.
339 */
340vm_object_t
341vm_object_allocate(objtype_t type, vm_pindex_t size)
342{
343	return(vm_object_allocate_wait(type, size, M_WAITOK));
344}
345
346
347/*
348 *	vm_object_reference:
349 *
350 *	Gets another reference to the given object.  Note: OBJ_DEAD
351 *	objects can be referenced during final cleaning.
352 */
353void
354vm_object_reference(vm_object_t object)
355{
356	struct vnode *vp;
357	int flags;
358
359	if (object == NULL)
360		return;
361	VM_OBJECT_LOCK(object);
362	object->ref_count++;
363	if (object->type == OBJT_VNODE) {
364		vp = object->handle;
365		VI_LOCK(vp);
366		VM_OBJECT_UNLOCK(object);
367		for (flags = LK_INTERLOCK; vget(vp, flags, curthread);
368		     flags = 0)
369			printf("vm_object_reference: delay in vget\n");
370	} else
371		VM_OBJECT_UNLOCK(object);
372}
373
374/*
375 *	vm_object_reference_locked:
376 *
377 *	Gets another reference to the given object.
378 *
379 *	The object must be locked.
380 */
381void
382vm_object_reference_locked(vm_object_t object)
383{
384	struct vnode *vp;
385
386	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
387	KASSERT((object->flags & OBJ_DEAD) == 0,
388	    ("vm_object_reference_locked: dead object referenced"));
389	object->ref_count++;
390	if (object->type == OBJT_VNODE) {
391		vp = object->handle;
392		vref(vp);
393	}
394}
395
396/*
397 * Handle deallocating an object of type OBJT_VNODE.
398 */
399void
400vm_object_vndeallocate(vm_object_t object)
401{
402	struct vnode *vp = (struct vnode *) object->handle;
403
404	GIANT_REQUIRED;
405	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
406	KASSERT(object->type == OBJT_VNODE,
407	    ("vm_object_vndeallocate: not a vnode object"));
408	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
409#ifdef INVARIANTS
410	if (object->ref_count == 0) {
411		vprint("vm_object_vndeallocate", vp);
412		panic("vm_object_vndeallocate: bad object reference count");
413	}
414#endif
415
416	object->ref_count--;
417	if (object->ref_count == 0) {
418		mp_fixme("Unlocked vflag access.");
419		vp->v_vflag &= ~VV_TEXT;
420	}
421	VM_OBJECT_UNLOCK(object);
422	/*
423	 * vrele may need a vop lock
424	 */
425	vrele(vp);
426}
427
428/*
429 *	vm_object_deallocate:
430 *
431 *	Release a reference to the specified object,
432 *	gained either through a vm_object_allocate
433 *	or a vm_object_reference call.  When all references
434 *	are gone, storage associated with this object
435 *	may be relinquished.
436 *
437 *	No object may be locked.
438 */
439void
440vm_object_deallocate(vm_object_t object)
441{
442	vm_object_t temp;
443
444	while (object != NULL) {
445		/*
446		 * In general, the object should be locked when working with
447		 * its type.  In this case, in order to maintain proper lock
448		 * ordering, an exception is possible because a vnode-backed
449		 * object never changes its type.
450		 */
451		if (object->type == OBJT_VNODE)
452			mtx_lock(&Giant);
453		VM_OBJECT_LOCK(object);
454		if (object->type == OBJT_VNODE) {
455			vm_object_vndeallocate(object);
456			mtx_unlock(&Giant);
457			return;
458		}
459
460		KASSERT(object->ref_count != 0,
461			("vm_object_deallocate: object deallocated too many times: %d", object->type));
462
463		/*
464		 * If the reference count goes to 0 we start calling
465		 * vm_object_terminate() on the object chain.
466		 * A ref count of 1 may be a special case depending on the
467		 * shadow count being 0 or 1.
468		 */
469		object->ref_count--;
470		if (object->ref_count > 1) {
471			VM_OBJECT_UNLOCK(object);
472			return;
473		} else if (object->ref_count == 1) {
474			if (object->shadow_count == 0) {
475				vm_object_set_flag(object, OBJ_ONEMAPPING);
476			} else if ((object->shadow_count == 1) &&
477			    (object->handle == NULL) &&
478			    (object->type == OBJT_DEFAULT ||
479			     object->type == OBJT_SWAP)) {
480				vm_object_t robject;
481
482				robject = LIST_FIRST(&object->shadow_head);
483				KASSERT(robject != NULL,
484				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
485					 object->ref_count,
486					 object->shadow_count));
487				if (!VM_OBJECT_TRYLOCK(robject)) {
488					/*
489					 * Avoid a potential deadlock.
490					 */
491					object->ref_count++;
492					VM_OBJECT_UNLOCK(object);
493					/*
494					 * More likely than not the thread
495					 * holding robject's lock has lower
496					 * priority than the current thread.
497					 * Let the lower priority thread run.
498					 */
499					tsleep(&proc0, PVM, "vmo_de", 1);
500					continue;
501				}
502				if ((robject->handle == NULL) &&
503				    (robject->type == OBJT_DEFAULT ||
504				     robject->type == OBJT_SWAP)) {
505
506					robject->ref_count++;
507retry:
508					if (robject->paging_in_progress) {
509						VM_OBJECT_UNLOCK(object);
510						vm_object_pip_wait(robject,
511						    "objde1");
512						VM_OBJECT_LOCK(object);
513						goto retry;
514					} else if (object->paging_in_progress) {
515						VM_OBJECT_UNLOCK(robject);
516						object->flags |= OBJ_PIPWNT;
517						msleep(object,
518						    VM_OBJECT_MTX(object),
519						    PDROP | PVM, "objde2", 0);
520						VM_OBJECT_LOCK(robject);
521						VM_OBJECT_LOCK(object);
522						goto retry;
523					}
524					VM_OBJECT_UNLOCK(object);
525					if (robject->ref_count == 1) {
526						robject->ref_count--;
527						object = robject;
528						goto doterm;
529					}
530					object = robject;
531					vm_object_collapse(object);
532					VM_OBJECT_UNLOCK(object);
533					continue;
534				}
535				VM_OBJECT_UNLOCK(robject);
536			}
537			VM_OBJECT_UNLOCK(object);
538			return;
539		}
540doterm:
541		temp = object->backing_object;
542		if (temp != NULL) {
543			VM_OBJECT_LOCK(temp);
544			LIST_REMOVE(object, shadow_list);
545			temp->shadow_count--;
546			temp->generation++;
547			VM_OBJECT_UNLOCK(temp);
548			object->backing_object = NULL;
549		}
550		/*
551		 * Don't double-terminate, we could be in a termination
552		 * recursion due to the terminate having to sync data
553		 * to disk.
554		 */
555		if ((object->flags & OBJ_DEAD) == 0)
556			vm_object_terminate(object);
557		else
558			VM_OBJECT_UNLOCK(object);
559		object = temp;
560	}
561}
562
563/*
564 *	vm_object_terminate actually destroys the specified object, freeing
565 *	up all previously used resources.
566 *
567 *	The object must be locked.
568 *	This routine may block.
569 */
570void
571vm_object_terminate(vm_object_t object)
572{
573	vm_page_t p;
574
575	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
576
577	/*
578	 * Make sure no one uses us.
579	 */
580	vm_object_set_flag(object, OBJ_DEAD);
581
582	/*
583	 * wait for the pageout daemon to be done with the object
584	 */
585	vm_object_pip_wait(object, "objtrm");
586
587	KASSERT(!object->paging_in_progress,
588		("vm_object_terminate: pageout in progress"));
589
590	/*
591	 * Clean and free the pages, as appropriate. All references to the
592	 * object are gone, so we don't need to lock it.
593	 */
594	if (object->type == OBJT_VNODE) {
595		struct vnode *vp = (struct vnode *)object->handle;
596
597		/*
598		 * Clean pages and flush buffers.
599		 */
600		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
601		VM_OBJECT_UNLOCK(object);
602
603		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
604
605		VM_OBJECT_LOCK(object);
606	}
607
608	KASSERT(object->ref_count == 0,
609		("vm_object_terminate: object with references, ref_count=%d",
610		object->ref_count));
611
612	/*
613	 * Now free any remaining pages. For internal objects, this also
614	 * removes them from paging queues. Don't free wired pages, just
615	 * remove them from the object.
616	 */
617	vm_page_lock_queues();
618	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
619		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
620			("vm_object_terminate: freeing busy page %p "
621			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
622		if (p->wire_count == 0) {
623			vm_page_busy(p);
624			vm_page_free(p);
625			cnt.v_pfree++;
626		} else {
627			vm_page_busy(p);
628			vm_page_remove(p);
629		}
630	}
631	vm_page_unlock_queues();
632
633	/*
634	 * Let the pager know object is dead.
635	 */
636	vm_pager_deallocate(object);
637	VM_OBJECT_UNLOCK(object);
638
639	/*
640	 * Remove the object from the global object list.
641	 */
642	mtx_lock(&vm_object_list_mtx);
643	TAILQ_REMOVE(&vm_object_list, object, object_list);
644	mtx_unlock(&vm_object_list_mtx);
645
646	wakeup(object);
647
648	/*
649	 * Free the space for the object.
650	 */
651	uma_zfree(obj_zone, object);
652}
653
654/*
655 *	vm_object_page_clean
656 *
657 *	Clean all dirty pages in the specified range of object.  Leaves page
658 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
659 *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
660 *	leaving the object dirty.
661 *
662 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
663 *	synchronous clustering mode implementation.
664 *
665 *	Odd semantics: if start == end, we clean everything.
666 *
667 *	The object must be locked.
668 */
669void
670vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
671{
672	vm_page_t p, np;
673	vm_pindex_t tstart, tend;
674	vm_pindex_t pi;
675	int clearobjflags;
676	int pagerflags;
677	int curgeneration;
678
679	GIANT_REQUIRED;
680	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
681	if (object->type != OBJT_VNODE ||
682		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
683		return;
684
685	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
686	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
687
688	vm_object_set_flag(object, OBJ_CLEANING);
689
690	tstart = start;
691	if (end == 0) {
692		tend = object->size;
693	} else {
694		tend = end;
695	}
696
697	vm_page_lock_queues();
698	/*
699	 * If the caller is smart and only msync()s a range he knows is
700	 * dirty, we may be able to avoid an object scan.  This results in
701	 * a phenominal improvement in performance.  We cannot do this
702	 * as a matter of course because the object may be huge - e.g.
703	 * the size might be in the gigabytes or terrabytes.
704	 */
705	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
706		vm_pindex_t tscan;
707		int scanlimit;
708		int scanreset;
709
710		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
711		if (scanreset < 16)
712			scanreset = 16;
713		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
714
715		scanlimit = scanreset;
716		tscan = tstart;
717		while (tscan < tend) {
718			curgeneration = object->generation;
719			p = vm_page_lookup(object, tscan);
720			if (p == NULL || p->valid == 0 ||
721			    (p->queue - p->pc) == PQ_CACHE) {
722				if (--scanlimit == 0)
723					break;
724				++tscan;
725				continue;
726			}
727			vm_page_test_dirty(p);
728			if ((p->dirty & p->valid) == 0) {
729				if (--scanlimit == 0)
730					break;
731				++tscan;
732				continue;
733			}
734			/*
735			 * If we have been asked to skip nosync pages and
736			 * this is a nosync page, we can't continue.
737			 */
738			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
739				if (--scanlimit == 0)
740					break;
741				++tscan;
742				continue;
743			}
744			scanlimit = scanreset;
745
746			/*
747			 * This returns 0 if it was unable to busy the first
748			 * page (i.e. had to sleep).
749			 */
750			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
751		}
752
753		/*
754		 * If everything was dirty and we flushed it successfully,
755		 * and the requested range is not the entire object, we
756		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
757		 * return immediately.
758		 */
759		if (tscan >= tend && (tstart || tend < object->size)) {
760			vm_page_unlock_queues();
761			vm_object_clear_flag(object, OBJ_CLEANING);
762			return;
763		}
764		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
765	}
766
767	/*
768	 * Generally set CLEANCHK interlock and make the page read-only so
769	 * we can then clear the object flags.
770	 *
771	 * However, if this is a nosync mmap then the object is likely to
772	 * stay dirty so do not mess with the page and do not clear the
773	 * object flags.
774	 */
775	clearobjflags = 1;
776	TAILQ_FOREACH(p, &object->memq, listq) {
777		vm_page_flag_set(p, PG_CLEANCHK);
778		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
779			clearobjflags = 0;
780		else
781			pmap_page_protect(p, VM_PROT_READ);
782	}
783
784	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
785		struct vnode *vp;
786
787		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
788		if (object->type == OBJT_VNODE &&
789		    (vp = (struct vnode *)object->handle) != NULL) {
790			VI_LOCK(vp);
791			if (vp->v_iflag & VI_OBJDIRTY)
792				vp->v_iflag &= ~VI_OBJDIRTY;
793			VI_UNLOCK(vp);
794		}
795	}
796
797rescan:
798	curgeneration = object->generation;
799
800	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
801		int n;
802
803		np = TAILQ_NEXT(p, listq);
804
805again:
806		pi = p->pindex;
807		if (((p->flags & PG_CLEANCHK) == 0) ||
808			(pi < tstart) || (pi >= tend) ||
809			(p->valid == 0) ||
810			((p->queue - p->pc) == PQ_CACHE)) {
811			vm_page_flag_clear(p, PG_CLEANCHK);
812			continue;
813		}
814
815		vm_page_test_dirty(p);
816		if ((p->dirty & p->valid) == 0) {
817			vm_page_flag_clear(p, PG_CLEANCHK);
818			continue;
819		}
820
821		/*
822		 * If we have been asked to skip nosync pages and this is a
823		 * nosync page, skip it.  Note that the object flags were
824		 * not cleared in this case so we do not have to set them.
825		 */
826		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
827			vm_page_flag_clear(p, PG_CLEANCHK);
828			continue;
829		}
830
831		n = vm_object_page_collect_flush(object, p,
832			curgeneration, pagerflags);
833		if (n == 0)
834			goto rescan;
835
836		if (object->generation != curgeneration)
837			goto rescan;
838
839		/*
840		 * Try to optimize the next page.  If we can't we pick up
841		 * our (random) scan where we left off.
842		 */
843		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
844			if ((p = vm_page_lookup(object, pi + n)) != NULL)
845				goto again;
846		}
847	}
848	vm_page_unlock_queues();
849#if 0
850	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
851#endif
852
853	vm_object_clear_flag(object, OBJ_CLEANING);
854	return;
855}
856
857static int
858vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
859{
860	int runlen;
861	int maxf;
862	int chkb;
863	int maxb;
864	int i;
865	vm_pindex_t pi;
866	vm_page_t maf[vm_pageout_page_count];
867	vm_page_t mab[vm_pageout_page_count];
868	vm_page_t ma[vm_pageout_page_count];
869
870	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
871	pi = p->pindex;
872	while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
873		vm_page_lock_queues();
874		if (object->generation != curgeneration) {
875			return(0);
876		}
877	}
878	maxf = 0;
879	for(i = 1; i < vm_pageout_page_count; i++) {
880		vm_page_t tp;
881
882		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
883			if ((tp->flags & PG_BUSY) ||
884				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
885				 (tp->flags & PG_CLEANCHK) == 0) ||
886				(tp->busy != 0))
887				break;
888			if((tp->queue - tp->pc) == PQ_CACHE) {
889				vm_page_flag_clear(tp, PG_CLEANCHK);
890				break;
891			}
892			vm_page_test_dirty(tp);
893			if ((tp->dirty & tp->valid) == 0) {
894				vm_page_flag_clear(tp, PG_CLEANCHK);
895				break;
896			}
897			maf[ i - 1 ] = tp;
898			maxf++;
899			continue;
900		}
901		break;
902	}
903
904	maxb = 0;
905	chkb = vm_pageout_page_count -  maxf;
906	if (chkb) {
907		for(i = 1; i < chkb;i++) {
908			vm_page_t tp;
909
910			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
911				if ((tp->flags & PG_BUSY) ||
912					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
913					 (tp->flags & PG_CLEANCHK) == 0) ||
914					(tp->busy != 0))
915					break;
916				if ((tp->queue - tp->pc) == PQ_CACHE) {
917					vm_page_flag_clear(tp, PG_CLEANCHK);
918					break;
919				}
920				vm_page_test_dirty(tp);
921				if ((tp->dirty & tp->valid) == 0) {
922					vm_page_flag_clear(tp, PG_CLEANCHK);
923					break;
924				}
925				mab[ i - 1 ] = tp;
926				maxb++;
927				continue;
928			}
929			break;
930		}
931	}
932
933	for(i = 0; i < maxb; i++) {
934		int index = (maxb - i) - 1;
935		ma[index] = mab[i];
936		vm_page_flag_clear(ma[index], PG_CLEANCHK);
937	}
938	vm_page_flag_clear(p, PG_CLEANCHK);
939	ma[maxb] = p;
940	for(i = 0; i < maxf; i++) {
941		int index = (maxb + i) + 1;
942		ma[index] = maf[i];
943		vm_page_flag_clear(ma[index], PG_CLEANCHK);
944	}
945	runlen = maxb + maxf + 1;
946
947	vm_pageout_flush(ma, runlen, pagerflags);
948	for (i = 0; i < runlen; i++) {
949		if (ma[i]->valid & ma[i]->dirty) {
950			pmap_page_protect(ma[i], VM_PROT_READ);
951			vm_page_flag_set(ma[i], PG_CLEANCHK);
952
953			/*
954			 * maxf will end up being the actual number of pages
955			 * we wrote out contiguously, non-inclusive of the
956			 * first page.  We do not count look-behind pages.
957			 */
958			if (i >= maxb + 1 && (maxf > i - maxb - 1))
959				maxf = i - maxb - 1;
960		}
961	}
962	return(maxf + 1);
963}
964
965/*
966 * Note that there is absolutely no sense in writing out
967 * anonymous objects, so we track down the vnode object
968 * to write out.
969 * We invalidate (remove) all pages from the address space
970 * for semantic correctness.
971 *
972 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
973 * may start out with a NULL object.
974 */
975void
976vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
977    boolean_t syncio, boolean_t invalidate)
978{
979	vm_object_t backing_object;
980	struct vnode *vp;
981	int flags;
982
983	if (object == NULL)
984		return;
985	VM_OBJECT_LOCK(object);
986	while ((backing_object = object->backing_object) != NULL) {
987		VM_OBJECT_LOCK(backing_object);
988		VM_OBJECT_UNLOCK(object);
989		object = backing_object;
990		offset += object->backing_object_offset;
991		if (object->size < OFF_TO_IDX(offset + size))
992			size = IDX_TO_OFF(object->size) - offset;
993	}
994	/*
995	 * Flush pages if writing is allowed, invalidate them
996	 * if invalidation requested.  Pages undergoing I/O
997	 * will be ignored by vm_object_page_remove().
998	 *
999	 * We cannot lock the vnode and then wait for paging
1000	 * to complete without deadlocking against vm_fault.
1001	 * Instead we simply call vm_object_page_remove() and
1002	 * allow it to block internally on a page-by-page
1003	 * basis when it encounters pages undergoing async
1004	 * I/O.
1005	 */
1006	if (object->type == OBJT_VNODE &&
1007	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1008		vp = object->handle;
1009		VM_OBJECT_UNLOCK(object);
1010		mtx_lock(&Giant);
1011		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
1012		flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1013		flags |= invalidate ? OBJPC_INVAL : 0;
1014		VM_OBJECT_LOCK(object);
1015		vm_object_page_clean(object,
1016		    OFF_TO_IDX(offset),
1017		    OFF_TO_IDX(offset + size + PAGE_MASK),
1018		    flags);
1019		VM_OBJECT_UNLOCK(object);
1020		VOP_UNLOCK(vp, 0, curthread);
1021		mtx_unlock(&Giant);
1022		VM_OBJECT_LOCK(object);
1023	}
1024	if ((object->type == OBJT_VNODE ||
1025	     object->type == OBJT_DEVICE) && invalidate) {
1026		vm_object_page_remove(object,
1027		    OFF_TO_IDX(offset),
1028		    OFF_TO_IDX(offset + size + PAGE_MASK),
1029		    old_msync ? FALSE : TRUE);
1030	}
1031	VM_OBJECT_UNLOCK(object);
1032}
1033
1034/*
1035 *	vm_object_madvise:
1036 *
1037 *	Implements the madvise function at the object/page level.
1038 *
1039 *	MADV_WILLNEED	(any object)
1040 *
1041 *	    Activate the specified pages if they are resident.
1042 *
1043 *	MADV_DONTNEED	(any object)
1044 *
1045 *	    Deactivate the specified pages if they are resident.
1046 *
1047 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1048 *			 OBJ_ONEMAPPING only)
1049 *
1050 *	    Deactivate and clean the specified pages if they are
1051 *	    resident.  This permits the process to reuse the pages
1052 *	    without faulting or the kernel to reclaim the pages
1053 *	    without I/O.
1054 */
1055void
1056vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1057{
1058	vm_pindex_t end, tpindex;
1059	vm_object_t backing_object, tobject;
1060	vm_page_t m;
1061
1062	if (object == NULL)
1063		return;
1064	end = pindex + count;
1065	/*
1066	 * Locate and adjust resident pages
1067	 */
1068	for (; pindex < end; pindex += 1) {
1069relookup:
1070		tobject = object;
1071		tpindex = pindex;
1072		VM_OBJECT_LOCK(tobject);
1073shadowlookup:
1074		/*
1075		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1076		 * and those pages must be OBJ_ONEMAPPING.
1077		 */
1078		if (advise == MADV_FREE) {
1079			if ((tobject->type != OBJT_DEFAULT &&
1080			     tobject->type != OBJT_SWAP) ||
1081			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1082				goto unlock_tobject;
1083			}
1084		}
1085		m = vm_page_lookup(tobject, tpindex);
1086		if (m == NULL) {
1087			/*
1088			 * There may be swap even if there is no backing page
1089			 */
1090			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1091				swap_pager_freespace(tobject, tpindex, 1);
1092			/*
1093			 * next object
1094			 */
1095			backing_object = tobject->backing_object;
1096			if (backing_object == NULL)
1097				goto unlock_tobject;
1098			VM_OBJECT_LOCK(backing_object);
1099			VM_OBJECT_UNLOCK(tobject);
1100			tobject = backing_object;
1101			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1102			goto shadowlookup;
1103		}
1104		/*
1105		 * If the page is busy or not in a normal active state,
1106		 * we skip it.  If the page is not managed there are no
1107		 * page queues to mess with.  Things can break if we mess
1108		 * with pages in any of the below states.
1109		 */
1110		vm_page_lock_queues();
1111		if (m->hold_count ||
1112		    m->wire_count ||
1113		    (m->flags & PG_UNMANAGED) ||
1114		    m->valid != VM_PAGE_BITS_ALL) {
1115			vm_page_unlock_queues();
1116			goto unlock_tobject;
1117		}
1118 		if (vm_page_sleep_if_busy(m, TRUE, "madvpo")) {
1119			VM_OBJECT_UNLOCK(tobject);
1120  			goto relookup;
1121		}
1122		if (advise == MADV_WILLNEED) {
1123			vm_page_activate(m);
1124		} else if (advise == MADV_DONTNEED) {
1125			vm_page_dontneed(m);
1126		} else if (advise == MADV_FREE) {
1127			/*
1128			 * Mark the page clean.  This will allow the page
1129			 * to be freed up by the system.  However, such pages
1130			 * are often reused quickly by malloc()/free()
1131			 * so we do not do anything that would cause
1132			 * a page fault if we can help it.
1133			 *
1134			 * Specifically, we do not try to actually free
1135			 * the page now nor do we try to put it in the
1136			 * cache (which would cause a page fault on reuse).
1137			 *
1138			 * But we do make the page is freeable as we
1139			 * can without actually taking the step of unmapping
1140			 * it.
1141			 */
1142			pmap_clear_modify(m);
1143			m->dirty = 0;
1144			m->act_count = 0;
1145			vm_page_dontneed(m);
1146		}
1147		vm_page_unlock_queues();
1148		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1149			swap_pager_freespace(tobject, tpindex, 1);
1150unlock_tobject:
1151		VM_OBJECT_UNLOCK(tobject);
1152	}
1153}
1154
1155/*
1156 *	vm_object_shadow:
1157 *
1158 *	Create a new object which is backed by the
1159 *	specified existing object range.  The source
1160 *	object reference is deallocated.
1161 *
1162 *	The new object and offset into that object
1163 *	are returned in the source parameters.
1164 */
1165void
1166vm_object_shadow(
1167	vm_object_t *object,	/* IN/OUT */
1168	vm_ooffset_t *offset,	/* IN/OUT */
1169	vm_size_t length)
1170{
1171	vm_object_t source;
1172	vm_object_t result;
1173
1174	source = *object;
1175
1176	/*
1177	 * Don't create the new object if the old object isn't shared.
1178	 */
1179	if (source != NULL) {
1180		VM_OBJECT_LOCK(source);
1181		if (source->ref_count == 1 &&
1182		    source->handle == NULL &&
1183		    (source->type == OBJT_DEFAULT ||
1184		     source->type == OBJT_SWAP)) {
1185			VM_OBJECT_UNLOCK(source);
1186			return;
1187		}
1188		VM_OBJECT_UNLOCK(source);
1189	}
1190
1191	/*
1192	 * Allocate a new object with the given length.
1193	 */
1194	result = vm_object_allocate(OBJT_DEFAULT, length);
1195
1196	/*
1197	 * The new object shadows the source object, adding a reference to it.
1198	 * Our caller changes his reference to point to the new object,
1199	 * removing a reference to the source object.  Net result: no change
1200	 * of reference count.
1201	 *
1202	 * Try to optimize the result object's page color when shadowing
1203	 * in order to maintain page coloring consistency in the combined
1204	 * shadowed object.
1205	 */
1206	result->backing_object = source;
1207	/*
1208	 * Store the offset into the source object, and fix up the offset into
1209	 * the new object.
1210	 */
1211	result->backing_object_offset = *offset;
1212	if (source != NULL) {
1213		VM_OBJECT_LOCK(source);
1214		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1215		source->shadow_count++;
1216		source->generation++;
1217		if (length < source->size)
1218			length = source->size;
1219		if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1220		    source->generation > 1)
1221			length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1222		result->pg_color = (source->pg_color +
1223		    length * source->generation) & PQ_L2_MASK;
1224		VM_OBJECT_UNLOCK(source);
1225		next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1226		    PQ_L2_MASK;
1227	}
1228
1229
1230	/*
1231	 * Return the new things
1232	 */
1233	*offset = 0;
1234	*object = result;
1235}
1236
1237/*
1238 *	vm_object_split:
1239 *
1240 * Split the pages in a map entry into a new object.  This affords
1241 * easier removal of unused pages, and keeps object inheritance from
1242 * being a negative impact on memory usage.
1243 */
1244void
1245vm_object_split(vm_map_entry_t entry)
1246{
1247	vm_page_t m;
1248	vm_object_t orig_object, new_object, source;
1249	vm_pindex_t offidxstart, offidxend;
1250	vm_size_t idx, size;
1251
1252	orig_object = entry->object.vm_object;
1253	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1254		return;
1255	if (orig_object->ref_count <= 1)
1256		return;
1257	VM_OBJECT_UNLOCK(orig_object);
1258
1259	offidxstart = OFF_TO_IDX(entry->offset);
1260	offidxend = offidxstart + OFF_TO_IDX(entry->end - entry->start);
1261	size = offidxend - offidxstart;
1262
1263	/*
1264	 * If swap_pager_copy() is later called, it will convert new_object
1265	 * into a swap object.
1266	 */
1267	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1268
1269	VM_OBJECT_LOCK(new_object);
1270	VM_OBJECT_LOCK(orig_object);
1271	source = orig_object->backing_object;
1272	if (source != NULL) {
1273		VM_OBJECT_LOCK(source);
1274		LIST_INSERT_HEAD(&source->shadow_head,
1275				  new_object, shadow_list);
1276		source->shadow_count++;
1277		source->generation++;
1278		vm_object_reference_locked(source);	/* for new_object */
1279		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1280		VM_OBJECT_UNLOCK(source);
1281		new_object->backing_object_offset =
1282			orig_object->backing_object_offset + entry->offset;
1283		new_object->backing_object = source;
1284	}
1285	for (idx = 0; idx < size; idx++) {
1286	retry:
1287		m = vm_page_lookup(orig_object, offidxstart + idx);
1288		if (m == NULL)
1289			continue;
1290
1291		/*
1292		 * We must wait for pending I/O to complete before we can
1293		 * rename the page.
1294		 *
1295		 * We do not have to VM_PROT_NONE the page as mappings should
1296		 * not be changed by this operation.
1297		 */
1298		vm_page_lock_queues();
1299		if ((m->flags & PG_BUSY) || m->busy) {
1300			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1301			VM_OBJECT_UNLOCK(orig_object);
1302			VM_OBJECT_UNLOCK(new_object);
1303			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "spltwt", 0);
1304			VM_OBJECT_LOCK(new_object);
1305			VM_OBJECT_LOCK(orig_object);
1306			goto retry;
1307		}
1308		vm_page_busy(m);
1309		vm_page_rename(m, new_object, idx);
1310		/* page automatically made dirty by rename and cache handled */
1311		vm_page_busy(m);
1312		vm_page_unlock_queues();
1313	}
1314	if (orig_object->type == OBJT_SWAP) {
1315		/*
1316		 * swap_pager_copy() can sleep, in which case the orig_object's
1317		 * and new_object's locks are released and reacquired.
1318		 */
1319		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1320	}
1321	VM_OBJECT_UNLOCK(orig_object);
1322	vm_page_lock_queues();
1323	TAILQ_FOREACH(m, &new_object->memq, listq)
1324		vm_page_wakeup(m);
1325	vm_page_unlock_queues();
1326	VM_OBJECT_UNLOCK(new_object);
1327	entry->object.vm_object = new_object;
1328	entry->offset = 0LL;
1329	vm_object_deallocate(orig_object);
1330	VM_OBJECT_LOCK(new_object);
1331}
1332
1333#define	OBSC_TEST_ALL_SHADOWED	0x0001
1334#define	OBSC_COLLAPSE_NOWAIT	0x0002
1335#define	OBSC_COLLAPSE_WAIT	0x0004
1336
1337static int
1338vm_object_backing_scan(vm_object_t object, int op)
1339{
1340	int r = 1;
1341	vm_page_t p;
1342	vm_object_t backing_object;
1343	vm_pindex_t backing_offset_index;
1344
1345	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1346	VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1347
1348	backing_object = object->backing_object;
1349	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1350
1351	/*
1352	 * Initial conditions
1353	 */
1354	if (op & OBSC_TEST_ALL_SHADOWED) {
1355		/*
1356		 * We do not want to have to test for the existence of
1357		 * swap pages in the backing object.  XXX but with the
1358		 * new swapper this would be pretty easy to do.
1359		 *
1360		 * XXX what about anonymous MAP_SHARED memory that hasn't
1361		 * been ZFOD faulted yet?  If we do not test for this, the
1362		 * shadow test may succeed! XXX
1363		 */
1364		if (backing_object->type != OBJT_DEFAULT) {
1365			return (0);
1366		}
1367	}
1368	if (op & OBSC_COLLAPSE_WAIT) {
1369		vm_object_set_flag(backing_object, OBJ_DEAD);
1370	}
1371
1372	/*
1373	 * Our scan
1374	 */
1375	p = TAILQ_FIRST(&backing_object->memq);
1376	while (p) {
1377		vm_page_t next = TAILQ_NEXT(p, listq);
1378		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1379
1380		if (op & OBSC_TEST_ALL_SHADOWED) {
1381			vm_page_t pp;
1382
1383			/*
1384			 * Ignore pages outside the parent object's range
1385			 * and outside the parent object's mapping of the
1386			 * backing object.
1387			 *
1388			 * note that we do not busy the backing object's
1389			 * page.
1390			 */
1391			if (
1392			    p->pindex < backing_offset_index ||
1393			    new_pindex >= object->size
1394			) {
1395				p = next;
1396				continue;
1397			}
1398
1399			/*
1400			 * See if the parent has the page or if the parent's
1401			 * object pager has the page.  If the parent has the
1402			 * page but the page is not valid, the parent's
1403			 * object pager must have the page.
1404			 *
1405			 * If this fails, the parent does not completely shadow
1406			 * the object and we might as well give up now.
1407			 */
1408
1409			pp = vm_page_lookup(object, new_pindex);
1410			if (
1411			    (pp == NULL || pp->valid == 0) &&
1412			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1413			) {
1414				r = 0;
1415				break;
1416			}
1417		}
1418
1419		/*
1420		 * Check for busy page
1421		 */
1422		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1423			vm_page_t pp;
1424
1425			vm_page_lock_queues();
1426			if (op & OBSC_COLLAPSE_NOWAIT) {
1427				if ((p->flags & PG_BUSY) ||
1428				    !p->valid ||
1429				    p->hold_count ||
1430				    p->wire_count ||
1431				    p->busy) {
1432					vm_page_unlock_queues();
1433					p = next;
1434					continue;
1435				}
1436			} else if (op & OBSC_COLLAPSE_WAIT) {
1437				if ((p->flags & PG_BUSY) || p->busy) {
1438					vm_page_flag_set(p,
1439					    PG_WANTED | PG_REFERENCED);
1440					VM_OBJECT_UNLOCK(backing_object);
1441					VM_OBJECT_UNLOCK(object);
1442					msleep(p, &vm_page_queue_mtx,
1443					    PDROP | PVM, "vmocol", 0);
1444					VM_OBJECT_LOCK(object);
1445					VM_OBJECT_LOCK(backing_object);
1446					/*
1447					 * If we slept, anything could have
1448					 * happened.  Since the object is
1449					 * marked dead, the backing offset
1450					 * should not have changed so we
1451					 * just restart our scan.
1452					 */
1453					p = TAILQ_FIRST(&backing_object->memq);
1454					continue;
1455				}
1456			}
1457
1458			/*
1459			 * Busy the page
1460			 */
1461			vm_page_busy(p);
1462			vm_page_unlock_queues();
1463
1464			KASSERT(
1465			    p->object == backing_object,
1466			    ("vm_object_qcollapse(): object mismatch")
1467			);
1468
1469			/*
1470			 * Destroy any associated swap
1471			 */
1472			if (backing_object->type == OBJT_SWAP) {
1473				swap_pager_freespace(
1474				    backing_object,
1475				    p->pindex,
1476				    1
1477				);
1478			}
1479
1480			if (
1481			    p->pindex < backing_offset_index ||
1482			    new_pindex >= object->size
1483			) {
1484				/*
1485				 * Page is out of the parent object's range, we
1486				 * can simply destroy it.
1487				 */
1488				vm_page_lock_queues();
1489				pmap_remove_all(p);
1490				vm_page_free(p);
1491				vm_page_unlock_queues();
1492				p = next;
1493				continue;
1494			}
1495
1496			pp = vm_page_lookup(object, new_pindex);
1497			if (
1498			    pp != NULL ||
1499			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1500			) {
1501				/*
1502				 * page already exists in parent OR swap exists
1503				 * for this location in the parent.  Destroy
1504				 * the original page from the backing object.
1505				 *
1506				 * Leave the parent's page alone
1507				 */
1508				vm_page_lock_queues();
1509				pmap_remove_all(p);
1510				vm_page_free(p);
1511				vm_page_unlock_queues();
1512				p = next;
1513				continue;
1514			}
1515
1516			/*
1517			 * Page does not exist in parent, rename the
1518			 * page from the backing object to the main object.
1519			 *
1520			 * If the page was mapped to a process, it can remain
1521			 * mapped through the rename.
1522			 */
1523			vm_page_lock_queues();
1524			vm_page_rename(p, object, new_pindex);
1525			vm_page_unlock_queues();
1526			/* page automatically made dirty by rename */
1527		}
1528		p = next;
1529	}
1530	return (r);
1531}
1532
1533
1534/*
1535 * this version of collapse allows the operation to occur earlier and
1536 * when paging_in_progress is true for an object...  This is not a complete
1537 * operation, but should plug 99.9% of the rest of the leaks.
1538 */
1539static void
1540vm_object_qcollapse(vm_object_t object)
1541{
1542	vm_object_t backing_object = object->backing_object;
1543
1544	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1545	VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1546
1547	if (backing_object->ref_count != 1)
1548		return;
1549
1550	backing_object->ref_count += 2;
1551
1552	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1553
1554	backing_object->ref_count -= 2;
1555}
1556
1557/*
1558 *	vm_object_collapse:
1559 *
1560 *	Collapse an object with the object backing it.
1561 *	Pages in the backing object are moved into the
1562 *	parent, and the backing object is deallocated.
1563 */
1564void
1565vm_object_collapse(vm_object_t object)
1566{
1567	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1568
1569	while (TRUE) {
1570		vm_object_t backing_object;
1571
1572		/*
1573		 * Verify that the conditions are right for collapse:
1574		 *
1575		 * The object exists and the backing object exists.
1576		 */
1577		if ((backing_object = object->backing_object) == NULL)
1578			break;
1579
1580		/*
1581		 * we check the backing object first, because it is most likely
1582		 * not collapsable.
1583		 */
1584		VM_OBJECT_LOCK(backing_object);
1585		if (backing_object->handle != NULL ||
1586		    (backing_object->type != OBJT_DEFAULT &&
1587		     backing_object->type != OBJT_SWAP) ||
1588		    (backing_object->flags & OBJ_DEAD) ||
1589		    object->handle != NULL ||
1590		    (object->type != OBJT_DEFAULT &&
1591		     object->type != OBJT_SWAP) ||
1592		    (object->flags & OBJ_DEAD)) {
1593			VM_OBJECT_UNLOCK(backing_object);
1594			break;
1595		}
1596
1597		if (
1598		    object->paging_in_progress != 0 ||
1599		    backing_object->paging_in_progress != 0
1600		) {
1601			vm_object_qcollapse(object);
1602			VM_OBJECT_UNLOCK(backing_object);
1603			break;
1604		}
1605		/*
1606		 * We know that we can either collapse the backing object (if
1607		 * the parent is the only reference to it) or (perhaps) have
1608		 * the parent bypass the object if the parent happens to shadow
1609		 * all the resident pages in the entire backing object.
1610		 *
1611		 * This is ignoring pager-backed pages such as swap pages.
1612		 * vm_object_backing_scan fails the shadowing test in this
1613		 * case.
1614		 */
1615		if (backing_object->ref_count == 1) {
1616			/*
1617			 * If there is exactly one reference to the backing
1618			 * object, we can collapse it into the parent.
1619			 */
1620			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1621
1622			/*
1623			 * Move the pager from backing_object to object.
1624			 */
1625			if (backing_object->type == OBJT_SWAP) {
1626				/*
1627				 * swap_pager_copy() can sleep, in which case
1628				 * the backing_object's and object's locks are
1629				 * released and reacquired.
1630				 */
1631				swap_pager_copy(
1632				    backing_object,
1633				    object,
1634				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1635			}
1636			/*
1637			 * Object now shadows whatever backing_object did.
1638			 * Note that the reference to
1639			 * backing_object->backing_object moves from within
1640			 * backing_object to within object.
1641			 */
1642			LIST_REMOVE(object, shadow_list);
1643			backing_object->shadow_count--;
1644			backing_object->generation++;
1645			if (backing_object->backing_object) {
1646				VM_OBJECT_LOCK(backing_object->backing_object);
1647				LIST_REMOVE(backing_object, shadow_list);
1648				LIST_INSERT_HEAD(
1649				    &backing_object->backing_object->shadow_head,
1650				    object, shadow_list);
1651				/*
1652				 * The shadow_count has not changed.
1653				 */
1654				backing_object->backing_object->generation++;
1655				VM_OBJECT_UNLOCK(backing_object->backing_object);
1656			}
1657			object->backing_object = backing_object->backing_object;
1658			object->backing_object_offset +=
1659			    backing_object->backing_object_offset;
1660
1661			/*
1662			 * Discard backing_object.
1663			 *
1664			 * Since the backing object has no pages, no pager left,
1665			 * and no object references within it, all that is
1666			 * necessary is to dispose of it.
1667			 */
1668			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1669			VM_OBJECT_UNLOCK(backing_object);
1670
1671			mtx_lock(&vm_object_list_mtx);
1672			TAILQ_REMOVE(
1673			    &vm_object_list,
1674			    backing_object,
1675			    object_list
1676			);
1677			mtx_unlock(&vm_object_list_mtx);
1678
1679			uma_zfree(obj_zone, backing_object);
1680
1681			object_collapses++;
1682		} else {
1683			vm_object_t new_backing_object;
1684
1685			/*
1686			 * If we do not entirely shadow the backing object,
1687			 * there is nothing we can do so we give up.
1688			 */
1689			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1690				VM_OBJECT_UNLOCK(backing_object);
1691				break;
1692			}
1693
1694			/*
1695			 * Make the parent shadow the next object in the
1696			 * chain.  Deallocating backing_object will not remove
1697			 * it, since its reference count is at least 2.
1698			 */
1699			LIST_REMOVE(object, shadow_list);
1700			backing_object->shadow_count--;
1701			backing_object->generation++;
1702
1703			new_backing_object = backing_object->backing_object;
1704			if ((object->backing_object = new_backing_object) != NULL) {
1705				VM_OBJECT_LOCK(new_backing_object);
1706				LIST_INSERT_HEAD(
1707				    &new_backing_object->shadow_head,
1708				    object,
1709				    shadow_list
1710				);
1711				new_backing_object->shadow_count++;
1712				new_backing_object->generation++;
1713				vm_object_reference_locked(new_backing_object);
1714				VM_OBJECT_UNLOCK(new_backing_object);
1715				object->backing_object_offset +=
1716					backing_object->backing_object_offset;
1717			}
1718
1719			/*
1720			 * Drop the reference count on backing_object. Since
1721			 * its ref_count was at least 2, it will not vanish.
1722			 */
1723			backing_object->ref_count--;
1724			VM_OBJECT_UNLOCK(backing_object);
1725			object_bypasses++;
1726		}
1727
1728		/*
1729		 * Try again with this object's new backing object.
1730		 */
1731	}
1732}
1733
1734/*
1735 *	vm_object_page_remove:
1736 *
1737 *	Removes all physical pages in the given range from the
1738 *	object's list of pages.  If the range's end is zero, all
1739 *	physical pages from the range's start to the end of the object
1740 *	are deleted.
1741 *
1742 *	The object must be locked.
1743 */
1744void
1745vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1746    boolean_t clean_only)
1747{
1748	vm_page_t p, next;
1749
1750	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1751	if (object->resident_page_count == 0)
1752		return;
1753
1754	/*
1755	 * Since physically-backed objects do not use managed pages, we can't
1756	 * remove pages from the object (we must instead remove the page
1757	 * references, and then destroy the object).
1758	 */
1759	KASSERT(object->type != OBJT_PHYS,
1760	    ("attempt to remove pages from a physical object"));
1761
1762	vm_object_pip_add(object, 1);
1763again:
1764	vm_page_lock_queues();
1765	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1766		if (p->pindex < start) {
1767			p = vm_page_splay(start, object->root);
1768			if ((object->root = p)->pindex < start)
1769				p = TAILQ_NEXT(p, listq);
1770		}
1771	}
1772	/*
1773	 * Assert: the variable p is either (1) the page with the
1774	 * least pindex greater than or equal to the parameter pindex
1775	 * or (2) NULL.
1776	 */
1777	for (;
1778	     p != NULL && (p->pindex < end || end == 0);
1779	     p = next) {
1780		next = TAILQ_NEXT(p, listq);
1781
1782		if (p->wire_count != 0) {
1783			pmap_remove_all(p);
1784			if (!clean_only)
1785				p->valid = 0;
1786			continue;
1787		}
1788		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1789			goto again;
1790		if (clean_only && p->valid) {
1791			pmap_page_protect(p, VM_PROT_READ | VM_PROT_EXECUTE);
1792			if (p->valid & p->dirty)
1793				continue;
1794		}
1795		vm_page_busy(p);
1796		pmap_remove_all(p);
1797		vm_page_free(p);
1798	}
1799	vm_page_unlock_queues();
1800	vm_object_pip_wakeup(object);
1801}
1802
1803/*
1804 *	Routine:	vm_object_coalesce
1805 *	Function:	Coalesces two objects backing up adjoining
1806 *			regions of memory into a single object.
1807 *
1808 *	returns TRUE if objects were combined.
1809 *
1810 *	NOTE:	Only works at the moment if the second object is NULL -
1811 *		if it's not, which object do we lock first?
1812 *
1813 *	Parameters:
1814 *		prev_object	First object to coalesce
1815 *		prev_offset	Offset into prev_object
1816 *		prev_size	Size of reference to prev_object
1817 *		next_size	Size of reference to the second object
1818 *
1819 *	Conditions:
1820 *	The object must *not* be locked.
1821 */
1822boolean_t
1823vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1824	vm_size_t prev_size, vm_size_t next_size)
1825{
1826	vm_pindex_t next_pindex;
1827
1828	if (prev_object == NULL)
1829		return (TRUE);
1830	VM_OBJECT_LOCK(prev_object);
1831	if (prev_object->type != OBJT_DEFAULT &&
1832	    prev_object->type != OBJT_SWAP) {
1833		VM_OBJECT_UNLOCK(prev_object);
1834		return (FALSE);
1835	}
1836
1837	/*
1838	 * Try to collapse the object first
1839	 */
1840	vm_object_collapse(prev_object);
1841
1842	/*
1843	 * Can't coalesce if: . more than one reference . paged out . shadows
1844	 * another object . has a copy elsewhere (any of which mean that the
1845	 * pages not mapped to prev_entry may be in use anyway)
1846	 */
1847	if (prev_object->backing_object != NULL) {
1848		VM_OBJECT_UNLOCK(prev_object);
1849		return (FALSE);
1850	}
1851
1852	prev_size >>= PAGE_SHIFT;
1853	next_size >>= PAGE_SHIFT;
1854	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1855
1856	if ((prev_object->ref_count > 1) &&
1857	    (prev_object->size != next_pindex)) {
1858		VM_OBJECT_UNLOCK(prev_object);
1859		return (FALSE);
1860	}
1861
1862	/*
1863	 * Remove any pages that may still be in the object from a previous
1864	 * deallocation.
1865	 */
1866	if (next_pindex < prev_object->size) {
1867		vm_object_page_remove(prev_object,
1868				      next_pindex,
1869				      next_pindex + next_size, FALSE);
1870		if (prev_object->type == OBJT_SWAP)
1871			swap_pager_freespace(prev_object,
1872					     next_pindex, next_size);
1873	}
1874
1875	/*
1876	 * Extend the object if necessary.
1877	 */
1878	if (next_pindex + next_size > prev_object->size)
1879		prev_object->size = next_pindex + next_size;
1880
1881	VM_OBJECT_UNLOCK(prev_object);
1882	return (TRUE);
1883}
1884
1885void
1886vm_object_set_writeable_dirty(vm_object_t object)
1887{
1888	struct vnode *vp;
1889
1890	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1891	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1892	if (object->type == OBJT_VNODE &&
1893	    (vp = (struct vnode *)object->handle) != NULL) {
1894		VI_LOCK(vp);
1895		if ((vp->v_iflag & VI_OBJDIRTY) == 0)
1896			vp->v_iflag |= VI_OBJDIRTY;
1897		VI_UNLOCK(vp);
1898	}
1899}
1900
1901#include "opt_ddb.h"
1902#ifdef DDB
1903#include <sys/kernel.h>
1904
1905#include <sys/cons.h>
1906
1907#include <ddb/ddb.h>
1908
1909static int
1910_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1911{
1912	vm_map_t tmpm;
1913	vm_map_entry_t tmpe;
1914	vm_object_t obj;
1915	int entcount;
1916
1917	if (map == 0)
1918		return 0;
1919
1920	if (entry == 0) {
1921		tmpe = map->header.next;
1922		entcount = map->nentries;
1923		while (entcount-- && (tmpe != &map->header)) {
1924			if (_vm_object_in_map(map, object, tmpe)) {
1925				return 1;
1926			}
1927			tmpe = tmpe->next;
1928		}
1929	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1930		tmpm = entry->object.sub_map;
1931		tmpe = tmpm->header.next;
1932		entcount = tmpm->nentries;
1933		while (entcount-- && tmpe != &tmpm->header) {
1934			if (_vm_object_in_map(tmpm, object, tmpe)) {
1935				return 1;
1936			}
1937			tmpe = tmpe->next;
1938		}
1939	} else if ((obj = entry->object.vm_object) != NULL) {
1940		for (; obj; obj = obj->backing_object)
1941			if (obj == object) {
1942				return 1;
1943			}
1944	}
1945	return 0;
1946}
1947
1948static int
1949vm_object_in_map(vm_object_t object)
1950{
1951	struct proc *p;
1952
1953	/* sx_slock(&allproc_lock); */
1954	LIST_FOREACH(p, &allproc, p_list) {
1955		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1956			continue;
1957		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
1958			/* sx_sunlock(&allproc_lock); */
1959			return 1;
1960		}
1961	}
1962	/* sx_sunlock(&allproc_lock); */
1963	if (_vm_object_in_map(kernel_map, object, 0))
1964		return 1;
1965	if (_vm_object_in_map(kmem_map, object, 0))
1966		return 1;
1967	if (_vm_object_in_map(pager_map, object, 0))
1968		return 1;
1969	if (_vm_object_in_map(buffer_map, object, 0))
1970		return 1;
1971	return 0;
1972}
1973
1974DB_SHOW_COMMAND(vmochk, vm_object_check)
1975{
1976	vm_object_t object;
1977
1978	/*
1979	 * make sure that internal objs are in a map somewhere
1980	 * and none have zero ref counts.
1981	 */
1982	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1983		if (object->handle == NULL &&
1984		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1985			if (object->ref_count == 0) {
1986				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1987					(long)object->size);
1988			}
1989			if (!vm_object_in_map(object)) {
1990				db_printf(
1991			"vmochk: internal obj is not in a map: "
1992			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1993				    object->ref_count, (u_long)object->size,
1994				    (u_long)object->size,
1995				    (void *)object->backing_object);
1996			}
1997		}
1998	}
1999}
2000
2001/*
2002 *	vm_object_print:	[ debug ]
2003 */
2004DB_SHOW_COMMAND(object, vm_object_print_static)
2005{
2006	/* XXX convert args. */
2007	vm_object_t object = (vm_object_t)addr;
2008	boolean_t full = have_addr;
2009
2010	vm_page_t p;
2011
2012	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2013#define	count	was_count
2014
2015	int count;
2016
2017	if (object == NULL)
2018		return;
2019
2020	db_iprintf(
2021	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2022	    object, (int)object->type, (uintmax_t)object->size,
2023	    object->resident_page_count, object->ref_count, object->flags);
2024	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2025	    object->shadow_count,
2026	    object->backing_object ? object->backing_object->ref_count : 0,
2027	    object->backing_object, (uintmax_t)object->backing_object_offset);
2028
2029	if (!full)
2030		return;
2031
2032	db_indent += 2;
2033	count = 0;
2034	TAILQ_FOREACH(p, &object->memq, listq) {
2035		if (count == 0)
2036			db_iprintf("memory:=");
2037		else if (count == 6) {
2038			db_printf("\n");
2039			db_iprintf(" ...");
2040			count = 0;
2041		} else
2042			db_printf(",");
2043		count++;
2044
2045		db_printf("(off=0x%jx,page=0x%jx)",
2046		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2047	}
2048	if (count != 0)
2049		db_printf("\n");
2050	db_indent -= 2;
2051}
2052
2053/* XXX. */
2054#undef count
2055
2056/* XXX need this non-static entry for calling from vm_map_print. */
2057void
2058vm_object_print(
2059        /* db_expr_t */ long addr,
2060	boolean_t have_addr,
2061	/* db_expr_t */ long count,
2062	char *modif)
2063{
2064	vm_object_print_static(addr, have_addr, count, modif);
2065}
2066
2067DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2068{
2069	vm_object_t object;
2070	int nl = 0;
2071	int c;
2072
2073	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2074		vm_pindex_t idx, fidx;
2075		vm_pindex_t osize;
2076		vm_paddr_t pa = -1, padiff;
2077		int rcount;
2078		vm_page_t m;
2079
2080		db_printf("new object: %p\n", (void *)object);
2081		if (nl > 18) {
2082			c = cngetc();
2083			if (c != ' ')
2084				return;
2085			nl = 0;
2086		}
2087		nl++;
2088		rcount = 0;
2089		fidx = 0;
2090		osize = object->size;
2091		if (osize > 128)
2092			osize = 128;
2093		for (idx = 0; idx < osize; idx++) {
2094			m = vm_page_lookup(object, idx);
2095			if (m == NULL) {
2096				if (rcount) {
2097					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2098						(long)fidx, rcount, (long)pa);
2099					if (nl > 18) {
2100						c = cngetc();
2101						if (c != ' ')
2102							return;
2103						nl = 0;
2104					}
2105					nl++;
2106					rcount = 0;
2107				}
2108				continue;
2109			}
2110
2111
2112			if (rcount &&
2113				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2114				++rcount;
2115				continue;
2116			}
2117			if (rcount) {
2118				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2119				padiff >>= PAGE_SHIFT;
2120				padiff &= PQ_L2_MASK;
2121				if (padiff == 0) {
2122					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2123					++rcount;
2124					continue;
2125				}
2126				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2127					(long)fidx, rcount, (long)pa);
2128				db_printf("pd(%ld)\n", (long)padiff);
2129				if (nl > 18) {
2130					c = cngetc();
2131					if (c != ' ')
2132						return;
2133					nl = 0;
2134				}
2135				nl++;
2136			}
2137			fidx = idx;
2138			pa = VM_PAGE_TO_PHYS(m);
2139			rcount = 1;
2140		}
2141		if (rcount) {
2142			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2143				(long)fidx, rcount, (long)pa);
2144			if (nl > 18) {
2145				c = cngetc();
2146				if (c != ' ')
2147					return;
2148				nl = 0;
2149			}
2150			nl++;
2151		}
2152	}
2153}
2154#endif /* DDB */
2155