vm_object.c revision 118537
1139826Simp/*
253541Sshin * Copyright (c) 1991, 1993
353541Sshin *	The Regents of the University of California.  All rights reserved.
453541Sshin *
553541Sshin * This code is derived from software contributed to Berkeley by
653541Sshin * The Mach Operating System project at Carnegie-Mellon University.
753541Sshin *
853541Sshin * Redistribution and use in source and binary forms, with or without
953541Sshin * modification, are permitted provided that the following conditions
1053541Sshin * are met:
1153541Sshin * 1. Redistributions of source code must retain the above copyright
1253541Sshin *    notice, this list of conditions and the following disclaimer.
1353541Sshin * 2. Redistributions in binary form must reproduce the above copyright
1453541Sshin *    notice, this list of conditions and the following disclaimer in the
1553541Sshin *    documentation and/or other materials provided with the distribution.
1653541Sshin * 3. All advertising materials mentioning features or use of this software
1753541Sshin *    must display the following acknowledgement:
1853541Sshin *	This product includes software developed by the University of
1953541Sshin *	California, Berkeley and its contributors.
2053541Sshin * 4. Neither the name of the University nor the names of its contributors
2153541Sshin *    may be used to endorse or promote products derived from this software
2253541Sshin *    without specific prior written permission.
2353541Sshin *
2453541Sshin * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
2553541Sshin * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
2653541Sshin * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2753541Sshin * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28174510Sobrien * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29174510Sobrien * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3053541Sshin * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3153541Sshin * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32174510Sobrien * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33174510Sobrien * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34174510Sobrien * SUCH DAMAGE.
3553541Sshin *
3653541Sshin *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
3753541Sshin *
3853541Sshin *
3953541Sshin * Copyright (c) 1987, 1990 Carnegie-Mellon University.
4053541Sshin * All rights reserved.
4153541Sshin *
4253541Sshin * Authors: Avadis Tevanian, Jr., Michael Wayne Young
4353541Sshin *
4453541Sshin * Permission to use, copy, modify and distribute this software and
4553541Sshin * its documentation is hereby granted, provided that both the copyright
4653541Sshin * notice and this permission notice appear in all copies of the
4753541Sshin * software, derivative works or modified versions, and any portions
4853541Sshin * thereof, and that both notices appear in supporting documentation.
49195699Srwatson *
5053541Sshin * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
5153541Sshin * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
5253541Sshin * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
5362587Sitojun *
5453541Sshin * Carnegie Mellon requests users of this software to return to
5562587Sitojun *
56121684Sume *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57121684Sume *  School of Computer Science
5853541Sshin *  Carnegie Mellon University
59184307Srwatson *  Pittsburgh PA 15213-3890
60184307Srwatson *
6153541Sshin * any improvements or extensions that they make and grant Carnegie the
6253541Sshin * rights to redistribute these changes.
6353541Sshin */
6453541Sshin
6553541Sshin/*
6662587Sitojun *	Virtual memory object module.
6753541Sshin */
68175162Sobrien
69175162Sobrien#include <sys/cdefs.h>
70175162Sobrien__FBSDID("$FreeBSD: head/sys/vm/vm_object.c 118537 2003-08-06 12:09:34Z phk $");
71175162Sobrien
72175162Sobrien#include <sys/param.h>
7353541Sshin#include <sys/systm.h>
74121346Sume#include <sys/lock.h>
75121346Sume#include <sys/mman.h>
76121346Sume#include <sys/mount.h>
77121346Sume#include <sys/kernel.h>
78195699Srwatson#include <sys/sysctl.h>
79195699Srwatson#include <sys/mutex.h>
80195699Srwatson#include <sys/proc.h>		/* for curproc, pageproc */
8153541Sshin#include <sys/socket.h>
82195727Srwatson#include <sys/vnode.h>
83195727Srwatson#include <sys/vmmeter.h>
84195727Srwatson#include <sys/sx.h>
85195699Srwatson
86121346Sume#include <vm/vm.h>
87121346Sume#include <vm/vm_param.h>
88121346Sume#include <vm/pmap.h>
89121355Sume#include <vm/vm_map.h>
90121346Sume#include <vm/vm_object.h>
91121345Sume#include <vm/vm_page.h>
9269774Sphk#include <vm/vm_pageout.h>
9362587Sitojun#include <vm/vm_pager.h>
9453541Sshin#include <vm/swap_pager.h>
9553541Sshin#include <vm/vm_kern.h>
9653541Sshin#include <vm/vm_extern.h>
97157927Sps#include <vm/uma.h>
98157927Sps
99157927Sps#define EASY_SCAN_FACTOR       8
100157927Sps
101181803Sbz#define MSYNC_FLUSH_HARDSEQ	0x01
102181803Sbz#define MSYNC_FLUSH_SOFTSEQ	0x02
103157927Sps
104157927Sps/*
10553541Sshin * msync / VM object flushing optimizations
106171259Sdelphij */
10753541Sshinstatic int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
10853541SshinSYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
109181803Sbz        CTLFLAG_RW, &msync_flush_flags, 0, "");
110181803Sbz
111207369Sbzstatic void	vm_object_qcollapse(vm_object_t object);
112190787Szecstatic int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
113190787Szec
114190787Szec/*
115190787Szec *	Virtual memory objects maintain the actual data
116157927Sps *	associated with allocated virtual memory.  A given
117157927Sps *	page of memory exists within exactly one object.
118207369Sbz *
119207369Sbz *	An object is only deallocated when all "references"
12053541Sshin *	are given up.  Only one "reference" to a given
12153541Sshin *	region of an object should be writeable.
12253541Sshin *
12362587Sitojun *	Associated with each object is a list of all resident
12462587Sitojun *	memory pages belonging to that object; this list is
12562587Sitojun *	maintained by the "vm_page" module, and locked by the object's
12662587Sitojun *	lock.
12762587Sitojun *
12862587Sitojun *	Each object also records a "pager" routine which is
12962587Sitojun *	used to retrieve (and store) pages to the proper backing
13062587Sitojun *	storage.  In addition, objects may be backed by other
13162587Sitojun *	objects from which they were virtual-copied.
13262587Sitojun *
13362587Sitojun *	The only items within the object structure which are
13462587Sitojun *	modified after time of creation are:
13562587Sitojun *		reference count		locked by object's lock
13662587Sitojun *		pager routine		locked by object's lock
13762587Sitojun *
13862587Sitojun */
13962587Sitojun
14062587Sitojunstruct object_q vm_object_list;
14162587Sitojunstruct mtx vm_object_list_mtx;	/* lock for object list and count */
14262587Sitojun
14362587Sitojunstruct vm_object kernel_object_store;
14462587Sitojunstruct vm_object kmem_object_store;
14562587Sitojun
14662587Sitojunstatic long object_collapses;
14762587Sitojunstatic long object_bypasses;
14862587Sitojunstatic int next_index;
14962587Sitojunstatic uma_zone_t obj_zone;
15062587Sitojun#define VM_OBJECTS_INIT 256
15162587Sitojun
15253541Sshinstatic void vm_object_zinit(void *mem, int size);
15353541Sshin
15453541Sshin#ifdef INVARIANTS
155171259Sdelphijstatic void vm_object_zdtor(void *mem, int size, void *arg);
15653541Sshin
15753541Sshinstatic void
15853541Sshinvm_object_zdtor(void *mem, int size, void *arg)
15953541Sshin{
16053541Sshin	vm_object_t object;
16162587Sitojun
162121630Sume	object = (vm_object_t)mem;
163121630Sume	KASSERT(object->paging_in_progress == 0,
164121630Sume	    ("object %p paging_in_progress = %d",
16553541Sshin	    object, object->paging_in_progress));
16653541Sshin	KASSERT(object->resident_page_count == 0,
16762587Sitojun	    ("object %p resident_page_count = %d",
16853541Sshin	    object, object->resident_page_count));
169121684Sume	KASSERT(object->shadow_count == 0,
170165118Sbz	    ("object %p shadow_count = %d",
171165118Sbz	    object, object->shadow_count));
172165118Sbz}
17353541Sshin#endif
17462587Sitojun
17562587Sitojunstatic void
17653541Sshinvm_object_zinit(void *mem, int size)
17753541Sshin{
17862587Sitojun	vm_object_t object;
17962587Sitojun
18062587Sitojun	object = (vm_object_t)mem;
181120856Sume	bzero(&object->mtx, sizeof(object->mtx));
18262587Sitojun	VM_OBJECT_LOCK_INIT(object);
18353541Sshin
18453541Sshin	/* These are true for any object that has been freed */
18553541Sshin	object->paging_in_progress = 0;
18653541Sshin	object->resident_page_count = 0;
187194760Srwatson	object->shadow_count = 0;
188121630Sume}
189194760Srwatson
190194760Srwatsonvoid
19153541Sshin_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
19253541Sshin{
19353541Sshin	int incr;
19453541Sshin
19553541Sshin	TAILQ_INIT(&object->memq);
19653541Sshin	LIST_INIT(&object->shadow_head);
19753541Sshin
19853541Sshin	object->root = NULL;
19953541Sshin	object->type = type;
20053541Sshin	object->size = size;
20153541Sshin	object->ref_count = 1;
20253541Sshin	object->flags = 0;
20353541Sshin	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
20453541Sshin		object->flags = OBJ_ONEMAPPING;
20553541Sshin	if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
20653541Sshin		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
20753541Sshin	else
20853541Sshin		incr = size;
20953541Sshin	do
21053541Sshin		object->pg_color = next_index;
21153541Sshin	while (!atomic_cmpset_int(&next_index, object->pg_color,
212120891Sume				  (object->pg_color + incr) & PQ_L2_MASK));
213120891Sume	object->handle = NULL;
21453541Sshin	object->backing_object = NULL;
21553541Sshin	object->backing_object_offset = (vm_ooffset_t) 0;
21653541Sshin
21753541Sshin	atomic_add_int(&object->generation, 1);
218181803Sbz
21953541Sshin	mtx_lock(&vm_object_list_mtx);
220120891Sume	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
22162587Sitojun	mtx_unlock(&vm_object_list_mtx);
22253541Sshin}
22353541Sshin
224121345Sume/*
22578064Sume *	vm_object_init:
226121345Sume *
227121345Sume *	Initialize the VM objects module.
228121345Sume */
229121345Sumevoid
230121345Sumevm_object_init(void)
231181803Sbz{
232121345Sume	TAILQ_INIT(&vm_object_list);
233181803Sbz	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
234121345Sume
235121345Sume	VM_OBJECT_LOCK_INIT(&kernel_object_store);
236181803Sbz	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
23753541Sshin	    kernel_object);
23853541Sshin
239184307Srwatson	/*
240184307Srwatson	 * The kmem object's mutex is given a unique name, instead of
241184307Srwatson	 * "vm object", to avoid false reports of lock-order reversal
242184307Srwatson	 * with a system map mutex.
243184307Srwatson	 */
24453541Sshin	mtx_init(VM_OBJECT_MTX(kmem_object), "kmem object", NULL, MTX_DEF);
24553541Sshin	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
246181803Sbz	    kmem_object);
24753541Sshin
24853541Sshin	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
24953541Sshin#ifdef INVARIANTS
25053541Sshin	    vm_object_zdtor,
25153541Sshin#else
25253541Sshin	    NULL,
25353541Sshin#endif
25453541Sshin	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
255121345Sume	uma_prealloc(obj_zone, VM_OBJECTS_INIT);
256121345Sume}
257121345Sume
25853541Sshinvoid
259181803Sbzvm_object_set_flag(vm_object_t object, u_short bits)
26078064Sume{
261181803Sbz	object->flags |= bits;
26278064Sume}
263181803Sbz
26453541Sshinvoid
265121607Sumevm_object_clear_flag(vm_object_t object, u_short bits)
26653541Sshin{
26753541Sshin
26862587Sitojun	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
269184307Srwatson	object->flags &= ~bits;
270184307Srwatson}
271184307Srwatson
272184307Srwatsonvoid
273184307Srwatsonvm_object_pip_add(vm_object_t object, short i)
274184307Srwatson{
275184307Srwatson
276181803Sbz	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
27753541Sshin	object->paging_in_progress += i;
27862587Sitojun}
27953541Sshin
28062587Sitojunvoid
28162587Sitojunvm_object_pip_subtract(vm_object_t object, short i)
28262587Sitojun{
28353541Sshin
284171260Sdelphij	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
28553541Sshin	object->paging_in_progress -= i;
28653541Sshin}
287170275Sjinmei
288170275Sjinmeivoid
28953541Sshinvm_object_pip_wakeup(vm_object_t object)
290121345Sume{
291121345Sume
29253541Sshin	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
29353541Sshin	object->paging_in_progress--;
29453541Sshin	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
29553541Sshin		vm_object_clear_flag(object, OBJ_PIPWNT);
29653541Sshin		wakeup(object);
29753541Sshin	}
29853541Sshin}
29953541Sshin
300120891Sumevoid
301120891Sumevm_object_pip_wakeupn(vm_object_t object, short i)
30253541Sshin{
30353541Sshin
30453541Sshin	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
30553541Sshin	if (i)
30653541Sshin		object->paging_in_progress -= i;
30753541Sshin	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
30853541Sshin		vm_object_clear_flag(object, OBJ_PIPWNT);
30953541Sshin		wakeup(object);
31062587Sitojun	}
31153541Sshin}
31253541Sshin
31353541Sshinvoid
31453541Sshinvm_object_pip_wait(vm_object_t object, char *waitid)
315120891Sume{
316120891Sume
317121345Sume	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
318120856Sume	while (object->paging_in_progress) {
31953541Sshin		object->flags |= OBJ_PIPWNT;
320120891Sume		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
32153541Sshin	}
322120891Sume}
323120891Sume
324121345Sume/*
325120856Sume *	vm_object_allocate_wait
32653541Sshin *
32753541Sshin *	Return a new object with the given size, and give the user the
32853541Sshin *	option of waiting for it to complete or failing if the needed
32953541Sshin *	memory isn't available.
33053541Sshin */
33153541Sshinvm_object_t
33253541Sshinvm_object_allocate_wait(objtype_t type, vm_pindex_t size, int flags)
33353541Sshin{
33453541Sshin	vm_object_t result;
33553541Sshin
33653541Sshin	result = (vm_object_t) uma_zalloc(obj_zone, flags);
33753541Sshin
33853541Sshin	if (result != NULL)
33953541Sshin		_vm_object_allocate(type, size, result);
34053541Sshin
34153541Sshin	return (result);
34253541Sshin}
34353541Sshin
34462587Sitojun/*
34553541Sshin *	vm_object_allocate:
34653541Sshin *
34753541Sshin *	Returns a new object with the given size.
34853541Sshin */
34953541Sshinvm_object_t
35053541Sshinvm_object_allocate(objtype_t type, vm_pindex_t size)
35153541Sshin{
35253541Sshin	return(vm_object_allocate_wait(type, size, M_WAITOK));
35353541Sshin}
35453541Sshin
35553541Sshin
35653541Sshin/*
357120891Sume *	vm_object_reference:
358120891Sume *
359120891Sume *	Gets another reference to the given object.  Note: OBJ_DEAD
36053541Sshin *	objects can be referenced during final cleaning.
36153541Sshin */
36253541Sshinvoid
36353541Sshinvm_object_reference(vm_object_t object)
36462587Sitojun{
365121607Sume	if (object == NULL)
36662587Sitojun		return;
36762587Sitojun	if (object != kernel_object &&
36862587Sitojun	    object != kmem_object)
36953541Sshin		mtx_lock(&Giant);
37053541Sshin	VM_OBJECT_LOCK(object);
37153541Sshin	object->ref_count++;
37253541Sshin	VM_OBJECT_UNLOCK(object);
37353541Sshin	if (object->type == OBJT_VNODE) {
37453541Sshin		while (vget((struct vnode *) object->handle, LK_RETRY, curthread)) {
37553541Sshin			printf("vm_object_reference: delay in getting object\n");
37653541Sshin		}
37753541Sshin	}
37853541Sshin	if (object != kernel_object &&
37953541Sshin	    object != kmem_object)
38053541Sshin		mtx_unlock(&Giant);
381121684Sume}
382121684Sume
383121684Sume/*
384121684Sume * Handle deallocating an object of type OBJT_VNODE.
385121684Sume */
386170275Sjinmeivoid
387121684Sumevm_object_vndeallocate(vm_object_t object)
388121684Sume{
389121684Sume	struct vnode *vp = (struct vnode *) object->handle;
390121684Sume
391121684Sume	GIANT_REQUIRED;
392121684Sume	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
393170275Sjinmei	KASSERT(object->type == OBJT_VNODE,
394121684Sume	    ("vm_object_vndeallocate: not a vnode object"));
395121684Sume	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
396121684Sume#ifdef INVARIANTS
397121684Sume	if (object->ref_count == 0) {
398121684Sume		vprint("vm_object_vndeallocate", vp);
399121684Sume		panic("vm_object_vndeallocate: bad object reference count");
400121684Sume	}
40153541Sshin#endif
40253541Sshin
40353541Sshin	object->ref_count--;
40453541Sshin	if (object->ref_count == 0) {
40553541Sshin		mp_fixme("Unlocked vflag access.");
40653541Sshin		vp->v_vflag &= ~VV_TEXT;
40753541Sshin	}
40862587Sitojun	VM_OBJECT_UNLOCK(object);
40953541Sshin	/*
41062587Sitojun	 * vrele may need a vop lock
41162587Sitojun	 */
41262587Sitojun	vrele(vp);
41362587Sitojun}
41462587Sitojun
41562587Sitojun/*
41662587Sitojun *	vm_object_deallocate:
41762587Sitojun *
41862587Sitojun *	Release a reference to the specified object,
41962587Sitojun *	gained either through a vm_object_allocate
42062587Sitojun *	or a vm_object_reference call.  When all references
42162587Sitojun *	are gone, storage associated with this object
42262587Sitojun *	may be relinquished.
42362587Sitojun *
42462587Sitojun *	No object may be locked.
42562587Sitojun */
42662587Sitojunvoid
42762587Sitojunvm_object_deallocate(vm_object_t object)
42862587Sitojun{
42962587Sitojun	vm_object_t temp;
43062587Sitojun
43162587Sitojun	if (object != kmem_object)
43262587Sitojun		mtx_lock(&Giant);
43362587Sitojun	while (object != NULL) {
43462587Sitojun		VM_OBJECT_LOCK(object);
43562587Sitojun		if (object->type == OBJT_VNODE) {
43662587Sitojun			vm_object_vndeallocate(object);
43762587Sitojun			goto done;
43862587Sitojun		}
43962587Sitojun
44062587Sitojun		KASSERT(object->ref_count != 0,
44162587Sitojun			("vm_object_deallocate: object deallocated too many times: %d", object->type));
44262587Sitojun
44362587Sitojun		/*
44462587Sitojun		 * If the reference count goes to 0 we start calling
44553541Sshin		 * vm_object_terminate() on the object chain.
44653541Sshin		 * A ref count of 1 may be a special case depending on the
44753541Sshin		 * shadow count being 0 or 1.
448121345Sume		 */
449121345Sume		object->ref_count--;
450170275Sjinmei		if (object->ref_count > 1) {
451170275Sjinmei			VM_OBJECT_UNLOCK(object);
452170275Sjinmei			goto done;
45353541Sshin		} else if (object->ref_count == 1) {
45453541Sshin			if (object->shadow_count == 0) {
45553541Sshin				vm_object_set_flag(object, OBJ_ONEMAPPING);
45653541Sshin			} else if ((object->shadow_count == 1) &&
45753541Sshin			    (object->handle == NULL) &&
45876899Ssumikawa			    (object->type == OBJT_DEFAULT ||
45953541Sshin			     object->type == OBJT_SWAP)) {
46053541Sshin				vm_object_t robject;
461165118Sbz
46276899Ssumikawa				robject = LIST_FIRST(&object->shadow_head);
46376899Ssumikawa				KASSERT(robject != NULL,
46453541Sshin				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
46553541Sshin					 object->ref_count,
46653541Sshin					 object->shadow_count));
46753541Sshin				if (!VM_OBJECT_TRYLOCK(robject)) {
46853541Sshin					/*
46953541Sshin					 * Avoid a potential deadlock.
47076899Ssumikawa					 */
47153541Sshin					object->ref_count++;
47253541Sshin					VM_OBJECT_UNLOCK(object);
473165118Sbz					continue;
47476899Ssumikawa				}
47576899Ssumikawa				if ((robject->handle == NULL) &&
47653541Sshin				    (robject->type == OBJT_DEFAULT ||
47753541Sshin				     robject->type == OBJT_SWAP)) {
47853541Sshin
47962587Sitojun					robject->ref_count++;
48053541Sshinretry:
48153541Sshin					if (robject->paging_in_progress) {
482184307Srwatson						VM_OBJECT_UNLOCK(object);
483184307Srwatson						vm_object_pip_wait(robject,
484184307Srwatson						    "objde1");
485184307Srwatson						VM_OBJECT_LOCK(object);
48653541Sshin						goto retry;
48753541Sshin					} else if (object->paging_in_progress) {
48853541Sshin						VM_OBJECT_UNLOCK(robject);
48953541Sshin						object->flags |= OBJ_PIPWNT;
49053541Sshin						msleep(object,
49153541Sshin						    VM_OBJECT_MTX(object),
49253541Sshin						    PDROP | PVM, "objde2", 0);
49353541Sshin						VM_OBJECT_LOCK(robject);
494181803Sbz						VM_OBJECT_LOCK(object);
495121345Sume						goto retry;
49662587Sitojun					}
497181803Sbz					VM_OBJECT_UNLOCK(object);
49862587Sitojun					if (robject->ref_count == 1) {
499181803Sbz						robject->ref_count--;
50062587Sitojun						object = robject;
50162587Sitojun						goto doterm;
50253541Sshin					}
50353541Sshin					object = robject;
50453541Sshin					vm_object_collapse(object);
50553541Sshin					VM_OBJECT_UNLOCK(object);
506121345Sume					continue;
50753541Sshin				}
50853541Sshin				VM_OBJECT_UNLOCK(robject);
50953541Sshin			}
51053541Sshin			VM_OBJECT_UNLOCK(object);
51153541Sshin			goto done;
512121345Sume		}
51353541Sshindoterm:
51453541Sshin		temp = object->backing_object;
51553541Sshin		if (temp != NULL) {
51653541Sshin			VM_OBJECT_LOCK(temp);
51753541Sshin			LIST_REMOVE(object, shadow_list);
51853541Sshin			temp->shadow_count--;
51953541Sshin			temp->generation++;
52053541Sshin			VM_OBJECT_UNLOCK(temp);
52153541Sshin			object->backing_object = NULL;
52262587Sitojun		}
52353541Sshin		/*
52462587Sitojun		 * Don't double-terminate, we could be in a termination
52562587Sitojun		 * recursion due to the terminate having to sync data
52653541Sshin		 * to disk.
52753541Sshin		 */
52853541Sshin		if ((object->flags & OBJ_DEAD) == 0)
52962587Sitojun			vm_object_terminate(object);
53062587Sitojun		else
53162587Sitojun			VM_OBJECT_UNLOCK(object);
53253541Sshin		object = temp;
53353541Sshin	}
53453541Sshindone:
53553541Sshin	if (object != kmem_object)
53662587Sitojun		mtx_unlock(&Giant);
53762587Sitojun}
53853541Sshin
539170275Sjinmei/*
540170275Sjinmei *	vm_object_terminate actually destroys the specified object, freeing
54153541Sshin *	up all previously used resources.
54262587Sitojun *
54362587Sitojun *	The object must be locked.
54462587Sitojun *	This routine may block.
54553541Sshin */
546170275Sjinmeivoid
547170275Sjinmeivm_object_terminate(vm_object_t object)
548170275Sjinmei{
54953541Sshin	vm_page_t p;
550170275Sjinmei	int s;
55162587Sitojun
55262587Sitojun	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
55362587Sitojun
55462587Sitojun	/*
555111119Simp	 * Make sure no one uses us.
55662587Sitojun	 */
557181803Sbz	vm_object_set_flag(object, OBJ_DEAD);
558184307Srwatson
559184307Srwatson	/*
560184307Srwatson	 * wait for the pageout daemon to be done with the object
56162587Sitojun	 */
562181803Sbz	vm_object_pip_wait(object, "objtrm");
56362587Sitojun
56462587Sitojun	KASSERT(!object->paging_in_progress,
56562587Sitojun		("vm_object_terminate: pageout in progress"));
56662587Sitojun
56753541Sshin	/*
56853541Sshin	 * Clean and free the pages, as appropriate. All references to the
56953541Sshin	 * object are gone, so we don't need to lock it.
57053541Sshin	 */
57153541Sshin	if (object->type == OBJT_VNODE) {
57253541Sshin		struct vnode *vp = (struct vnode *)object->handle;
57353541Sshin
57453541Sshin		/*
57553541Sshin		 * Clean pages and flush buffers.
57653541Sshin		 */
57753541Sshin		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
578181803Sbz		VM_OBJECT_UNLOCK(object);
579184307Srwatson
580184307Srwatson		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
581184307Srwatson
582184307Srwatson		VM_OBJECT_LOCK(object);
58353541Sshin	}
584181803Sbz
58553541Sshin	KASSERT(object->ref_count == 0,
58653541Sshin		("vm_object_terminate: object with references, ref_count=%d",
58753541Sshin		object->ref_count));
58853541Sshin
58953541Sshin	/*
59053541Sshin	 * Now free any remaining pages. For internal objects, this also
59153541Sshin	 * removes them from paging queues. Don't free wired pages, just
592120891Sume	 * remove them from the object.
593181803Sbz	 */
59453541Sshin	s = splvm();
59553541Sshin	vm_page_lock_queues();
59653541Sshin	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
59753541Sshin		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
59853541Sshin			("vm_object_terminate: freeing busy page %p "
59953541Sshin			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
60053541Sshin		if (p->wire_count == 0) {
60153541Sshin			vm_page_busy(p);
60253541Sshin			vm_page_free(p);
603121345Sume			cnt.v_pfree++;
60453541Sshin		} else {
60553541Sshin			vm_page_busy(p);
60653541Sshin			vm_page_remove(p);
607121346Sume		}
60853541Sshin	}
609181803Sbz	vm_page_unlock_queues();
61053541Sshin	splx(s);
61153541Sshin
61253541Sshin	/*
61353541Sshin	 * Let the pager know object is dead.
61453541Sshin	 */
61553541Sshin	vm_pager_deallocate(object);
61653541Sshin	VM_OBJECT_UNLOCK(object);
61753541Sshin
61853541Sshin	/*
619171259Sdelphij	 * Remove the object from the global object list.
62053541Sshin	 */
62153541Sshin	mtx_lock(&vm_object_list_mtx);
62253541Sshin	TAILQ_REMOVE(&vm_object_list, object, object_list);
623121355Sume	mtx_unlock(&vm_object_list_mtx);
624121345Sume
62553541Sshin	wakeup(object);
62653541Sshin
62753541Sshin	/*
62853541Sshin	 * Free the space for the object.
62953541Sshin	 */
63053541Sshin	uma_zfree(obj_zone, object);
63153541Sshin}
63253541Sshin
63353541Sshin/*
63453541Sshin *	vm_object_page_clean
63553541Sshin *
63653541Sshin *	Clean all dirty pages in the specified range of object.  Leaves page
63753541Sshin * 	on whatever queue it is currently on.   If NOSYNC is set then do not
63853541Sshin *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
63953541Sshin *	leaving the object dirty.
64053541Sshin *
64153541Sshin *	When stuffing pages asynchronously, allow clustering.  XXX we need a
642120891Sume *	synchronous clustering mode implementation.
64353541Sshin *
64453541Sshin *	Odd semantics: if start == end, we clean everything.
64553541Sshin *
64653541Sshin *	The object must be locked.
64753541Sshin */
64862587Sitojunvoid
64953541Sshinvm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
65062587Sitojun{
65153541Sshin	vm_page_t p, np;
65253541Sshin	vm_pindex_t tstart, tend;
653181803Sbz	vm_pindex_t pi;
654184307Srwatson	int clearobjflags;
655184307Srwatson	int pagerflags;
656184307Srwatson	int curgeneration;
65753541Sshin
658181803Sbz	GIANT_REQUIRED;
65953541Sshin	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
66053541Sshin	if (object->type != OBJT_VNODE ||
66153541Sshin		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
66253541Sshin		return;
66353541Sshin
66453541Sshin	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
66553541Sshin	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
666171259Sdelphij
66753541Sshin	vm_object_set_flag(object, OBJ_CLEANING);
668121345Sume
669121355Sume	tstart = start;
670121345Sume	if (end == 0) {
67153541Sshin		tend = object->size;
67253541Sshin	} else {
67353541Sshin		tend = end;
67453541Sshin	}
67553541Sshin
67653541Sshin	vm_page_lock_queues();
67753541Sshin	/*
67853541Sshin	 * If the caller is smart and only msync()s a range he knows is
67953541Sshin	 * dirty, we may be able to avoid an object scan.  This results in
68053541Sshin	 * a phenominal improvement in performance.  We cannot do this
681171259Sdelphij	 * as a matter of course because the object may be huge - e.g.
68253541Sshin	 * the size might be in the gigabytes or terrabytes.
683121345Sume	 */
684121355Sume	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
685121345Sume		vm_pindex_t tscan;
68653541Sshin		int scanlimit;
68753541Sshin		int scanreset;
68853541Sshin
68953541Sshin		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
69053541Sshin		if (scanreset < 16)
691171259Sdelphij			scanreset = 16;
69253541Sshin		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
693121345Sume
694121355Sume		scanlimit = scanreset;
695121345Sume		tscan = tstart;
69653541Sshin		while (tscan < tend) {
69753541Sshin			curgeneration = object->generation;
69853541Sshin			p = vm_page_lookup(object, tscan);
69953541Sshin			if (p == NULL || p->valid == 0 ||
70053541Sshin			    (p->queue - p->pc) == PQ_CACHE) {
70153541Sshin				if (--scanlimit == 0)
70253541Sshin					break;
703171259Sdelphij				++tscan;
70453541Sshin				continue;
705121345Sume			}
706121355Sume			vm_page_test_dirty(p);
707121345Sume			if ((p->dirty & p->valid) == 0) {
70853541Sshin				if (--scanlimit == 0)
70953541Sshin					break;
71053541Sshin				++tscan;
71153541Sshin				continue;
71253541Sshin			}
71378064Sume			/*
71453541Sshin			 * If we have been asked to skip nosync pages and
71553541Sshin			 * this is a nosync page, we can't continue.
71653541Sshin			 */
71753541Sshin			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
718171259Sdelphij				if (--scanlimit == 0)
71953541Sshin					break;
720183550Szec				++tscan;
72153541Sshin				continue;
72253541Sshin			}
723195760Srwatson			scanlimit = scanreset;
724121345Sume
725183550Szec			/*
726183550Szec			 * This returns 0 if it was unable to busy the first
727183550Szec			 * page (i.e. had to sleep).
728183550Szec			 */
729183550Szec			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
730183550Szec		}
731183550Szec
732183550Szec		/*
733183550Szec		 * If everything was dirty and we flushed it successfully,
734183550Szec		 * and the requested range is not the entire object, we
735183550Szec		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
736183550Szec		 * return immediately.
73753541Sshin		 */
738183550Szec		if (tscan >= tend && (tstart || tend < object->size)) {
739183550Szec			vm_page_unlock_queues();
740183550Szec			vm_object_clear_flag(object, OBJ_CLEANING);
741183550Szec			return;
742183550Szec		}
743183550Szec		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
744183550Szec	}
745183550Szec
746183550Szec	/*
747183550Szec	 * Generally set CLEANCHK interlock and make the page read-only so
74853541Sshin	 * we can then clear the object flags.
749183550Szec	 *
75053541Sshin	 * However, if this is a nosync mmap then the object is likely to
751121345Sume	 * stay dirty so do not mess with the page and do not clear the
752195760Srwatson	 * object flags.
75353541Sshin	 */
75453541Sshin	clearobjflags = 1;
75553541Sshin	TAILQ_FOREACH(p, &object->memq, listq) {
75653541Sshin		vm_page_flag_set(p, PG_CLEANCHK);
75753541Sshin		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
75853541Sshin			clearobjflags = 0;
759171259Sdelphij		else
76053541Sshin			pmap_page_protect(p, VM_PROT_READ);
761183550Szec	}
762121345Sume
763195760Srwatson	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
764195760Srwatson		struct vnode *vp;
765195760Srwatson
76653541Sshin		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
767195760Srwatson		if (object->type == OBJT_VNODE &&
768183550Szec		    (vp = (struct vnode *)object->handle) != NULL) {
769183550Szec			VI_LOCK(vp);
770183550Szec			if (vp->v_iflag & VI_OBJDIRTY)
771183550Szec				vp->v_iflag &= ~VI_OBJDIRTY;
772183550Szec			VI_UNLOCK(vp);
773183550Szec		}
774183550Szec	}
775183550Szec
77653541Sshinrescan:
777121345Sume	curgeneration = object->generation;
778195760Srwatson
77953541Sshin	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
780		int n;
781
782		np = TAILQ_NEXT(p, listq);
783
784again:
785		pi = p->pindex;
786		if (((p->flags & PG_CLEANCHK) == 0) ||
787			(pi < tstart) || (pi >= tend) ||
788			(p->valid == 0) ||
789			((p->queue - p->pc) == PQ_CACHE)) {
790			vm_page_flag_clear(p, PG_CLEANCHK);
791			continue;
792		}
793
794		vm_page_test_dirty(p);
795		if ((p->dirty & p->valid) == 0) {
796			vm_page_flag_clear(p, PG_CLEANCHK);
797			continue;
798		}
799
800		/*
801		 * If we have been asked to skip nosync pages and this is a
802		 * nosync page, skip it.  Note that the object flags were
803		 * not cleared in this case so we do not have to set them.
804		 */
805		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
806			vm_page_flag_clear(p, PG_CLEANCHK);
807			continue;
808		}
809
810		n = vm_object_page_collect_flush(object, p,
811			curgeneration, pagerflags);
812		if (n == 0)
813			goto rescan;
814
815		if (object->generation != curgeneration)
816			goto rescan;
817
818		/*
819		 * Try to optimize the next page.  If we can't we pick up
820		 * our (random) scan where we left off.
821		 */
822		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
823			if ((p = vm_page_lookup(object, pi + n)) != NULL)
824				goto again;
825		}
826	}
827	vm_page_unlock_queues();
828#if 0
829	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
830#endif
831
832	vm_object_clear_flag(object, OBJ_CLEANING);
833	return;
834}
835
836static int
837vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
838{
839	int runlen;
840	int s;
841	int maxf;
842	int chkb;
843	int maxb;
844	int i;
845	vm_pindex_t pi;
846	vm_page_t maf[vm_pageout_page_count];
847	vm_page_t mab[vm_pageout_page_count];
848	vm_page_t ma[vm_pageout_page_count];
849
850	s = splvm();
851	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
852	pi = p->pindex;
853	while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
854		vm_page_lock_queues();
855		if (object->generation != curgeneration) {
856			splx(s);
857			return(0);
858		}
859	}
860	maxf = 0;
861	for(i = 1; i < vm_pageout_page_count; i++) {
862		vm_page_t tp;
863
864		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
865			if ((tp->flags & PG_BUSY) ||
866				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
867				 (tp->flags & PG_CLEANCHK) == 0) ||
868				(tp->busy != 0))
869				break;
870			if((tp->queue - tp->pc) == PQ_CACHE) {
871				vm_page_flag_clear(tp, PG_CLEANCHK);
872				break;
873			}
874			vm_page_test_dirty(tp);
875			if ((tp->dirty & tp->valid) == 0) {
876				vm_page_flag_clear(tp, PG_CLEANCHK);
877				break;
878			}
879			maf[ i - 1 ] = tp;
880			maxf++;
881			continue;
882		}
883		break;
884	}
885
886	maxb = 0;
887	chkb = vm_pageout_page_count -  maxf;
888	if (chkb) {
889		for(i = 1; i < chkb;i++) {
890			vm_page_t tp;
891
892			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
893				if ((tp->flags & PG_BUSY) ||
894					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
895					 (tp->flags & PG_CLEANCHK) == 0) ||
896					(tp->busy != 0))
897					break;
898				if ((tp->queue - tp->pc) == PQ_CACHE) {
899					vm_page_flag_clear(tp, PG_CLEANCHK);
900					break;
901				}
902				vm_page_test_dirty(tp);
903				if ((tp->dirty & tp->valid) == 0) {
904					vm_page_flag_clear(tp, PG_CLEANCHK);
905					break;
906				}
907				mab[ i - 1 ] = tp;
908				maxb++;
909				continue;
910			}
911			break;
912		}
913	}
914
915	for(i = 0; i < maxb; i++) {
916		int index = (maxb - i) - 1;
917		ma[index] = mab[i];
918		vm_page_flag_clear(ma[index], PG_CLEANCHK);
919	}
920	vm_page_flag_clear(p, PG_CLEANCHK);
921	ma[maxb] = p;
922	for(i = 0; i < maxf; i++) {
923		int index = (maxb + i) + 1;
924		ma[index] = maf[i];
925		vm_page_flag_clear(ma[index], PG_CLEANCHK);
926	}
927	runlen = maxb + maxf + 1;
928
929	splx(s);
930	vm_pageout_flush(ma, runlen, pagerflags, TRUE);
931	for (i = 0; i < runlen; i++) {
932		if (ma[i]->valid & ma[i]->dirty) {
933			pmap_page_protect(ma[i], VM_PROT_READ);
934			vm_page_flag_set(ma[i], PG_CLEANCHK);
935
936			/*
937			 * maxf will end up being the actual number of pages
938			 * we wrote out contiguously, non-inclusive of the
939			 * first page.  We do not count look-behind pages.
940			 */
941			if (i >= maxb + 1 && (maxf > i - maxb - 1))
942				maxf = i - maxb - 1;
943		}
944	}
945	return(maxf + 1);
946}
947
948/*
949 *	vm_object_madvise:
950 *
951 *	Implements the madvise function at the object/page level.
952 *
953 *	MADV_WILLNEED	(any object)
954 *
955 *	    Activate the specified pages if they are resident.
956 *
957 *	MADV_DONTNEED	(any object)
958 *
959 *	    Deactivate the specified pages if they are resident.
960 *
961 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
962 *			 OBJ_ONEMAPPING only)
963 *
964 *	    Deactivate and clean the specified pages if they are
965 *	    resident.  This permits the process to reuse the pages
966 *	    without faulting or the kernel to reclaim the pages
967 *	    without I/O.
968 */
969void
970vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
971{
972	vm_pindex_t end, tpindex;
973	vm_object_t backing_object, tobject;
974	vm_page_t m;
975
976	if (object == NULL)
977		return;
978
979	mtx_lock(&Giant);
980
981	end = pindex + count;
982
983	/*
984	 * Locate and adjust resident pages
985	 */
986	for (; pindex < end; pindex += 1) {
987relookup:
988		tobject = object;
989		tpindex = pindex;
990		VM_OBJECT_LOCK(tobject);
991shadowlookup:
992		/*
993		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
994		 * and those pages must be OBJ_ONEMAPPING.
995		 */
996		if (advise == MADV_FREE) {
997			if ((tobject->type != OBJT_DEFAULT &&
998			     tobject->type != OBJT_SWAP) ||
999			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1000				goto unlock_tobject;
1001			}
1002		}
1003
1004		m = vm_page_lookup(tobject, tpindex);
1005
1006		if (m == NULL) {
1007			/*
1008			 * There may be swap even if there is no backing page
1009			 */
1010			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1011				swap_pager_freespace(tobject, tpindex, 1);
1012
1013			/*
1014			 * next object
1015			 */
1016			backing_object = tobject->backing_object;
1017			if (backing_object == NULL)
1018				goto unlock_tobject;
1019			VM_OBJECT_LOCK(backing_object);
1020			VM_OBJECT_UNLOCK(tobject);
1021			tobject = backing_object;
1022			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1023			goto shadowlookup;
1024		}
1025
1026		/*
1027		 * If the page is busy or not in a normal active state,
1028		 * we skip it.  If the page is not managed there are no
1029		 * page queues to mess with.  Things can break if we mess
1030		 * with pages in any of the below states.
1031		 */
1032		vm_page_lock_queues();
1033		if (m->hold_count ||
1034		    m->wire_count ||
1035		    (m->flags & PG_UNMANAGED) ||
1036		    m->valid != VM_PAGE_BITS_ALL) {
1037			vm_page_unlock_queues();
1038			goto unlock_tobject;
1039		}
1040 		if (vm_page_sleep_if_busy(m, TRUE, "madvpo")) {
1041			VM_OBJECT_UNLOCK(tobject);
1042  			goto relookup;
1043		}
1044		if (advise == MADV_WILLNEED) {
1045			vm_page_activate(m);
1046		} else if (advise == MADV_DONTNEED) {
1047			vm_page_dontneed(m);
1048		} else if (advise == MADV_FREE) {
1049			/*
1050			 * Mark the page clean.  This will allow the page
1051			 * to be freed up by the system.  However, such pages
1052			 * are often reused quickly by malloc()/free()
1053			 * so we do not do anything that would cause
1054			 * a page fault if we can help it.
1055			 *
1056			 * Specifically, we do not try to actually free
1057			 * the page now nor do we try to put it in the
1058			 * cache (which would cause a page fault on reuse).
1059			 *
1060			 * But we do make the page is freeable as we
1061			 * can without actually taking the step of unmapping
1062			 * it.
1063			 */
1064			pmap_clear_modify(m);
1065			m->dirty = 0;
1066			m->act_count = 0;
1067			vm_page_dontneed(m);
1068		}
1069		vm_page_unlock_queues();
1070		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1071			swap_pager_freespace(tobject, tpindex, 1);
1072unlock_tobject:
1073		VM_OBJECT_UNLOCK(tobject);
1074	}
1075	mtx_unlock(&Giant);
1076}
1077
1078/*
1079 *	vm_object_shadow:
1080 *
1081 *	Create a new object which is backed by the
1082 *	specified existing object range.  The source
1083 *	object reference is deallocated.
1084 *
1085 *	The new object and offset into that object
1086 *	are returned in the source parameters.
1087 */
1088void
1089vm_object_shadow(
1090	vm_object_t *object,	/* IN/OUT */
1091	vm_ooffset_t *offset,	/* IN/OUT */
1092	vm_size_t length)
1093{
1094	vm_object_t source;
1095	vm_object_t result;
1096
1097	GIANT_REQUIRED;
1098
1099	source = *object;
1100
1101	/*
1102	 * Don't create the new object if the old object isn't shared.
1103	 */
1104	if (source != NULL) {
1105		VM_OBJECT_LOCK(source);
1106		if (source->ref_count == 1 &&
1107		    source->handle == NULL &&
1108		    (source->type == OBJT_DEFAULT ||
1109		     source->type == OBJT_SWAP)) {
1110			VM_OBJECT_UNLOCK(source);
1111			return;
1112		}
1113		VM_OBJECT_UNLOCK(source);
1114	}
1115
1116	/*
1117	 * Allocate a new object with the given length.
1118	 */
1119	result = vm_object_allocate(OBJT_DEFAULT, length);
1120
1121	/*
1122	 * The new object shadows the source object, adding a reference to it.
1123	 * Our caller changes his reference to point to the new object,
1124	 * removing a reference to the source object.  Net result: no change
1125	 * of reference count.
1126	 *
1127	 * Try to optimize the result object's page color when shadowing
1128	 * in order to maintain page coloring consistency in the combined
1129	 * shadowed object.
1130	 */
1131	result->backing_object = source;
1132	if (source != NULL) {
1133		VM_OBJECT_LOCK(source);
1134		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1135		source->shadow_count++;
1136		source->generation++;
1137		if (length < source->size)
1138			length = source->size;
1139		if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1140		    source->generation > 1)
1141			length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1142		result->pg_color = (source->pg_color +
1143		    length * source->generation) & PQ_L2_MASK;
1144		VM_OBJECT_UNLOCK(source);
1145		next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1146		    PQ_L2_MASK;
1147	}
1148
1149	/*
1150	 * Store the offset into the source object, and fix up the offset into
1151	 * the new object.
1152	 */
1153	result->backing_object_offset = *offset;
1154
1155	/*
1156	 * Return the new things
1157	 */
1158	*offset = 0;
1159	*object = result;
1160}
1161
1162/*
1163 *	vm_object_split:
1164 *
1165 * Split the pages in a map entry into a new object.  This affords
1166 * easier removal of unused pages, and keeps object inheritance from
1167 * being a negative impact on memory usage.
1168 */
1169void
1170vm_object_split(vm_map_entry_t entry)
1171{
1172	vm_page_t m;
1173	vm_object_t orig_object, new_object, source;
1174	vm_offset_t s, e;
1175	vm_pindex_t offidxstart, offidxend;
1176	vm_size_t idx, size;
1177	vm_ooffset_t offset;
1178
1179	GIANT_REQUIRED;
1180
1181	orig_object = entry->object.vm_object;
1182	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1183		return;
1184	if (orig_object->ref_count <= 1)
1185		return;
1186
1187	offset = entry->offset;
1188	s = entry->start;
1189	e = entry->end;
1190
1191	offidxstart = OFF_TO_IDX(offset);
1192	offidxend = offidxstart + OFF_TO_IDX(e - s);
1193	size = offidxend - offidxstart;
1194
1195	new_object = vm_pager_allocate(orig_object->type,
1196		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
1197	if (new_object == NULL)
1198		return;
1199
1200	source = orig_object->backing_object;
1201	if (source != NULL) {
1202		vm_object_reference(source);	/* Referenced by new_object */
1203		VM_OBJECT_LOCK(source);
1204		LIST_INSERT_HEAD(&source->shadow_head,
1205				  new_object, shadow_list);
1206		source->shadow_count++;
1207		source->generation++;
1208		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1209		VM_OBJECT_UNLOCK(source);
1210		new_object->backing_object_offset =
1211			orig_object->backing_object_offset + offset;
1212		new_object->backing_object = source;
1213	}
1214	VM_OBJECT_LOCK(orig_object);
1215	for (idx = 0; idx < size; idx++) {
1216	retry:
1217		m = vm_page_lookup(orig_object, offidxstart + idx);
1218		if (m == NULL)
1219			continue;
1220
1221		/*
1222		 * We must wait for pending I/O to complete before we can
1223		 * rename the page.
1224		 *
1225		 * We do not have to VM_PROT_NONE the page as mappings should
1226		 * not be changed by this operation.
1227		 */
1228		vm_page_lock_queues();
1229		if (vm_page_sleep_if_busy(m, TRUE, "spltwt"))
1230			goto retry;
1231
1232		vm_page_busy(m);
1233		vm_page_rename(m, new_object, idx);
1234		/* page automatically made dirty by rename and cache handled */
1235		vm_page_busy(m);
1236		vm_page_unlock_queues();
1237	}
1238	if (orig_object->type == OBJT_SWAP) {
1239		vm_object_pip_add(orig_object, 1);
1240		VM_OBJECT_UNLOCK(orig_object);
1241		/*
1242		 * copy orig_object pages into new_object
1243		 * and destroy unneeded pages in
1244		 * shadow object.
1245		 */
1246		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1247		VM_OBJECT_LOCK(orig_object);
1248		vm_object_pip_wakeup(orig_object);
1249	}
1250	VM_OBJECT_UNLOCK(orig_object);
1251	vm_page_lock_queues();
1252	TAILQ_FOREACH(m, &new_object->memq, listq)
1253		vm_page_wakeup(m);
1254	vm_page_unlock_queues();
1255	entry->object.vm_object = new_object;
1256	entry->offset = 0LL;
1257	vm_object_deallocate(orig_object);
1258}
1259
1260#define	OBSC_TEST_ALL_SHADOWED	0x0001
1261#define	OBSC_COLLAPSE_NOWAIT	0x0002
1262#define	OBSC_COLLAPSE_WAIT	0x0004
1263
1264static int
1265vm_object_backing_scan(vm_object_t object, int op)
1266{
1267	int s;
1268	int r = 1;
1269	vm_page_t p;
1270	vm_object_t backing_object;
1271	vm_pindex_t backing_offset_index;
1272
1273	s = splvm();
1274	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1275	VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1276
1277	backing_object = object->backing_object;
1278	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1279
1280	/*
1281	 * Initial conditions
1282	 */
1283	if (op & OBSC_TEST_ALL_SHADOWED) {
1284		/*
1285		 * We do not want to have to test for the existence of
1286		 * swap pages in the backing object.  XXX but with the
1287		 * new swapper this would be pretty easy to do.
1288		 *
1289		 * XXX what about anonymous MAP_SHARED memory that hasn't
1290		 * been ZFOD faulted yet?  If we do not test for this, the
1291		 * shadow test may succeed! XXX
1292		 */
1293		if (backing_object->type != OBJT_DEFAULT) {
1294			splx(s);
1295			return (0);
1296		}
1297	}
1298	if (op & OBSC_COLLAPSE_WAIT) {
1299		vm_object_set_flag(backing_object, OBJ_DEAD);
1300	}
1301
1302	/*
1303	 * Our scan
1304	 */
1305	p = TAILQ_FIRST(&backing_object->memq);
1306	while (p) {
1307		vm_page_t next = TAILQ_NEXT(p, listq);
1308		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1309
1310		if (op & OBSC_TEST_ALL_SHADOWED) {
1311			vm_page_t pp;
1312
1313			/*
1314			 * Ignore pages outside the parent object's range
1315			 * and outside the parent object's mapping of the
1316			 * backing object.
1317			 *
1318			 * note that we do not busy the backing object's
1319			 * page.
1320			 */
1321			if (
1322			    p->pindex < backing_offset_index ||
1323			    new_pindex >= object->size
1324			) {
1325				p = next;
1326				continue;
1327			}
1328
1329			/*
1330			 * See if the parent has the page or if the parent's
1331			 * object pager has the page.  If the parent has the
1332			 * page but the page is not valid, the parent's
1333			 * object pager must have the page.
1334			 *
1335			 * If this fails, the parent does not completely shadow
1336			 * the object and we might as well give up now.
1337			 */
1338
1339			pp = vm_page_lookup(object, new_pindex);
1340			if (
1341			    (pp == NULL || pp->valid == 0) &&
1342			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1343			) {
1344				r = 0;
1345				break;
1346			}
1347		}
1348
1349		/*
1350		 * Check for busy page
1351		 */
1352		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1353			vm_page_t pp;
1354
1355			vm_page_lock_queues();
1356			if (op & OBSC_COLLAPSE_NOWAIT) {
1357				if ((p->flags & PG_BUSY) ||
1358				    !p->valid ||
1359				    p->hold_count ||
1360				    p->wire_count ||
1361				    p->busy) {
1362					vm_page_unlock_queues();
1363					p = next;
1364					continue;
1365				}
1366			} else if (op & OBSC_COLLAPSE_WAIT) {
1367				if ((p->flags & PG_BUSY) || p->busy) {
1368					vm_page_flag_set(p,
1369					    PG_WANTED | PG_REFERENCED);
1370					VM_OBJECT_UNLOCK(backing_object);
1371					VM_OBJECT_UNLOCK(object);
1372					msleep(p, &vm_page_queue_mtx,
1373					    PDROP | PVM, "vmocol", 0);
1374					VM_OBJECT_LOCK(object);
1375					VM_OBJECT_LOCK(backing_object);
1376					/*
1377					 * If we slept, anything could have
1378					 * happened.  Since the object is
1379					 * marked dead, the backing offset
1380					 * should not have changed so we
1381					 * just restart our scan.
1382					 */
1383					p = TAILQ_FIRST(&backing_object->memq);
1384					continue;
1385				}
1386			}
1387
1388			/*
1389			 * Busy the page
1390			 */
1391			vm_page_busy(p);
1392			vm_page_unlock_queues();
1393
1394			KASSERT(
1395			    p->object == backing_object,
1396			    ("vm_object_qcollapse(): object mismatch")
1397			);
1398
1399			/*
1400			 * Destroy any associated swap
1401			 */
1402			if (backing_object->type == OBJT_SWAP) {
1403				swap_pager_freespace(
1404				    backing_object,
1405				    p->pindex,
1406				    1
1407				);
1408			}
1409
1410			if (
1411			    p->pindex < backing_offset_index ||
1412			    new_pindex >= object->size
1413			) {
1414				/*
1415				 * Page is out of the parent object's range, we
1416				 * can simply destroy it.
1417				 */
1418				vm_page_lock_queues();
1419				pmap_remove_all(p);
1420				vm_page_free(p);
1421				vm_page_unlock_queues();
1422				p = next;
1423				continue;
1424			}
1425
1426			pp = vm_page_lookup(object, new_pindex);
1427			if (
1428			    pp != NULL ||
1429			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1430			) {
1431				/*
1432				 * page already exists in parent OR swap exists
1433				 * for this location in the parent.  Destroy
1434				 * the original page from the backing object.
1435				 *
1436				 * Leave the parent's page alone
1437				 */
1438				vm_page_lock_queues();
1439				pmap_remove_all(p);
1440				vm_page_free(p);
1441				vm_page_unlock_queues();
1442				p = next;
1443				continue;
1444			}
1445
1446			/*
1447			 * Page does not exist in parent, rename the
1448			 * page from the backing object to the main object.
1449			 *
1450			 * If the page was mapped to a process, it can remain
1451			 * mapped through the rename.
1452			 */
1453			vm_page_lock_queues();
1454			vm_page_rename(p, object, new_pindex);
1455			vm_page_unlock_queues();
1456			/* page automatically made dirty by rename */
1457		}
1458		p = next;
1459	}
1460	splx(s);
1461	return (r);
1462}
1463
1464
1465/*
1466 * this version of collapse allows the operation to occur earlier and
1467 * when paging_in_progress is true for an object...  This is not a complete
1468 * operation, but should plug 99.9% of the rest of the leaks.
1469 */
1470static void
1471vm_object_qcollapse(vm_object_t object)
1472{
1473	vm_object_t backing_object = object->backing_object;
1474
1475	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1476	VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1477
1478	if (backing_object->ref_count != 1)
1479		return;
1480
1481	backing_object->ref_count += 2;
1482
1483	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1484
1485	backing_object->ref_count -= 2;
1486}
1487
1488/*
1489 *	vm_object_collapse:
1490 *
1491 *	Collapse an object with the object backing it.
1492 *	Pages in the backing object are moved into the
1493 *	parent, and the backing object is deallocated.
1494 */
1495void
1496vm_object_collapse(vm_object_t object)
1497{
1498	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1499
1500	while (TRUE) {
1501		vm_object_t backing_object;
1502
1503		/*
1504		 * Verify that the conditions are right for collapse:
1505		 *
1506		 * The object exists and the backing object exists.
1507		 */
1508		if ((backing_object = object->backing_object) == NULL)
1509			break;
1510
1511		/*
1512		 * we check the backing object first, because it is most likely
1513		 * not collapsable.
1514		 */
1515		VM_OBJECT_LOCK(backing_object);
1516		if (backing_object->handle != NULL ||
1517		    (backing_object->type != OBJT_DEFAULT &&
1518		     backing_object->type != OBJT_SWAP) ||
1519		    (backing_object->flags & OBJ_DEAD) ||
1520		    object->handle != NULL ||
1521		    (object->type != OBJT_DEFAULT &&
1522		     object->type != OBJT_SWAP) ||
1523		    (object->flags & OBJ_DEAD)) {
1524			VM_OBJECT_UNLOCK(backing_object);
1525			break;
1526		}
1527
1528		if (
1529		    object->paging_in_progress != 0 ||
1530		    backing_object->paging_in_progress != 0
1531		) {
1532			vm_object_qcollapse(object);
1533			VM_OBJECT_UNLOCK(backing_object);
1534			break;
1535		}
1536		/*
1537		 * We know that we can either collapse the backing object (if
1538		 * the parent is the only reference to it) or (perhaps) have
1539		 * the parent bypass the object if the parent happens to shadow
1540		 * all the resident pages in the entire backing object.
1541		 *
1542		 * This is ignoring pager-backed pages such as swap pages.
1543		 * vm_object_backing_scan fails the shadowing test in this
1544		 * case.
1545		 */
1546		if (backing_object->ref_count == 1) {
1547			/*
1548			 * If there is exactly one reference to the backing
1549			 * object, we can collapse it into the parent.
1550			 */
1551			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1552
1553			/*
1554			 * Move the pager from backing_object to object.
1555			 */
1556			if (backing_object->type == OBJT_SWAP) {
1557				vm_object_pip_add(backing_object, 1);
1558				VM_OBJECT_UNLOCK(backing_object);
1559				/*
1560				 * scrap the paging_offset junk and do a
1561				 * discrete copy.  This also removes major
1562				 * assumptions about how the swap-pager
1563				 * works from where it doesn't belong.  The
1564				 * new swapper is able to optimize the
1565				 * destroy-source case.
1566				 */
1567				vm_object_pip_add(object, 1);
1568				VM_OBJECT_UNLOCK(object);
1569				swap_pager_copy(
1570				    backing_object,
1571				    object,
1572				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1573				VM_OBJECT_LOCK(object);
1574				vm_object_pip_wakeup(object);
1575
1576				VM_OBJECT_LOCK(backing_object);
1577				vm_object_pip_wakeup(backing_object);
1578			}
1579			/*
1580			 * Object now shadows whatever backing_object did.
1581			 * Note that the reference to
1582			 * backing_object->backing_object moves from within
1583			 * backing_object to within object.
1584			 */
1585			LIST_REMOVE(object, shadow_list);
1586			backing_object->shadow_count--;
1587			backing_object->generation++;
1588			if (backing_object->backing_object) {
1589				VM_OBJECT_LOCK(backing_object->backing_object);
1590				LIST_REMOVE(backing_object, shadow_list);
1591				backing_object->backing_object->shadow_count--;
1592				backing_object->backing_object->generation++;
1593				VM_OBJECT_UNLOCK(backing_object->backing_object);
1594			}
1595			object->backing_object = backing_object->backing_object;
1596			if (object->backing_object) {
1597				VM_OBJECT_LOCK(object->backing_object);
1598				LIST_INSERT_HEAD(
1599				    &object->backing_object->shadow_head,
1600				    object,
1601				    shadow_list
1602				);
1603				object->backing_object->shadow_count++;
1604				object->backing_object->generation++;
1605				VM_OBJECT_UNLOCK(object->backing_object);
1606			}
1607
1608			object->backing_object_offset +=
1609			    backing_object->backing_object_offset;
1610/* XXX */		VM_OBJECT_UNLOCK(object);
1611
1612			/*
1613			 * Discard backing_object.
1614			 *
1615			 * Since the backing object has no pages, no pager left,
1616			 * and no object references within it, all that is
1617			 * necessary is to dispose of it.
1618			 */
1619			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1620			KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1621			VM_OBJECT_UNLOCK(backing_object);
1622
1623			mtx_lock(&vm_object_list_mtx);
1624			TAILQ_REMOVE(
1625			    &vm_object_list,
1626			    backing_object,
1627			    object_list
1628			);
1629			mtx_unlock(&vm_object_list_mtx);
1630
1631			uma_zfree(obj_zone, backing_object);
1632
1633			object_collapses++;
1634		} else {
1635			vm_object_t new_backing_object;
1636
1637			/*
1638			 * If we do not entirely shadow the backing object,
1639			 * there is nothing we can do so we give up.
1640			 */
1641			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1642				VM_OBJECT_UNLOCK(backing_object);
1643				break;
1644			}
1645
1646			/*
1647			 * Make the parent shadow the next object in the
1648			 * chain.  Deallocating backing_object will not remove
1649			 * it, since its reference count is at least 2.
1650			 */
1651			LIST_REMOVE(object, shadow_list);
1652			backing_object->shadow_count--;
1653			backing_object->generation++;
1654			VM_OBJECT_UNLOCK(backing_object);
1655/* XXX */		VM_OBJECT_UNLOCK(object);
1656
1657			new_backing_object = backing_object->backing_object;
1658			if ((object->backing_object = new_backing_object) != NULL) {
1659				vm_object_reference(new_backing_object);
1660				VM_OBJECT_LOCK(new_backing_object);
1661				LIST_INSERT_HEAD(
1662				    &new_backing_object->shadow_head,
1663				    object,
1664				    shadow_list
1665				);
1666				new_backing_object->shadow_count++;
1667				new_backing_object->generation++;
1668				VM_OBJECT_UNLOCK(new_backing_object);
1669				object->backing_object_offset +=
1670					backing_object->backing_object_offset;
1671			}
1672
1673			/*
1674			 * Drop the reference count on backing_object. Since
1675			 * its ref_count was at least 2, it will not vanish;
1676			 * so we don't need to call vm_object_deallocate, but
1677			 * we do anyway.
1678			 */
1679			vm_object_deallocate(backing_object);
1680			object_bypasses++;
1681		}
1682
1683		/*
1684		 * Try again with this object's new backing object.
1685		 */
1686/* XXX */	VM_OBJECT_LOCK(object);
1687	}
1688}
1689
1690/*
1691 *	vm_object_page_remove:
1692 *
1693 *	Removes all physical pages in the given range from the
1694 *	object's list of pages.  If the range's end is zero, all
1695 *	physical pages from the range's start to the end of the object
1696 *	are deleted.
1697 *
1698 *	The object must be locked.
1699 */
1700void
1701vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1702    boolean_t clean_only)
1703{
1704	vm_page_t p, next;
1705
1706	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1707	if (object->resident_page_count == 0)
1708		return;
1709
1710	/*
1711	 * Since physically-backed objects do not use managed pages, we can't
1712	 * remove pages from the object (we must instead remove the page
1713	 * references, and then destroy the object).
1714	 */
1715	KASSERT(object->type != OBJT_PHYS,
1716	    ("attempt to remove pages from a physical object"));
1717
1718	vm_object_pip_add(object, 1);
1719again:
1720	vm_page_lock_queues();
1721	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1722		if (p->pindex < start) {
1723			p = vm_page_splay(start, object->root);
1724			if ((object->root = p)->pindex < start)
1725				p = TAILQ_NEXT(p, listq);
1726		}
1727	}
1728	/*
1729	 * Assert: the variable p is either (1) the page with the
1730	 * least pindex greater than or equal to the parameter pindex
1731	 * or (2) NULL.
1732	 */
1733	for (;
1734	     p != NULL && (p->pindex < end || end == 0);
1735	     p = next) {
1736		next = TAILQ_NEXT(p, listq);
1737
1738		if (p->wire_count != 0) {
1739			pmap_remove_all(p);
1740			if (!clean_only)
1741				p->valid = 0;
1742			continue;
1743		}
1744		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1745			goto again;
1746		if (clean_only && p->valid) {
1747			vm_page_test_dirty(p);
1748			if (p->valid & p->dirty)
1749				continue;
1750		}
1751		vm_page_busy(p);
1752		pmap_remove_all(p);
1753		vm_page_free(p);
1754	}
1755	vm_page_unlock_queues();
1756	vm_object_pip_wakeup(object);
1757}
1758
1759/*
1760 *	Routine:	vm_object_coalesce
1761 *	Function:	Coalesces two objects backing up adjoining
1762 *			regions of memory into a single object.
1763 *
1764 *	returns TRUE if objects were combined.
1765 *
1766 *	NOTE:	Only works at the moment if the second object is NULL -
1767 *		if it's not, which object do we lock first?
1768 *
1769 *	Parameters:
1770 *		prev_object	First object to coalesce
1771 *		prev_offset	Offset into prev_object
1772 *		next_object	Second object into coalesce
1773 *		next_offset	Offset into next_object
1774 *
1775 *		prev_size	Size of reference to prev_object
1776 *		next_size	Size of reference to next_object
1777 *
1778 *	Conditions:
1779 *	The object must *not* be locked.
1780 */
1781boolean_t
1782vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1783	vm_size_t prev_size, vm_size_t next_size)
1784{
1785	vm_pindex_t next_pindex;
1786
1787	if (prev_object == NULL)
1788		return (TRUE);
1789	mtx_lock(&Giant);
1790	VM_OBJECT_LOCK(prev_object);
1791	if (prev_object->type != OBJT_DEFAULT &&
1792	    prev_object->type != OBJT_SWAP) {
1793		VM_OBJECT_UNLOCK(prev_object);
1794		mtx_unlock(&Giant);
1795		return (FALSE);
1796	}
1797
1798	/*
1799	 * Try to collapse the object first
1800	 */
1801	vm_object_collapse(prev_object);
1802
1803	/*
1804	 * Can't coalesce if: . more than one reference . paged out . shadows
1805	 * another object . has a copy elsewhere (any of which mean that the
1806	 * pages not mapped to prev_entry may be in use anyway)
1807	 */
1808	if (prev_object->backing_object != NULL) {
1809		VM_OBJECT_UNLOCK(prev_object);
1810		mtx_unlock(&Giant);
1811		return (FALSE);
1812	}
1813
1814	prev_size >>= PAGE_SHIFT;
1815	next_size >>= PAGE_SHIFT;
1816	next_pindex = prev_pindex + prev_size;
1817
1818	if ((prev_object->ref_count > 1) &&
1819	    (prev_object->size != next_pindex)) {
1820		VM_OBJECT_UNLOCK(prev_object);
1821		mtx_unlock(&Giant);
1822		return (FALSE);
1823	}
1824
1825	/*
1826	 * Remove any pages that may still be in the object from a previous
1827	 * deallocation.
1828	 */
1829	if (next_pindex < prev_object->size) {
1830		vm_object_page_remove(prev_object,
1831				      next_pindex,
1832				      next_pindex + next_size, FALSE);
1833		if (prev_object->type == OBJT_SWAP)
1834			swap_pager_freespace(prev_object,
1835					     next_pindex, next_size);
1836	}
1837
1838	/*
1839	 * Extend the object if necessary.
1840	 */
1841	if (next_pindex + next_size > prev_object->size)
1842		prev_object->size = next_pindex + next_size;
1843
1844	VM_OBJECT_UNLOCK(prev_object);
1845	mtx_unlock(&Giant);
1846	return (TRUE);
1847}
1848
1849void
1850vm_object_set_writeable_dirty(vm_object_t object)
1851{
1852	struct vnode *vp;
1853
1854	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1855	if (object->type == OBJT_VNODE &&
1856	    (vp = (struct vnode *)object->handle) != NULL) {
1857		VI_LOCK(vp);
1858		if ((vp->v_iflag & VI_OBJDIRTY) == 0)
1859			vp->v_iflag |= VI_OBJDIRTY;
1860		VI_UNLOCK(vp);
1861	}
1862}
1863
1864#include "opt_ddb.h"
1865#ifdef DDB
1866#include <sys/kernel.h>
1867
1868#include <sys/cons.h>
1869
1870#include <ddb/ddb.h>
1871
1872static int
1873_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1874{
1875	vm_map_t tmpm;
1876	vm_map_entry_t tmpe;
1877	vm_object_t obj;
1878	int entcount;
1879
1880	if (map == 0)
1881		return 0;
1882
1883	if (entry == 0) {
1884		tmpe = map->header.next;
1885		entcount = map->nentries;
1886		while (entcount-- && (tmpe != &map->header)) {
1887			if (_vm_object_in_map(map, object, tmpe)) {
1888				return 1;
1889			}
1890			tmpe = tmpe->next;
1891		}
1892	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1893		tmpm = entry->object.sub_map;
1894		tmpe = tmpm->header.next;
1895		entcount = tmpm->nentries;
1896		while (entcount-- && tmpe != &tmpm->header) {
1897			if (_vm_object_in_map(tmpm, object, tmpe)) {
1898				return 1;
1899			}
1900			tmpe = tmpe->next;
1901		}
1902	} else if ((obj = entry->object.vm_object) != NULL) {
1903		for (; obj; obj = obj->backing_object)
1904			if (obj == object) {
1905				return 1;
1906			}
1907	}
1908	return 0;
1909}
1910
1911static int
1912vm_object_in_map(vm_object_t object)
1913{
1914	struct proc *p;
1915
1916	/* sx_slock(&allproc_lock); */
1917	LIST_FOREACH(p, &allproc, p_list) {
1918		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1919			continue;
1920		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
1921			/* sx_sunlock(&allproc_lock); */
1922			return 1;
1923		}
1924	}
1925	/* sx_sunlock(&allproc_lock); */
1926	if (_vm_object_in_map(kernel_map, object, 0))
1927		return 1;
1928	if (_vm_object_in_map(kmem_map, object, 0))
1929		return 1;
1930	if (_vm_object_in_map(pager_map, object, 0))
1931		return 1;
1932	if (_vm_object_in_map(buffer_map, object, 0))
1933		return 1;
1934	return 0;
1935}
1936
1937DB_SHOW_COMMAND(vmochk, vm_object_check)
1938{
1939	vm_object_t object;
1940
1941	/*
1942	 * make sure that internal objs are in a map somewhere
1943	 * and none have zero ref counts.
1944	 */
1945	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1946		if (object->handle == NULL &&
1947		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1948			if (object->ref_count == 0) {
1949				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1950					(long)object->size);
1951			}
1952			if (!vm_object_in_map(object)) {
1953				db_printf(
1954			"vmochk: internal obj is not in a map: "
1955			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1956				    object->ref_count, (u_long)object->size,
1957				    (u_long)object->size,
1958				    (void *)object->backing_object);
1959			}
1960		}
1961	}
1962}
1963
1964/*
1965 *	vm_object_print:	[ debug ]
1966 */
1967DB_SHOW_COMMAND(object, vm_object_print_static)
1968{
1969	/* XXX convert args. */
1970	vm_object_t object = (vm_object_t)addr;
1971	boolean_t full = have_addr;
1972
1973	vm_page_t p;
1974
1975	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1976#define	count	was_count
1977
1978	int count;
1979
1980	if (object == NULL)
1981		return;
1982
1983	db_iprintf(
1984	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
1985	    object, (int)object->type, (uintmax_t)object->size,
1986	    object->resident_page_count, object->ref_count, object->flags);
1987	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
1988	    object->shadow_count,
1989	    object->backing_object ? object->backing_object->ref_count : 0,
1990	    object->backing_object, (uintmax_t)object->backing_object_offset);
1991
1992	if (!full)
1993		return;
1994
1995	db_indent += 2;
1996	count = 0;
1997	TAILQ_FOREACH(p, &object->memq, listq) {
1998		if (count == 0)
1999			db_iprintf("memory:=");
2000		else if (count == 6) {
2001			db_printf("\n");
2002			db_iprintf(" ...");
2003			count = 0;
2004		} else
2005			db_printf(",");
2006		count++;
2007
2008		db_printf("(off=0x%jx,page=0x%jx)",
2009		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2010	}
2011	if (count != 0)
2012		db_printf("\n");
2013	db_indent -= 2;
2014}
2015
2016/* XXX. */
2017#undef count
2018
2019/* XXX need this non-static entry for calling from vm_map_print. */
2020void
2021vm_object_print(
2022        /* db_expr_t */ long addr,
2023	boolean_t have_addr,
2024	/* db_expr_t */ long count,
2025	char *modif)
2026{
2027	vm_object_print_static(addr, have_addr, count, modif);
2028}
2029
2030DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2031{
2032	vm_object_t object;
2033	int nl = 0;
2034	int c;
2035
2036	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2037		vm_pindex_t idx, fidx;
2038		vm_pindex_t osize;
2039		vm_paddr_t pa = -1, padiff;
2040		int rcount;
2041		vm_page_t m;
2042
2043		db_printf("new object: %p\n", (void *)object);
2044		if (nl > 18) {
2045			c = cngetc();
2046			if (c != ' ')
2047				return;
2048			nl = 0;
2049		}
2050		nl++;
2051		rcount = 0;
2052		fidx = 0;
2053		osize = object->size;
2054		if (osize > 128)
2055			osize = 128;
2056		for (idx = 0; idx < osize; idx++) {
2057			m = vm_page_lookup(object, idx);
2058			if (m == NULL) {
2059				if (rcount) {
2060					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2061						(long)fidx, rcount, (long)pa);
2062					if (nl > 18) {
2063						c = cngetc();
2064						if (c != ' ')
2065							return;
2066						nl = 0;
2067					}
2068					nl++;
2069					rcount = 0;
2070				}
2071				continue;
2072			}
2073
2074
2075			if (rcount &&
2076				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2077				++rcount;
2078				continue;
2079			}
2080			if (rcount) {
2081				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2082				padiff >>= PAGE_SHIFT;
2083				padiff &= PQ_L2_MASK;
2084				if (padiff == 0) {
2085					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2086					++rcount;
2087					continue;
2088				}
2089				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2090					(long)fidx, rcount, (long)pa);
2091				db_printf("pd(%ld)\n", (long)padiff);
2092				if (nl > 18) {
2093					c = cngetc();
2094					if (c != ' ')
2095						return;
2096					nl = 0;
2097				}
2098				nl++;
2099			}
2100			fidx = idx;
2101			pa = VM_PAGE_TO_PHYS(m);
2102			rcount = 1;
2103		}
2104		if (rcount) {
2105			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2106				(long)fidx, rcount, (long)pa);
2107			if (nl > 18) {
2108				c = cngetc();
2109				if (c != ' ')
2110					return;
2111				nl = 0;
2112			}
2113			nl++;
2114		}
2115	}
2116}
2117#endif /* DDB */
2118