vm_object.c revision 116079
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_object.c 116079 2003-06-09 06:50:02Z alc $
65 */
66
67/*
68 *	Virtual memory object module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/lock.h>
74#include <sys/mman.h>
75#include <sys/mount.h>
76#include <sys/kernel.h>
77#include <sys/sysctl.h>
78#include <sys/mutex.h>
79#include <sys/proc.h>		/* for curproc, pageproc */
80#include <sys/socket.h>
81#include <sys/vnode.h>
82#include <sys/vmmeter.h>
83#include <sys/sx.h>
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/pmap.h>
88#include <vm/vm_map.h>
89#include <vm/vm_object.h>
90#include <vm/vm_page.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_pager.h>
93#include <vm/swap_pager.h>
94#include <vm/vm_kern.h>
95#include <vm/vm_extern.h>
96#include <vm/uma.h>
97
98#define EASY_SCAN_FACTOR       8
99
100#define MSYNC_FLUSH_HARDSEQ	0x01
101#define MSYNC_FLUSH_SOFTSEQ	0x02
102
103/*
104 * msync / VM object flushing optimizations
105 */
106static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
107SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
108        CTLFLAG_RW, &msync_flush_flags, 0, "");
109
110static void	vm_object_qcollapse(vm_object_t object);
111static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
112
113/*
114 *	Virtual memory objects maintain the actual data
115 *	associated with allocated virtual memory.  A given
116 *	page of memory exists within exactly one object.
117 *
118 *	An object is only deallocated when all "references"
119 *	are given up.  Only one "reference" to a given
120 *	region of an object should be writeable.
121 *
122 *	Associated with each object is a list of all resident
123 *	memory pages belonging to that object; this list is
124 *	maintained by the "vm_page" module, and locked by the object's
125 *	lock.
126 *
127 *	Each object also records a "pager" routine which is
128 *	used to retrieve (and store) pages to the proper backing
129 *	storage.  In addition, objects may be backed by other
130 *	objects from which they were virtual-copied.
131 *
132 *	The only items within the object structure which are
133 *	modified after time of creation are:
134 *		reference count		locked by object's lock
135 *		pager routine		locked by object's lock
136 *
137 */
138
139struct object_q vm_object_list;
140struct mtx vm_object_list_mtx;	/* lock for object list and count */
141
142struct vm_object kernel_object_store;
143struct vm_object kmem_object_store;
144
145static long object_collapses;
146static long object_bypasses;
147static int next_index;
148static uma_zone_t obj_zone;
149#define VM_OBJECTS_INIT 256
150
151static void vm_object_zinit(void *mem, int size);
152
153#ifdef INVARIANTS
154static void vm_object_zdtor(void *mem, int size, void *arg);
155
156static void
157vm_object_zdtor(void *mem, int size, void *arg)
158{
159	vm_object_t object;
160
161	object = (vm_object_t)mem;
162	KASSERT(object->paging_in_progress == 0,
163	    ("object %p paging_in_progress = %d",
164	    object, object->paging_in_progress));
165	KASSERT(object->resident_page_count == 0,
166	    ("object %p resident_page_count = %d",
167	    object, object->resident_page_count));
168	KASSERT(object->shadow_count == 0,
169	    ("object %p shadow_count = %d",
170	    object, object->shadow_count));
171}
172#endif
173
174static void
175vm_object_zinit(void *mem, int size)
176{
177	vm_object_t object;
178
179	object = (vm_object_t)mem;
180	bzero(&object->mtx, sizeof(object->mtx));
181	VM_OBJECT_LOCK_INIT(object);
182
183	/* These are true for any object that has been freed */
184	object->paging_in_progress = 0;
185	object->resident_page_count = 0;
186	object->shadow_count = 0;
187}
188
189void
190_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
191{
192	int incr;
193
194	TAILQ_INIT(&object->memq);
195	LIST_INIT(&object->shadow_head);
196
197	object->root = NULL;
198	object->type = type;
199	object->size = size;
200	object->ref_count = 1;
201	object->flags = 0;
202	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
203		object->flags = OBJ_ONEMAPPING;
204	if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
205		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
206	else
207		incr = size;
208	do
209		object->pg_color = next_index;
210	while (!atomic_cmpset_int(&next_index, object->pg_color,
211				  (object->pg_color + incr) & PQ_L2_MASK));
212	object->handle = NULL;
213	object->backing_object = NULL;
214	object->backing_object_offset = (vm_ooffset_t) 0;
215
216	atomic_add_int(&object->generation, 1);
217
218	mtx_lock(&vm_object_list_mtx);
219	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
220	mtx_unlock(&vm_object_list_mtx);
221}
222
223/*
224 *	vm_object_init:
225 *
226 *	Initialize the VM objects module.
227 */
228void
229vm_object_init(void)
230{
231	TAILQ_INIT(&vm_object_list);
232	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
233
234	VM_OBJECT_LOCK_INIT(&kernel_object_store);
235	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
236	    kernel_object);
237
238	/*
239	 * The kmem object's mutex is given a unique name, instead of
240	 * "vm object", to avoid false reports of lock-order reversal
241	 * with a system map mutex.
242	 */
243	mtx_init(VM_OBJECT_MTX(kmem_object), "kmem object", NULL, MTX_DEF);
244	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
245	    kmem_object);
246
247	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
248#ifdef INVARIANTS
249	    vm_object_zdtor,
250#else
251	    NULL,
252#endif
253	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
254	uma_prealloc(obj_zone, VM_OBJECTS_INIT);
255}
256
257void
258vm_object_set_flag(vm_object_t object, u_short bits)
259{
260	object->flags |= bits;
261}
262
263void
264vm_object_clear_flag(vm_object_t object, u_short bits)
265{
266
267	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
268	object->flags &= ~bits;
269}
270
271void
272vm_object_pip_add(vm_object_t object, short i)
273{
274
275	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
276	object->paging_in_progress += i;
277}
278
279void
280vm_object_pip_subtract(vm_object_t object, short i)
281{
282
283	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
284	object->paging_in_progress -= i;
285}
286
287void
288vm_object_pip_wakeup(vm_object_t object)
289{
290
291	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
292	object->paging_in_progress--;
293	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
294		vm_object_clear_flag(object, OBJ_PIPWNT);
295		wakeup(object);
296	}
297}
298
299void
300vm_object_pip_wakeupn(vm_object_t object, short i)
301{
302
303	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
304	if (i)
305		object->paging_in_progress -= i;
306	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
307		vm_object_clear_flag(object, OBJ_PIPWNT);
308		wakeup(object);
309	}
310}
311
312void
313vm_object_pip_wait(vm_object_t object, char *waitid)
314{
315
316	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
317	while (object->paging_in_progress) {
318		object->flags |= OBJ_PIPWNT;
319		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
320	}
321}
322
323/*
324 *	vm_object_allocate_wait
325 *
326 *	Return a new object with the given size, and give the user the
327 *	option of waiting for it to complete or failing if the needed
328 *	memory isn't available.
329 */
330vm_object_t
331vm_object_allocate_wait(objtype_t type, vm_pindex_t size, int flags)
332{
333	vm_object_t result;
334
335	result = (vm_object_t) uma_zalloc(obj_zone, flags);
336
337	if (result != NULL)
338		_vm_object_allocate(type, size, result);
339
340	return (result);
341}
342
343/*
344 *	vm_object_allocate:
345 *
346 *	Returns a new object with the given size.
347 */
348vm_object_t
349vm_object_allocate(objtype_t type, vm_pindex_t size)
350{
351	return(vm_object_allocate_wait(type, size, M_WAITOK));
352}
353
354
355/*
356 *	vm_object_reference:
357 *
358 *	Gets another reference to the given object.  Note: OBJ_DEAD
359 *	objects can be referenced during final cleaning.
360 */
361void
362vm_object_reference(vm_object_t object)
363{
364	if (object == NULL)
365		return;
366	if (object != kmem_object)
367		mtx_lock(&Giant);
368	VM_OBJECT_LOCK(object);
369	object->ref_count++;
370	VM_OBJECT_UNLOCK(object);
371	if (object->type == OBJT_VNODE) {
372		while (vget((struct vnode *) object->handle, LK_RETRY, curthread)) {
373			printf("vm_object_reference: delay in getting object\n");
374		}
375	}
376	if (object != kmem_object)
377		mtx_unlock(&Giant);
378}
379
380/*
381 * Handle deallocating an object of type OBJT_VNODE.
382 */
383void
384vm_object_vndeallocate(vm_object_t object)
385{
386	struct vnode *vp = (struct vnode *) object->handle;
387
388	GIANT_REQUIRED;
389	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
390	KASSERT(object->type == OBJT_VNODE,
391	    ("vm_object_vndeallocate: not a vnode object"));
392	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
393#ifdef INVARIANTS
394	if (object->ref_count == 0) {
395		vprint("vm_object_vndeallocate", vp);
396		panic("vm_object_vndeallocate: bad object reference count");
397	}
398#endif
399
400	object->ref_count--;
401	if (object->ref_count == 0) {
402		mp_fixme("Unlocked vflag access.");
403		vp->v_vflag &= ~VV_TEXT;
404	}
405	VM_OBJECT_UNLOCK(object);
406	/*
407	 * vrele may need a vop lock
408	 */
409	vrele(vp);
410}
411
412/*
413 *	vm_object_deallocate:
414 *
415 *	Release a reference to the specified object,
416 *	gained either through a vm_object_allocate
417 *	or a vm_object_reference call.  When all references
418 *	are gone, storage associated with this object
419 *	may be relinquished.
420 *
421 *	No object may be locked.
422 */
423void
424vm_object_deallocate(vm_object_t object)
425{
426	vm_object_t temp;
427
428	if (object != kmem_object)
429		mtx_lock(&Giant);
430	while (object != NULL) {
431		VM_OBJECT_LOCK(object);
432		if (object->type == OBJT_VNODE) {
433			vm_object_vndeallocate(object);
434			goto done;
435		}
436
437		KASSERT(object->ref_count != 0,
438			("vm_object_deallocate: object deallocated too many times: %d", object->type));
439
440		/*
441		 * If the reference count goes to 0 we start calling
442		 * vm_object_terminate() on the object chain.
443		 * A ref count of 1 may be a special case depending on the
444		 * shadow count being 0 or 1.
445		 */
446		object->ref_count--;
447		if (object->ref_count > 1) {
448			VM_OBJECT_UNLOCK(object);
449			goto done;
450		} else if (object->ref_count == 1) {
451			if (object->shadow_count == 0) {
452				vm_object_set_flag(object, OBJ_ONEMAPPING);
453			} else if ((object->shadow_count == 1) &&
454			    (object->handle == NULL) &&
455			    (object->type == OBJT_DEFAULT ||
456			     object->type == OBJT_SWAP)) {
457				vm_object_t robject;
458
459				robject = LIST_FIRST(&object->shadow_head);
460				KASSERT(robject != NULL,
461				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
462					 object->ref_count,
463					 object->shadow_count));
464				if (!VM_OBJECT_TRYLOCK(robject)) {
465					/*
466					 * Avoid a potential deadlock.
467					 */
468					object->ref_count++;
469					VM_OBJECT_UNLOCK(object);
470					continue;
471				}
472				if ((robject->handle == NULL) &&
473				    (robject->type == OBJT_DEFAULT ||
474				     robject->type == OBJT_SWAP)) {
475
476					robject->ref_count++;
477retry:
478					if (robject->paging_in_progress) {
479						VM_OBJECT_UNLOCK(object);
480						vm_object_pip_wait(robject,
481						    "objde1");
482						VM_OBJECT_LOCK(object);
483						goto retry;
484					} else if (object->paging_in_progress) {
485						VM_OBJECT_UNLOCK(robject);
486						object->flags |= OBJ_PIPWNT;
487						msleep(object,
488						    VM_OBJECT_MTX(object),
489						    PDROP | PVM, "objde2", 0);
490						VM_OBJECT_LOCK(robject);
491						VM_OBJECT_LOCK(object);
492						goto retry;
493					}
494					VM_OBJECT_UNLOCK(object);
495					if (robject->ref_count == 1) {
496						robject->ref_count--;
497						object = robject;
498						goto doterm;
499					}
500					object = robject;
501					vm_object_collapse(object);
502					VM_OBJECT_UNLOCK(object);
503					continue;
504				}
505				VM_OBJECT_UNLOCK(robject);
506			}
507			VM_OBJECT_UNLOCK(object);
508			goto done;
509		}
510doterm:
511		temp = object->backing_object;
512		if (temp != NULL) {
513			VM_OBJECT_LOCK(temp);
514			LIST_REMOVE(object, shadow_list);
515			temp->shadow_count--;
516			temp->generation++;
517			VM_OBJECT_UNLOCK(temp);
518			object->backing_object = NULL;
519		}
520		/*
521		 * Don't double-terminate, we could be in a termination
522		 * recursion due to the terminate having to sync data
523		 * to disk.
524		 */
525		if ((object->flags & OBJ_DEAD) == 0)
526			vm_object_terminate(object);
527		else
528			VM_OBJECT_UNLOCK(object);
529		object = temp;
530	}
531done:
532	if (object != kmem_object)
533		mtx_unlock(&Giant);
534}
535
536/*
537 *	vm_object_terminate actually destroys the specified object, freeing
538 *	up all previously used resources.
539 *
540 *	The object must be locked.
541 *	This routine may block.
542 */
543void
544vm_object_terminate(vm_object_t object)
545{
546	vm_page_t p;
547	int s;
548
549	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
550
551	/*
552	 * Make sure no one uses us.
553	 */
554	vm_object_set_flag(object, OBJ_DEAD);
555
556	/*
557	 * wait for the pageout daemon to be done with the object
558	 */
559	vm_object_pip_wait(object, "objtrm");
560
561	KASSERT(!object->paging_in_progress,
562		("vm_object_terminate: pageout in progress"));
563
564	/*
565	 * Clean and free the pages, as appropriate. All references to the
566	 * object are gone, so we don't need to lock it.
567	 */
568	if (object->type == OBJT_VNODE) {
569		struct vnode *vp = (struct vnode *)object->handle;
570
571		/*
572		 * Clean pages and flush buffers.
573		 */
574		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
575		VM_OBJECT_UNLOCK(object);
576
577		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
578
579		VM_OBJECT_LOCK(object);
580	}
581
582	KASSERT(object->ref_count == 0,
583		("vm_object_terminate: object with references, ref_count=%d",
584		object->ref_count));
585
586	/*
587	 * Now free any remaining pages. For internal objects, this also
588	 * removes them from paging queues. Don't free wired pages, just
589	 * remove them from the object.
590	 */
591	s = splvm();
592	vm_page_lock_queues();
593	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
594		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
595			("vm_object_terminate: freeing busy page %p "
596			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
597		if (p->wire_count == 0) {
598			vm_page_busy(p);
599			vm_page_free(p);
600			cnt.v_pfree++;
601		} else {
602			vm_page_busy(p);
603			vm_page_remove(p);
604		}
605	}
606	vm_page_unlock_queues();
607	splx(s);
608
609	/*
610	 * Let the pager know object is dead.
611	 */
612	vm_pager_deallocate(object);
613	VM_OBJECT_UNLOCK(object);
614
615	/*
616	 * Remove the object from the global object list.
617	 */
618	mtx_lock(&vm_object_list_mtx);
619	TAILQ_REMOVE(&vm_object_list, object, object_list);
620	mtx_unlock(&vm_object_list_mtx);
621
622	wakeup(object);
623
624	/*
625	 * Free the space for the object.
626	 */
627	uma_zfree(obj_zone, object);
628}
629
630/*
631 *	vm_object_page_clean
632 *
633 *	Clean all dirty pages in the specified range of object.  Leaves page
634 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
635 *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
636 *	leaving the object dirty.
637 *
638 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
639 *	synchronous clustering mode implementation.
640 *
641 *	Odd semantics: if start == end, we clean everything.
642 *
643 *	The object must be locked.
644 */
645void
646vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
647{
648	vm_page_t p, np;
649	vm_pindex_t tstart, tend;
650	vm_pindex_t pi;
651	struct vnode *vp;
652	int clearobjflags;
653	int pagerflags;
654	int curgeneration;
655
656	GIANT_REQUIRED;
657	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
658	if (object->type != OBJT_VNODE ||
659		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
660		return;
661
662	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
663	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
664
665	vp = object->handle;
666
667	vm_object_set_flag(object, OBJ_CLEANING);
668
669	tstart = start;
670	if (end == 0) {
671		tend = object->size;
672	} else {
673		tend = end;
674	}
675
676	vm_page_lock_queues();
677	/*
678	 * If the caller is smart and only msync()s a range he knows is
679	 * dirty, we may be able to avoid an object scan.  This results in
680	 * a phenominal improvement in performance.  We cannot do this
681	 * as a matter of course because the object may be huge - e.g.
682	 * the size might be in the gigabytes or terrabytes.
683	 */
684	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
685		vm_pindex_t tscan;
686		int scanlimit;
687		int scanreset;
688
689		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
690		if (scanreset < 16)
691			scanreset = 16;
692		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
693
694		scanlimit = scanreset;
695		tscan = tstart;
696		while (tscan < tend) {
697			curgeneration = object->generation;
698			p = vm_page_lookup(object, tscan);
699			if (p == NULL || p->valid == 0 ||
700			    (p->queue - p->pc) == PQ_CACHE) {
701				if (--scanlimit == 0)
702					break;
703				++tscan;
704				continue;
705			}
706			vm_page_test_dirty(p);
707			if ((p->dirty & p->valid) == 0) {
708				if (--scanlimit == 0)
709					break;
710				++tscan;
711				continue;
712			}
713			/*
714			 * If we have been asked to skip nosync pages and
715			 * this is a nosync page, we can't continue.
716			 */
717			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
718				if (--scanlimit == 0)
719					break;
720				++tscan;
721				continue;
722			}
723			scanlimit = scanreset;
724
725			/*
726			 * This returns 0 if it was unable to busy the first
727			 * page (i.e. had to sleep).
728			 */
729			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
730		}
731
732		/*
733		 * If everything was dirty and we flushed it successfully,
734		 * and the requested range is not the entire object, we
735		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
736		 * return immediately.
737		 */
738		if (tscan >= tend && (tstart || tend < object->size)) {
739			vm_page_unlock_queues();
740			vm_object_clear_flag(object, OBJ_CLEANING);
741			return;
742		}
743		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
744	}
745
746	/*
747	 * Generally set CLEANCHK interlock and make the page read-only so
748	 * we can then clear the object flags.
749	 *
750	 * However, if this is a nosync mmap then the object is likely to
751	 * stay dirty so do not mess with the page and do not clear the
752	 * object flags.
753	 */
754	clearobjflags = 1;
755	TAILQ_FOREACH(p, &object->memq, listq) {
756		vm_page_flag_set(p, PG_CLEANCHK);
757		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
758			clearobjflags = 0;
759		else
760			pmap_page_protect(p, VM_PROT_READ);
761	}
762
763	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
764		struct vnode *vp;
765
766		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
767		if (object->type == OBJT_VNODE &&
768		    (vp = (struct vnode *)object->handle) != NULL) {
769			VI_LOCK(vp);
770			if (vp->v_iflag & VI_OBJDIRTY)
771				vp->v_iflag &= ~VI_OBJDIRTY;
772			VI_UNLOCK(vp);
773		}
774	}
775
776rescan:
777	curgeneration = object->generation;
778
779	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
780		int n;
781
782		np = TAILQ_NEXT(p, listq);
783
784again:
785		pi = p->pindex;
786		if (((p->flags & PG_CLEANCHK) == 0) ||
787			(pi < tstart) || (pi >= tend) ||
788			(p->valid == 0) ||
789			((p->queue - p->pc) == PQ_CACHE)) {
790			vm_page_flag_clear(p, PG_CLEANCHK);
791			continue;
792		}
793
794		vm_page_test_dirty(p);
795		if ((p->dirty & p->valid) == 0) {
796			vm_page_flag_clear(p, PG_CLEANCHK);
797			continue;
798		}
799
800		/*
801		 * If we have been asked to skip nosync pages and this is a
802		 * nosync page, skip it.  Note that the object flags were
803		 * not cleared in this case so we do not have to set them.
804		 */
805		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
806			vm_page_flag_clear(p, PG_CLEANCHK);
807			continue;
808		}
809
810		n = vm_object_page_collect_flush(object, p,
811			curgeneration, pagerflags);
812		if (n == 0)
813			goto rescan;
814
815		if (object->generation != curgeneration)
816			goto rescan;
817
818		/*
819		 * Try to optimize the next page.  If we can't we pick up
820		 * our (random) scan where we left off.
821		 */
822		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
823			if ((p = vm_page_lookup(object, pi + n)) != NULL)
824				goto again;
825		}
826	}
827	vm_page_unlock_queues();
828#if 0
829	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
830#endif
831
832	vm_object_clear_flag(object, OBJ_CLEANING);
833	return;
834}
835
836static int
837vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
838{
839	int runlen;
840	int s;
841	int maxf;
842	int chkb;
843	int maxb;
844	int i;
845	vm_pindex_t pi;
846	vm_page_t maf[vm_pageout_page_count];
847	vm_page_t mab[vm_pageout_page_count];
848	vm_page_t ma[vm_pageout_page_count];
849
850	s = splvm();
851	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
852	pi = p->pindex;
853	while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
854		vm_page_lock_queues();
855		if (object->generation != curgeneration) {
856			splx(s);
857			return(0);
858		}
859	}
860	maxf = 0;
861	for(i = 1; i < vm_pageout_page_count; i++) {
862		vm_page_t tp;
863
864		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
865			if ((tp->flags & PG_BUSY) ||
866				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
867				 (tp->flags & PG_CLEANCHK) == 0) ||
868				(tp->busy != 0))
869				break;
870			if((tp->queue - tp->pc) == PQ_CACHE) {
871				vm_page_flag_clear(tp, PG_CLEANCHK);
872				break;
873			}
874			vm_page_test_dirty(tp);
875			if ((tp->dirty & tp->valid) == 0) {
876				vm_page_flag_clear(tp, PG_CLEANCHK);
877				break;
878			}
879			maf[ i - 1 ] = tp;
880			maxf++;
881			continue;
882		}
883		break;
884	}
885
886	maxb = 0;
887	chkb = vm_pageout_page_count -  maxf;
888	if (chkb) {
889		for(i = 1; i < chkb;i++) {
890			vm_page_t tp;
891
892			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
893				if ((tp->flags & PG_BUSY) ||
894					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
895					 (tp->flags & PG_CLEANCHK) == 0) ||
896					(tp->busy != 0))
897					break;
898				if ((tp->queue - tp->pc) == PQ_CACHE) {
899					vm_page_flag_clear(tp, PG_CLEANCHK);
900					break;
901				}
902				vm_page_test_dirty(tp);
903				if ((tp->dirty & tp->valid) == 0) {
904					vm_page_flag_clear(tp, PG_CLEANCHK);
905					break;
906				}
907				mab[ i - 1 ] = tp;
908				maxb++;
909				continue;
910			}
911			break;
912		}
913	}
914
915	for(i = 0; i < maxb; i++) {
916		int index = (maxb - i) - 1;
917		ma[index] = mab[i];
918		vm_page_flag_clear(ma[index], PG_CLEANCHK);
919	}
920	vm_page_flag_clear(p, PG_CLEANCHK);
921	ma[maxb] = p;
922	for(i = 0; i < maxf; i++) {
923		int index = (maxb + i) + 1;
924		ma[index] = maf[i];
925		vm_page_flag_clear(ma[index], PG_CLEANCHK);
926	}
927	runlen = maxb + maxf + 1;
928
929	splx(s);
930	vm_pageout_flush(ma, runlen, pagerflags, TRUE);
931	for (i = 0; i < runlen; i++) {
932		if (ma[i]->valid & ma[i]->dirty) {
933			pmap_page_protect(ma[i], VM_PROT_READ);
934			vm_page_flag_set(ma[i], PG_CLEANCHK);
935
936			/*
937			 * maxf will end up being the actual number of pages
938			 * we wrote out contiguously, non-inclusive of the
939			 * first page.  We do not count look-behind pages.
940			 */
941			if (i >= maxb + 1 && (maxf > i - maxb - 1))
942				maxf = i - maxb - 1;
943		}
944	}
945	return(maxf + 1);
946}
947
948/*
949 *	vm_object_madvise:
950 *
951 *	Implements the madvise function at the object/page level.
952 *
953 *	MADV_WILLNEED	(any object)
954 *
955 *	    Activate the specified pages if they are resident.
956 *
957 *	MADV_DONTNEED	(any object)
958 *
959 *	    Deactivate the specified pages if they are resident.
960 *
961 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
962 *			 OBJ_ONEMAPPING only)
963 *
964 *	    Deactivate and clean the specified pages if they are
965 *	    resident.  This permits the process to reuse the pages
966 *	    without faulting or the kernel to reclaim the pages
967 *	    without I/O.
968 */
969void
970vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
971{
972	vm_pindex_t end, tpindex;
973	vm_object_t backing_object, tobject;
974	vm_page_t m;
975
976	if (object == NULL)
977		return;
978
979	mtx_lock(&Giant);
980
981	end = pindex + count;
982
983	/*
984	 * Locate and adjust resident pages
985	 */
986	for (; pindex < end; pindex += 1) {
987relookup:
988		tobject = object;
989		tpindex = pindex;
990		VM_OBJECT_LOCK(tobject);
991shadowlookup:
992		/*
993		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
994		 * and those pages must be OBJ_ONEMAPPING.
995		 */
996		if (advise == MADV_FREE) {
997			if ((tobject->type != OBJT_DEFAULT &&
998			     tobject->type != OBJT_SWAP) ||
999			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1000				goto unlock_tobject;
1001			}
1002		}
1003
1004		m = vm_page_lookup(tobject, tpindex);
1005
1006		if (m == NULL) {
1007			/*
1008			 * There may be swap even if there is no backing page
1009			 */
1010			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1011				swap_pager_freespace(tobject, tpindex, 1);
1012
1013			/*
1014			 * next object
1015			 */
1016			backing_object = tobject->backing_object;
1017			if (backing_object == NULL)
1018				goto unlock_tobject;
1019			VM_OBJECT_LOCK(backing_object);
1020			VM_OBJECT_UNLOCK(tobject);
1021			tobject = backing_object;
1022			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1023			goto shadowlookup;
1024		}
1025
1026		/*
1027		 * If the page is busy or not in a normal active state,
1028		 * we skip it.  If the page is not managed there are no
1029		 * page queues to mess with.  Things can break if we mess
1030		 * with pages in any of the below states.
1031		 */
1032		vm_page_lock_queues();
1033		if (m->hold_count ||
1034		    m->wire_count ||
1035		    (m->flags & PG_UNMANAGED) ||
1036		    m->valid != VM_PAGE_BITS_ALL) {
1037			vm_page_unlock_queues();
1038			goto unlock_tobject;
1039		}
1040 		if (vm_page_sleep_if_busy(m, TRUE, "madvpo")) {
1041			VM_OBJECT_UNLOCK(tobject);
1042  			goto relookup;
1043		}
1044		if (advise == MADV_WILLNEED) {
1045			vm_page_activate(m);
1046		} else if (advise == MADV_DONTNEED) {
1047			vm_page_dontneed(m);
1048		} else if (advise == MADV_FREE) {
1049			/*
1050			 * Mark the page clean.  This will allow the page
1051			 * to be freed up by the system.  However, such pages
1052			 * are often reused quickly by malloc()/free()
1053			 * so we do not do anything that would cause
1054			 * a page fault if we can help it.
1055			 *
1056			 * Specifically, we do not try to actually free
1057			 * the page now nor do we try to put it in the
1058			 * cache (which would cause a page fault on reuse).
1059			 *
1060			 * But we do make the page is freeable as we
1061			 * can without actually taking the step of unmapping
1062			 * it.
1063			 */
1064			pmap_clear_modify(m);
1065			m->dirty = 0;
1066			m->act_count = 0;
1067			vm_page_dontneed(m);
1068		}
1069		vm_page_unlock_queues();
1070		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1071			swap_pager_freespace(tobject, tpindex, 1);
1072unlock_tobject:
1073		VM_OBJECT_UNLOCK(tobject);
1074	}
1075	mtx_unlock(&Giant);
1076}
1077
1078/*
1079 *	vm_object_shadow:
1080 *
1081 *	Create a new object which is backed by the
1082 *	specified existing object range.  The source
1083 *	object reference is deallocated.
1084 *
1085 *	The new object and offset into that object
1086 *	are returned in the source parameters.
1087 */
1088void
1089vm_object_shadow(
1090	vm_object_t *object,	/* IN/OUT */
1091	vm_ooffset_t *offset,	/* IN/OUT */
1092	vm_size_t length)
1093{
1094	vm_object_t source;
1095	vm_object_t result;
1096
1097	GIANT_REQUIRED;
1098
1099	source = *object;
1100
1101	/*
1102	 * Don't create the new object if the old object isn't shared.
1103	 */
1104	if (source != NULL) {
1105		VM_OBJECT_LOCK(source);
1106		if (source->ref_count == 1 &&
1107		    source->handle == NULL &&
1108		    (source->type == OBJT_DEFAULT ||
1109		     source->type == OBJT_SWAP)) {
1110			VM_OBJECT_UNLOCK(source);
1111			return;
1112		}
1113		VM_OBJECT_UNLOCK(source);
1114	}
1115
1116	/*
1117	 * Allocate a new object with the given length.
1118	 */
1119	result = vm_object_allocate(OBJT_DEFAULT, length);
1120
1121	/*
1122	 * The new object shadows the source object, adding a reference to it.
1123	 * Our caller changes his reference to point to the new object,
1124	 * removing a reference to the source object.  Net result: no change
1125	 * of reference count.
1126	 *
1127	 * Try to optimize the result object's page color when shadowing
1128	 * in order to maintain page coloring consistency in the combined
1129	 * shadowed object.
1130	 */
1131	result->backing_object = source;
1132	if (source != NULL) {
1133		VM_OBJECT_LOCK(source);
1134		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1135		source->shadow_count++;
1136		source->generation++;
1137		if (length < source->size)
1138			length = source->size;
1139		if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1140		    source->generation > 1)
1141			length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1142		result->pg_color = (source->pg_color +
1143		    length * source->generation) & PQ_L2_MASK;
1144		VM_OBJECT_UNLOCK(source);
1145		next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1146		    PQ_L2_MASK;
1147	}
1148
1149	/*
1150	 * Store the offset into the source object, and fix up the offset into
1151	 * the new object.
1152	 */
1153	result->backing_object_offset = *offset;
1154
1155	/*
1156	 * Return the new things
1157	 */
1158	*offset = 0;
1159	*object = result;
1160}
1161
1162/*
1163 *	vm_object_split:
1164 *
1165 * Split the pages in a map entry into a new object.  This affords
1166 * easier removal of unused pages, and keeps object inheritance from
1167 * being a negative impact on memory usage.
1168 */
1169void
1170vm_object_split(vm_map_entry_t entry)
1171{
1172	vm_page_t m;
1173	vm_object_t orig_object, new_object, source;
1174	vm_offset_t s, e;
1175	vm_pindex_t offidxstart, offidxend;
1176	vm_size_t idx, size;
1177	vm_ooffset_t offset;
1178
1179	GIANT_REQUIRED;
1180
1181	orig_object = entry->object.vm_object;
1182	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1183		return;
1184	if (orig_object->ref_count <= 1)
1185		return;
1186
1187	offset = entry->offset;
1188	s = entry->start;
1189	e = entry->end;
1190
1191	offidxstart = OFF_TO_IDX(offset);
1192	offidxend = offidxstart + OFF_TO_IDX(e - s);
1193	size = offidxend - offidxstart;
1194
1195	new_object = vm_pager_allocate(orig_object->type,
1196		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
1197	if (new_object == NULL)
1198		return;
1199
1200	source = orig_object->backing_object;
1201	if (source != NULL) {
1202		vm_object_reference(source);	/* Referenced by new_object */
1203		VM_OBJECT_LOCK(source);
1204		LIST_INSERT_HEAD(&source->shadow_head,
1205				  new_object, shadow_list);
1206		source->shadow_count++;
1207		source->generation++;
1208		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1209		VM_OBJECT_UNLOCK(source);
1210		new_object->backing_object_offset =
1211			orig_object->backing_object_offset + offset;
1212		new_object->backing_object = source;
1213	}
1214	VM_OBJECT_LOCK(orig_object);
1215	for (idx = 0; idx < size; idx++) {
1216	retry:
1217		m = vm_page_lookup(orig_object, offidxstart + idx);
1218		if (m == NULL)
1219			continue;
1220
1221		/*
1222		 * We must wait for pending I/O to complete before we can
1223		 * rename the page.
1224		 *
1225		 * We do not have to VM_PROT_NONE the page as mappings should
1226		 * not be changed by this operation.
1227		 */
1228		vm_page_lock_queues();
1229		if (vm_page_sleep_if_busy(m, TRUE, "spltwt"))
1230			goto retry;
1231
1232		vm_page_busy(m);
1233		vm_page_rename(m, new_object, idx);
1234		/* page automatically made dirty by rename and cache handled */
1235		vm_page_busy(m);
1236		vm_page_unlock_queues();
1237	}
1238	if (orig_object->type == OBJT_SWAP) {
1239		vm_object_pip_add(orig_object, 1);
1240		VM_OBJECT_UNLOCK(orig_object);
1241		/*
1242		 * copy orig_object pages into new_object
1243		 * and destroy unneeded pages in
1244		 * shadow object.
1245		 */
1246		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1247		VM_OBJECT_LOCK(orig_object);
1248		vm_object_pip_wakeup(orig_object);
1249	}
1250	VM_OBJECT_UNLOCK(orig_object);
1251	vm_page_lock_queues();
1252	TAILQ_FOREACH(m, &new_object->memq, listq)
1253		vm_page_wakeup(m);
1254	vm_page_unlock_queues();
1255	entry->object.vm_object = new_object;
1256	entry->offset = 0LL;
1257	vm_object_deallocate(orig_object);
1258}
1259
1260#define	OBSC_TEST_ALL_SHADOWED	0x0001
1261#define	OBSC_COLLAPSE_NOWAIT	0x0002
1262#define	OBSC_COLLAPSE_WAIT	0x0004
1263
1264static __inline int
1265vm_object_backing_scan(vm_object_t object, int op)
1266{
1267	int s;
1268	int r = 1;
1269	vm_page_t p;
1270	vm_object_t backing_object;
1271	vm_pindex_t backing_offset_index;
1272
1273	s = splvm();
1274	GIANT_REQUIRED;
1275
1276	backing_object = object->backing_object;
1277	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1278
1279	/*
1280	 * Initial conditions
1281	 */
1282	if (op & OBSC_TEST_ALL_SHADOWED) {
1283		/*
1284		 * We do not want to have to test for the existence of
1285		 * swap pages in the backing object.  XXX but with the
1286		 * new swapper this would be pretty easy to do.
1287		 *
1288		 * XXX what about anonymous MAP_SHARED memory that hasn't
1289		 * been ZFOD faulted yet?  If we do not test for this, the
1290		 * shadow test may succeed! XXX
1291		 */
1292		if (backing_object->type != OBJT_DEFAULT) {
1293			splx(s);
1294			return (0);
1295		}
1296	}
1297	if (op & OBSC_COLLAPSE_WAIT) {
1298		vm_object_set_flag(backing_object, OBJ_DEAD);
1299	}
1300
1301	/*
1302	 * Our scan
1303	 */
1304	p = TAILQ_FIRST(&backing_object->memq);
1305	while (p) {
1306		vm_page_t next = TAILQ_NEXT(p, listq);
1307		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1308
1309		if (op & OBSC_TEST_ALL_SHADOWED) {
1310			vm_page_t pp;
1311
1312			/*
1313			 * Ignore pages outside the parent object's range
1314			 * and outside the parent object's mapping of the
1315			 * backing object.
1316			 *
1317			 * note that we do not busy the backing object's
1318			 * page.
1319			 */
1320			if (
1321			    p->pindex < backing_offset_index ||
1322			    new_pindex >= object->size
1323			) {
1324				p = next;
1325				continue;
1326			}
1327
1328			/*
1329			 * See if the parent has the page or if the parent's
1330			 * object pager has the page.  If the parent has the
1331			 * page but the page is not valid, the parent's
1332			 * object pager must have the page.
1333			 *
1334			 * If this fails, the parent does not completely shadow
1335			 * the object and we might as well give up now.
1336			 */
1337
1338			pp = vm_page_lookup(object, new_pindex);
1339			if (
1340			    (pp == NULL || pp->valid == 0) &&
1341			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1342			) {
1343				r = 0;
1344				break;
1345			}
1346		}
1347
1348		/*
1349		 * Check for busy page
1350		 */
1351		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1352			vm_page_t pp;
1353
1354			vm_page_lock_queues();
1355			if (op & OBSC_COLLAPSE_NOWAIT) {
1356				if ((p->flags & PG_BUSY) ||
1357				    !p->valid ||
1358				    p->hold_count ||
1359				    p->wire_count ||
1360				    p->busy) {
1361					vm_page_unlock_queues();
1362					p = next;
1363					continue;
1364				}
1365			} else if (op & OBSC_COLLAPSE_WAIT) {
1366				if (vm_page_sleep_if_busy(p, TRUE, "vmocol")) {
1367					/*
1368					 * If we slept, anything could have
1369					 * happened.  Since the object is
1370					 * marked dead, the backing offset
1371					 * should not have changed so we
1372					 * just restart our scan.
1373					 */
1374					p = TAILQ_FIRST(&backing_object->memq);
1375					continue;
1376				}
1377			}
1378
1379			/*
1380			 * Busy the page
1381			 */
1382			vm_page_busy(p);
1383			vm_page_unlock_queues();
1384
1385			KASSERT(
1386			    p->object == backing_object,
1387			    ("vm_object_qcollapse(): object mismatch")
1388			);
1389
1390			/*
1391			 * Destroy any associated swap
1392			 */
1393			if (backing_object->type == OBJT_SWAP) {
1394				swap_pager_freespace(
1395				    backing_object,
1396				    p->pindex,
1397				    1
1398				);
1399			}
1400
1401			if (
1402			    p->pindex < backing_offset_index ||
1403			    new_pindex >= object->size
1404			) {
1405				/*
1406				 * Page is out of the parent object's range, we
1407				 * can simply destroy it.
1408				 */
1409				vm_page_lock_queues();
1410				pmap_remove_all(p);
1411				vm_page_free(p);
1412				vm_page_unlock_queues();
1413				p = next;
1414				continue;
1415			}
1416
1417			pp = vm_page_lookup(object, new_pindex);
1418			if (
1419			    pp != NULL ||
1420			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1421			) {
1422				/*
1423				 * page already exists in parent OR swap exists
1424				 * for this location in the parent.  Destroy
1425				 * the original page from the backing object.
1426				 *
1427				 * Leave the parent's page alone
1428				 */
1429				vm_page_lock_queues();
1430				pmap_remove_all(p);
1431				vm_page_free(p);
1432				vm_page_unlock_queues();
1433				p = next;
1434				continue;
1435			}
1436
1437			/*
1438			 * Page does not exist in parent, rename the
1439			 * page from the backing object to the main object.
1440			 *
1441			 * If the page was mapped to a process, it can remain
1442			 * mapped through the rename.
1443			 */
1444			vm_page_lock_queues();
1445			vm_page_rename(p, object, new_pindex);
1446			vm_page_unlock_queues();
1447			/* page automatically made dirty by rename */
1448		}
1449		p = next;
1450	}
1451	splx(s);
1452	return (r);
1453}
1454
1455
1456/*
1457 * this version of collapse allows the operation to occur earlier and
1458 * when paging_in_progress is true for an object...  This is not a complete
1459 * operation, but should plug 99.9% of the rest of the leaks.
1460 */
1461static void
1462vm_object_qcollapse(vm_object_t object)
1463{
1464	vm_object_t backing_object = object->backing_object;
1465
1466	GIANT_REQUIRED;
1467
1468	if (backing_object->ref_count != 1)
1469		return;
1470
1471	backing_object->ref_count += 2;
1472
1473	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1474
1475	backing_object->ref_count -= 2;
1476}
1477
1478/*
1479 *	vm_object_collapse:
1480 *
1481 *	Collapse an object with the object backing it.
1482 *	Pages in the backing object are moved into the
1483 *	parent, and the backing object is deallocated.
1484 */
1485void
1486vm_object_collapse(vm_object_t object)
1487{
1488	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1489
1490	while (TRUE) {
1491		vm_object_t backing_object;
1492
1493		/*
1494		 * Verify that the conditions are right for collapse:
1495		 *
1496		 * The object exists and the backing object exists.
1497		 */
1498		if ((backing_object = object->backing_object) == NULL)
1499			break;
1500
1501		/*
1502		 * we check the backing object first, because it is most likely
1503		 * not collapsable.
1504		 */
1505		VM_OBJECT_LOCK(backing_object);
1506		if (backing_object->handle != NULL ||
1507		    (backing_object->type != OBJT_DEFAULT &&
1508		     backing_object->type != OBJT_SWAP) ||
1509		    (backing_object->flags & OBJ_DEAD) ||
1510		    object->handle != NULL ||
1511		    (object->type != OBJT_DEFAULT &&
1512		     object->type != OBJT_SWAP) ||
1513		    (object->flags & OBJ_DEAD)) {
1514			VM_OBJECT_UNLOCK(backing_object);
1515			break;
1516		}
1517
1518		if (
1519		    object->paging_in_progress != 0 ||
1520		    backing_object->paging_in_progress != 0
1521		) {
1522			vm_object_qcollapse(object);
1523			VM_OBJECT_UNLOCK(backing_object);
1524			break;
1525		}
1526/* XXX */	VM_OBJECT_UNLOCK(object);
1527		/*
1528		 * We know that we can either collapse the backing object (if
1529		 * the parent is the only reference to it) or (perhaps) have
1530		 * the parent bypass the object if the parent happens to shadow
1531		 * all the resident pages in the entire backing object.
1532		 *
1533		 * This is ignoring pager-backed pages such as swap pages.
1534		 * vm_object_backing_scan fails the shadowing test in this
1535		 * case.
1536		 */
1537		if (backing_object->ref_count == 1) {
1538			/*
1539			 * If there is exactly one reference to the backing
1540			 * object, we can collapse it into the parent.
1541			 */
1542			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1543
1544			/*
1545			 * Move the pager from backing_object to object.
1546			 */
1547			if (backing_object->type == OBJT_SWAP) {
1548				vm_object_pip_add(backing_object, 1);
1549				VM_OBJECT_UNLOCK(backing_object);
1550				/*
1551				 * scrap the paging_offset junk and do a
1552				 * discrete copy.  This also removes major
1553				 * assumptions about how the swap-pager
1554				 * works from where it doesn't belong.  The
1555				 * new swapper is able to optimize the
1556				 * destroy-source case.
1557				 */
1558				VM_OBJECT_LOCK(object);
1559				vm_object_pip_add(object, 1);
1560				VM_OBJECT_UNLOCK(object);
1561				swap_pager_copy(
1562				    backing_object,
1563				    object,
1564				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1565				VM_OBJECT_LOCK(object);
1566				vm_object_pip_wakeup(object);
1567				VM_OBJECT_UNLOCK(object);
1568
1569				VM_OBJECT_LOCK(backing_object);
1570				vm_object_pip_wakeup(backing_object);
1571			}
1572			/*
1573			 * Object now shadows whatever backing_object did.
1574			 * Note that the reference to
1575			 * backing_object->backing_object moves from within
1576			 * backing_object to within object.
1577			 */
1578			LIST_REMOVE(object, shadow_list);
1579			backing_object->shadow_count--;
1580			backing_object->generation++;
1581			if (backing_object->backing_object) {
1582				VM_OBJECT_LOCK(backing_object->backing_object);
1583				LIST_REMOVE(backing_object, shadow_list);
1584				backing_object->backing_object->shadow_count--;
1585				backing_object->backing_object->generation++;
1586				VM_OBJECT_UNLOCK(backing_object->backing_object);
1587			}
1588			object->backing_object = backing_object->backing_object;
1589			if (object->backing_object) {
1590				VM_OBJECT_LOCK(object->backing_object);
1591				LIST_INSERT_HEAD(
1592				    &object->backing_object->shadow_head,
1593				    object,
1594				    shadow_list
1595				);
1596				object->backing_object->shadow_count++;
1597				object->backing_object->generation++;
1598				VM_OBJECT_UNLOCK(object->backing_object);
1599			}
1600
1601			object->backing_object_offset +=
1602			    backing_object->backing_object_offset;
1603
1604			/*
1605			 * Discard backing_object.
1606			 *
1607			 * Since the backing object has no pages, no pager left,
1608			 * and no object references within it, all that is
1609			 * necessary is to dispose of it.
1610			 */
1611			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1612			KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1613			VM_OBJECT_UNLOCK(backing_object);
1614
1615			mtx_lock(&vm_object_list_mtx);
1616			TAILQ_REMOVE(
1617			    &vm_object_list,
1618			    backing_object,
1619			    object_list
1620			);
1621			mtx_unlock(&vm_object_list_mtx);
1622
1623			uma_zfree(obj_zone, backing_object);
1624
1625			object_collapses++;
1626		} else {
1627			vm_object_t new_backing_object;
1628
1629			/*
1630			 * If we do not entirely shadow the backing object,
1631			 * there is nothing we can do so we give up.
1632			 */
1633			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1634				VM_OBJECT_UNLOCK(backing_object);
1635/* XXX */			VM_OBJECT_LOCK(object);
1636				break;
1637			}
1638
1639			/*
1640			 * Make the parent shadow the next object in the
1641			 * chain.  Deallocating backing_object will not remove
1642			 * it, since its reference count is at least 2.
1643			 */
1644			LIST_REMOVE(object, shadow_list);
1645			backing_object->shadow_count--;
1646			backing_object->generation++;
1647			VM_OBJECT_UNLOCK(backing_object);
1648
1649			new_backing_object = backing_object->backing_object;
1650			if ((object->backing_object = new_backing_object) != NULL) {
1651				vm_object_reference(new_backing_object);
1652				VM_OBJECT_LOCK(new_backing_object);
1653				LIST_INSERT_HEAD(
1654				    &new_backing_object->shadow_head,
1655				    object,
1656				    shadow_list
1657				);
1658				new_backing_object->shadow_count++;
1659				new_backing_object->generation++;
1660				VM_OBJECT_UNLOCK(new_backing_object);
1661				object->backing_object_offset +=
1662					backing_object->backing_object_offset;
1663			}
1664
1665			/*
1666			 * Drop the reference count on backing_object. Since
1667			 * its ref_count was at least 2, it will not vanish;
1668			 * so we don't need to call vm_object_deallocate, but
1669			 * we do anyway.
1670			 */
1671			vm_object_deallocate(backing_object);
1672			object_bypasses++;
1673		}
1674
1675		/*
1676		 * Try again with this object's new backing object.
1677		 */
1678/* XXX */	VM_OBJECT_LOCK(object);
1679	}
1680}
1681
1682/*
1683 *	vm_object_page_remove:
1684 *
1685 *	Removes all physical pages in the given range from the
1686 *	object's list of pages.  If the range's end is zero, all
1687 *	physical pages from the range's start to the end of the object
1688 *	are deleted.
1689 *
1690 *	The object must be locked.
1691 */
1692void
1693vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1694    boolean_t clean_only)
1695{
1696	vm_page_t p, next;
1697
1698	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1699	if (object->resident_page_count == 0)
1700		return;
1701
1702	/*
1703	 * Since physically-backed objects do not use managed pages, we can't
1704	 * remove pages from the object (we must instead remove the page
1705	 * references, and then destroy the object).
1706	 */
1707	KASSERT(object->type != OBJT_PHYS,
1708	    ("attempt to remove pages from a physical object"));
1709
1710	vm_object_pip_add(object, 1);
1711again:
1712	vm_page_lock_queues();
1713	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1714		if (p->pindex < start) {
1715			p = vm_page_splay(start, object->root);
1716			if ((object->root = p)->pindex < start)
1717				p = TAILQ_NEXT(p, listq);
1718		}
1719	}
1720	/*
1721	 * Assert: the variable p is either (1) the page with the
1722	 * least pindex greater than or equal to the parameter pindex
1723	 * or (2) NULL.
1724	 */
1725	for (;
1726	     p != NULL && (p->pindex < end || end == 0);
1727	     p = next) {
1728		next = TAILQ_NEXT(p, listq);
1729
1730		if (p->wire_count != 0) {
1731			pmap_remove_all(p);
1732			if (!clean_only)
1733				p->valid = 0;
1734			continue;
1735		}
1736		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1737			goto again;
1738		if (clean_only && p->valid) {
1739			vm_page_test_dirty(p);
1740			if (p->valid & p->dirty)
1741				continue;
1742		}
1743		vm_page_busy(p);
1744		pmap_remove_all(p);
1745		vm_page_free(p);
1746	}
1747	vm_page_unlock_queues();
1748	vm_object_pip_wakeup(object);
1749}
1750
1751/*
1752 *	Routine:	vm_object_coalesce
1753 *	Function:	Coalesces two objects backing up adjoining
1754 *			regions of memory into a single object.
1755 *
1756 *	returns TRUE if objects were combined.
1757 *
1758 *	NOTE:	Only works at the moment if the second object is NULL -
1759 *		if it's not, which object do we lock first?
1760 *
1761 *	Parameters:
1762 *		prev_object	First object to coalesce
1763 *		prev_offset	Offset into prev_object
1764 *		next_object	Second object into coalesce
1765 *		next_offset	Offset into next_object
1766 *
1767 *		prev_size	Size of reference to prev_object
1768 *		next_size	Size of reference to next_object
1769 *
1770 *	Conditions:
1771 *	The object must *not* be locked.
1772 */
1773boolean_t
1774vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1775	vm_size_t prev_size, vm_size_t next_size)
1776{
1777	vm_pindex_t next_pindex;
1778
1779	if (prev_object == NULL)
1780		return (TRUE);
1781	mtx_lock(&Giant);
1782	VM_OBJECT_LOCK(prev_object);
1783	if (prev_object->type != OBJT_DEFAULT &&
1784	    prev_object->type != OBJT_SWAP) {
1785		VM_OBJECT_UNLOCK(prev_object);
1786		mtx_unlock(&Giant);
1787		return (FALSE);
1788	}
1789
1790	/*
1791	 * Try to collapse the object first
1792	 */
1793	vm_object_collapse(prev_object);
1794
1795	/*
1796	 * Can't coalesce if: . more than one reference . paged out . shadows
1797	 * another object . has a copy elsewhere (any of which mean that the
1798	 * pages not mapped to prev_entry may be in use anyway)
1799	 */
1800	if (prev_object->backing_object != NULL) {
1801		VM_OBJECT_UNLOCK(prev_object);
1802		mtx_unlock(&Giant);
1803		return (FALSE);
1804	}
1805
1806	prev_size >>= PAGE_SHIFT;
1807	next_size >>= PAGE_SHIFT;
1808	next_pindex = prev_pindex + prev_size;
1809
1810	if ((prev_object->ref_count > 1) &&
1811	    (prev_object->size != next_pindex)) {
1812		VM_OBJECT_UNLOCK(prev_object);
1813		mtx_unlock(&Giant);
1814		return (FALSE);
1815	}
1816
1817	/*
1818	 * Remove any pages that may still be in the object from a previous
1819	 * deallocation.
1820	 */
1821	if (next_pindex < prev_object->size) {
1822		vm_object_page_remove(prev_object,
1823				      next_pindex,
1824				      next_pindex + next_size, FALSE);
1825		if (prev_object->type == OBJT_SWAP)
1826			swap_pager_freespace(prev_object,
1827					     next_pindex, next_size);
1828	}
1829
1830	/*
1831	 * Extend the object if necessary.
1832	 */
1833	if (next_pindex + next_size > prev_object->size)
1834		prev_object->size = next_pindex + next_size;
1835
1836	VM_OBJECT_UNLOCK(prev_object);
1837	mtx_unlock(&Giant);
1838	return (TRUE);
1839}
1840
1841void
1842vm_object_set_writeable_dirty(vm_object_t object)
1843{
1844	struct vnode *vp;
1845
1846	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1847	if (object->type == OBJT_VNODE &&
1848	    (vp = (struct vnode *)object->handle) != NULL) {
1849		VI_LOCK(vp);
1850		if ((vp->v_iflag & VI_OBJDIRTY) == 0)
1851			vp->v_iflag |= VI_OBJDIRTY;
1852		VI_UNLOCK(vp);
1853	}
1854}
1855
1856#include "opt_ddb.h"
1857#ifdef DDB
1858#include <sys/kernel.h>
1859
1860#include <sys/cons.h>
1861
1862#include <ddb/ddb.h>
1863
1864static int
1865_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1866{
1867	vm_map_t tmpm;
1868	vm_map_entry_t tmpe;
1869	vm_object_t obj;
1870	int entcount;
1871
1872	if (map == 0)
1873		return 0;
1874
1875	if (entry == 0) {
1876		tmpe = map->header.next;
1877		entcount = map->nentries;
1878		while (entcount-- && (tmpe != &map->header)) {
1879			if (_vm_object_in_map(map, object, tmpe)) {
1880				return 1;
1881			}
1882			tmpe = tmpe->next;
1883		}
1884	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1885		tmpm = entry->object.sub_map;
1886		tmpe = tmpm->header.next;
1887		entcount = tmpm->nentries;
1888		while (entcount-- && tmpe != &tmpm->header) {
1889			if (_vm_object_in_map(tmpm, object, tmpe)) {
1890				return 1;
1891			}
1892			tmpe = tmpe->next;
1893		}
1894	} else if ((obj = entry->object.vm_object) != NULL) {
1895		for (; obj; obj = obj->backing_object)
1896			if (obj == object) {
1897				return 1;
1898			}
1899	}
1900	return 0;
1901}
1902
1903static int
1904vm_object_in_map(vm_object_t object)
1905{
1906	struct proc *p;
1907
1908	/* sx_slock(&allproc_lock); */
1909	LIST_FOREACH(p, &allproc, p_list) {
1910		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1911			continue;
1912		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
1913			/* sx_sunlock(&allproc_lock); */
1914			return 1;
1915		}
1916	}
1917	/* sx_sunlock(&allproc_lock); */
1918	if (_vm_object_in_map(kernel_map, object, 0))
1919		return 1;
1920	if (_vm_object_in_map(kmem_map, object, 0))
1921		return 1;
1922	if (_vm_object_in_map(pager_map, object, 0))
1923		return 1;
1924	if (_vm_object_in_map(buffer_map, object, 0))
1925		return 1;
1926	return 0;
1927}
1928
1929DB_SHOW_COMMAND(vmochk, vm_object_check)
1930{
1931	vm_object_t object;
1932
1933	/*
1934	 * make sure that internal objs are in a map somewhere
1935	 * and none have zero ref counts.
1936	 */
1937	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1938		if (object->handle == NULL &&
1939		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1940			if (object->ref_count == 0) {
1941				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1942					(long)object->size);
1943			}
1944			if (!vm_object_in_map(object)) {
1945				db_printf(
1946			"vmochk: internal obj is not in a map: "
1947			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1948				    object->ref_count, (u_long)object->size,
1949				    (u_long)object->size,
1950				    (void *)object->backing_object);
1951			}
1952		}
1953	}
1954}
1955
1956/*
1957 *	vm_object_print:	[ debug ]
1958 */
1959DB_SHOW_COMMAND(object, vm_object_print_static)
1960{
1961	/* XXX convert args. */
1962	vm_object_t object = (vm_object_t)addr;
1963	boolean_t full = have_addr;
1964
1965	vm_page_t p;
1966
1967	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1968#define	count	was_count
1969
1970	int count;
1971
1972	if (object == NULL)
1973		return;
1974
1975	db_iprintf(
1976	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
1977	    object, (int)object->type, (uintmax_t)object->size,
1978	    object->resident_page_count, object->ref_count, object->flags);
1979	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
1980	    object->shadow_count,
1981	    object->backing_object ? object->backing_object->ref_count : 0,
1982	    object->backing_object, (uintmax_t)object->backing_object_offset);
1983
1984	if (!full)
1985		return;
1986
1987	db_indent += 2;
1988	count = 0;
1989	TAILQ_FOREACH(p, &object->memq, listq) {
1990		if (count == 0)
1991			db_iprintf("memory:=");
1992		else if (count == 6) {
1993			db_printf("\n");
1994			db_iprintf(" ...");
1995			count = 0;
1996		} else
1997			db_printf(",");
1998		count++;
1999
2000		db_printf("(off=0x%jx,page=0x%jx)",
2001		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2002	}
2003	if (count != 0)
2004		db_printf("\n");
2005	db_indent -= 2;
2006}
2007
2008/* XXX. */
2009#undef count
2010
2011/* XXX need this non-static entry for calling from vm_map_print. */
2012void
2013vm_object_print(
2014        /* db_expr_t */ long addr,
2015	boolean_t have_addr,
2016	/* db_expr_t */ long count,
2017	char *modif)
2018{
2019	vm_object_print_static(addr, have_addr, count, modif);
2020}
2021
2022DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2023{
2024	vm_object_t object;
2025	int nl = 0;
2026	int c;
2027
2028	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2029		vm_pindex_t idx, fidx;
2030		vm_pindex_t osize;
2031		vm_paddr_t pa = -1, padiff;
2032		int rcount;
2033		vm_page_t m;
2034
2035		db_printf("new object: %p\n", (void *)object);
2036		if (nl > 18) {
2037			c = cngetc();
2038			if (c != ' ')
2039				return;
2040			nl = 0;
2041		}
2042		nl++;
2043		rcount = 0;
2044		fidx = 0;
2045		osize = object->size;
2046		if (osize > 128)
2047			osize = 128;
2048		for (idx = 0; idx < osize; idx++) {
2049			m = vm_page_lookup(object, idx);
2050			if (m == NULL) {
2051				if (rcount) {
2052					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2053						(long)fidx, rcount, (long)pa);
2054					if (nl > 18) {
2055						c = cngetc();
2056						if (c != ' ')
2057							return;
2058						nl = 0;
2059					}
2060					nl++;
2061					rcount = 0;
2062				}
2063				continue;
2064			}
2065
2066
2067			if (rcount &&
2068				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2069				++rcount;
2070				continue;
2071			}
2072			if (rcount) {
2073				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2074				padiff >>= PAGE_SHIFT;
2075				padiff &= PQ_L2_MASK;
2076				if (padiff == 0) {
2077					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2078					++rcount;
2079					continue;
2080				}
2081				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2082					(long)fidx, rcount, (long)pa);
2083				db_printf("pd(%ld)\n", (long)padiff);
2084				if (nl > 18) {
2085					c = cngetc();
2086					if (c != ' ')
2087						return;
2088					nl = 0;
2089				}
2090				nl++;
2091			}
2092			fidx = idx;
2093			pa = VM_PAGE_TO_PHYS(m);
2094			rcount = 1;
2095		}
2096		if (rcount) {
2097			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2098				(long)fidx, rcount, (long)pa);
2099			if (nl > 18) {
2100				c = cngetc();
2101				if (c != ' ')
2102					return;
2103				nl = 0;
2104			}
2105			nl++;
2106		}
2107	}
2108}
2109#endif /* DDB */
2110