vm_object.c revision 114112
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_object.c 114112 2003-04-27 05:43:03Z alc $
65 */
66
67/*
68 *	Virtual memory object module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/lock.h>
74#include <sys/mman.h>
75#include <sys/mount.h>
76#include <sys/kernel.h>
77#include <sys/sysctl.h>
78#include <sys/mutex.h>
79#include <sys/proc.h>		/* for curproc, pageproc */
80#include <sys/socket.h>
81#include <sys/vnode.h>
82#include <sys/vmmeter.h>
83#include <sys/sx.h>
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/pmap.h>
88#include <vm/vm_map.h>
89#include <vm/vm_object.h>
90#include <vm/vm_page.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_pager.h>
93#include <vm/swap_pager.h>
94#include <vm/vm_kern.h>
95#include <vm/vm_extern.h>
96#include <vm/uma.h>
97
98#define EASY_SCAN_FACTOR       8
99
100#define MSYNC_FLUSH_HARDSEQ	0x01
101#define MSYNC_FLUSH_SOFTSEQ	0x02
102
103/*
104 * msync / VM object flushing optimizations
105 */
106static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
107SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
108        CTLFLAG_RW, &msync_flush_flags, 0, "");
109
110static void	vm_object_qcollapse(vm_object_t object);
111static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
112static void	vm_object_pip_sleep(vm_object_t object, char *waitid);
113
114/*
115 *	Virtual memory objects maintain the actual data
116 *	associated with allocated virtual memory.  A given
117 *	page of memory exists within exactly one object.
118 *
119 *	An object is only deallocated when all "references"
120 *	are given up.  Only one "reference" to a given
121 *	region of an object should be writeable.
122 *
123 *	Associated with each object is a list of all resident
124 *	memory pages belonging to that object; this list is
125 *	maintained by the "vm_page" module, and locked by the object's
126 *	lock.
127 *
128 *	Each object also records a "pager" routine which is
129 *	used to retrieve (and store) pages to the proper backing
130 *	storage.  In addition, objects may be backed by other
131 *	objects from which they were virtual-copied.
132 *
133 *	The only items within the object structure which are
134 *	modified after time of creation are:
135 *		reference count		locked by object's lock
136 *		pager routine		locked by object's lock
137 *
138 */
139
140struct object_q vm_object_list;
141struct mtx vm_object_list_mtx;	/* lock for object list and count */
142vm_object_t kernel_object;
143vm_object_t kmem_object;
144static struct vm_object kernel_object_store;
145static struct vm_object kmem_object_store;
146extern int vm_pageout_page_count;
147
148static long object_collapses;
149static long object_bypasses;
150static int next_index;
151static uma_zone_t obj_zone;
152#define VM_OBJECTS_INIT 256
153
154static void vm_object_zinit(void *mem, int size);
155
156#ifdef INVARIANTS
157static void vm_object_zdtor(void *mem, int size, void *arg);
158
159static void
160vm_object_zdtor(void *mem, int size, void *arg)
161{
162	vm_object_t object;
163
164	object = (vm_object_t)mem;
165	KASSERT(object->paging_in_progress == 0,
166	    ("object %p paging_in_progress = %d",
167	    object, object->paging_in_progress));
168	KASSERT(object->resident_page_count == 0,
169	    ("object %p resident_page_count = %d",
170	    object, object->resident_page_count));
171	KASSERT(object->shadow_count == 0,
172	    ("object %p shadow_count = %d",
173	    object, object->shadow_count));
174}
175#endif
176
177static void
178vm_object_zinit(void *mem, int size)
179{
180	vm_object_t object;
181
182	object = (vm_object_t)mem;
183	bzero(&object->mtx, sizeof(object->mtx));
184
185	/* These are true for any object that has been freed */
186	object->paging_in_progress = 0;
187	object->resident_page_count = 0;
188	object->shadow_count = 0;
189}
190
191void
192_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
193{
194	int incr;
195
196	mtx_init(&object->mtx, "vm object", NULL, MTX_DEF);
197
198	TAILQ_INIT(&object->memq);
199	TAILQ_INIT(&object->shadow_head);
200
201	object->root = NULL;
202	object->type = type;
203	object->size = size;
204	object->ref_count = 1;
205	object->flags = 0;
206	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
207		vm_object_set_flag(object, OBJ_ONEMAPPING);
208	if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
209		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
210	else
211		incr = size;
212	do
213		object->pg_color = next_index;
214	while (!atomic_cmpset_int(&next_index, object->pg_color,
215				  (object->pg_color + incr) & PQ_L2_MASK));
216	object->handle = NULL;
217	object->backing_object = NULL;
218	object->backing_object_offset = (vm_ooffset_t) 0;
219
220	atomic_add_int(&object->generation, 1);
221
222	mtx_lock(&vm_object_list_mtx);
223	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
224	mtx_unlock(&vm_object_list_mtx);
225}
226
227/*
228 *	vm_object_init:
229 *
230 *	Initialize the VM objects module.
231 */
232void
233vm_object_init(void)
234{
235	TAILQ_INIT(&vm_object_list);
236	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
237
238	kernel_object = &kernel_object_store;
239	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
240	    kernel_object);
241
242	kmem_object = &kmem_object_store;
243	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
244	    kmem_object);
245	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
246#ifdef INVARIANTS
247	    vm_object_zdtor,
248#else
249	    NULL,
250#endif
251	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
252	uma_prealloc(obj_zone, VM_OBJECTS_INIT);
253}
254
255void
256vm_object_set_flag(vm_object_t object, u_short bits)
257{
258	object->flags |= bits;
259}
260
261void
262vm_object_clear_flag(vm_object_t object, u_short bits)
263{
264
265	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
266	object->flags &= ~bits;
267}
268
269void
270vm_object_pip_add(vm_object_t object, short i)
271{
272
273	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
274	object->paging_in_progress += i;
275}
276
277void
278vm_object_pip_subtract(vm_object_t object, short i)
279{
280
281	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
282	object->paging_in_progress -= i;
283}
284
285void
286vm_object_pip_wakeup(vm_object_t object)
287{
288
289	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
290	object->paging_in_progress--;
291	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
292		vm_object_clear_flag(object, OBJ_PIPWNT);
293		wakeup(object);
294	}
295}
296
297void
298vm_object_pip_wakeupn(vm_object_t object, short i)
299{
300
301	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
302	if (i)
303		object->paging_in_progress -= i;
304	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
305		vm_object_clear_flag(object, OBJ_PIPWNT);
306		wakeup(object);
307	}
308}
309
310static void
311vm_object_pip_sleep(vm_object_t object, char *waitid)
312{
313	GIANT_REQUIRED;
314	if (object->paging_in_progress) {
315		int s = splvm();
316		if (object->paging_in_progress) {
317			vm_object_set_flag(object, OBJ_PIPWNT);
318			tsleep(object, PVM, waitid, 0);
319		}
320		splx(s);
321	}
322}
323
324void
325vm_object_pip_wait(vm_object_t object, char *waitid)
326{
327
328	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
329	while (object->paging_in_progress) {
330		object->flags |= OBJ_PIPWNT;
331		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
332	}
333}
334
335/*
336 *	vm_object_allocate_wait
337 *
338 *	Return a new object with the given size, and give the user the
339 *	option of waiting for it to complete or failing if the needed
340 *	memory isn't available.
341 */
342vm_object_t
343vm_object_allocate_wait(objtype_t type, vm_pindex_t size, int flags)
344{
345	vm_object_t result;
346
347	result = (vm_object_t) uma_zalloc(obj_zone, flags);
348
349	if (result != NULL)
350		_vm_object_allocate(type, size, result);
351
352	return (result);
353}
354
355/*
356 *	vm_object_allocate:
357 *
358 *	Returns a new object with the given size.
359 */
360vm_object_t
361vm_object_allocate(objtype_t type, vm_pindex_t size)
362{
363	return(vm_object_allocate_wait(type, size, M_WAITOK));
364}
365
366
367/*
368 *	vm_object_reference:
369 *
370 *	Gets another reference to the given object.
371 */
372void
373vm_object_reference(vm_object_t object)
374{
375	if (object == NULL)
376		return;
377
378	vm_object_lock(object);
379#if 0
380	/* object can be re-referenced during final cleaning */
381	KASSERT(!(object->flags & OBJ_DEAD),
382	    ("vm_object_reference: attempting to reference dead obj"));
383#endif
384
385	object->ref_count++;
386	if (object->type == OBJT_VNODE) {
387		while (vget((struct vnode *) object->handle, LK_RETRY, curthread)) {
388			printf("vm_object_reference: delay in getting object\n");
389		}
390	}
391	vm_object_unlock(object);
392}
393
394/*
395 * Handle deallocating an object of type OBJT_VNODE.
396 */
397void
398vm_object_vndeallocate(vm_object_t object)
399{
400	struct vnode *vp = (struct vnode *) object->handle;
401
402	GIANT_REQUIRED;
403	KASSERT(object->type == OBJT_VNODE,
404	    ("vm_object_vndeallocate: not a vnode object"));
405	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
406#ifdef INVARIANTS
407	if (object->ref_count == 0) {
408		vprint("vm_object_vndeallocate", vp);
409		panic("vm_object_vndeallocate: bad object reference count");
410	}
411#endif
412
413	object->ref_count--;
414	if (object->ref_count == 0) {
415		mp_fixme("Unlocked vflag access.");
416		vp->v_vflag &= ~VV_TEXT;
417	}
418	/*
419	 * vrele may need a vop lock
420	 */
421	vrele(vp);
422}
423
424/*
425 *	vm_object_deallocate:
426 *
427 *	Release a reference to the specified object,
428 *	gained either through a vm_object_allocate
429 *	or a vm_object_reference call.  When all references
430 *	are gone, storage associated with this object
431 *	may be relinquished.
432 *
433 *	No object may be locked.
434 */
435void
436vm_object_deallocate(vm_object_t object)
437{
438	vm_object_t temp;
439
440	vm_object_lock(object);
441	while (object != NULL) {
442
443		if (object->type == OBJT_VNODE) {
444			vm_object_vndeallocate(object);
445			vm_object_unlock(object);
446			return;
447		}
448
449		KASSERT(object->ref_count != 0,
450			("vm_object_deallocate: object deallocated too many times: %d", object->type));
451
452		/*
453		 * If the reference count goes to 0 we start calling
454		 * vm_object_terminate() on the object chain.
455		 * A ref count of 1 may be a special case depending on the
456		 * shadow count being 0 or 1.
457		 */
458		object->ref_count--;
459		if (object->ref_count > 1) {
460			vm_object_unlock(object);
461			return;
462		} else if (object->ref_count == 1) {
463			if (object->shadow_count == 0) {
464				vm_object_set_flag(object, OBJ_ONEMAPPING);
465			} else if ((object->shadow_count == 1) &&
466			    (object->handle == NULL) &&
467			    (object->type == OBJT_DEFAULT ||
468			     object->type == OBJT_SWAP)) {
469				vm_object_t robject;
470
471				robject = TAILQ_FIRST(&object->shadow_head);
472				KASSERT(robject != NULL,
473				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
474					 object->ref_count,
475					 object->shadow_count));
476				if ((robject->handle == NULL) &&
477				    (robject->type == OBJT_DEFAULT ||
478				     robject->type == OBJT_SWAP)) {
479
480					robject->ref_count++;
481
482					while (
483						robject->paging_in_progress ||
484						object->paging_in_progress
485					) {
486						vm_object_pip_sleep(robject, "objde1");
487						vm_object_pip_sleep(object, "objde2");
488					}
489
490					if (robject->ref_count == 1) {
491						robject->ref_count--;
492						object = robject;
493						goto doterm;
494					}
495
496					object = robject;
497					vm_object_collapse(object);
498					continue;
499				}
500			}
501			vm_object_unlock(object);
502			return;
503		}
504doterm:
505		VM_OBJECT_LOCK(object);
506		temp = object->backing_object;
507		if (temp) {
508			TAILQ_REMOVE(&temp->shadow_head, object, shadow_list);
509			temp->shadow_count--;
510			temp->generation++;
511			object->backing_object = NULL;
512		}
513		/*
514		 * Don't double-terminate, we could be in a termination
515		 * recursion due to the terminate having to sync data
516		 * to disk.
517		 */
518		if ((object->flags & OBJ_DEAD) == 0)
519			vm_object_terminate(object);
520		else
521			VM_OBJECT_UNLOCK(object);
522		object = temp;
523	}
524	vm_object_unlock(object);
525}
526
527/*
528 *	vm_object_terminate actually destroys the specified object, freeing
529 *	up all previously used resources.
530 *
531 *	The object must be locked.
532 *	This routine may block.
533 */
534void
535vm_object_terminate(vm_object_t object)
536{
537	vm_page_t p;
538	int s;
539
540	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
541
542	/*
543	 * Make sure no one uses us.
544	 */
545	vm_object_set_flag(object, OBJ_DEAD);
546
547	/*
548	 * wait for the pageout daemon to be done with the object
549	 */
550	vm_object_pip_wait(object, "objtrm");
551	VM_OBJECT_UNLOCK(object);
552
553	KASSERT(!object->paging_in_progress,
554		("vm_object_terminate: pageout in progress"));
555
556	/*
557	 * Clean and free the pages, as appropriate. All references to the
558	 * object are gone, so we don't need to lock it.
559	 */
560	if (object->type == OBJT_VNODE) {
561		struct vnode *vp;
562
563		/*
564		 * Clean pages and flush buffers.
565		 */
566		VM_OBJECT_LOCK(object);
567		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
568		VM_OBJECT_UNLOCK(object);
569
570		vp = (struct vnode *) object->handle;
571		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
572	}
573
574	KASSERT(object->ref_count == 0,
575		("vm_object_terminate: object with references, ref_count=%d",
576		object->ref_count));
577
578	/*
579	 * Now free any remaining pages. For internal objects, this also
580	 * removes them from paging queues. Don't free wired pages, just
581	 * remove them from the object.
582	 */
583	s = splvm();
584	vm_page_lock_queues();
585	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
586		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
587			("vm_object_terminate: freeing busy page %p "
588			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
589		if (p->wire_count == 0) {
590			vm_page_busy(p);
591			vm_page_free(p);
592			cnt.v_pfree++;
593		} else {
594			vm_page_busy(p);
595			vm_page_remove(p);
596		}
597	}
598	vm_page_unlock_queues();
599	splx(s);
600
601	/*
602	 * Let the pager know object is dead.
603	 */
604	vm_pager_deallocate(object);
605
606	/*
607	 * Remove the object from the global object list.
608	 */
609	mtx_lock(&vm_object_list_mtx);
610	TAILQ_REMOVE(&vm_object_list, object, object_list);
611	mtx_unlock(&vm_object_list_mtx);
612
613	mtx_destroy(&object->mtx);
614	wakeup(object);
615
616	/*
617	 * Free the space for the object.
618	 */
619	uma_zfree(obj_zone, object);
620}
621
622/*
623 *	vm_object_page_clean
624 *
625 *	Clean all dirty pages in the specified range of object.  Leaves page
626 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
627 *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
628 *	leaving the object dirty.
629 *
630 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
631 *	synchronous clustering mode implementation.
632 *
633 *	Odd semantics: if start == end, we clean everything.
634 *
635 *	The object must be locked.
636 */
637void
638vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
639{
640	vm_page_t p, np;
641	vm_pindex_t tstart, tend;
642	vm_pindex_t pi;
643	struct vnode *vp;
644	int clearobjflags;
645	int pagerflags;
646	int curgeneration;
647
648	GIANT_REQUIRED;
649	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
650	if (object->type != OBJT_VNODE ||
651		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
652		return;
653
654	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
655	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
656
657	vp = object->handle;
658
659	vm_object_set_flag(object, OBJ_CLEANING);
660
661	tstart = start;
662	if (end == 0) {
663		tend = object->size;
664	} else {
665		tend = end;
666	}
667
668	vm_page_lock_queues();
669	/*
670	 * If the caller is smart and only msync()s a range he knows is
671	 * dirty, we may be able to avoid an object scan.  This results in
672	 * a phenominal improvement in performance.  We cannot do this
673	 * as a matter of course because the object may be huge - e.g.
674	 * the size might be in the gigabytes or terrabytes.
675	 */
676	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
677		vm_pindex_t tscan;
678		int scanlimit;
679		int scanreset;
680
681		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
682		if (scanreset < 16)
683			scanreset = 16;
684		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
685
686		scanlimit = scanreset;
687		tscan = tstart;
688		while (tscan < tend) {
689			curgeneration = object->generation;
690			p = vm_page_lookup(object, tscan);
691			if (p == NULL || p->valid == 0 ||
692			    (p->queue - p->pc) == PQ_CACHE) {
693				if (--scanlimit == 0)
694					break;
695				++tscan;
696				continue;
697			}
698			vm_page_test_dirty(p);
699			if ((p->dirty & p->valid) == 0) {
700				if (--scanlimit == 0)
701					break;
702				++tscan;
703				continue;
704			}
705			/*
706			 * If we have been asked to skip nosync pages and
707			 * this is a nosync page, we can't continue.
708			 */
709			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
710				if (--scanlimit == 0)
711					break;
712				++tscan;
713				continue;
714			}
715			scanlimit = scanreset;
716
717			/*
718			 * This returns 0 if it was unable to busy the first
719			 * page (i.e. had to sleep).
720			 */
721			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
722		}
723
724		/*
725		 * If everything was dirty and we flushed it successfully,
726		 * and the requested range is not the entire object, we
727		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
728		 * return immediately.
729		 */
730		if (tscan >= tend && (tstart || tend < object->size)) {
731			vm_page_unlock_queues();
732			vm_object_clear_flag(object, OBJ_CLEANING);
733			return;
734		}
735		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
736	}
737
738	/*
739	 * Generally set CLEANCHK interlock and make the page read-only so
740	 * we can then clear the object flags.
741	 *
742	 * However, if this is a nosync mmap then the object is likely to
743	 * stay dirty so do not mess with the page and do not clear the
744	 * object flags.
745	 */
746	clearobjflags = 1;
747	TAILQ_FOREACH(p, &object->memq, listq) {
748		vm_page_flag_set(p, PG_CLEANCHK);
749		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
750			clearobjflags = 0;
751		else
752			pmap_page_protect(p, VM_PROT_READ);
753	}
754
755	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
756		struct vnode *vp;
757
758		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
759		if (object->type == OBJT_VNODE &&
760		    (vp = (struct vnode *)object->handle) != NULL) {
761			VI_LOCK(vp);
762			if (vp->v_iflag & VI_OBJDIRTY)
763				vp->v_iflag &= ~VI_OBJDIRTY;
764			VI_UNLOCK(vp);
765		}
766	}
767
768rescan:
769	curgeneration = object->generation;
770
771	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
772		int n;
773
774		np = TAILQ_NEXT(p, listq);
775
776again:
777		pi = p->pindex;
778		if (((p->flags & PG_CLEANCHK) == 0) ||
779			(pi < tstart) || (pi >= tend) ||
780			(p->valid == 0) ||
781			((p->queue - p->pc) == PQ_CACHE)) {
782			vm_page_flag_clear(p, PG_CLEANCHK);
783			continue;
784		}
785
786		vm_page_test_dirty(p);
787		if ((p->dirty & p->valid) == 0) {
788			vm_page_flag_clear(p, PG_CLEANCHK);
789			continue;
790		}
791
792		/*
793		 * If we have been asked to skip nosync pages and this is a
794		 * nosync page, skip it.  Note that the object flags were
795		 * not cleared in this case so we do not have to set them.
796		 */
797		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
798			vm_page_flag_clear(p, PG_CLEANCHK);
799			continue;
800		}
801
802		n = vm_object_page_collect_flush(object, p,
803			curgeneration, pagerflags);
804		if (n == 0)
805			goto rescan;
806
807		if (object->generation != curgeneration)
808			goto rescan;
809
810		/*
811		 * Try to optimize the next page.  If we can't we pick up
812		 * our (random) scan where we left off.
813		 */
814		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
815			if ((p = vm_page_lookup(object, pi + n)) != NULL)
816				goto again;
817		}
818	}
819	vm_page_unlock_queues();
820#if 0
821	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
822#endif
823
824	vm_object_clear_flag(object, OBJ_CLEANING);
825	return;
826}
827
828static int
829vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
830{
831	int runlen;
832	int s;
833	int maxf;
834	int chkb;
835	int maxb;
836	int i;
837	vm_pindex_t pi;
838	vm_page_t maf[vm_pageout_page_count];
839	vm_page_t mab[vm_pageout_page_count];
840	vm_page_t ma[vm_pageout_page_count];
841
842	s = splvm();
843	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
844	pi = p->pindex;
845	while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
846		vm_page_lock_queues();
847		if (object->generation != curgeneration) {
848			splx(s);
849			return(0);
850		}
851	}
852	maxf = 0;
853	for(i = 1; i < vm_pageout_page_count; i++) {
854		vm_page_t tp;
855
856		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
857			if ((tp->flags & PG_BUSY) ||
858				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
859				 (tp->flags & PG_CLEANCHK) == 0) ||
860				(tp->busy != 0))
861				break;
862			if((tp->queue - tp->pc) == PQ_CACHE) {
863				vm_page_flag_clear(tp, PG_CLEANCHK);
864				break;
865			}
866			vm_page_test_dirty(tp);
867			if ((tp->dirty & tp->valid) == 0) {
868				vm_page_flag_clear(tp, PG_CLEANCHK);
869				break;
870			}
871			maf[ i - 1 ] = tp;
872			maxf++;
873			continue;
874		}
875		break;
876	}
877
878	maxb = 0;
879	chkb = vm_pageout_page_count -  maxf;
880	if (chkb) {
881		for(i = 1; i < chkb;i++) {
882			vm_page_t tp;
883
884			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
885				if ((tp->flags & PG_BUSY) ||
886					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
887					 (tp->flags & PG_CLEANCHK) == 0) ||
888					(tp->busy != 0))
889					break;
890				if ((tp->queue - tp->pc) == PQ_CACHE) {
891					vm_page_flag_clear(tp, PG_CLEANCHK);
892					break;
893				}
894				vm_page_test_dirty(tp);
895				if ((tp->dirty & tp->valid) == 0) {
896					vm_page_flag_clear(tp, PG_CLEANCHK);
897					break;
898				}
899				mab[ i - 1 ] = tp;
900				maxb++;
901				continue;
902			}
903			break;
904		}
905	}
906
907	for(i = 0; i < maxb; i++) {
908		int index = (maxb - i) - 1;
909		ma[index] = mab[i];
910		vm_page_flag_clear(ma[index], PG_CLEANCHK);
911	}
912	vm_page_flag_clear(p, PG_CLEANCHK);
913	ma[maxb] = p;
914	for(i = 0; i < maxf; i++) {
915		int index = (maxb + i) + 1;
916		ma[index] = maf[i];
917		vm_page_flag_clear(ma[index], PG_CLEANCHK);
918	}
919	runlen = maxb + maxf + 1;
920
921	splx(s);
922	vm_pageout_flush(ma, runlen, pagerflags, TRUE);
923	for (i = 0; i < runlen; i++) {
924		if (ma[i]->valid & ma[i]->dirty) {
925			pmap_page_protect(ma[i], VM_PROT_READ);
926			vm_page_flag_set(ma[i], PG_CLEANCHK);
927
928			/*
929			 * maxf will end up being the actual number of pages
930			 * we wrote out contiguously, non-inclusive of the
931			 * first page.  We do not count look-behind pages.
932			 */
933			if (i >= maxb + 1 && (maxf > i - maxb - 1))
934				maxf = i - maxb - 1;
935		}
936	}
937	return(maxf + 1);
938}
939
940/*
941 *	vm_object_madvise:
942 *
943 *	Implements the madvise function at the object/page level.
944 *
945 *	MADV_WILLNEED	(any object)
946 *
947 *	    Activate the specified pages if they are resident.
948 *
949 *	MADV_DONTNEED	(any object)
950 *
951 *	    Deactivate the specified pages if they are resident.
952 *
953 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
954 *			 OBJ_ONEMAPPING only)
955 *
956 *	    Deactivate and clean the specified pages if they are
957 *	    resident.  This permits the process to reuse the pages
958 *	    without faulting or the kernel to reclaim the pages
959 *	    without I/O.
960 */
961void
962vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
963{
964	vm_pindex_t end, tpindex;
965	vm_object_t tobject;
966	vm_page_t m;
967
968	if (object == NULL)
969		return;
970
971	vm_object_lock(object);
972
973	end = pindex + count;
974
975	/*
976	 * Locate and adjust resident pages
977	 */
978	for (; pindex < end; pindex += 1) {
979relookup:
980		tobject = object;
981		tpindex = pindex;
982shadowlookup:
983		/*
984		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
985		 * and those pages must be OBJ_ONEMAPPING.
986		 */
987		if (advise == MADV_FREE) {
988			if ((tobject->type != OBJT_DEFAULT &&
989			     tobject->type != OBJT_SWAP) ||
990			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
991				continue;
992			}
993		}
994
995		m = vm_page_lookup(tobject, tpindex);
996
997		if (m == NULL) {
998			/*
999			 * There may be swap even if there is no backing page
1000			 */
1001			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1002				swap_pager_freespace(tobject, tpindex, 1);
1003
1004			/*
1005			 * next object
1006			 */
1007			tobject = tobject->backing_object;
1008			if (tobject == NULL)
1009				continue;
1010			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1011			goto shadowlookup;
1012		}
1013
1014		/*
1015		 * If the page is busy or not in a normal active state,
1016		 * we skip it.  If the page is not managed there are no
1017		 * page queues to mess with.  Things can break if we mess
1018		 * with pages in any of the below states.
1019		 */
1020		vm_page_lock_queues();
1021		if (m->hold_count ||
1022		    m->wire_count ||
1023		    (m->flags & PG_UNMANAGED) ||
1024		    m->valid != VM_PAGE_BITS_ALL) {
1025			vm_page_unlock_queues();
1026			continue;
1027		}
1028 		if (vm_page_sleep_if_busy(m, TRUE, "madvpo"))
1029  			goto relookup;
1030		if (advise == MADV_WILLNEED) {
1031			vm_page_activate(m);
1032		} else if (advise == MADV_DONTNEED) {
1033			vm_page_dontneed(m);
1034		} else if (advise == MADV_FREE) {
1035			/*
1036			 * Mark the page clean.  This will allow the page
1037			 * to be freed up by the system.  However, such pages
1038			 * are often reused quickly by malloc()/free()
1039			 * so we do not do anything that would cause
1040			 * a page fault if we can help it.
1041			 *
1042			 * Specifically, we do not try to actually free
1043			 * the page now nor do we try to put it in the
1044			 * cache (which would cause a page fault on reuse).
1045			 *
1046			 * But we do make the page is freeable as we
1047			 * can without actually taking the step of unmapping
1048			 * it.
1049			 */
1050			pmap_clear_modify(m);
1051			m->dirty = 0;
1052			m->act_count = 0;
1053			vm_page_dontneed(m);
1054		}
1055		vm_page_unlock_queues();
1056		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1057			swap_pager_freespace(tobject, tpindex, 1);
1058	}
1059	vm_object_unlock(object);
1060}
1061
1062/*
1063 *	vm_object_shadow:
1064 *
1065 *	Create a new object which is backed by the
1066 *	specified existing object range.  The source
1067 *	object reference is deallocated.
1068 *
1069 *	The new object and offset into that object
1070 *	are returned in the source parameters.
1071 */
1072void
1073vm_object_shadow(
1074	vm_object_t *object,	/* IN/OUT */
1075	vm_ooffset_t *offset,	/* IN/OUT */
1076	vm_size_t length)
1077{
1078	vm_object_t source;
1079	vm_object_t result;
1080
1081	GIANT_REQUIRED;
1082
1083	source = *object;
1084
1085	/*
1086	 * Don't create the new object if the old object isn't shared.
1087	 */
1088	if (source != NULL) {
1089		VM_OBJECT_LOCK(source);
1090		if (source->ref_count == 1 &&
1091		    source->handle == NULL &&
1092		    (source->type == OBJT_DEFAULT ||
1093		     source->type == OBJT_SWAP)) {
1094			VM_OBJECT_UNLOCK(source);
1095			return;
1096		}
1097		VM_OBJECT_UNLOCK(source);
1098	}
1099
1100	/*
1101	 * Allocate a new object with the given length.
1102	 */
1103	result = vm_object_allocate(OBJT_DEFAULT, length);
1104
1105	/*
1106	 * The new object shadows the source object, adding a reference to it.
1107	 * Our caller changes his reference to point to the new object,
1108	 * removing a reference to the source object.  Net result: no change
1109	 * of reference count.
1110	 *
1111	 * Try to optimize the result object's page color when shadowing
1112	 * in order to maintain page coloring consistency in the combined
1113	 * shadowed object.
1114	 */
1115	result->backing_object = source;
1116	if (source != NULL) {
1117		VM_OBJECT_LOCK(source);
1118		TAILQ_INSERT_TAIL(&source->shadow_head, result, shadow_list);
1119		source->shadow_count++;
1120		source->generation++;
1121		if (length < source->size)
1122			length = source->size;
1123		if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1124		    source->generation > 1)
1125			length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1126		result->pg_color = (source->pg_color +
1127		    length * source->generation) & PQ_L2_MASK;
1128		VM_OBJECT_UNLOCK(source);
1129		next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1130		    PQ_L2_MASK;
1131	}
1132
1133	/*
1134	 * Store the offset into the source object, and fix up the offset into
1135	 * the new object.
1136	 */
1137	result->backing_object_offset = *offset;
1138
1139	/*
1140	 * Return the new things
1141	 */
1142	*offset = 0;
1143	*object = result;
1144}
1145
1146/*
1147 *	vm_object_split:
1148 *
1149 * Split the pages in a map entry into a new object.  This affords
1150 * easier removal of unused pages, and keeps object inheritance from
1151 * being a negative impact on memory usage.
1152 */
1153void
1154vm_object_split(vm_map_entry_t entry)
1155{
1156	vm_page_t m;
1157	vm_object_t orig_object, new_object, source;
1158	vm_offset_t s, e;
1159	vm_pindex_t offidxstart, offidxend;
1160	vm_size_t idx, size;
1161	vm_ooffset_t offset;
1162
1163	GIANT_REQUIRED;
1164
1165	orig_object = entry->object.vm_object;
1166	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1167		return;
1168	if (orig_object->ref_count <= 1)
1169		return;
1170
1171	offset = entry->offset;
1172	s = entry->start;
1173	e = entry->end;
1174
1175	offidxstart = OFF_TO_IDX(offset);
1176	offidxend = offidxstart + OFF_TO_IDX(e - s);
1177	size = offidxend - offidxstart;
1178
1179	new_object = vm_pager_allocate(orig_object->type,
1180		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
1181	if (new_object == NULL)
1182		return;
1183
1184	source = orig_object->backing_object;
1185	if (source != NULL) {
1186		vm_object_reference(source);	/* Referenced by new_object */
1187		TAILQ_INSERT_TAIL(&source->shadow_head,
1188				  new_object, shadow_list);
1189		VM_OBJECT_LOCK(source);
1190		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1191		VM_OBJECT_UNLOCK(source);
1192		new_object->backing_object_offset =
1193			orig_object->backing_object_offset + offset;
1194		new_object->backing_object = source;
1195		source->shadow_count++;
1196		source->generation++;
1197	}
1198	for (idx = 0; idx < size; idx++) {
1199	retry:
1200		m = vm_page_lookup(orig_object, offidxstart + idx);
1201		if (m == NULL)
1202			continue;
1203
1204		/*
1205		 * We must wait for pending I/O to complete before we can
1206		 * rename the page.
1207		 *
1208		 * We do not have to VM_PROT_NONE the page as mappings should
1209		 * not be changed by this operation.
1210		 */
1211		vm_page_lock_queues();
1212		if (vm_page_sleep_if_busy(m, TRUE, "spltwt"))
1213			goto retry;
1214
1215		vm_page_busy(m);
1216		vm_page_rename(m, new_object, idx);
1217		/* page automatically made dirty by rename and cache handled */
1218		vm_page_busy(m);
1219		vm_page_unlock_queues();
1220	}
1221	VM_OBJECT_LOCK(orig_object);
1222	if (orig_object->type == OBJT_SWAP) {
1223		vm_object_pip_add(orig_object, 1);
1224		VM_OBJECT_UNLOCK(orig_object);
1225		/*
1226		 * copy orig_object pages into new_object
1227		 * and destroy unneeded pages in
1228		 * shadow object.
1229		 */
1230		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1231		VM_OBJECT_LOCK(orig_object);
1232		vm_object_pip_wakeup(orig_object);
1233	}
1234	VM_OBJECT_UNLOCK(orig_object);
1235	vm_page_lock_queues();
1236	TAILQ_FOREACH(m, &new_object->memq, listq)
1237		vm_page_wakeup(m);
1238	vm_page_unlock_queues();
1239	entry->object.vm_object = new_object;
1240	entry->offset = 0LL;
1241	vm_object_deallocate(orig_object);
1242}
1243
1244#define	OBSC_TEST_ALL_SHADOWED	0x0001
1245#define	OBSC_COLLAPSE_NOWAIT	0x0002
1246#define	OBSC_COLLAPSE_WAIT	0x0004
1247
1248static __inline int
1249vm_object_backing_scan(vm_object_t object, int op)
1250{
1251	int s;
1252	int r = 1;
1253	vm_page_t p;
1254	vm_object_t backing_object;
1255	vm_pindex_t backing_offset_index;
1256
1257	s = splvm();
1258	GIANT_REQUIRED;
1259
1260	backing_object = object->backing_object;
1261	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1262
1263	/*
1264	 * Initial conditions
1265	 */
1266	if (op & OBSC_TEST_ALL_SHADOWED) {
1267		/*
1268		 * We do not want to have to test for the existence of
1269		 * swap pages in the backing object.  XXX but with the
1270		 * new swapper this would be pretty easy to do.
1271		 *
1272		 * XXX what about anonymous MAP_SHARED memory that hasn't
1273		 * been ZFOD faulted yet?  If we do not test for this, the
1274		 * shadow test may succeed! XXX
1275		 */
1276		if (backing_object->type != OBJT_DEFAULT) {
1277			splx(s);
1278			return (0);
1279		}
1280	}
1281	if (op & OBSC_COLLAPSE_WAIT) {
1282		vm_object_set_flag(backing_object, OBJ_DEAD);
1283	}
1284
1285	/*
1286	 * Our scan
1287	 */
1288	p = TAILQ_FIRST(&backing_object->memq);
1289	while (p) {
1290		vm_page_t next = TAILQ_NEXT(p, listq);
1291		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1292
1293		if (op & OBSC_TEST_ALL_SHADOWED) {
1294			vm_page_t pp;
1295
1296			/*
1297			 * Ignore pages outside the parent object's range
1298			 * and outside the parent object's mapping of the
1299			 * backing object.
1300			 *
1301			 * note that we do not busy the backing object's
1302			 * page.
1303			 */
1304			if (
1305			    p->pindex < backing_offset_index ||
1306			    new_pindex >= object->size
1307			) {
1308				p = next;
1309				continue;
1310			}
1311
1312			/*
1313			 * See if the parent has the page or if the parent's
1314			 * object pager has the page.  If the parent has the
1315			 * page but the page is not valid, the parent's
1316			 * object pager must have the page.
1317			 *
1318			 * If this fails, the parent does not completely shadow
1319			 * the object and we might as well give up now.
1320			 */
1321
1322			pp = vm_page_lookup(object, new_pindex);
1323			if (
1324			    (pp == NULL || pp->valid == 0) &&
1325			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1326			) {
1327				r = 0;
1328				break;
1329			}
1330		}
1331
1332		/*
1333		 * Check for busy page
1334		 */
1335		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1336			vm_page_t pp;
1337
1338			vm_page_lock_queues();
1339			if (op & OBSC_COLLAPSE_NOWAIT) {
1340				if ((p->flags & PG_BUSY) ||
1341				    !p->valid ||
1342				    p->hold_count ||
1343				    p->wire_count ||
1344				    p->busy) {
1345					vm_page_unlock_queues();
1346					p = next;
1347					continue;
1348				}
1349			} else if (op & OBSC_COLLAPSE_WAIT) {
1350				if (vm_page_sleep_if_busy(p, TRUE, "vmocol")) {
1351					/*
1352					 * If we slept, anything could have
1353					 * happened.  Since the object is
1354					 * marked dead, the backing offset
1355					 * should not have changed so we
1356					 * just restart our scan.
1357					 */
1358					p = TAILQ_FIRST(&backing_object->memq);
1359					continue;
1360				}
1361			}
1362
1363			/*
1364			 * Busy the page
1365			 */
1366			vm_page_busy(p);
1367			vm_page_unlock_queues();
1368
1369			KASSERT(
1370			    p->object == backing_object,
1371			    ("vm_object_qcollapse(): object mismatch")
1372			);
1373
1374			/*
1375			 * Destroy any associated swap
1376			 */
1377			if (backing_object->type == OBJT_SWAP) {
1378				swap_pager_freespace(
1379				    backing_object,
1380				    p->pindex,
1381				    1
1382				);
1383			}
1384
1385			if (
1386			    p->pindex < backing_offset_index ||
1387			    new_pindex >= object->size
1388			) {
1389				/*
1390				 * Page is out of the parent object's range, we
1391				 * can simply destroy it.
1392				 */
1393				vm_page_lock_queues();
1394				pmap_remove_all(p);
1395				vm_page_free(p);
1396				vm_page_unlock_queues();
1397				p = next;
1398				continue;
1399			}
1400
1401			pp = vm_page_lookup(object, new_pindex);
1402			if (
1403			    pp != NULL ||
1404			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1405			) {
1406				/*
1407				 * page already exists in parent OR swap exists
1408				 * for this location in the parent.  Destroy
1409				 * the original page from the backing object.
1410				 *
1411				 * Leave the parent's page alone
1412				 */
1413				vm_page_lock_queues();
1414				pmap_remove_all(p);
1415				vm_page_free(p);
1416				vm_page_unlock_queues();
1417				p = next;
1418				continue;
1419			}
1420
1421			/*
1422			 * Page does not exist in parent, rename the
1423			 * page from the backing object to the main object.
1424			 *
1425			 * If the page was mapped to a process, it can remain
1426			 * mapped through the rename.
1427			 */
1428			vm_page_lock_queues();
1429			vm_page_rename(p, object, new_pindex);
1430			vm_page_unlock_queues();
1431			/* page automatically made dirty by rename */
1432		}
1433		p = next;
1434	}
1435	splx(s);
1436	return (r);
1437}
1438
1439
1440/*
1441 * this version of collapse allows the operation to occur earlier and
1442 * when paging_in_progress is true for an object...  This is not a complete
1443 * operation, but should plug 99.9% of the rest of the leaks.
1444 */
1445static void
1446vm_object_qcollapse(vm_object_t object)
1447{
1448	vm_object_t backing_object = object->backing_object;
1449
1450	GIANT_REQUIRED;
1451
1452	if (backing_object->ref_count != 1)
1453		return;
1454
1455	backing_object->ref_count += 2;
1456
1457	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1458
1459	backing_object->ref_count -= 2;
1460}
1461
1462/*
1463 *	vm_object_collapse:
1464 *
1465 *	Collapse an object with the object backing it.
1466 *	Pages in the backing object are moved into the
1467 *	parent, and the backing object is deallocated.
1468 */
1469void
1470vm_object_collapse(vm_object_t object)
1471{
1472	GIANT_REQUIRED;
1473
1474	while (TRUE) {
1475		vm_object_t backing_object;
1476
1477		/*
1478		 * Verify that the conditions are right for collapse:
1479		 *
1480		 * The object exists and the backing object exists.
1481		 */
1482		if (object == NULL)
1483			break;
1484
1485		if ((backing_object = object->backing_object) == NULL)
1486			break;
1487
1488		/*
1489		 * we check the backing object first, because it is most likely
1490		 * not collapsable.
1491		 */
1492		if (backing_object->handle != NULL ||
1493		    (backing_object->type != OBJT_DEFAULT &&
1494		     backing_object->type != OBJT_SWAP) ||
1495		    (backing_object->flags & OBJ_DEAD) ||
1496		    object->handle != NULL ||
1497		    (object->type != OBJT_DEFAULT &&
1498		     object->type != OBJT_SWAP) ||
1499		    (object->flags & OBJ_DEAD)) {
1500			break;
1501		}
1502
1503		if (
1504		    object->paging_in_progress != 0 ||
1505		    backing_object->paging_in_progress != 0
1506		) {
1507			vm_object_qcollapse(object);
1508			break;
1509		}
1510
1511		/*
1512		 * We know that we can either collapse the backing object (if
1513		 * the parent is the only reference to it) or (perhaps) have
1514		 * the parent bypass the object if the parent happens to shadow
1515		 * all the resident pages in the entire backing object.
1516		 *
1517		 * This is ignoring pager-backed pages such as swap pages.
1518		 * vm_object_backing_scan fails the shadowing test in this
1519		 * case.
1520		 */
1521		if (backing_object->ref_count == 1) {
1522			/*
1523			 * If there is exactly one reference to the backing
1524			 * object, we can collapse it into the parent.
1525			 */
1526			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1527
1528			/*
1529			 * Move the pager from backing_object to object.
1530			 */
1531			if (backing_object->type == OBJT_SWAP) {
1532				VM_OBJECT_LOCK(backing_object);
1533				vm_object_pip_add(backing_object, 1);
1534				VM_OBJECT_UNLOCK(backing_object);
1535				/*
1536				 * scrap the paging_offset junk and do a
1537				 * discrete copy.  This also removes major
1538				 * assumptions about how the swap-pager
1539				 * works from where it doesn't belong.  The
1540				 * new swapper is able to optimize the
1541				 * destroy-source case.
1542				 */
1543				VM_OBJECT_LOCK(object);
1544				vm_object_pip_add(object, 1);
1545				VM_OBJECT_UNLOCK(object);
1546				swap_pager_copy(
1547				    backing_object,
1548				    object,
1549				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1550				VM_OBJECT_LOCK(object);
1551				vm_object_pip_wakeup(object);
1552				VM_OBJECT_UNLOCK(object);
1553
1554				VM_OBJECT_LOCK(backing_object);
1555				vm_object_pip_wakeup(backing_object);
1556				VM_OBJECT_UNLOCK(backing_object);
1557			}
1558			/*
1559			 * Object now shadows whatever backing_object did.
1560			 * Note that the reference to
1561			 * backing_object->backing_object moves from within
1562			 * backing_object to within object.
1563			 */
1564			TAILQ_REMOVE(
1565			    &object->backing_object->shadow_head,
1566			    object,
1567			    shadow_list
1568			);
1569			object->backing_object->shadow_count--;
1570			object->backing_object->generation++;
1571			if (backing_object->backing_object) {
1572				TAILQ_REMOVE(
1573				    &backing_object->backing_object->shadow_head,
1574				    backing_object,
1575				    shadow_list
1576				);
1577				backing_object->backing_object->shadow_count--;
1578				backing_object->backing_object->generation++;
1579			}
1580			object->backing_object = backing_object->backing_object;
1581			if (object->backing_object) {
1582				TAILQ_INSERT_TAIL(
1583				    &object->backing_object->shadow_head,
1584				    object,
1585				    shadow_list
1586				);
1587				object->backing_object->shadow_count++;
1588				object->backing_object->generation++;
1589			}
1590
1591			object->backing_object_offset +=
1592			    backing_object->backing_object_offset;
1593
1594			/*
1595			 * Discard backing_object.
1596			 *
1597			 * Since the backing object has no pages, no pager left,
1598			 * and no object references within it, all that is
1599			 * necessary is to dispose of it.
1600			 */
1601			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1602			KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1603
1604			mtx_lock(&vm_object_list_mtx);
1605			TAILQ_REMOVE(
1606			    &vm_object_list,
1607			    backing_object,
1608			    object_list
1609			);
1610			mtx_unlock(&vm_object_list_mtx);
1611
1612			mtx_destroy(&backing_object->mtx);
1613
1614			uma_zfree(obj_zone, backing_object);
1615
1616			object_collapses++;
1617		} else {
1618			vm_object_t new_backing_object;
1619
1620			/*
1621			 * If we do not entirely shadow the backing object,
1622			 * there is nothing we can do so we give up.
1623			 */
1624			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1625				break;
1626			}
1627
1628			/*
1629			 * Make the parent shadow the next object in the
1630			 * chain.  Deallocating backing_object will not remove
1631			 * it, since its reference count is at least 2.
1632			 */
1633			TAILQ_REMOVE(
1634			    &backing_object->shadow_head,
1635			    object,
1636			    shadow_list
1637			);
1638			backing_object->shadow_count--;
1639			backing_object->generation++;
1640
1641			new_backing_object = backing_object->backing_object;
1642			if ((object->backing_object = new_backing_object) != NULL) {
1643				vm_object_reference(new_backing_object);
1644				TAILQ_INSERT_TAIL(
1645				    &new_backing_object->shadow_head,
1646				    object,
1647				    shadow_list
1648				);
1649				new_backing_object->shadow_count++;
1650				new_backing_object->generation++;
1651				object->backing_object_offset +=
1652					backing_object->backing_object_offset;
1653			}
1654
1655			/*
1656			 * Drop the reference count on backing_object. Since
1657			 * its ref_count was at least 2, it will not vanish;
1658			 * so we don't need to call vm_object_deallocate, but
1659			 * we do anyway.
1660			 */
1661			vm_object_deallocate(backing_object);
1662			object_bypasses++;
1663		}
1664
1665		/*
1666		 * Try again with this object's new backing object.
1667		 */
1668	}
1669}
1670
1671/*
1672 *	vm_object_page_remove: [internal]
1673 *
1674 *	Removes all physical pages in the specified
1675 *	object range from the object's list of pages.
1676 *
1677 *	The object must be locked.
1678 */
1679void
1680vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1681    boolean_t clean_only)
1682{
1683	vm_page_t p, next;
1684
1685	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1686	if (object->resident_page_count == 0)
1687		return;
1688
1689	/*
1690	 * Since physically-backed objects do not use managed pages, we can't
1691	 * remove pages from the object (we must instead remove the page
1692	 * references, and then destroy the object).
1693	 */
1694	KASSERT(object->type != OBJT_PHYS,
1695	    ("attempt to remove pages from a physical object"));
1696
1697	vm_object_pip_add(object, 1);
1698again:
1699	vm_page_lock_queues();
1700	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1701		if (p->pindex < start) {
1702			p = vm_page_splay(start, object->root);
1703			if ((object->root = p)->pindex < start)
1704				p = TAILQ_NEXT(p, listq);
1705		}
1706	}
1707	/*
1708	 * Assert: the variable p is either (1) the page with the
1709	 * least pindex greater than or equal to the parameter pindex
1710	 * or (2) NULL.
1711	 */
1712	for (;
1713	     p != NULL && p->pindex < end;
1714	     p = next) {
1715		next = TAILQ_NEXT(p, listq);
1716
1717		if (p->wire_count != 0) {
1718			pmap_remove_all(p);
1719			if (!clean_only)
1720				p->valid = 0;
1721			continue;
1722		}
1723		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1724			goto again;
1725		if (clean_only && p->valid) {
1726			vm_page_test_dirty(p);
1727			if (p->valid & p->dirty)
1728				continue;
1729		}
1730		vm_page_busy(p);
1731		pmap_remove_all(p);
1732		vm_page_free(p);
1733	}
1734	vm_page_unlock_queues();
1735	vm_object_pip_wakeup(object);
1736}
1737
1738/*
1739 *	Routine:	vm_object_coalesce
1740 *	Function:	Coalesces two objects backing up adjoining
1741 *			regions of memory into a single object.
1742 *
1743 *	returns TRUE if objects were combined.
1744 *
1745 *	NOTE:	Only works at the moment if the second object is NULL -
1746 *		if it's not, which object do we lock first?
1747 *
1748 *	Parameters:
1749 *		prev_object	First object to coalesce
1750 *		prev_offset	Offset into prev_object
1751 *		next_object	Second object into coalesce
1752 *		next_offset	Offset into next_object
1753 *
1754 *		prev_size	Size of reference to prev_object
1755 *		next_size	Size of reference to next_object
1756 *
1757 *	Conditions:
1758 *	The object must *not* be locked.
1759 */
1760boolean_t
1761vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1762	vm_size_t prev_size, vm_size_t next_size)
1763{
1764	vm_pindex_t next_pindex;
1765
1766	if (prev_object == NULL)
1767		return (TRUE);
1768	vm_object_lock(prev_object);
1769	if (prev_object->type != OBJT_DEFAULT &&
1770	    prev_object->type != OBJT_SWAP) {
1771		vm_object_unlock(prev_object);
1772		return (FALSE);
1773	}
1774
1775	/*
1776	 * Try to collapse the object first
1777	 */
1778	vm_object_collapse(prev_object);
1779
1780	/*
1781	 * Can't coalesce if: . more than one reference . paged out . shadows
1782	 * another object . has a copy elsewhere (any of which mean that the
1783	 * pages not mapped to prev_entry may be in use anyway)
1784	 */
1785	if (prev_object->backing_object != NULL) {
1786		vm_object_unlock(prev_object);
1787		return (FALSE);
1788	}
1789
1790	prev_size >>= PAGE_SHIFT;
1791	next_size >>= PAGE_SHIFT;
1792	next_pindex = prev_pindex + prev_size;
1793
1794	if ((prev_object->ref_count > 1) &&
1795	    (prev_object->size != next_pindex)) {
1796		vm_object_unlock(prev_object);
1797		return (FALSE);
1798	}
1799
1800	/*
1801	 * Remove any pages that may still be in the object from a previous
1802	 * deallocation.
1803	 */
1804	if (next_pindex < prev_object->size) {
1805		VM_OBJECT_LOCK(prev_object);
1806		vm_object_page_remove(prev_object,
1807				      next_pindex,
1808				      next_pindex + next_size, FALSE);
1809		if (prev_object->type == OBJT_SWAP)
1810			swap_pager_freespace(prev_object,
1811					     next_pindex, next_size);
1812		VM_OBJECT_UNLOCK(prev_object);
1813	}
1814
1815	/*
1816	 * Extend the object if necessary.
1817	 */
1818	if (next_pindex + next_size > prev_object->size)
1819		prev_object->size = next_pindex + next_size;
1820
1821	vm_object_unlock(prev_object);
1822	return (TRUE);
1823}
1824
1825void
1826vm_object_set_writeable_dirty(vm_object_t object)
1827{
1828	struct vnode *vp;
1829
1830	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1831	if (object->type == OBJT_VNODE &&
1832	    (vp = (struct vnode *)object->handle) != NULL) {
1833		VI_LOCK(vp);
1834		if ((vp->v_iflag & VI_OBJDIRTY) == 0)
1835			vp->v_iflag |= VI_OBJDIRTY;
1836		VI_UNLOCK(vp);
1837	}
1838}
1839
1840#include "opt_ddb.h"
1841#ifdef DDB
1842#include <sys/kernel.h>
1843
1844#include <sys/cons.h>
1845
1846#include <ddb/ddb.h>
1847
1848static int
1849_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1850{
1851	vm_map_t tmpm;
1852	vm_map_entry_t tmpe;
1853	vm_object_t obj;
1854	int entcount;
1855
1856	if (map == 0)
1857		return 0;
1858
1859	if (entry == 0) {
1860		tmpe = map->header.next;
1861		entcount = map->nentries;
1862		while (entcount-- && (tmpe != &map->header)) {
1863			if (_vm_object_in_map(map, object, tmpe)) {
1864				return 1;
1865			}
1866			tmpe = tmpe->next;
1867		}
1868	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1869		tmpm = entry->object.sub_map;
1870		tmpe = tmpm->header.next;
1871		entcount = tmpm->nentries;
1872		while (entcount-- && tmpe != &tmpm->header) {
1873			if (_vm_object_in_map(tmpm, object, tmpe)) {
1874				return 1;
1875			}
1876			tmpe = tmpe->next;
1877		}
1878	} else if ((obj = entry->object.vm_object) != NULL) {
1879		for (; obj; obj = obj->backing_object)
1880			if (obj == object) {
1881				return 1;
1882			}
1883	}
1884	return 0;
1885}
1886
1887static int
1888vm_object_in_map(vm_object_t object)
1889{
1890	struct proc *p;
1891
1892	/* sx_slock(&allproc_lock); */
1893	LIST_FOREACH(p, &allproc, p_list) {
1894		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1895			continue;
1896		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
1897			/* sx_sunlock(&allproc_lock); */
1898			return 1;
1899		}
1900	}
1901	/* sx_sunlock(&allproc_lock); */
1902	if (_vm_object_in_map(kernel_map, object, 0))
1903		return 1;
1904	if (_vm_object_in_map(kmem_map, object, 0))
1905		return 1;
1906	if (_vm_object_in_map(pager_map, object, 0))
1907		return 1;
1908	if (_vm_object_in_map(buffer_map, object, 0))
1909		return 1;
1910	return 0;
1911}
1912
1913DB_SHOW_COMMAND(vmochk, vm_object_check)
1914{
1915	vm_object_t object;
1916
1917	/*
1918	 * make sure that internal objs are in a map somewhere
1919	 * and none have zero ref counts.
1920	 */
1921	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1922		if (object->handle == NULL &&
1923		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1924			if (object->ref_count == 0) {
1925				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1926					(long)object->size);
1927			}
1928			if (!vm_object_in_map(object)) {
1929				db_printf(
1930			"vmochk: internal obj is not in a map: "
1931			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1932				    object->ref_count, (u_long)object->size,
1933				    (u_long)object->size,
1934				    (void *)object->backing_object);
1935			}
1936		}
1937	}
1938}
1939
1940/*
1941 *	vm_object_print:	[ debug ]
1942 */
1943DB_SHOW_COMMAND(object, vm_object_print_static)
1944{
1945	/* XXX convert args. */
1946	vm_object_t object = (vm_object_t)addr;
1947	boolean_t full = have_addr;
1948
1949	vm_page_t p;
1950
1951	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1952#define	count	was_count
1953
1954	int count;
1955
1956	if (object == NULL)
1957		return;
1958
1959	db_iprintf(
1960	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
1961	    object, (int)object->type, (uintmax_t)object->size,
1962	    object->resident_page_count, object->ref_count, object->flags);
1963	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
1964	    object->shadow_count,
1965	    object->backing_object ? object->backing_object->ref_count : 0,
1966	    object->backing_object, (uintmax_t)object->backing_object_offset);
1967
1968	if (!full)
1969		return;
1970
1971	db_indent += 2;
1972	count = 0;
1973	TAILQ_FOREACH(p, &object->memq, listq) {
1974		if (count == 0)
1975			db_iprintf("memory:=");
1976		else if (count == 6) {
1977			db_printf("\n");
1978			db_iprintf(" ...");
1979			count = 0;
1980		} else
1981			db_printf(",");
1982		count++;
1983
1984		db_printf("(off=0x%jx,page=0x%jx)",
1985		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
1986	}
1987	if (count != 0)
1988		db_printf("\n");
1989	db_indent -= 2;
1990}
1991
1992/* XXX. */
1993#undef count
1994
1995/* XXX need this non-static entry for calling from vm_map_print. */
1996void
1997vm_object_print(
1998        /* db_expr_t */ long addr,
1999	boolean_t have_addr,
2000	/* db_expr_t */ long count,
2001	char *modif)
2002{
2003	vm_object_print_static(addr, have_addr, count, modif);
2004}
2005
2006DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2007{
2008	vm_object_t object;
2009	int nl = 0;
2010	int c;
2011
2012	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2013		vm_pindex_t idx, fidx;
2014		vm_pindex_t osize;
2015		vm_paddr_t pa = -1, padiff;
2016		int rcount;
2017		vm_page_t m;
2018
2019		db_printf("new object: %p\n", (void *)object);
2020		if (nl > 18) {
2021			c = cngetc();
2022			if (c != ' ')
2023				return;
2024			nl = 0;
2025		}
2026		nl++;
2027		rcount = 0;
2028		fidx = 0;
2029		osize = object->size;
2030		if (osize > 128)
2031			osize = 128;
2032		for (idx = 0; idx < osize; idx++) {
2033			m = vm_page_lookup(object, idx);
2034			if (m == NULL) {
2035				if (rcount) {
2036					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2037						(long)fidx, rcount, (long)pa);
2038					if (nl > 18) {
2039						c = cngetc();
2040						if (c != ' ')
2041							return;
2042						nl = 0;
2043					}
2044					nl++;
2045					rcount = 0;
2046				}
2047				continue;
2048			}
2049
2050
2051			if (rcount &&
2052				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2053				++rcount;
2054				continue;
2055			}
2056			if (rcount) {
2057				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2058				padiff >>= PAGE_SHIFT;
2059				padiff &= PQ_L2_MASK;
2060				if (padiff == 0) {
2061					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2062					++rcount;
2063					continue;
2064				}
2065				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2066					(long)fidx, rcount, (long)pa);
2067				db_printf("pd(%ld)\n", (long)padiff);
2068				if (nl > 18) {
2069					c = cngetc();
2070					if (c != ' ')
2071						return;
2072					nl = 0;
2073				}
2074				nl++;
2075			}
2076			fidx = idx;
2077			pa = VM_PAGE_TO_PHYS(m);
2078			rcount = 1;
2079		}
2080		if (rcount) {
2081			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2082				(long)fidx, rcount, (long)pa);
2083			if (nl > 18) {
2084				c = cngetc();
2085				if (c != ' ')
2086					return;
2087				nl = 0;
2088			}
2089			nl++;
2090		}
2091	}
2092}
2093#endif /* DDB */
2094