vm_object.c revision 108334
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_object.c 108334 2002-12-27 20:16:13Z alc $
65 */
66
67/*
68 *	Virtual memory object module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/lock.h>
74#include <sys/mman.h>
75#include <sys/mount.h>
76#include <sys/kernel.h>
77#include <sys/sysctl.h>
78#include <sys/mutex.h>
79#include <sys/proc.h>		/* for curproc, pageproc */
80#include <sys/socket.h>
81#include <sys/stdint.h>
82#include <sys/vnode.h>
83#include <sys/vmmeter.h>
84#include <sys/sx.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_object.h>
91#include <vm/vm_page.h>
92#include <vm/vm_pageout.h>
93#include <vm/vm_pager.h>
94#include <vm/swap_pager.h>
95#include <vm/vm_kern.h>
96#include <vm/vm_extern.h>
97#include <vm/uma.h>
98
99#define EASY_SCAN_FACTOR       8
100
101#define MSYNC_FLUSH_HARDSEQ	0x01
102#define MSYNC_FLUSH_SOFTSEQ	0x02
103
104/*
105 * msync / VM object flushing optimizations
106 */
107static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
108SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
109        CTLFLAG_RW, &msync_flush_flags, 0, "");
110
111static void	vm_object_qcollapse(vm_object_t object);
112static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
113
114/*
115 *	Virtual memory objects maintain the actual data
116 *	associated with allocated virtual memory.  A given
117 *	page of memory exists within exactly one object.
118 *
119 *	An object is only deallocated when all "references"
120 *	are given up.  Only one "reference" to a given
121 *	region of an object should be writeable.
122 *
123 *	Associated with each object is a list of all resident
124 *	memory pages belonging to that object; this list is
125 *	maintained by the "vm_page" module, and locked by the object's
126 *	lock.
127 *
128 *	Each object also records a "pager" routine which is
129 *	used to retrieve (and store) pages to the proper backing
130 *	storage.  In addition, objects may be backed by other
131 *	objects from which they were virtual-copied.
132 *
133 *	The only items within the object structure which are
134 *	modified after time of creation are:
135 *		reference count		locked by object's lock
136 *		pager routine		locked by object's lock
137 *
138 */
139
140struct object_q vm_object_list;
141struct mtx vm_object_list_mtx;	/* lock for object list and count */
142vm_object_t kernel_object;
143vm_object_t kmem_object;
144static struct vm_object kernel_object_store;
145static struct vm_object kmem_object_store;
146extern int vm_pageout_page_count;
147
148static long object_collapses;
149static long object_bypasses;
150static int next_index;
151static uma_zone_t obj_zone;
152#define VM_OBJECTS_INIT 256
153
154static void vm_object_zinit(void *mem, int size);
155
156#ifdef INVARIANTS
157static void vm_object_zdtor(void *mem, int size, void *arg);
158
159static void
160vm_object_zdtor(void *mem, int size, void *arg)
161{
162	vm_object_t object;
163
164	object = (vm_object_t)mem;
165	KASSERT(object->paging_in_progress == 0,
166	    ("object %p paging_in_progress = %d",
167	    object, object->paging_in_progress));
168	KASSERT(object->resident_page_count == 0,
169	    ("object %p resident_page_count = %d",
170	    object, object->resident_page_count));
171	KASSERT(object->shadow_count == 0,
172	    ("object %p shadow_count = %d",
173	    object, object->shadow_count));
174}
175#endif
176
177static void
178vm_object_zinit(void *mem, int size)
179{
180	vm_object_t object;
181
182	object = (vm_object_t)mem;
183
184	/* These are true for any object that has been freed */
185	object->paging_in_progress = 0;
186	object->resident_page_count = 0;
187	object->shadow_count = 0;
188}
189
190void
191_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
192{
193	int incr;
194
195	bzero(&object->mtx, sizeof(object->mtx));
196	mtx_init(&object->mtx, "vm object", NULL, MTX_DEF);
197
198	TAILQ_INIT(&object->memq);
199	TAILQ_INIT(&object->shadow_head);
200
201	object->root = NULL;
202	object->type = type;
203	object->size = size;
204	object->ref_count = 1;
205	object->flags = 0;
206	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
207		vm_object_set_flag(object, OBJ_ONEMAPPING);
208	if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
209		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
210	else
211		incr = size;
212	do
213		object->pg_color = next_index;
214	while (!atomic_cmpset_int(&next_index, object->pg_color,
215				  (object->pg_color + incr) & PQ_L2_MASK));
216	object->handle = NULL;
217	object->backing_object = NULL;
218	object->backing_object_offset = (vm_ooffset_t) 0;
219
220	atomic_add_int(&object->generation, 1);
221
222	mtx_lock(&vm_object_list_mtx);
223	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
224	mtx_unlock(&vm_object_list_mtx);
225}
226
227/*
228 *	vm_object_init:
229 *
230 *	Initialize the VM objects module.
231 */
232void
233vm_object_init(void)
234{
235	TAILQ_INIT(&vm_object_list);
236	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
237
238	kernel_object = &kernel_object_store;
239	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
240	    kernel_object);
241
242	kmem_object = &kmem_object_store;
243	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
244	    kmem_object);
245	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
246#ifdef INVARIANTS
247	    vm_object_zdtor,
248#else
249	    NULL,
250#endif
251	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
252	uma_prealloc(obj_zone, VM_OBJECTS_INIT);
253}
254
255void
256vm_object_init2(void)
257{
258}
259
260void
261vm_object_set_flag(vm_object_t object, u_short bits)
262{
263	object->flags |= bits;
264}
265
266void
267vm_object_clear_flag(vm_object_t object, u_short bits)
268{
269	GIANT_REQUIRED;
270	object->flags &= ~bits;
271}
272
273void
274vm_object_pip_add(vm_object_t object, short i)
275{
276	GIANT_REQUIRED;
277	object->paging_in_progress += i;
278}
279
280void
281vm_object_pip_subtract(vm_object_t object, short i)
282{
283	GIANT_REQUIRED;
284	object->paging_in_progress -= i;
285}
286
287void
288vm_object_pip_wakeup(vm_object_t object)
289{
290	GIANT_REQUIRED;
291	object->paging_in_progress--;
292	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
293		vm_object_clear_flag(object, OBJ_PIPWNT);
294		wakeup(object);
295	}
296}
297
298void
299vm_object_pip_wakeupn(vm_object_t object, short i)
300{
301	GIANT_REQUIRED;
302	if (i)
303		object->paging_in_progress -= i;
304	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
305		vm_object_clear_flag(object, OBJ_PIPWNT);
306		wakeup(object);
307	}
308}
309
310void
311vm_object_pip_sleep(vm_object_t object, char *waitid)
312{
313	GIANT_REQUIRED;
314	if (object->paging_in_progress) {
315		int s = splvm();
316		if (object->paging_in_progress) {
317			vm_object_set_flag(object, OBJ_PIPWNT);
318			tsleep(object, PVM, waitid, 0);
319		}
320		splx(s);
321	}
322}
323
324void
325vm_object_pip_wait(vm_object_t object, char *waitid)
326{
327	GIANT_REQUIRED;
328	while (object->paging_in_progress)
329		vm_object_pip_sleep(object, waitid);
330}
331
332/*
333 *	vm_object_allocate_wait
334 *
335 *	Return a new object with the given size, and give the user the
336 *	option of waiting for it to complete or failing if the needed
337 *	memory isn't available.
338 */
339vm_object_t
340vm_object_allocate_wait(objtype_t type, vm_pindex_t size, int flags)
341{
342	vm_object_t result;
343
344	result = (vm_object_t) uma_zalloc(obj_zone, flags);
345
346	if (result != NULL)
347		_vm_object_allocate(type, size, result);
348
349	return (result);
350}
351
352/*
353 *	vm_object_allocate:
354 *
355 *	Returns a new object with the given size.
356 */
357vm_object_t
358vm_object_allocate(objtype_t type, vm_pindex_t size)
359{
360	return(vm_object_allocate_wait(type, size, M_WAITOK));
361}
362
363
364/*
365 *	vm_object_reference:
366 *
367 *	Gets another reference to the given object.
368 */
369void
370vm_object_reference(vm_object_t object)
371{
372	if (object == NULL)
373		return;
374
375	vm_object_lock(object);
376#if 0
377	/* object can be re-referenced during final cleaning */
378	KASSERT(!(object->flags & OBJ_DEAD),
379	    ("vm_object_reference: attempting to reference dead obj"));
380#endif
381
382	object->ref_count++;
383	if (object->type == OBJT_VNODE) {
384		while (vget((struct vnode *) object->handle, LK_RETRY, curthread)) {
385			printf("vm_object_reference: delay in getting object\n");
386		}
387	}
388	vm_object_unlock(object);
389}
390
391/*
392 * handle deallocating a object of type OBJT_VNODE
393 */
394void
395vm_object_vndeallocate(vm_object_t object)
396{
397	struct vnode *vp = (struct vnode *) object->handle;
398
399	GIANT_REQUIRED;
400	KASSERT(object->type == OBJT_VNODE,
401	    ("vm_object_vndeallocate: not a vnode object"));
402	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
403#ifdef INVARIANTS
404	if (object->ref_count == 0) {
405		vprint("vm_object_vndeallocate", vp);
406		panic("vm_object_vndeallocate: bad object reference count");
407	}
408#endif
409
410	object->ref_count--;
411	if (object->ref_count == 0) {
412		mp_fixme("Unlocked vflag access.");
413		vp->v_vflag &= ~VV_TEXT;
414#ifdef ENABLE_VFS_IOOPT
415		vm_object_clear_flag(object, OBJ_OPT);
416#endif
417	}
418	/*
419	 * vrele may need a vop lock
420	 */
421	vrele(vp);
422}
423
424/*
425 *	vm_object_deallocate:
426 *
427 *	Release a reference to the specified object,
428 *	gained either through a vm_object_allocate
429 *	or a vm_object_reference call.  When all references
430 *	are gone, storage associated with this object
431 *	may be relinquished.
432 *
433 *	No object may be locked.
434 */
435void
436vm_object_deallocate(vm_object_t object)
437{
438	vm_object_t temp;
439
440	mtx_lock(&Giant);
441	while (object != NULL) {
442
443		if (object->type == OBJT_VNODE) {
444			vm_object_vndeallocate(object);
445			mtx_unlock(&Giant);
446			return;
447		}
448
449		KASSERT(object->ref_count != 0,
450			("vm_object_deallocate: object deallocated too many times: %d", object->type));
451
452		/*
453		 * If the reference count goes to 0 we start calling
454		 * vm_object_terminate() on the object chain.
455		 * A ref count of 1 may be a special case depending on the
456		 * shadow count being 0 or 1.
457		 */
458		object->ref_count--;
459		if (object->ref_count > 1) {
460			mtx_unlock(&Giant);
461			return;
462		} else if (object->ref_count == 1) {
463			if (object->shadow_count == 0) {
464				vm_object_set_flag(object, OBJ_ONEMAPPING);
465			} else if ((object->shadow_count == 1) &&
466			    (object->handle == NULL) &&
467			    (object->type == OBJT_DEFAULT ||
468			     object->type == OBJT_SWAP)) {
469				vm_object_t robject;
470
471				robject = TAILQ_FIRST(&object->shadow_head);
472				KASSERT(robject != NULL,
473				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
474					 object->ref_count,
475					 object->shadow_count));
476				if ((robject->handle == NULL) &&
477				    (robject->type == OBJT_DEFAULT ||
478				     robject->type == OBJT_SWAP)) {
479
480					robject->ref_count++;
481
482					while (
483						robject->paging_in_progress ||
484						object->paging_in_progress
485					) {
486						vm_object_pip_sleep(robject, "objde1");
487						vm_object_pip_sleep(object, "objde2");
488					}
489
490					if (robject->ref_count == 1) {
491						robject->ref_count--;
492						object = robject;
493						goto doterm;
494					}
495
496					object = robject;
497					vm_object_collapse(object);
498					continue;
499				}
500			}
501			mtx_unlock(&Giant);
502			return;
503		}
504doterm:
505		temp = object->backing_object;
506		if (temp) {
507			TAILQ_REMOVE(&temp->shadow_head, object, shadow_list);
508			temp->shadow_count--;
509#ifdef ENABLE_VFS_IOOPT
510			if (temp->ref_count == 0)
511				vm_object_clear_flag(temp, OBJ_OPT);
512#endif
513			temp->generation++;
514			object->backing_object = NULL;
515		}
516		/*
517		 * Don't double-terminate, we could be in a termination
518		 * recursion due to the terminate having to sync data
519		 * to disk.
520		 */
521		if ((object->flags & OBJ_DEAD) == 0)
522			vm_object_terminate(object);
523		object = temp;
524	}
525	mtx_unlock(&Giant);
526}
527
528/*
529 *	vm_object_terminate actually destroys the specified object, freeing
530 *	up all previously used resources.
531 *
532 *	The object must be locked.
533 *	This routine may block.
534 */
535void
536vm_object_terminate(vm_object_t object)
537{
538	vm_page_t p;
539	int s;
540
541	GIANT_REQUIRED;
542
543	/*
544	 * Make sure no one uses us.
545	 */
546	vm_object_set_flag(object, OBJ_DEAD);
547
548	/*
549	 * wait for the pageout daemon to be done with the object
550	 */
551	vm_object_pip_wait(object, "objtrm");
552
553	KASSERT(!object->paging_in_progress,
554		("vm_object_terminate: pageout in progress"));
555
556	/*
557	 * Clean and free the pages, as appropriate. All references to the
558	 * object are gone, so we don't need to lock it.
559	 */
560	if (object->type == OBJT_VNODE) {
561		struct vnode *vp;
562
563#ifdef ENABLE_VFS_IOOPT
564		/*
565		 * Freeze optimized copies.
566		 */
567		vm_freeze_copyopts(object, 0, object->size);
568#endif
569		/*
570		 * Clean pages and flush buffers.
571		 */
572		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
573
574		vp = (struct vnode *) object->handle;
575		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
576	}
577
578	KASSERT(object->ref_count == 0,
579		("vm_object_terminate: object with references, ref_count=%d",
580		object->ref_count));
581
582	/*
583	 * Now free any remaining pages. For internal objects, this also
584	 * removes them from paging queues. Don't free wired pages, just
585	 * remove them from the object.
586	 */
587	s = splvm();
588	vm_page_lock_queues();
589	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
590		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
591			("vm_object_terminate: freeing busy page %p "
592			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
593		if (p->wire_count == 0) {
594			vm_page_busy(p);
595			vm_page_free(p);
596			cnt.v_pfree++;
597		} else {
598			vm_page_busy(p);
599			vm_page_remove(p);
600		}
601	}
602	vm_page_unlock_queues();
603	splx(s);
604
605	/*
606	 * Let the pager know object is dead.
607	 */
608	vm_pager_deallocate(object);
609
610	/*
611	 * Remove the object from the global object list.
612	 */
613	mtx_lock(&vm_object_list_mtx);
614	TAILQ_REMOVE(&vm_object_list, object, object_list);
615	mtx_unlock(&vm_object_list_mtx);
616
617	mtx_destroy(&object->mtx);
618	wakeup(object);
619
620	/*
621	 * Free the space for the object.
622	 */
623	uma_zfree(obj_zone, object);
624}
625
626/*
627 *	vm_object_page_clean
628 *
629 *	Clean all dirty pages in the specified range of object.  Leaves page
630 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
631 *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
632 *	leaving the object dirty.
633 *
634 *	Odd semantics: if start == end, we clean everything.
635 *
636 *	The object must be locked.
637 */
638void
639vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
640{
641	vm_page_t p, np;
642	vm_pindex_t tstart, tend;
643	vm_pindex_t pi;
644	struct vnode *vp;
645	int clearobjflags;
646	int pagerflags;
647	int curgeneration;
648
649	GIANT_REQUIRED;
650
651	if (object->type != OBJT_VNODE ||
652		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
653		return;
654
655	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : 0;
656	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
657
658	vp = object->handle;
659
660	vm_object_set_flag(object, OBJ_CLEANING);
661
662	tstart = start;
663	if (end == 0) {
664		tend = object->size;
665	} else {
666		tend = end;
667	}
668
669	vm_page_lock_queues();
670	/*
671	 * If the caller is smart and only msync()s a range he knows is
672	 * dirty, we may be able to avoid an object scan.  This results in
673	 * a phenominal improvement in performance.  We cannot do this
674	 * as a matter of course because the object may be huge - e.g.
675	 * the size might be in the gigabytes or terrabytes.
676	 */
677	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
678		vm_pindex_t tscan;
679		int scanlimit;
680		int scanreset;
681
682		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
683		if (scanreset < 16)
684			scanreset = 16;
685
686		scanlimit = scanreset;
687		tscan = tstart;
688		while (tscan < tend) {
689			curgeneration = object->generation;
690			p = vm_page_lookup(object, tscan);
691			if (p == NULL || p->valid == 0 ||
692			    (p->queue - p->pc) == PQ_CACHE) {
693				if (--scanlimit == 0)
694					break;
695				++tscan;
696				continue;
697			}
698			vm_page_test_dirty(p);
699			if ((p->dirty & p->valid) == 0) {
700				if (--scanlimit == 0)
701					break;
702				++tscan;
703				continue;
704			}
705			/*
706			 * If we have been asked to skip nosync pages and
707			 * this is a nosync page, we can't continue.
708			 */
709			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
710				if (--scanlimit == 0)
711					break;
712				++tscan;
713				continue;
714			}
715			scanlimit = scanreset;
716
717			/*
718			 * This returns 0 if it was unable to busy the first
719			 * page (i.e. had to sleep).
720			 */
721			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
722		}
723
724		/*
725		 * If everything was dirty and we flushed it successfully,
726		 * and the requested range is not the entire object, we
727		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
728		 * return immediately.
729		 */
730		if (tscan >= tend && (tstart || tend < object->size)) {
731			vm_page_unlock_queues();
732			vm_object_clear_flag(object, OBJ_CLEANING);
733			return;
734		}
735	}
736
737	/*
738	 * Generally set CLEANCHK interlock and make the page read-only so
739	 * we can then clear the object flags.
740	 *
741	 * However, if this is a nosync mmap then the object is likely to
742	 * stay dirty so do not mess with the page and do not clear the
743	 * object flags.
744	 */
745	clearobjflags = 1;
746	TAILQ_FOREACH(p, &object->memq, listq) {
747		vm_page_flag_set(p, PG_CLEANCHK);
748		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
749			clearobjflags = 0;
750		else
751			pmap_page_protect(p, VM_PROT_READ);
752	}
753
754	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
755		struct vnode *vp;
756
757		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
758		if (object->type == OBJT_VNODE &&
759		    (vp = (struct vnode *)object->handle) != NULL) {
760			VI_LOCK(vp);
761			if (vp->v_iflag & VI_OBJDIRTY)
762				vp->v_iflag &= ~VI_OBJDIRTY;
763			VI_UNLOCK(vp);
764		}
765	}
766
767rescan:
768	curgeneration = object->generation;
769
770	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
771		int n;
772
773		np = TAILQ_NEXT(p, listq);
774
775again:
776		pi = p->pindex;
777		if (((p->flags & PG_CLEANCHK) == 0) ||
778			(pi < tstart) || (pi >= tend) ||
779			(p->valid == 0) ||
780			((p->queue - p->pc) == PQ_CACHE)) {
781			vm_page_flag_clear(p, PG_CLEANCHK);
782			continue;
783		}
784
785		vm_page_test_dirty(p);
786		if ((p->dirty & p->valid) == 0) {
787			vm_page_flag_clear(p, PG_CLEANCHK);
788			continue;
789		}
790
791		/*
792		 * If we have been asked to skip nosync pages and this is a
793		 * nosync page, skip it.  Note that the object flags were
794		 * not cleared in this case so we do not have to set them.
795		 */
796		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
797			vm_page_flag_clear(p, PG_CLEANCHK);
798			continue;
799		}
800
801		n = vm_object_page_collect_flush(object, p,
802			curgeneration, pagerflags);
803		if (n == 0)
804			goto rescan;
805
806		if (object->generation != curgeneration)
807			goto rescan;
808
809		/*
810		 * Try to optimize the next page.  If we can't we pick up
811		 * our (random) scan where we left off.
812		 */
813		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
814			if ((p = vm_page_lookup(object, pi + n)) != NULL)
815				goto again;
816		}
817	}
818	vm_page_unlock_queues();
819#if 0
820	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
821#endif
822
823	vm_object_clear_flag(object, OBJ_CLEANING);
824	return;
825}
826
827static int
828vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
829{
830	int runlen;
831	int s;
832	int maxf;
833	int chkb;
834	int maxb;
835	int i;
836	vm_pindex_t pi;
837	vm_page_t maf[vm_pageout_page_count];
838	vm_page_t mab[vm_pageout_page_count];
839	vm_page_t ma[vm_pageout_page_count];
840
841	s = splvm();
842	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
843	pi = p->pindex;
844	while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
845		vm_page_lock_queues();
846		if (object->generation != curgeneration) {
847			splx(s);
848			return(0);
849		}
850	}
851	maxf = 0;
852	for(i = 1; i < vm_pageout_page_count; i++) {
853		vm_page_t tp;
854
855		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
856			if ((tp->flags & PG_BUSY) ||
857				(tp->flags & PG_CLEANCHK) == 0 ||
858				(tp->busy != 0))
859				break;
860			if((tp->queue - tp->pc) == PQ_CACHE) {
861				vm_page_flag_clear(tp, PG_CLEANCHK);
862				break;
863			}
864			vm_page_test_dirty(tp);
865			if ((tp->dirty & tp->valid) == 0) {
866				vm_page_flag_clear(tp, PG_CLEANCHK);
867				break;
868			}
869			maf[ i - 1 ] = tp;
870			maxf++;
871			continue;
872		}
873		break;
874	}
875
876	maxb = 0;
877	chkb = vm_pageout_page_count -  maxf;
878	if (chkb) {
879		for(i = 1; i < chkb;i++) {
880			vm_page_t tp;
881
882			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
883				if ((tp->flags & PG_BUSY) ||
884					(tp->flags & PG_CLEANCHK) == 0 ||
885					(tp->busy != 0))
886					break;
887				if ((tp->queue - tp->pc) == PQ_CACHE) {
888					vm_page_flag_clear(tp, PG_CLEANCHK);
889					break;
890				}
891				vm_page_test_dirty(tp);
892				if ((tp->dirty & tp->valid) == 0) {
893					vm_page_flag_clear(tp, PG_CLEANCHK);
894					break;
895				}
896				mab[ i - 1 ] = tp;
897				maxb++;
898				continue;
899			}
900			break;
901		}
902	}
903
904	for(i = 0; i < maxb; i++) {
905		int index = (maxb - i) - 1;
906		ma[index] = mab[i];
907		vm_page_flag_clear(ma[index], PG_CLEANCHK);
908	}
909	vm_page_flag_clear(p, PG_CLEANCHK);
910	ma[maxb] = p;
911	for(i = 0; i < maxf; i++) {
912		int index = (maxb + i) + 1;
913		ma[index] = maf[i];
914		vm_page_flag_clear(ma[index], PG_CLEANCHK);
915	}
916	runlen = maxb + maxf + 1;
917
918	splx(s);
919	vm_pageout_flush(ma, runlen, pagerflags);
920	for (i = 0; i < runlen; i++) {
921		if (ma[i]->valid & ma[i]->dirty) {
922			pmap_page_protect(ma[i], VM_PROT_READ);
923			vm_page_flag_set(ma[i], PG_CLEANCHK);
924
925			/*
926			 * maxf will end up being the actual number of pages
927			 * we wrote out contiguously, non-inclusive of the
928			 * first page.  We do not count look-behind pages.
929			 */
930			if (i >= maxb + 1 && (maxf > i - maxb - 1))
931				maxf = i - maxb - 1;
932		}
933	}
934	return(maxf + 1);
935}
936
937#ifdef ENABLE_VFS_IOOPT
938/*
939 * Same as vm_object_pmap_copy, except range checking really
940 * works, and is meant for small sections of an object.
941 *
942 * This code protects resident pages by making them read-only
943 * and is typically called on a fork or split when a page
944 * is converted to copy-on-write.
945 *
946 * NOTE: If the page is already at VM_PROT_NONE, calling
947 * pmap_page_protect will have no effect.
948 */
949void
950vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
951{
952	vm_pindex_t idx;
953	vm_page_t p;
954
955	GIANT_REQUIRED;
956
957	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
958		return;
959	vm_page_lock_queues();
960	for (idx = start; idx < end; idx++) {
961		p = vm_page_lookup(object, idx);
962		if (p == NULL)
963			continue;
964		pmap_page_protect(p, VM_PROT_READ);
965	}
966	vm_page_unlock_queues();
967}
968#endif
969
970/*
971 *	vm_object_madvise:
972 *
973 *	Implements the madvise function at the object/page level.
974 *
975 *	MADV_WILLNEED	(any object)
976 *
977 *	    Activate the specified pages if they are resident.
978 *
979 *	MADV_DONTNEED	(any object)
980 *
981 *	    Deactivate the specified pages if they are resident.
982 *
983 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
984 *			 OBJ_ONEMAPPING only)
985 *
986 *	    Deactivate and clean the specified pages if they are
987 *	    resident.  This permits the process to reuse the pages
988 *	    without faulting or the kernel to reclaim the pages
989 *	    without I/O.
990 */
991void
992vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
993{
994	vm_pindex_t end, tpindex;
995	vm_object_t tobject;
996	vm_page_t m;
997
998	if (object == NULL)
999		return;
1000
1001	vm_object_lock(object);
1002
1003	end = pindex + count;
1004
1005	/*
1006	 * Locate and adjust resident pages
1007	 */
1008	for (; pindex < end; pindex += 1) {
1009relookup:
1010		tobject = object;
1011		tpindex = pindex;
1012shadowlookup:
1013		/*
1014		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1015		 * and those pages must be OBJ_ONEMAPPING.
1016		 */
1017		if (advise == MADV_FREE) {
1018			if ((tobject->type != OBJT_DEFAULT &&
1019			     tobject->type != OBJT_SWAP) ||
1020			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1021				continue;
1022			}
1023		}
1024
1025		m = vm_page_lookup(tobject, tpindex);
1026
1027		if (m == NULL) {
1028			/*
1029			 * There may be swap even if there is no backing page
1030			 */
1031			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1032				swap_pager_freespace(tobject, tpindex, 1);
1033
1034			/*
1035			 * next object
1036			 */
1037			tobject = tobject->backing_object;
1038			if (tobject == NULL)
1039				continue;
1040			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1041			goto shadowlookup;
1042		}
1043
1044		/*
1045		 * If the page is busy or not in a normal active state,
1046		 * we skip it.  If the page is not managed there are no
1047		 * page queues to mess with.  Things can break if we mess
1048		 * with pages in any of the below states.
1049		 */
1050		vm_page_lock_queues();
1051		if (m->hold_count ||
1052		    m->wire_count ||
1053		    (m->flags & PG_UNMANAGED) ||
1054		    m->valid != VM_PAGE_BITS_ALL) {
1055			vm_page_unlock_queues();
1056			continue;
1057		}
1058 		if (vm_page_sleep_if_busy(m, TRUE, "madvpo"))
1059  			goto relookup;
1060		if (advise == MADV_WILLNEED) {
1061			vm_page_activate(m);
1062		} else if (advise == MADV_DONTNEED) {
1063			vm_page_dontneed(m);
1064		} else if (advise == MADV_FREE) {
1065			/*
1066			 * Mark the page clean.  This will allow the page
1067			 * to be freed up by the system.  However, such pages
1068			 * are often reused quickly by malloc()/free()
1069			 * so we do not do anything that would cause
1070			 * a page fault if we can help it.
1071			 *
1072			 * Specifically, we do not try to actually free
1073			 * the page now nor do we try to put it in the
1074			 * cache (which would cause a page fault on reuse).
1075			 *
1076			 * But we do make the page is freeable as we
1077			 * can without actually taking the step of unmapping
1078			 * it.
1079			 */
1080			pmap_clear_modify(m);
1081			m->dirty = 0;
1082			m->act_count = 0;
1083			vm_page_dontneed(m);
1084		}
1085		vm_page_unlock_queues();
1086		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1087			swap_pager_freespace(tobject, tpindex, 1);
1088	}
1089	vm_object_unlock(object);
1090}
1091
1092/*
1093 *	vm_object_shadow:
1094 *
1095 *	Create a new object which is backed by the
1096 *	specified existing object range.  The source
1097 *	object reference is deallocated.
1098 *
1099 *	The new object and offset into that object
1100 *	are returned in the source parameters.
1101 */
1102void
1103vm_object_shadow(
1104	vm_object_t *object,	/* IN/OUT */
1105	vm_ooffset_t *offset,	/* IN/OUT */
1106	vm_size_t length)
1107{
1108	vm_object_t source;
1109	vm_object_t result;
1110
1111	source = *object;
1112
1113	vm_object_lock(source);
1114	/*
1115	 * Don't create the new object if the old object isn't shared.
1116	 */
1117	if (source != NULL &&
1118	    source->ref_count == 1 &&
1119	    source->handle == NULL &&
1120	    (source->type == OBJT_DEFAULT ||
1121	     source->type == OBJT_SWAP)) {
1122		vm_object_unlock(source);
1123		return;
1124	}
1125
1126	/*
1127	 * Allocate a new object with the given length
1128	 */
1129	result = vm_object_allocate(OBJT_DEFAULT, length);
1130	KASSERT(result != NULL, ("vm_object_shadow: no object for shadowing"));
1131
1132	/*
1133	 * The new object shadows the source object, adding a reference to it.
1134	 * Our caller changes his reference to point to the new object,
1135	 * removing a reference to the source object.  Net result: no change
1136	 * of reference count.
1137	 *
1138	 * Try to optimize the result object's page color when shadowing
1139	 * in order to maintain page coloring consistency in the combined
1140	 * shadowed object.
1141	 */
1142	result->backing_object = source;
1143	if (source) {
1144		TAILQ_INSERT_TAIL(&source->shadow_head, result, shadow_list);
1145		source->shadow_count++;
1146		source->generation++;
1147		if (length < source->size)
1148			length = source->size;
1149		if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1150		    source->generation > 1)
1151			length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1152		result->pg_color = (source->pg_color +
1153		    length * source->generation) & PQ_L2_MASK;
1154		next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1155		    PQ_L2_MASK;
1156	}
1157
1158	/*
1159	 * Store the offset into the source object, and fix up the offset into
1160	 * the new object.
1161	 */
1162	result->backing_object_offset = *offset;
1163
1164	/*
1165	 * Return the new things
1166	 */
1167	*offset = 0;
1168	*object = result;
1169
1170	vm_object_unlock(source);
1171}
1172
1173/*
1174 *	vm_object_split:
1175 *
1176 * Split the pages in a map entry into a new object.  This affords
1177 * easier removal of unused pages, and keeps object inheritance from
1178 * being a negative impact on memory usage.
1179 */
1180void
1181vm_object_split(vm_map_entry_t entry)
1182{
1183	vm_page_t m;
1184	vm_object_t orig_object, new_object, source;
1185	vm_offset_t s, e;
1186	vm_pindex_t offidxstart, offidxend;
1187	vm_size_t idx, size;
1188	vm_ooffset_t offset;
1189
1190	GIANT_REQUIRED;
1191
1192	orig_object = entry->object.vm_object;
1193	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1194		return;
1195	if (orig_object->ref_count <= 1)
1196		return;
1197
1198	offset = entry->offset;
1199	s = entry->start;
1200	e = entry->end;
1201
1202	offidxstart = OFF_TO_IDX(offset);
1203	offidxend = offidxstart + OFF_TO_IDX(e - s);
1204	size = offidxend - offidxstart;
1205
1206	new_object = vm_pager_allocate(orig_object->type,
1207		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
1208	if (new_object == NULL)
1209		return;
1210
1211	source = orig_object->backing_object;
1212	if (source != NULL) {
1213		vm_object_reference(source);	/* Referenced by new_object */
1214		TAILQ_INSERT_TAIL(&source->shadow_head,
1215				  new_object, shadow_list);
1216		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1217		new_object->backing_object_offset =
1218			orig_object->backing_object_offset + offset;
1219		new_object->backing_object = source;
1220		source->shadow_count++;
1221		source->generation++;
1222	}
1223	for (idx = 0; idx < size; idx++) {
1224	retry:
1225		m = vm_page_lookup(orig_object, offidxstart + idx);
1226		if (m == NULL)
1227			continue;
1228
1229		/*
1230		 * We must wait for pending I/O to complete before we can
1231		 * rename the page.
1232		 *
1233		 * We do not have to VM_PROT_NONE the page as mappings should
1234		 * not be changed by this operation.
1235		 */
1236		vm_page_lock_queues();
1237		if (vm_page_sleep_if_busy(m, TRUE, "spltwt"))
1238			goto retry;
1239
1240		vm_page_busy(m);
1241		vm_page_unlock_queues();
1242		vm_page_rename(m, new_object, idx);
1243		/* page automatically made dirty by rename and cache handled */
1244		vm_page_lock_queues();
1245		vm_page_busy(m);
1246		vm_page_unlock_queues();
1247	}
1248	if (orig_object->type == OBJT_SWAP) {
1249		vm_object_pip_add(orig_object, 1);
1250		/*
1251		 * copy orig_object pages into new_object
1252		 * and destroy unneeded pages in
1253		 * shadow object.
1254		 */
1255		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1256		vm_object_pip_wakeup(orig_object);
1257	}
1258	vm_page_lock_queues();
1259	TAILQ_FOREACH(m, &new_object->memq, listq)
1260		vm_page_wakeup(m);
1261	vm_page_unlock_queues();
1262	entry->object.vm_object = new_object;
1263	entry->offset = 0LL;
1264	vm_object_deallocate(orig_object);
1265}
1266
1267#define	OBSC_TEST_ALL_SHADOWED	0x0001
1268#define	OBSC_COLLAPSE_NOWAIT	0x0002
1269#define	OBSC_COLLAPSE_WAIT	0x0004
1270
1271static __inline int
1272vm_object_backing_scan(vm_object_t object, int op)
1273{
1274	int s;
1275	int r = 1;
1276	vm_page_t p;
1277	vm_object_t backing_object;
1278	vm_pindex_t backing_offset_index;
1279
1280	s = splvm();
1281	GIANT_REQUIRED;
1282
1283	backing_object = object->backing_object;
1284	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1285
1286	/*
1287	 * Initial conditions
1288	 */
1289	if (op & OBSC_TEST_ALL_SHADOWED) {
1290		/*
1291		 * We do not want to have to test for the existence of
1292		 * swap pages in the backing object.  XXX but with the
1293		 * new swapper this would be pretty easy to do.
1294		 *
1295		 * XXX what about anonymous MAP_SHARED memory that hasn't
1296		 * been ZFOD faulted yet?  If we do not test for this, the
1297		 * shadow test may succeed! XXX
1298		 */
1299		if (backing_object->type != OBJT_DEFAULT) {
1300			splx(s);
1301			return (0);
1302		}
1303	}
1304	if (op & OBSC_COLLAPSE_WAIT) {
1305		vm_object_set_flag(backing_object, OBJ_DEAD);
1306	}
1307
1308	/*
1309	 * Our scan
1310	 */
1311	p = TAILQ_FIRST(&backing_object->memq);
1312	while (p) {
1313		vm_page_t next = TAILQ_NEXT(p, listq);
1314		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1315
1316		if (op & OBSC_TEST_ALL_SHADOWED) {
1317			vm_page_t pp;
1318
1319			/*
1320			 * Ignore pages outside the parent object's range
1321			 * and outside the parent object's mapping of the
1322			 * backing object.
1323			 *
1324			 * note that we do not busy the backing object's
1325			 * page.
1326			 */
1327			if (
1328			    p->pindex < backing_offset_index ||
1329			    new_pindex >= object->size
1330			) {
1331				p = next;
1332				continue;
1333			}
1334
1335			/*
1336			 * See if the parent has the page or if the parent's
1337			 * object pager has the page.  If the parent has the
1338			 * page but the page is not valid, the parent's
1339			 * object pager must have the page.
1340			 *
1341			 * If this fails, the parent does not completely shadow
1342			 * the object and we might as well give up now.
1343			 */
1344
1345			pp = vm_page_lookup(object, new_pindex);
1346			if (
1347			    (pp == NULL || pp->valid == 0) &&
1348			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1349			) {
1350				r = 0;
1351				break;
1352			}
1353		}
1354
1355		/*
1356		 * Check for busy page
1357		 */
1358		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1359			vm_page_t pp;
1360
1361			vm_page_lock_queues();
1362			if (op & OBSC_COLLAPSE_NOWAIT) {
1363				if ((p->flags & PG_BUSY) ||
1364				    !p->valid ||
1365				    p->hold_count ||
1366				    p->wire_count ||
1367				    p->busy) {
1368					vm_page_unlock_queues();
1369					p = next;
1370					continue;
1371				}
1372			} else if (op & OBSC_COLLAPSE_WAIT) {
1373				if (vm_page_sleep_if_busy(p, TRUE, "vmocol")) {
1374					/*
1375					 * If we slept, anything could have
1376					 * happened.  Since the object is
1377					 * marked dead, the backing offset
1378					 * should not have changed so we
1379					 * just restart our scan.
1380					 */
1381					p = TAILQ_FIRST(&backing_object->memq);
1382					continue;
1383				}
1384			}
1385
1386			/*
1387			 * Busy the page
1388			 */
1389			vm_page_busy(p);
1390			vm_page_unlock_queues();
1391
1392			KASSERT(
1393			    p->object == backing_object,
1394			    ("vm_object_qcollapse(): object mismatch")
1395			);
1396
1397			/*
1398			 * Destroy any associated swap
1399			 */
1400			if (backing_object->type == OBJT_SWAP) {
1401				swap_pager_freespace(
1402				    backing_object,
1403				    p->pindex,
1404				    1
1405				);
1406			}
1407
1408			if (
1409			    p->pindex < backing_offset_index ||
1410			    new_pindex >= object->size
1411			) {
1412				/*
1413				 * Page is out of the parent object's range, we
1414				 * can simply destroy it.
1415				 */
1416				vm_page_lock_queues();
1417				pmap_remove_all(p);
1418				vm_page_free(p);
1419				vm_page_unlock_queues();
1420				p = next;
1421				continue;
1422			}
1423
1424			pp = vm_page_lookup(object, new_pindex);
1425			if (
1426			    pp != NULL ||
1427			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1428			) {
1429				/*
1430				 * page already exists in parent OR swap exists
1431				 * for this location in the parent.  Destroy
1432				 * the original page from the backing object.
1433				 *
1434				 * Leave the parent's page alone
1435				 */
1436				vm_page_lock_queues();
1437				pmap_remove_all(p);
1438				vm_page_free(p);
1439				vm_page_unlock_queues();
1440				p = next;
1441				continue;
1442			}
1443
1444			/*
1445			 * Page does not exist in parent, rename the
1446			 * page from the backing object to the main object.
1447			 *
1448			 * If the page was mapped to a process, it can remain
1449			 * mapped through the rename.
1450			 */
1451			vm_page_rename(p, object, new_pindex);
1452			/* page automatically made dirty by rename */
1453		}
1454		p = next;
1455	}
1456	splx(s);
1457	return (r);
1458}
1459
1460
1461/*
1462 * this version of collapse allows the operation to occur earlier and
1463 * when paging_in_progress is true for an object...  This is not a complete
1464 * operation, but should plug 99.9% of the rest of the leaks.
1465 */
1466static void
1467vm_object_qcollapse(vm_object_t object)
1468{
1469	vm_object_t backing_object = object->backing_object;
1470
1471	GIANT_REQUIRED;
1472
1473	if (backing_object->ref_count != 1)
1474		return;
1475
1476	backing_object->ref_count += 2;
1477
1478	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1479
1480	backing_object->ref_count -= 2;
1481}
1482
1483/*
1484 *	vm_object_collapse:
1485 *
1486 *	Collapse an object with the object backing it.
1487 *	Pages in the backing object are moved into the
1488 *	parent, and the backing object is deallocated.
1489 */
1490void
1491vm_object_collapse(vm_object_t object)
1492{
1493	GIANT_REQUIRED;
1494
1495	while (TRUE) {
1496		vm_object_t backing_object;
1497
1498		/*
1499		 * Verify that the conditions are right for collapse:
1500		 *
1501		 * The object exists and the backing object exists.
1502		 */
1503		if (object == NULL)
1504			break;
1505
1506		if ((backing_object = object->backing_object) == NULL)
1507			break;
1508
1509		/*
1510		 * we check the backing object first, because it is most likely
1511		 * not collapsable.
1512		 */
1513		if (backing_object->handle != NULL ||
1514		    (backing_object->type != OBJT_DEFAULT &&
1515		     backing_object->type != OBJT_SWAP) ||
1516		    (backing_object->flags & OBJ_DEAD) ||
1517		    object->handle != NULL ||
1518		    (object->type != OBJT_DEFAULT &&
1519		     object->type != OBJT_SWAP) ||
1520		    (object->flags & OBJ_DEAD)) {
1521			break;
1522		}
1523
1524		if (
1525		    object->paging_in_progress != 0 ||
1526		    backing_object->paging_in_progress != 0
1527		) {
1528			vm_object_qcollapse(object);
1529			break;
1530		}
1531
1532		/*
1533		 * We know that we can either collapse the backing object (if
1534		 * the parent is the only reference to it) or (perhaps) have
1535		 * the parent bypass the object if the parent happens to shadow
1536		 * all the resident pages in the entire backing object.
1537		 *
1538		 * This is ignoring pager-backed pages such as swap pages.
1539		 * vm_object_backing_scan fails the shadowing test in this
1540		 * case.
1541		 */
1542		if (backing_object->ref_count == 1) {
1543			/*
1544			 * If there is exactly one reference to the backing
1545			 * object, we can collapse it into the parent.
1546			 */
1547			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1548
1549			/*
1550			 * Move the pager from backing_object to object.
1551			 */
1552			if (backing_object->type == OBJT_SWAP) {
1553				vm_object_pip_add(backing_object, 1);
1554
1555				/*
1556				 * scrap the paging_offset junk and do a
1557				 * discrete copy.  This also removes major
1558				 * assumptions about how the swap-pager
1559				 * works from where it doesn't belong.  The
1560				 * new swapper is able to optimize the
1561				 * destroy-source case.
1562				 */
1563				vm_object_pip_add(object, 1);
1564				swap_pager_copy(
1565				    backing_object,
1566				    object,
1567				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1568				vm_object_pip_wakeup(object);
1569
1570				vm_object_pip_wakeup(backing_object);
1571			}
1572			/*
1573			 * Object now shadows whatever backing_object did.
1574			 * Note that the reference to
1575			 * backing_object->backing_object moves from within
1576			 * backing_object to within object.
1577			 */
1578			TAILQ_REMOVE(
1579			    &object->backing_object->shadow_head,
1580			    object,
1581			    shadow_list
1582			);
1583			object->backing_object->shadow_count--;
1584			object->backing_object->generation++;
1585			if (backing_object->backing_object) {
1586				TAILQ_REMOVE(
1587				    &backing_object->backing_object->shadow_head,
1588				    backing_object,
1589				    shadow_list
1590				);
1591				backing_object->backing_object->shadow_count--;
1592				backing_object->backing_object->generation++;
1593			}
1594			object->backing_object = backing_object->backing_object;
1595			if (object->backing_object) {
1596				TAILQ_INSERT_TAIL(
1597				    &object->backing_object->shadow_head,
1598				    object,
1599				    shadow_list
1600				);
1601				object->backing_object->shadow_count++;
1602				object->backing_object->generation++;
1603			}
1604
1605			object->backing_object_offset +=
1606			    backing_object->backing_object_offset;
1607
1608			/*
1609			 * Discard backing_object.
1610			 *
1611			 * Since the backing object has no pages, no pager left,
1612			 * and no object references within it, all that is
1613			 * necessary is to dispose of it.
1614			 */
1615			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1616			KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1617
1618			mtx_lock(&vm_object_list_mtx);
1619			TAILQ_REMOVE(
1620			    &vm_object_list,
1621			    backing_object,
1622			    object_list
1623			);
1624			mtx_unlock(&vm_object_list_mtx);
1625
1626			uma_zfree(obj_zone, backing_object);
1627
1628			object_collapses++;
1629		} else {
1630			vm_object_t new_backing_object;
1631
1632			/*
1633			 * If we do not entirely shadow the backing object,
1634			 * there is nothing we can do so we give up.
1635			 */
1636			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1637				break;
1638			}
1639
1640			/*
1641			 * Make the parent shadow the next object in the
1642			 * chain.  Deallocating backing_object will not remove
1643			 * it, since its reference count is at least 2.
1644			 */
1645			TAILQ_REMOVE(
1646			    &backing_object->shadow_head,
1647			    object,
1648			    shadow_list
1649			);
1650			backing_object->shadow_count--;
1651			backing_object->generation++;
1652
1653			new_backing_object = backing_object->backing_object;
1654			if ((object->backing_object = new_backing_object) != NULL) {
1655				vm_object_reference(new_backing_object);
1656				TAILQ_INSERT_TAIL(
1657				    &new_backing_object->shadow_head,
1658				    object,
1659				    shadow_list
1660				);
1661				new_backing_object->shadow_count++;
1662				new_backing_object->generation++;
1663				object->backing_object_offset +=
1664					backing_object->backing_object_offset;
1665			}
1666
1667			/*
1668			 * Drop the reference count on backing_object. Since
1669			 * its ref_count was at least 2, it will not vanish;
1670			 * so we don't need to call vm_object_deallocate, but
1671			 * we do anyway.
1672			 */
1673			vm_object_deallocate(backing_object);
1674			object_bypasses++;
1675		}
1676
1677		/*
1678		 * Try again with this object's new backing object.
1679		 */
1680	}
1681}
1682
1683/*
1684 *	vm_object_page_remove: [internal]
1685 *
1686 *	Removes all physical pages in the specified
1687 *	object range from the object's list of pages.
1688 *
1689 *	The object must be locked.
1690 */
1691void
1692vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, boolean_t clean_only)
1693{
1694	vm_page_t p, next;
1695	vm_pindex_t size;
1696	int all;
1697
1698	if (object == NULL ||
1699	    object->resident_page_count == 0)
1700		return;
1701	all = ((end == 0) && (start == 0));
1702
1703	/*
1704	 * Since physically-backed objects do not use managed pages, we can't
1705	 * remove pages from the object (we must instead remove the page
1706	 * references, and then destroy the object).
1707	 */
1708	KASSERT(object->type != OBJT_PHYS, ("attempt to remove pages from a physical object"));
1709
1710	vm_object_pip_add(object, 1);
1711again:
1712	vm_page_lock_queues();
1713	size = end - start;
1714	if (all || size > object->resident_page_count / 4) {
1715		for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1716			next = TAILQ_NEXT(p, listq);
1717			if (all || ((start <= p->pindex) && (p->pindex < end))) {
1718				if (p->wire_count != 0) {
1719					pmap_remove_all(p);
1720					if (!clean_only)
1721						p->valid = 0;
1722					continue;
1723				}
1724
1725				/*
1726				 * The busy flags are only cleared at
1727				 * interrupt -- minimize the spl transitions
1728				 */
1729 				if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1730 					goto again;
1731
1732				if (clean_only && p->valid) {
1733					vm_page_test_dirty(p);
1734					if (p->valid & p->dirty)
1735						continue;
1736				}
1737				vm_page_busy(p);
1738				pmap_remove_all(p);
1739				vm_page_free(p);
1740			}
1741		}
1742	} else {
1743		while (size > 0) {
1744			if ((p = vm_page_lookup(object, start)) != NULL) {
1745				if (p->wire_count != 0) {
1746					pmap_remove_all(p);
1747					if (!clean_only)
1748						p->valid = 0;
1749					start += 1;
1750					size -= 1;
1751					continue;
1752				}
1753
1754				/*
1755				 * The busy flags are only cleared at
1756				 * interrupt -- minimize the spl transitions
1757				 */
1758				if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1759					goto again;
1760
1761				if (clean_only && p->valid) {
1762					vm_page_test_dirty(p);
1763					if (p->valid & p->dirty) {
1764						start += 1;
1765						size -= 1;
1766						continue;
1767					}
1768				}
1769				vm_page_busy(p);
1770				pmap_remove_all(p);
1771				vm_page_free(p);
1772			}
1773			start += 1;
1774			size -= 1;
1775		}
1776	}
1777	vm_page_unlock_queues();
1778	vm_object_pip_wakeup(object);
1779}
1780
1781/*
1782 *	Routine:	vm_object_coalesce
1783 *	Function:	Coalesces two objects backing up adjoining
1784 *			regions of memory into a single object.
1785 *
1786 *	returns TRUE if objects were combined.
1787 *
1788 *	NOTE:	Only works at the moment if the second object is NULL -
1789 *		if it's not, which object do we lock first?
1790 *
1791 *	Parameters:
1792 *		prev_object	First object to coalesce
1793 *		prev_offset	Offset into prev_object
1794 *		next_object	Second object into coalesce
1795 *		next_offset	Offset into next_object
1796 *
1797 *		prev_size	Size of reference to prev_object
1798 *		next_size	Size of reference to next_object
1799 *
1800 *	Conditions:
1801 *	The object must *not* be locked.
1802 */
1803boolean_t
1804vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1805	vm_size_t prev_size, vm_size_t next_size)
1806{
1807	vm_pindex_t next_pindex;
1808
1809	if (prev_object == NULL)
1810		return (TRUE);
1811	vm_object_lock(prev_object);
1812	if (prev_object->type != OBJT_DEFAULT &&
1813	    prev_object->type != OBJT_SWAP) {
1814		vm_object_unlock(prev_object);
1815		return (FALSE);
1816	}
1817
1818	/*
1819	 * Try to collapse the object first
1820	 */
1821	vm_object_collapse(prev_object);
1822
1823	/*
1824	 * Can't coalesce if: . more than one reference . paged out . shadows
1825	 * another object . has a copy elsewhere (any of which mean that the
1826	 * pages not mapped to prev_entry may be in use anyway)
1827	 */
1828	if (prev_object->backing_object != NULL) {
1829		vm_object_unlock(prev_object);
1830		return (FALSE);
1831	}
1832
1833	prev_size >>= PAGE_SHIFT;
1834	next_size >>= PAGE_SHIFT;
1835	next_pindex = prev_pindex + prev_size;
1836
1837	if ((prev_object->ref_count > 1) &&
1838	    (prev_object->size != next_pindex)) {
1839		vm_object_unlock(prev_object);
1840		return (FALSE);
1841	}
1842
1843	/*
1844	 * Remove any pages that may still be in the object from a previous
1845	 * deallocation.
1846	 */
1847	if (next_pindex < prev_object->size) {
1848		vm_object_page_remove(prev_object,
1849				      next_pindex,
1850				      next_pindex + next_size, FALSE);
1851		if (prev_object->type == OBJT_SWAP)
1852			swap_pager_freespace(prev_object,
1853					     next_pindex, next_size);
1854	}
1855
1856	/*
1857	 * Extend the object if necessary.
1858	 */
1859	if (next_pindex + next_size > prev_object->size)
1860		prev_object->size = next_pindex + next_size;
1861
1862	vm_object_unlock(prev_object);
1863	return (TRUE);
1864}
1865
1866void
1867vm_object_set_writeable_dirty(vm_object_t object)
1868{
1869	struct vnode *vp;
1870
1871	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1872	if (object->type == OBJT_VNODE &&
1873	    (vp = (struct vnode *)object->handle) != NULL) {
1874		VI_LOCK(vp);
1875		if ((vp->v_iflag & VI_OBJDIRTY) == 0)
1876			vp->v_iflag |= VI_OBJDIRTY;
1877		VI_UNLOCK(vp);
1878	}
1879}
1880
1881#ifdef ENABLE_VFS_IOOPT
1882/*
1883 * Experimental support for zero-copy I/O
1884 *
1885 * Performs the copy_on_write operations necessary to allow the virtual copies
1886 * into user space to work.  This has to be called for write(2) system calls
1887 * from other processes, file unlinking, and file size shrinkage.
1888 */
1889void
1890vm_freeze_copyopts(vm_object_t object, vm_pindex_t froma, vm_pindex_t toa)
1891{
1892	int rv;
1893	vm_object_t robject;
1894	vm_pindex_t idx;
1895
1896	GIANT_REQUIRED;
1897	if ((object == NULL) ||
1898		((object->flags & OBJ_OPT) == 0))
1899		return;
1900
1901	if (object->shadow_count > object->ref_count)
1902		panic("vm_freeze_copyopts: sc > rc");
1903
1904	while ((robject = TAILQ_FIRST(&object->shadow_head)) != NULL) {
1905		vm_pindex_t bo_pindex;
1906		vm_page_t m_in, m_out;
1907
1908		bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
1909
1910		vm_object_reference(robject);
1911
1912		vm_object_pip_wait(robject, "objfrz");
1913
1914		if (robject->ref_count == 1) {
1915			vm_object_deallocate(robject);
1916			continue;
1917		}
1918
1919		vm_object_pip_add(robject, 1);
1920
1921		for (idx = 0; idx < robject->size; idx++) {
1922
1923			m_out = vm_page_grab(robject, idx,
1924						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1925
1926			if (m_out->valid == 0) {
1927				m_in = vm_page_grab(object, bo_pindex + idx,
1928						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1929				vm_page_lock_queues();
1930				if (m_in->valid == 0) {
1931					vm_page_unlock_queues();
1932					rv = vm_pager_get_pages(object, &m_in, 1, 0);
1933					if (rv != VM_PAGER_OK) {
1934						printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
1935						continue;
1936					}
1937					vm_page_lock_queues();
1938					vm_page_deactivate(m_in);
1939				}
1940
1941				pmap_remove_all(m_in);
1942				vm_page_unlock_queues();
1943				pmap_copy_page(m_in, m_out);
1944				vm_page_lock_queues();
1945				m_out->valid = m_in->valid;
1946				vm_page_dirty(m_out);
1947				vm_page_activate(m_out);
1948				vm_page_wakeup(m_in);
1949			} else
1950				vm_page_lock_queues();
1951			vm_page_wakeup(m_out);
1952			vm_page_unlock_queues();
1953		}
1954
1955		object->shadow_count--;
1956		object->ref_count--;
1957		TAILQ_REMOVE(&object->shadow_head, robject, shadow_list);
1958		robject->backing_object = NULL;
1959		robject->backing_object_offset = 0;
1960
1961		vm_object_pip_wakeup(robject);
1962		vm_object_deallocate(robject);
1963	}
1964
1965	vm_object_clear_flag(object, OBJ_OPT);
1966}
1967#endif
1968
1969#include "opt_ddb.h"
1970#ifdef DDB
1971#include <sys/kernel.h>
1972
1973#include <sys/cons.h>
1974
1975#include <ddb/ddb.h>
1976
1977static int
1978_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1979{
1980	vm_map_t tmpm;
1981	vm_map_entry_t tmpe;
1982	vm_object_t obj;
1983	int entcount;
1984
1985	if (map == 0)
1986		return 0;
1987
1988	if (entry == 0) {
1989		tmpe = map->header.next;
1990		entcount = map->nentries;
1991		while (entcount-- && (tmpe != &map->header)) {
1992			if (_vm_object_in_map(map, object, tmpe)) {
1993				return 1;
1994			}
1995			tmpe = tmpe->next;
1996		}
1997	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1998		tmpm = entry->object.sub_map;
1999		tmpe = tmpm->header.next;
2000		entcount = tmpm->nentries;
2001		while (entcount-- && tmpe != &tmpm->header) {
2002			if (_vm_object_in_map(tmpm, object, tmpe)) {
2003				return 1;
2004			}
2005			tmpe = tmpe->next;
2006		}
2007	} else if ((obj = entry->object.vm_object) != NULL) {
2008		for (; obj; obj = obj->backing_object)
2009			if (obj == object) {
2010				return 1;
2011			}
2012	}
2013	return 0;
2014}
2015
2016static int
2017vm_object_in_map(vm_object_t object)
2018{
2019	struct proc *p;
2020
2021	/* sx_slock(&allproc_lock); */
2022	LIST_FOREACH(p, &allproc, p_list) {
2023		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2024			continue;
2025		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2026			/* sx_sunlock(&allproc_lock); */
2027			return 1;
2028		}
2029	}
2030	/* sx_sunlock(&allproc_lock); */
2031	if (_vm_object_in_map(kernel_map, object, 0))
2032		return 1;
2033	if (_vm_object_in_map(kmem_map, object, 0))
2034		return 1;
2035	if (_vm_object_in_map(pager_map, object, 0))
2036		return 1;
2037	if (_vm_object_in_map(buffer_map, object, 0))
2038		return 1;
2039	return 0;
2040}
2041
2042DB_SHOW_COMMAND(vmochk, vm_object_check)
2043{
2044	vm_object_t object;
2045
2046	/*
2047	 * make sure that internal objs are in a map somewhere
2048	 * and none have zero ref counts.
2049	 */
2050	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2051		if (object->handle == NULL &&
2052		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2053			if (object->ref_count == 0) {
2054				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2055					(long)object->size);
2056			}
2057			if (!vm_object_in_map(object)) {
2058				db_printf(
2059			"vmochk: internal obj is not in a map: "
2060			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2061				    object->ref_count, (u_long)object->size,
2062				    (u_long)object->size,
2063				    (void *)object->backing_object);
2064			}
2065		}
2066	}
2067}
2068
2069/*
2070 *	vm_object_print:	[ debug ]
2071 */
2072DB_SHOW_COMMAND(object, vm_object_print_static)
2073{
2074	/* XXX convert args. */
2075	vm_object_t object = (vm_object_t)addr;
2076	boolean_t full = have_addr;
2077
2078	vm_page_t p;
2079
2080	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2081#define	count	was_count
2082
2083	int count;
2084
2085	if (object == NULL)
2086		return;
2087
2088	db_iprintf(
2089	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2090	    object, (int)object->type, (uintmax_t)object->size,
2091	    object->resident_page_count, object->ref_count, object->flags);
2092	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2093	    object->shadow_count,
2094	    object->backing_object ? object->backing_object->ref_count : 0,
2095	    object->backing_object, (uintmax_t)object->backing_object_offset);
2096
2097	if (!full)
2098		return;
2099
2100	db_indent += 2;
2101	count = 0;
2102	TAILQ_FOREACH(p, &object->memq, listq) {
2103		if (count == 0)
2104			db_iprintf("memory:=");
2105		else if (count == 6) {
2106			db_printf("\n");
2107			db_iprintf(" ...");
2108			count = 0;
2109		} else
2110			db_printf(",");
2111		count++;
2112
2113		db_printf("(off=0x%jx,page=0x%jx)",
2114		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2115	}
2116	if (count != 0)
2117		db_printf("\n");
2118	db_indent -= 2;
2119}
2120
2121/* XXX. */
2122#undef count
2123
2124/* XXX need this non-static entry for calling from vm_map_print. */
2125void
2126vm_object_print(
2127        /* db_expr_t */ long addr,
2128	boolean_t have_addr,
2129	/* db_expr_t */ long count,
2130	char *modif)
2131{
2132	vm_object_print_static(addr, have_addr, count, modif);
2133}
2134
2135DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2136{
2137	vm_object_t object;
2138	int nl = 0;
2139	int c;
2140
2141	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2142		vm_pindex_t idx, fidx;
2143		vm_pindex_t osize;
2144		vm_offset_t pa = -1, padiff;
2145		int rcount;
2146		vm_page_t m;
2147
2148		db_printf("new object: %p\n", (void *)object);
2149		if (nl > 18) {
2150			c = cngetc();
2151			if (c != ' ')
2152				return;
2153			nl = 0;
2154		}
2155		nl++;
2156		rcount = 0;
2157		fidx = 0;
2158		osize = object->size;
2159		if (osize > 128)
2160			osize = 128;
2161		for (idx = 0; idx < osize; idx++) {
2162			m = vm_page_lookup(object, idx);
2163			if (m == NULL) {
2164				if (rcount) {
2165					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2166						(long)fidx, rcount, (long)pa);
2167					if (nl > 18) {
2168						c = cngetc();
2169						if (c != ' ')
2170							return;
2171						nl = 0;
2172					}
2173					nl++;
2174					rcount = 0;
2175				}
2176				continue;
2177			}
2178
2179
2180			if (rcount &&
2181				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2182				++rcount;
2183				continue;
2184			}
2185			if (rcount) {
2186				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2187				padiff >>= PAGE_SHIFT;
2188				padiff &= PQ_L2_MASK;
2189				if (padiff == 0) {
2190					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2191					++rcount;
2192					continue;
2193				}
2194				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2195					(long)fidx, rcount, (long)pa);
2196				db_printf("pd(%ld)\n", (long)padiff);
2197				if (nl > 18) {
2198					c = cngetc();
2199					if (c != ' ')
2200						return;
2201					nl = 0;
2202				}
2203				nl++;
2204			}
2205			fidx = idx;
2206			pa = VM_PAGE_TO_PHYS(m);
2207			rcount = 1;
2208		}
2209		if (rcount) {
2210			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2211				(long)fidx, rcount, (long)pa);
2212			if (nl > 18) {
2213				c = cngetc();
2214				if (c != ' ')
2215					return;
2216				nl = 0;
2217			}
2218			nl++;
2219		}
2220	}
2221}
2222#endif /* DDB */
2223