vm_object.c revision 106720
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_object.c 106720 2002-11-10 07:12:04Z alc $
65 */
66
67/*
68 *	Virtual memory object module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/lock.h>
74#include <sys/mman.h>
75#include <sys/mount.h>
76#include <sys/kernel.h>
77#include <sys/sysctl.h>
78#include <sys/mutex.h>
79#include <sys/proc.h>		/* for curproc, pageproc */
80#include <sys/socket.h>
81#include <sys/stdint.h>
82#include <sys/vnode.h>
83#include <sys/vmmeter.h>
84#include <sys/sx.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_object.h>
91#include <vm/vm_page.h>
92#include <vm/vm_pageout.h>
93#include <vm/vm_pager.h>
94#include <vm/swap_pager.h>
95#include <vm/vm_kern.h>
96#include <vm/vm_extern.h>
97#include <vm/uma.h>
98
99#define EASY_SCAN_FACTOR       8
100
101#define MSYNC_FLUSH_HARDSEQ	0x01
102#define MSYNC_FLUSH_SOFTSEQ	0x02
103
104/*
105 * msync / VM object flushing optimizations
106 */
107static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
108SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
109        CTLFLAG_RW, &msync_flush_flags, 0, "");
110
111static void	vm_object_qcollapse(vm_object_t object);
112static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
113
114/*
115 *	Virtual memory objects maintain the actual data
116 *	associated with allocated virtual memory.  A given
117 *	page of memory exists within exactly one object.
118 *
119 *	An object is only deallocated when all "references"
120 *	are given up.  Only one "reference" to a given
121 *	region of an object should be writeable.
122 *
123 *	Associated with each object is a list of all resident
124 *	memory pages belonging to that object; this list is
125 *	maintained by the "vm_page" module, and locked by the object's
126 *	lock.
127 *
128 *	Each object also records a "pager" routine which is
129 *	used to retrieve (and store) pages to the proper backing
130 *	storage.  In addition, objects may be backed by other
131 *	objects from which they were virtual-copied.
132 *
133 *	The only items within the object structure which are
134 *	modified after time of creation are:
135 *		reference count		locked by object's lock
136 *		pager routine		locked by object's lock
137 *
138 */
139
140struct object_q vm_object_list;
141struct mtx vm_object_list_mtx;	/* lock for object list and count */
142vm_object_t kernel_object;
143vm_object_t kmem_object;
144static struct vm_object kernel_object_store;
145static struct vm_object kmem_object_store;
146extern int vm_pageout_page_count;
147
148static long object_collapses;
149static long object_bypasses;
150static int next_index;
151static uma_zone_t obj_zone;
152#define VM_OBJECTS_INIT 256
153
154static void vm_object_zinit(void *mem, int size);
155
156#ifdef INVARIANTS
157static void vm_object_zdtor(void *mem, int size, void *arg);
158
159static void
160vm_object_zdtor(void *mem, int size, void *arg)
161{
162	vm_object_t object;
163
164	object = (vm_object_t)mem;
165	KASSERT(object->paging_in_progress == 0,
166	    ("object %p paging_in_progress = %d",
167	    object, object->paging_in_progress));
168	KASSERT(object->resident_page_count == 0,
169	    ("object %p resident_page_count = %d",
170	    object, object->resident_page_count));
171	KASSERT(object->shadow_count == 0,
172	    ("object %p shadow_count = %d",
173	    object, object->shadow_count));
174}
175#endif
176
177static void
178vm_object_zinit(void *mem, int size)
179{
180	vm_object_t object;
181
182	object = (vm_object_t)mem;
183
184	/* These are true for any object that has been freed */
185	object->paging_in_progress = 0;
186	object->resident_page_count = 0;
187	object->shadow_count = 0;
188}
189
190void
191_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
192{
193	static int object_hash_rand;
194	int exp, incr;
195
196	TAILQ_INIT(&object->memq);
197	TAILQ_INIT(&object->shadow_head);
198
199	object->root = NULL;
200	object->type = type;
201	object->size = size;
202	object->ref_count = 1;
203	object->flags = 0;
204	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
205		vm_object_set_flag(object, OBJ_ONEMAPPING);
206	if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
207		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
208	else
209		incr = size;
210	do
211		object->pg_color = next_index;
212	while (!atomic_cmpset_int(&next_index, object->pg_color,
213				  (object->pg_color + incr) & PQ_L2_MASK));
214	object->handle = NULL;
215	object->backing_object = NULL;
216	object->backing_object_offset = (vm_ooffset_t) 0;
217	/*
218	 * Try to generate a number that will spread objects out in the
219	 * hash table.  We 'wipe' new objects across the hash in 128 page
220	 * increments plus 1 more to offset it a little more by the time
221	 * it wraps around.
222	 */
223	do {
224		exp = object_hash_rand;
225		object->hash_rand = exp - 129;
226	} while (!atomic_cmpset_int(&object_hash_rand, exp, object->hash_rand));
227
228	object->generation++;		/* atomicity needed? XXX */
229
230	mtx_lock(&vm_object_list_mtx);
231	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
232	mtx_unlock(&vm_object_list_mtx);
233}
234
235/*
236 *	vm_object_init:
237 *
238 *	Initialize the VM objects module.
239 */
240void
241vm_object_init(void)
242{
243	TAILQ_INIT(&vm_object_list);
244	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
245
246	kernel_object = &kernel_object_store;
247	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
248	    kernel_object);
249
250	kmem_object = &kmem_object_store;
251	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
252	    kmem_object);
253	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
254#ifdef INVARIANTS
255	    vm_object_zdtor,
256#else
257	    NULL,
258#endif
259	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
260	uma_prealloc(obj_zone, VM_OBJECTS_INIT);
261}
262
263void
264vm_object_init2(void)
265{
266}
267
268void
269vm_object_set_flag(vm_object_t object, u_short bits)
270{
271	object->flags |= bits;
272}
273
274void
275vm_object_clear_flag(vm_object_t object, u_short bits)
276{
277	GIANT_REQUIRED;
278	object->flags &= ~bits;
279}
280
281void
282vm_object_pip_add(vm_object_t object, short i)
283{
284	GIANT_REQUIRED;
285	object->paging_in_progress += i;
286}
287
288void
289vm_object_pip_subtract(vm_object_t object, short i)
290{
291	GIANT_REQUIRED;
292	object->paging_in_progress -= i;
293}
294
295void
296vm_object_pip_wakeup(vm_object_t object)
297{
298	GIANT_REQUIRED;
299	object->paging_in_progress--;
300	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
301		vm_object_clear_flag(object, OBJ_PIPWNT);
302		wakeup(object);
303	}
304}
305
306void
307vm_object_pip_wakeupn(vm_object_t object, short i)
308{
309	GIANT_REQUIRED;
310	if (i)
311		object->paging_in_progress -= i;
312	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
313		vm_object_clear_flag(object, OBJ_PIPWNT);
314		wakeup(object);
315	}
316}
317
318void
319vm_object_pip_sleep(vm_object_t object, char *waitid)
320{
321	GIANT_REQUIRED;
322	if (object->paging_in_progress) {
323		int s = splvm();
324		if (object->paging_in_progress) {
325			vm_object_set_flag(object, OBJ_PIPWNT);
326			tsleep(object, PVM, waitid, 0);
327		}
328		splx(s);
329	}
330}
331
332void
333vm_object_pip_wait(vm_object_t object, char *waitid)
334{
335	GIANT_REQUIRED;
336	while (object->paging_in_progress)
337		vm_object_pip_sleep(object, waitid);
338}
339
340/*
341 *	vm_object_allocate_wait
342 *
343 *	Return a new object with the given size, and give the user the
344 *	option of waiting for it to complete or failing if the needed
345 *	memory isn't available.
346 */
347vm_object_t
348vm_object_allocate_wait(objtype_t type, vm_pindex_t size, int flags)
349{
350	vm_object_t result;
351
352	result = (vm_object_t) uma_zalloc(obj_zone, flags);
353
354	if (result != NULL)
355		_vm_object_allocate(type, size, result);
356
357	return (result);
358}
359
360/*
361 *	vm_object_allocate:
362 *
363 *	Returns a new object with the given size.
364 */
365vm_object_t
366vm_object_allocate(objtype_t type, vm_pindex_t size)
367{
368	return(vm_object_allocate_wait(type, size, M_WAITOK));
369}
370
371
372/*
373 *	vm_object_reference:
374 *
375 *	Gets another reference to the given object.
376 */
377void
378vm_object_reference(vm_object_t object)
379{
380	if (object == NULL)
381		return;
382
383	vm_object_lock(object);
384#if 0
385	/* object can be re-referenced during final cleaning */
386	KASSERT(!(object->flags & OBJ_DEAD),
387	    ("vm_object_reference: attempting to reference dead obj"));
388#endif
389
390	object->ref_count++;
391	if (object->type == OBJT_VNODE) {
392		while (vget((struct vnode *) object->handle, LK_RETRY, curthread)) {
393			printf("vm_object_reference: delay in getting object\n");
394		}
395	}
396	vm_object_unlock(object);
397}
398
399/*
400 * handle deallocating a object of type OBJT_VNODE
401 */
402void
403vm_object_vndeallocate(vm_object_t object)
404{
405	struct vnode *vp = (struct vnode *) object->handle;
406
407	GIANT_REQUIRED;
408	KASSERT(object->type == OBJT_VNODE,
409	    ("vm_object_vndeallocate: not a vnode object"));
410	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
411#ifdef INVARIANTS
412	if (object->ref_count == 0) {
413		vprint("vm_object_vndeallocate", vp);
414		panic("vm_object_vndeallocate: bad object reference count");
415	}
416#endif
417
418	object->ref_count--;
419	if (object->ref_count == 0) {
420		mp_fixme("Unlocked vflag access.");
421		vp->v_vflag &= ~VV_TEXT;
422#ifdef ENABLE_VFS_IOOPT
423		vm_object_clear_flag(object, OBJ_OPT);
424#endif
425	}
426	/*
427	 * vrele may need a vop lock
428	 */
429	vrele(vp);
430}
431
432/*
433 *	vm_object_deallocate:
434 *
435 *	Release a reference to the specified object,
436 *	gained either through a vm_object_allocate
437 *	or a vm_object_reference call.  When all references
438 *	are gone, storage associated with this object
439 *	may be relinquished.
440 *
441 *	No object may be locked.
442 */
443void
444vm_object_deallocate(vm_object_t object)
445{
446	vm_object_t temp;
447
448	mtx_lock(&Giant);
449	while (object != NULL) {
450
451		if (object->type == OBJT_VNODE) {
452			vm_object_vndeallocate(object);
453			mtx_unlock(&Giant);
454			return;
455		}
456
457		KASSERT(object->ref_count != 0,
458			("vm_object_deallocate: object deallocated too many times: %d", object->type));
459
460		/*
461		 * If the reference count goes to 0 we start calling
462		 * vm_object_terminate() on the object chain.
463		 * A ref count of 1 may be a special case depending on the
464		 * shadow count being 0 or 1.
465		 */
466		object->ref_count--;
467		if (object->ref_count > 1) {
468			mtx_unlock(&Giant);
469			return;
470		} else if (object->ref_count == 1) {
471			if (object->shadow_count == 0) {
472				vm_object_set_flag(object, OBJ_ONEMAPPING);
473			} else if ((object->shadow_count == 1) &&
474			    (object->handle == NULL) &&
475			    (object->type == OBJT_DEFAULT ||
476			     object->type == OBJT_SWAP)) {
477				vm_object_t robject;
478
479				robject = TAILQ_FIRST(&object->shadow_head);
480				KASSERT(robject != NULL,
481				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
482					 object->ref_count,
483					 object->shadow_count));
484				if ((robject->handle == NULL) &&
485				    (robject->type == OBJT_DEFAULT ||
486				     robject->type == OBJT_SWAP)) {
487
488					robject->ref_count++;
489
490					while (
491						robject->paging_in_progress ||
492						object->paging_in_progress
493					) {
494						vm_object_pip_sleep(robject, "objde1");
495						vm_object_pip_sleep(object, "objde2");
496					}
497
498					if (robject->ref_count == 1) {
499						robject->ref_count--;
500						object = robject;
501						goto doterm;
502					}
503
504					object = robject;
505					vm_object_collapse(object);
506					continue;
507				}
508			}
509			mtx_unlock(&Giant);
510			return;
511		}
512doterm:
513		temp = object->backing_object;
514		if (temp) {
515			TAILQ_REMOVE(&temp->shadow_head, object, shadow_list);
516			temp->shadow_count--;
517#ifdef ENABLE_VFS_IOOPT
518			if (temp->ref_count == 0)
519				vm_object_clear_flag(temp, OBJ_OPT);
520#endif
521			temp->generation++;
522			object->backing_object = NULL;
523		}
524		/*
525		 * Don't double-terminate, we could be in a termination
526		 * recursion due to the terminate having to sync data
527		 * to disk.
528		 */
529		if ((object->flags & OBJ_DEAD) == 0)
530			vm_object_terminate(object);
531		object = temp;
532	}
533	mtx_unlock(&Giant);
534}
535
536/*
537 *	vm_object_terminate actually destroys the specified object, freeing
538 *	up all previously used resources.
539 *
540 *	The object must be locked.
541 *	This routine may block.
542 */
543void
544vm_object_terminate(vm_object_t object)
545{
546	vm_page_t p;
547	int s;
548
549	GIANT_REQUIRED;
550
551	/*
552	 * Make sure no one uses us.
553	 */
554	vm_object_set_flag(object, OBJ_DEAD);
555
556	/*
557	 * wait for the pageout daemon to be done with the object
558	 */
559	vm_object_pip_wait(object, "objtrm");
560
561	KASSERT(!object->paging_in_progress,
562		("vm_object_terminate: pageout in progress"));
563
564	/*
565	 * Clean and free the pages, as appropriate. All references to the
566	 * object are gone, so we don't need to lock it.
567	 */
568	if (object->type == OBJT_VNODE) {
569		struct vnode *vp;
570
571#ifdef ENABLE_VFS_IOOPT
572		/*
573		 * Freeze optimized copies.
574		 */
575		vm_freeze_copyopts(object, 0, object->size);
576#endif
577		/*
578		 * Clean pages and flush buffers.
579		 */
580		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
581
582		vp = (struct vnode *) object->handle;
583		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
584	}
585
586	KASSERT(object->ref_count == 0,
587		("vm_object_terminate: object with references, ref_count=%d",
588		object->ref_count));
589
590	/*
591	 * Now free any remaining pages. For internal objects, this also
592	 * removes them from paging queues. Don't free wired pages, just
593	 * remove them from the object.
594	 */
595	s = splvm();
596	vm_page_lock_queues();
597	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
598		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
599			("vm_object_terminate: freeing busy page %p "
600			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
601		if (p->wire_count == 0) {
602			vm_page_busy(p);
603			vm_page_free(p);
604			cnt.v_pfree++;
605		} else {
606			vm_page_busy(p);
607			vm_page_remove(p);
608		}
609	}
610	vm_page_unlock_queues();
611	splx(s);
612
613	/*
614	 * Let the pager know object is dead.
615	 */
616	vm_pager_deallocate(object);
617
618	/*
619	 * Remove the object from the global object list.
620	 */
621	mtx_lock(&vm_object_list_mtx);
622	TAILQ_REMOVE(&vm_object_list, object, object_list);
623	mtx_unlock(&vm_object_list_mtx);
624
625	wakeup(object);
626
627	/*
628	 * Free the space for the object.
629	 */
630	uma_zfree(obj_zone, object);
631}
632
633/*
634 *	vm_object_page_clean
635 *
636 *	Clean all dirty pages in the specified range of object.  Leaves page
637 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
638 *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
639 *	leaving the object dirty.
640 *
641 *	Odd semantics: if start == end, we clean everything.
642 *
643 *	The object must be locked.
644 */
645void
646vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
647{
648	vm_page_t p, np;
649	vm_pindex_t tstart, tend;
650	vm_pindex_t pi;
651	struct vnode *vp;
652	int clearobjflags;
653	int pagerflags;
654	int curgeneration;
655
656	GIANT_REQUIRED;
657
658	if (object->type != OBJT_VNODE ||
659		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
660		return;
661
662	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : 0;
663	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
664
665	vp = object->handle;
666
667	vm_object_set_flag(object, OBJ_CLEANING);
668
669	tstart = start;
670	if (end == 0) {
671		tend = object->size;
672	} else {
673		tend = end;
674	}
675
676	/*
677	 * If the caller is smart and only msync()s a range he knows is
678	 * dirty, we may be able to avoid an object scan.  This results in
679	 * a phenominal improvement in performance.  We cannot do this
680	 * as a matter of course because the object may be huge - e.g.
681	 * the size might be in the gigabytes or terrabytes.
682	 */
683	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
684		vm_pindex_t tscan;
685		int scanlimit;
686		int scanreset;
687
688		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
689		if (scanreset < 16)
690			scanreset = 16;
691
692		scanlimit = scanreset;
693		tscan = tstart;
694		while (tscan < tend) {
695			curgeneration = object->generation;
696			p = vm_page_lookup(object, tscan);
697			if (p == NULL || p->valid == 0 ||
698			    (p->queue - p->pc) == PQ_CACHE) {
699				if (--scanlimit == 0)
700					break;
701				++tscan;
702				continue;
703			}
704			vm_page_test_dirty(p);
705			if ((p->dirty & p->valid) == 0) {
706				if (--scanlimit == 0)
707					break;
708				++tscan;
709				continue;
710			}
711			/*
712			 * If we have been asked to skip nosync pages and
713			 * this is a nosync page, we can't continue.
714			 */
715			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
716				if (--scanlimit == 0)
717					break;
718				++tscan;
719				continue;
720			}
721			scanlimit = scanreset;
722
723			/*
724			 * This returns 0 if it was unable to busy the first
725			 * page (i.e. had to sleep).
726			 */
727			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
728		}
729
730		/*
731		 * If everything was dirty and we flushed it successfully,
732		 * and the requested range is not the entire object, we
733		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
734		 * return immediately.
735		 */
736		if (tscan >= tend && (tstart || tend < object->size)) {
737			vm_object_clear_flag(object, OBJ_CLEANING);
738			return;
739		}
740	}
741
742	/*
743	 * Generally set CLEANCHK interlock and make the page read-only so
744	 * we can then clear the object flags.
745	 *
746	 * However, if this is a nosync mmap then the object is likely to
747	 * stay dirty so do not mess with the page and do not clear the
748	 * object flags.
749	 */
750	clearobjflags = 1;
751
752	TAILQ_FOREACH(p, &object->memq, listq) {
753		vm_page_flag_set(p, PG_CLEANCHK);
754		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
755			clearobjflags = 0;
756		else
757			vm_page_protect(p, VM_PROT_READ);
758	}
759
760	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
761		struct vnode *vp;
762
763		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
764		if (object->type == OBJT_VNODE &&
765		    (vp = (struct vnode *)object->handle) != NULL) {
766			VI_LOCK(vp);
767			if (vp->v_iflag & VI_OBJDIRTY)
768				vp->v_iflag &= ~VI_OBJDIRTY;
769			VI_UNLOCK(vp);
770		}
771	}
772
773rescan:
774	curgeneration = object->generation;
775
776	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
777		int n;
778
779		np = TAILQ_NEXT(p, listq);
780
781again:
782		pi = p->pindex;
783		if (((p->flags & PG_CLEANCHK) == 0) ||
784			(pi < tstart) || (pi >= tend) ||
785			(p->valid == 0) ||
786			((p->queue - p->pc) == PQ_CACHE)) {
787			vm_page_flag_clear(p, PG_CLEANCHK);
788			continue;
789		}
790
791		vm_page_test_dirty(p);
792		if ((p->dirty & p->valid) == 0) {
793			vm_page_flag_clear(p, PG_CLEANCHK);
794			continue;
795		}
796
797		/*
798		 * If we have been asked to skip nosync pages and this is a
799		 * nosync page, skip it.  Note that the object flags were
800		 * not cleared in this case so we do not have to set them.
801		 */
802		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
803			vm_page_flag_clear(p, PG_CLEANCHK);
804			continue;
805		}
806
807		n = vm_object_page_collect_flush(object, p,
808			curgeneration, pagerflags);
809		if (n == 0)
810			goto rescan;
811
812		if (object->generation != curgeneration)
813			goto rescan;
814
815		/*
816		 * Try to optimize the next page.  If we can't we pick up
817		 * our (random) scan where we left off.
818		 */
819		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
820			if ((p = vm_page_lookup(object, pi + n)) != NULL)
821				goto again;
822		}
823	}
824
825#if 0
826	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
827#endif
828
829	vm_object_clear_flag(object, OBJ_CLEANING);
830	return;
831}
832
833static int
834vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
835{
836	int runlen;
837	int s;
838	int maxf;
839	int chkb;
840	int maxb;
841	int i;
842	vm_pindex_t pi;
843	vm_page_t maf[vm_pageout_page_count];
844	vm_page_t mab[vm_pageout_page_count];
845	vm_page_t ma[vm_pageout_page_count];
846
847	s = splvm();
848	pi = p->pindex;
849	while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
850		if (object->generation != curgeneration) {
851			splx(s);
852			return(0);
853		}
854	}
855	vm_page_lock_queues();
856	maxf = 0;
857	for(i = 1; i < vm_pageout_page_count; i++) {
858		vm_page_t tp;
859
860		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
861			if ((tp->flags & PG_BUSY) ||
862				(tp->flags & PG_CLEANCHK) == 0 ||
863				(tp->busy != 0))
864				break;
865			if((tp->queue - tp->pc) == PQ_CACHE) {
866				vm_page_flag_clear(tp, PG_CLEANCHK);
867				break;
868			}
869			vm_page_test_dirty(tp);
870			if ((tp->dirty & tp->valid) == 0) {
871				vm_page_flag_clear(tp, PG_CLEANCHK);
872				break;
873			}
874			maf[ i - 1 ] = tp;
875			maxf++;
876			continue;
877		}
878		break;
879	}
880
881	maxb = 0;
882	chkb = vm_pageout_page_count -  maxf;
883	if (chkb) {
884		for(i = 1; i < chkb;i++) {
885			vm_page_t tp;
886
887			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
888				if ((tp->flags & PG_BUSY) ||
889					(tp->flags & PG_CLEANCHK) == 0 ||
890					(tp->busy != 0))
891					break;
892				if ((tp->queue - tp->pc) == PQ_CACHE) {
893					vm_page_flag_clear(tp, PG_CLEANCHK);
894					break;
895				}
896				vm_page_test_dirty(tp);
897				if ((tp->dirty & tp->valid) == 0) {
898					vm_page_flag_clear(tp, PG_CLEANCHK);
899					break;
900				}
901				mab[ i - 1 ] = tp;
902				maxb++;
903				continue;
904			}
905			break;
906		}
907	}
908
909	for(i = 0; i < maxb; i++) {
910		int index = (maxb - i) - 1;
911		ma[index] = mab[i];
912		vm_page_flag_clear(ma[index], PG_CLEANCHK);
913	}
914	vm_page_flag_clear(p, PG_CLEANCHK);
915	ma[maxb] = p;
916	for(i = 0; i < maxf; i++) {
917		int index = (maxb + i) + 1;
918		ma[index] = maf[i];
919		vm_page_flag_clear(ma[index], PG_CLEANCHK);
920	}
921	runlen = maxb + maxf + 1;
922
923	splx(s);
924	vm_pageout_flush(ma, runlen, pagerflags);
925	for (i = 0; i < runlen; i++) {
926		if (ma[i]->valid & ma[i]->dirty) {
927			vm_page_protect(ma[i], VM_PROT_READ);
928			vm_page_flag_set(ma[i], PG_CLEANCHK);
929
930			/*
931			 * maxf will end up being the actual number of pages
932			 * we wrote out contiguously, non-inclusive of the
933			 * first page.  We do not count look-behind pages.
934			 */
935			if (i >= maxb + 1 && (maxf > i - maxb - 1))
936				maxf = i - maxb - 1;
937		}
938	}
939	vm_page_unlock_queues();
940	return(maxf + 1);
941}
942
943#ifdef ENABLE_VFS_IOOPT
944/*
945 * Same as vm_object_pmap_copy, except range checking really
946 * works, and is meant for small sections of an object.
947 *
948 * This code protects resident pages by making them read-only
949 * and is typically called on a fork or split when a page
950 * is converted to copy-on-write.
951 *
952 * NOTE: If the page is already at VM_PROT_NONE, calling
953 * vm_page_protect will have no effect.
954 */
955void
956vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
957{
958	vm_pindex_t idx;
959	vm_page_t p;
960
961	GIANT_REQUIRED;
962
963	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
964		return;
965
966	for (idx = start; idx < end; idx++) {
967		p = vm_page_lookup(object, idx);
968		if (p == NULL)
969			continue;
970		vm_page_protect(p, VM_PROT_READ);
971	}
972}
973#endif
974
975/*
976 *	vm_object_pmap_remove:
977 *
978 *	Removes all physical pages in the specified
979 *	object range from all physical maps.
980 *
981 *	The object must *not* be locked.
982 */
983void
984vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
985{
986	vm_page_t p;
987
988	GIANT_REQUIRED;
989	if (object == NULL)
990		return;
991	TAILQ_FOREACH(p, &object->memq, listq) {
992		if (p->pindex >= start && p->pindex < end)
993			pmap_page_protect(p, VM_PROT_NONE);
994	}
995	if ((start == 0) && (object->size == end))
996		vm_object_clear_flag(object, OBJ_WRITEABLE);
997}
998
999/*
1000 *	vm_object_madvise:
1001 *
1002 *	Implements the madvise function at the object/page level.
1003 *
1004 *	MADV_WILLNEED	(any object)
1005 *
1006 *	    Activate the specified pages if they are resident.
1007 *
1008 *	MADV_DONTNEED	(any object)
1009 *
1010 *	    Deactivate the specified pages if they are resident.
1011 *
1012 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1013 *			 OBJ_ONEMAPPING only)
1014 *
1015 *	    Deactivate and clean the specified pages if they are
1016 *	    resident.  This permits the process to reuse the pages
1017 *	    without faulting or the kernel to reclaim the pages
1018 *	    without I/O.
1019 */
1020void
1021vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1022{
1023	vm_pindex_t end, tpindex;
1024	vm_object_t tobject;
1025	vm_page_t m;
1026
1027	if (object == NULL)
1028		return;
1029
1030	vm_object_lock(object);
1031
1032	end = pindex + count;
1033
1034	/*
1035	 * Locate and adjust resident pages
1036	 */
1037	for (; pindex < end; pindex += 1) {
1038relookup:
1039		tobject = object;
1040		tpindex = pindex;
1041shadowlookup:
1042		/*
1043		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1044		 * and those pages must be OBJ_ONEMAPPING.
1045		 */
1046		if (advise == MADV_FREE) {
1047			if ((tobject->type != OBJT_DEFAULT &&
1048			     tobject->type != OBJT_SWAP) ||
1049			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1050				continue;
1051			}
1052		}
1053
1054		m = vm_page_lookup(tobject, tpindex);
1055
1056		if (m == NULL) {
1057			/*
1058			 * There may be swap even if there is no backing page
1059			 */
1060			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1061				swap_pager_freespace(tobject, tpindex, 1);
1062
1063			/*
1064			 * next object
1065			 */
1066			tobject = tobject->backing_object;
1067			if (tobject == NULL)
1068				continue;
1069			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1070			goto shadowlookup;
1071		}
1072
1073		/*
1074		 * If the page is busy or not in a normal active state,
1075		 * we skip it.  If the page is not managed there are no
1076		 * page queues to mess with.  Things can break if we mess
1077		 * with pages in any of the below states.
1078		 */
1079		vm_page_lock_queues();
1080		if (m->hold_count ||
1081		    m->wire_count ||
1082		    (m->flags & PG_UNMANAGED) ||
1083		    m->valid != VM_PAGE_BITS_ALL) {
1084			vm_page_unlock_queues();
1085			continue;
1086		}
1087 		if (vm_page_sleep_if_busy(m, TRUE, "madvpo"))
1088  			goto relookup;
1089		if (advise == MADV_WILLNEED) {
1090			vm_page_activate(m);
1091		} else if (advise == MADV_DONTNEED) {
1092			vm_page_dontneed(m);
1093		} else if (advise == MADV_FREE) {
1094			/*
1095			 * Mark the page clean.  This will allow the page
1096			 * to be freed up by the system.  However, such pages
1097			 * are often reused quickly by malloc()/free()
1098			 * so we do not do anything that would cause
1099			 * a page fault if we can help it.
1100			 *
1101			 * Specifically, we do not try to actually free
1102			 * the page now nor do we try to put it in the
1103			 * cache (which would cause a page fault on reuse).
1104			 *
1105			 * But we do make the page is freeable as we
1106			 * can without actually taking the step of unmapping
1107			 * it.
1108			 */
1109			pmap_clear_modify(m);
1110			m->dirty = 0;
1111			m->act_count = 0;
1112			vm_page_dontneed(m);
1113		}
1114		vm_page_unlock_queues();
1115		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1116			swap_pager_freespace(tobject, tpindex, 1);
1117	}
1118	vm_object_unlock(object);
1119}
1120
1121/*
1122 *	vm_object_shadow:
1123 *
1124 *	Create a new object which is backed by the
1125 *	specified existing object range.  The source
1126 *	object reference is deallocated.
1127 *
1128 *	The new object and offset into that object
1129 *	are returned in the source parameters.
1130 */
1131void
1132vm_object_shadow(
1133	vm_object_t *object,	/* IN/OUT */
1134	vm_ooffset_t *offset,	/* IN/OUT */
1135	vm_size_t length)
1136{
1137	vm_object_t source;
1138	vm_object_t result;
1139
1140	source = *object;
1141
1142	vm_object_lock(source);
1143	/*
1144	 * Don't create the new object if the old object isn't shared.
1145	 */
1146	if (source != NULL &&
1147	    source->ref_count == 1 &&
1148	    source->handle == NULL &&
1149	    (source->type == OBJT_DEFAULT ||
1150	     source->type == OBJT_SWAP)) {
1151		vm_object_unlock(source);
1152		return;
1153	}
1154
1155	/*
1156	 * Allocate a new object with the given length
1157	 */
1158	result = vm_object_allocate(OBJT_DEFAULT, length);
1159	KASSERT(result != NULL, ("vm_object_shadow: no object for shadowing"));
1160
1161	/*
1162	 * The new object shadows the source object, adding a reference to it.
1163	 * Our caller changes his reference to point to the new object,
1164	 * removing a reference to the source object.  Net result: no change
1165	 * of reference count.
1166	 *
1167	 * Try to optimize the result object's page color when shadowing
1168	 * in order to maintain page coloring consistency in the combined
1169	 * shadowed object.
1170	 */
1171	result->backing_object = source;
1172	if (source) {
1173		TAILQ_INSERT_TAIL(&source->shadow_head, result, shadow_list);
1174		source->shadow_count++;
1175		source->generation++;
1176		if (length < source->size)
1177			length = source->size;
1178		if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1179		    source->generation > 1)
1180			length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1181		result->pg_color = (source->pg_color +
1182		    length * source->generation) & PQ_L2_MASK;
1183		next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1184		    PQ_L2_MASK;
1185	}
1186
1187	/*
1188	 * Store the offset into the source object, and fix up the offset into
1189	 * the new object.
1190	 */
1191	result->backing_object_offset = *offset;
1192
1193	/*
1194	 * Return the new things
1195	 */
1196	*offset = 0;
1197	*object = result;
1198
1199	vm_object_unlock(source);
1200}
1201
1202/*
1203 *	vm_object_split:
1204 *
1205 * Split the pages in a map entry into a new object.  This affords
1206 * easier removal of unused pages, and keeps object inheritance from
1207 * being a negative impact on memory usage.
1208 */
1209void
1210vm_object_split(vm_map_entry_t entry)
1211{
1212	vm_page_t m;
1213	vm_object_t orig_object, new_object, source;
1214	vm_offset_t s, e;
1215	vm_pindex_t offidxstart, offidxend;
1216	vm_size_t idx, size;
1217	vm_ooffset_t offset;
1218
1219	GIANT_REQUIRED;
1220
1221	orig_object = entry->object.vm_object;
1222	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1223		return;
1224	if (orig_object->ref_count <= 1)
1225		return;
1226
1227	offset = entry->offset;
1228	s = entry->start;
1229	e = entry->end;
1230
1231	offidxstart = OFF_TO_IDX(offset);
1232	offidxend = offidxstart + OFF_TO_IDX(e - s);
1233	size = offidxend - offidxstart;
1234
1235	new_object = vm_pager_allocate(orig_object->type,
1236		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
1237	if (new_object == NULL)
1238		return;
1239
1240	source = orig_object->backing_object;
1241	if (source != NULL) {
1242		vm_object_reference(source);	/* Referenced by new_object */
1243		TAILQ_INSERT_TAIL(&source->shadow_head,
1244				  new_object, shadow_list);
1245		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1246		new_object->backing_object_offset =
1247			orig_object->backing_object_offset + offset;
1248		new_object->backing_object = source;
1249		source->shadow_count++;
1250		source->generation++;
1251	}
1252	for (idx = 0; idx < size; idx++) {
1253	retry:
1254		m = vm_page_lookup(orig_object, offidxstart + idx);
1255		if (m == NULL)
1256			continue;
1257
1258		/*
1259		 * We must wait for pending I/O to complete before we can
1260		 * rename the page.
1261		 *
1262		 * We do not have to VM_PROT_NONE the page as mappings should
1263		 * not be changed by this operation.
1264		 */
1265		vm_page_lock_queues();
1266		if (vm_page_sleep_if_busy(m, TRUE, "spltwt"))
1267			goto retry;
1268
1269		vm_page_busy(m);
1270		vm_page_unlock_queues();
1271		vm_page_rename(m, new_object, idx);
1272		/* page automatically made dirty by rename and cache handled */
1273		vm_page_busy(m);
1274	}
1275	if (orig_object->type == OBJT_SWAP) {
1276		vm_object_pip_add(orig_object, 1);
1277		/*
1278		 * copy orig_object pages into new_object
1279		 * and destroy unneeded pages in
1280		 * shadow object.
1281		 */
1282		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1283		vm_object_pip_wakeup(orig_object);
1284	}
1285	TAILQ_FOREACH(m, &new_object->memq, listq)
1286		vm_page_wakeup(m);
1287	entry->object.vm_object = new_object;
1288	entry->offset = 0LL;
1289	vm_object_deallocate(orig_object);
1290}
1291
1292#define	OBSC_TEST_ALL_SHADOWED	0x0001
1293#define	OBSC_COLLAPSE_NOWAIT	0x0002
1294#define	OBSC_COLLAPSE_WAIT	0x0004
1295
1296static __inline int
1297vm_object_backing_scan(vm_object_t object, int op)
1298{
1299	int s;
1300	int r = 1;
1301	vm_page_t p;
1302	vm_object_t backing_object;
1303	vm_pindex_t backing_offset_index;
1304
1305	s = splvm();
1306	GIANT_REQUIRED;
1307
1308	backing_object = object->backing_object;
1309	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1310
1311	/*
1312	 * Initial conditions
1313	 */
1314	if (op & OBSC_TEST_ALL_SHADOWED) {
1315		/*
1316		 * We do not want to have to test for the existence of
1317		 * swap pages in the backing object.  XXX but with the
1318		 * new swapper this would be pretty easy to do.
1319		 *
1320		 * XXX what about anonymous MAP_SHARED memory that hasn't
1321		 * been ZFOD faulted yet?  If we do not test for this, the
1322		 * shadow test may succeed! XXX
1323		 */
1324		if (backing_object->type != OBJT_DEFAULT) {
1325			splx(s);
1326			return (0);
1327		}
1328	}
1329	if (op & OBSC_COLLAPSE_WAIT) {
1330		vm_object_set_flag(backing_object, OBJ_DEAD);
1331	}
1332
1333	/*
1334	 * Our scan
1335	 */
1336	p = TAILQ_FIRST(&backing_object->memq);
1337	while (p) {
1338		vm_page_t next = TAILQ_NEXT(p, listq);
1339		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1340
1341		if (op & OBSC_TEST_ALL_SHADOWED) {
1342			vm_page_t pp;
1343
1344			/*
1345			 * Ignore pages outside the parent object's range
1346			 * and outside the parent object's mapping of the
1347			 * backing object.
1348			 *
1349			 * note that we do not busy the backing object's
1350			 * page.
1351			 */
1352			if (
1353			    p->pindex < backing_offset_index ||
1354			    new_pindex >= object->size
1355			) {
1356				p = next;
1357				continue;
1358			}
1359
1360			/*
1361			 * See if the parent has the page or if the parent's
1362			 * object pager has the page.  If the parent has the
1363			 * page but the page is not valid, the parent's
1364			 * object pager must have the page.
1365			 *
1366			 * If this fails, the parent does not completely shadow
1367			 * the object and we might as well give up now.
1368			 */
1369
1370			pp = vm_page_lookup(object, new_pindex);
1371			if (
1372			    (pp == NULL || pp->valid == 0) &&
1373			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1374			) {
1375				r = 0;
1376				break;
1377			}
1378		}
1379
1380		/*
1381		 * Check for busy page
1382		 */
1383		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1384			vm_page_t pp;
1385
1386			vm_page_lock_queues();
1387			if (op & OBSC_COLLAPSE_NOWAIT) {
1388				if ((p->flags & PG_BUSY) ||
1389				    !p->valid ||
1390				    p->hold_count ||
1391				    p->wire_count ||
1392				    p->busy) {
1393					vm_page_unlock_queues();
1394					p = next;
1395					continue;
1396				}
1397			} else if (op & OBSC_COLLAPSE_WAIT) {
1398				if (vm_page_sleep_if_busy(p, TRUE, "vmocol")) {
1399					/*
1400					 * If we slept, anything could have
1401					 * happened.  Since the object is
1402					 * marked dead, the backing offset
1403					 * should not have changed so we
1404					 * just restart our scan.
1405					 */
1406					p = TAILQ_FIRST(&backing_object->memq);
1407					continue;
1408				}
1409			}
1410
1411			/*
1412			 * Busy the page
1413			 */
1414			vm_page_busy(p);
1415			vm_page_unlock_queues();
1416
1417			KASSERT(
1418			    p->object == backing_object,
1419			    ("vm_object_qcollapse(): object mismatch")
1420			);
1421
1422			/*
1423			 * Destroy any associated swap
1424			 */
1425			if (backing_object->type == OBJT_SWAP) {
1426				swap_pager_freespace(
1427				    backing_object,
1428				    p->pindex,
1429				    1
1430				);
1431			}
1432
1433			if (
1434			    p->pindex < backing_offset_index ||
1435			    new_pindex >= object->size
1436			) {
1437				/*
1438				 * Page is out of the parent object's range, we
1439				 * can simply destroy it.
1440				 */
1441				vm_page_lock_queues();
1442				pmap_page_protect(p, VM_PROT_NONE);
1443				vm_page_free(p);
1444				vm_page_unlock_queues();
1445				p = next;
1446				continue;
1447			}
1448
1449			pp = vm_page_lookup(object, new_pindex);
1450			if (
1451			    pp != NULL ||
1452			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1453			) {
1454				/*
1455				 * page already exists in parent OR swap exists
1456				 * for this location in the parent.  Destroy
1457				 * the original page from the backing object.
1458				 *
1459				 * Leave the parent's page alone
1460				 */
1461				vm_page_lock_queues();
1462				pmap_page_protect(p, VM_PROT_NONE);
1463				vm_page_free(p);
1464				vm_page_unlock_queues();
1465				p = next;
1466				continue;
1467			}
1468
1469			/*
1470			 * Page does not exist in parent, rename the
1471			 * page from the backing object to the main object.
1472			 *
1473			 * If the page was mapped to a process, it can remain
1474			 * mapped through the rename.
1475			 */
1476			vm_page_rename(p, object, new_pindex);
1477			/* page automatically made dirty by rename */
1478		}
1479		p = next;
1480	}
1481	splx(s);
1482	return (r);
1483}
1484
1485
1486/*
1487 * this version of collapse allows the operation to occur earlier and
1488 * when paging_in_progress is true for an object...  This is not a complete
1489 * operation, but should plug 99.9% of the rest of the leaks.
1490 */
1491static void
1492vm_object_qcollapse(vm_object_t object)
1493{
1494	vm_object_t backing_object = object->backing_object;
1495
1496	GIANT_REQUIRED;
1497
1498	if (backing_object->ref_count != 1)
1499		return;
1500
1501	backing_object->ref_count += 2;
1502
1503	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1504
1505	backing_object->ref_count -= 2;
1506}
1507
1508/*
1509 *	vm_object_collapse:
1510 *
1511 *	Collapse an object with the object backing it.
1512 *	Pages in the backing object are moved into the
1513 *	parent, and the backing object is deallocated.
1514 */
1515void
1516vm_object_collapse(vm_object_t object)
1517{
1518	GIANT_REQUIRED;
1519
1520	while (TRUE) {
1521		vm_object_t backing_object;
1522
1523		/*
1524		 * Verify that the conditions are right for collapse:
1525		 *
1526		 * The object exists and the backing object exists.
1527		 */
1528		if (object == NULL)
1529			break;
1530
1531		if ((backing_object = object->backing_object) == NULL)
1532			break;
1533
1534		/*
1535		 * we check the backing object first, because it is most likely
1536		 * not collapsable.
1537		 */
1538		if (backing_object->handle != NULL ||
1539		    (backing_object->type != OBJT_DEFAULT &&
1540		     backing_object->type != OBJT_SWAP) ||
1541		    (backing_object->flags & OBJ_DEAD) ||
1542		    object->handle != NULL ||
1543		    (object->type != OBJT_DEFAULT &&
1544		     object->type != OBJT_SWAP) ||
1545		    (object->flags & OBJ_DEAD)) {
1546			break;
1547		}
1548
1549		if (
1550		    object->paging_in_progress != 0 ||
1551		    backing_object->paging_in_progress != 0
1552		) {
1553			vm_object_qcollapse(object);
1554			break;
1555		}
1556
1557		/*
1558		 * We know that we can either collapse the backing object (if
1559		 * the parent is the only reference to it) or (perhaps) have
1560		 * the parent bypass the object if the parent happens to shadow
1561		 * all the resident pages in the entire backing object.
1562		 *
1563		 * This is ignoring pager-backed pages such as swap pages.
1564		 * vm_object_backing_scan fails the shadowing test in this
1565		 * case.
1566		 */
1567		if (backing_object->ref_count == 1) {
1568			/*
1569			 * If there is exactly one reference to the backing
1570			 * object, we can collapse it into the parent.
1571			 */
1572			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1573
1574			/*
1575			 * Move the pager from backing_object to object.
1576			 */
1577			if (backing_object->type == OBJT_SWAP) {
1578				vm_object_pip_add(backing_object, 1);
1579
1580				/*
1581				 * scrap the paging_offset junk and do a
1582				 * discrete copy.  This also removes major
1583				 * assumptions about how the swap-pager
1584				 * works from where it doesn't belong.  The
1585				 * new swapper is able to optimize the
1586				 * destroy-source case.
1587				 */
1588				vm_object_pip_add(object, 1);
1589				swap_pager_copy(
1590				    backing_object,
1591				    object,
1592				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1593				vm_object_pip_wakeup(object);
1594
1595				vm_object_pip_wakeup(backing_object);
1596			}
1597			/*
1598			 * Object now shadows whatever backing_object did.
1599			 * Note that the reference to
1600			 * backing_object->backing_object moves from within
1601			 * backing_object to within object.
1602			 */
1603			TAILQ_REMOVE(
1604			    &object->backing_object->shadow_head,
1605			    object,
1606			    shadow_list
1607			);
1608			object->backing_object->shadow_count--;
1609			object->backing_object->generation++;
1610			if (backing_object->backing_object) {
1611				TAILQ_REMOVE(
1612				    &backing_object->backing_object->shadow_head,
1613				    backing_object,
1614				    shadow_list
1615				);
1616				backing_object->backing_object->shadow_count--;
1617				backing_object->backing_object->generation++;
1618			}
1619			object->backing_object = backing_object->backing_object;
1620			if (object->backing_object) {
1621				TAILQ_INSERT_TAIL(
1622				    &object->backing_object->shadow_head,
1623				    object,
1624				    shadow_list
1625				);
1626				object->backing_object->shadow_count++;
1627				object->backing_object->generation++;
1628			}
1629
1630			object->backing_object_offset +=
1631			    backing_object->backing_object_offset;
1632
1633			/*
1634			 * Discard backing_object.
1635			 *
1636			 * Since the backing object has no pages, no pager left,
1637			 * and no object references within it, all that is
1638			 * necessary is to dispose of it.
1639			 */
1640			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1641			KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1642
1643			mtx_lock(&vm_object_list_mtx);
1644			TAILQ_REMOVE(
1645			    &vm_object_list,
1646			    backing_object,
1647			    object_list
1648			);
1649			mtx_unlock(&vm_object_list_mtx);
1650
1651			uma_zfree(obj_zone, backing_object);
1652
1653			object_collapses++;
1654		} else {
1655			vm_object_t new_backing_object;
1656
1657			/*
1658			 * If we do not entirely shadow the backing object,
1659			 * there is nothing we can do so we give up.
1660			 */
1661			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1662				break;
1663			}
1664
1665			/*
1666			 * Make the parent shadow the next object in the
1667			 * chain.  Deallocating backing_object will not remove
1668			 * it, since its reference count is at least 2.
1669			 */
1670			TAILQ_REMOVE(
1671			    &backing_object->shadow_head,
1672			    object,
1673			    shadow_list
1674			);
1675			backing_object->shadow_count--;
1676			backing_object->generation++;
1677
1678			new_backing_object = backing_object->backing_object;
1679			if ((object->backing_object = new_backing_object) != NULL) {
1680				vm_object_reference(new_backing_object);
1681				TAILQ_INSERT_TAIL(
1682				    &new_backing_object->shadow_head,
1683				    object,
1684				    shadow_list
1685				);
1686				new_backing_object->shadow_count++;
1687				new_backing_object->generation++;
1688				object->backing_object_offset +=
1689					backing_object->backing_object_offset;
1690			}
1691
1692			/*
1693			 * Drop the reference count on backing_object. Since
1694			 * its ref_count was at least 2, it will not vanish;
1695			 * so we don't need to call vm_object_deallocate, but
1696			 * we do anyway.
1697			 */
1698			vm_object_deallocate(backing_object);
1699			object_bypasses++;
1700		}
1701
1702		/*
1703		 * Try again with this object's new backing object.
1704		 */
1705	}
1706}
1707
1708/*
1709 *	vm_object_page_remove: [internal]
1710 *
1711 *	Removes all physical pages in the specified
1712 *	object range from the object's list of pages.
1713 *
1714 *	The object must be locked.
1715 */
1716void
1717vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, boolean_t clean_only)
1718{
1719	vm_page_t p, next;
1720	vm_pindex_t size;
1721	int all;
1722
1723	if (object == NULL)
1724		return;
1725
1726	mtx_lock(&Giant);
1727	if (object->resident_page_count == 0) {
1728		mtx_unlock(&Giant);
1729		return;
1730	}
1731	all = ((end == 0) && (start == 0));
1732
1733	/*
1734	 * Since physically-backed objects do not use managed pages, we can't
1735	 * remove pages from the object (we must instead remove the page
1736	 * references, and then destroy the object).
1737	 */
1738	KASSERT(object->type != OBJT_PHYS, ("attempt to remove pages from a physical object"));
1739
1740	vm_object_pip_add(object, 1);
1741again:
1742	vm_page_lock_queues();
1743	size = end - start;
1744	if (all || size > object->resident_page_count / 4) {
1745		for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1746			next = TAILQ_NEXT(p, listq);
1747			if (all || ((start <= p->pindex) && (p->pindex < end))) {
1748				if (p->wire_count != 0) {
1749					pmap_page_protect(p, VM_PROT_NONE);
1750					if (!clean_only)
1751						p->valid = 0;
1752					continue;
1753				}
1754
1755				/*
1756				 * The busy flags are only cleared at
1757				 * interrupt -- minimize the spl transitions
1758				 */
1759 				if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1760 					goto again;
1761
1762				if (clean_only && p->valid) {
1763					vm_page_test_dirty(p);
1764					if (p->valid & p->dirty)
1765						continue;
1766				}
1767				vm_page_busy(p);
1768				pmap_page_protect(p, VM_PROT_NONE);
1769				vm_page_free(p);
1770			}
1771		}
1772	} else {
1773		while (size > 0) {
1774			if ((p = vm_page_lookup(object, start)) != NULL) {
1775				if (p->wire_count != 0) {
1776					pmap_page_protect(p, VM_PROT_NONE);
1777					if (!clean_only)
1778						p->valid = 0;
1779					start += 1;
1780					size -= 1;
1781					continue;
1782				}
1783
1784				/*
1785				 * The busy flags are only cleared at
1786				 * interrupt -- minimize the spl transitions
1787				 */
1788				if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1789					goto again;
1790
1791				if (clean_only && p->valid) {
1792					vm_page_test_dirty(p);
1793					if (p->valid & p->dirty) {
1794						start += 1;
1795						size -= 1;
1796						continue;
1797					}
1798				}
1799				vm_page_busy(p);
1800				pmap_page_protect(p, VM_PROT_NONE);
1801				vm_page_free(p);
1802			}
1803			start += 1;
1804			size -= 1;
1805		}
1806	}
1807	vm_page_unlock_queues();
1808	vm_object_pip_wakeup(object);
1809	mtx_unlock(&Giant);
1810}
1811
1812/*
1813 *	Routine:	vm_object_coalesce
1814 *	Function:	Coalesces two objects backing up adjoining
1815 *			regions of memory into a single object.
1816 *
1817 *	returns TRUE if objects were combined.
1818 *
1819 *	NOTE:	Only works at the moment if the second object is NULL -
1820 *		if it's not, which object do we lock first?
1821 *
1822 *	Parameters:
1823 *		prev_object	First object to coalesce
1824 *		prev_offset	Offset into prev_object
1825 *		next_object	Second object into coalesce
1826 *		next_offset	Offset into next_object
1827 *
1828 *		prev_size	Size of reference to prev_object
1829 *		next_size	Size of reference to next_object
1830 *
1831 *	Conditions:
1832 *	The object must *not* be locked.
1833 */
1834boolean_t
1835vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1836	vm_size_t prev_size, vm_size_t next_size)
1837{
1838	vm_pindex_t next_pindex;
1839
1840	if (prev_object == NULL)
1841		return (TRUE);
1842	vm_object_lock(prev_object);
1843	if (prev_object->type != OBJT_DEFAULT &&
1844	    prev_object->type != OBJT_SWAP) {
1845		vm_object_unlock(prev_object);
1846		return (FALSE);
1847	}
1848
1849	/*
1850	 * Try to collapse the object first
1851	 */
1852	vm_object_collapse(prev_object);
1853
1854	/*
1855	 * Can't coalesce if: . more than one reference . paged out . shadows
1856	 * another object . has a copy elsewhere (any of which mean that the
1857	 * pages not mapped to prev_entry may be in use anyway)
1858	 */
1859	if (prev_object->backing_object != NULL) {
1860		vm_object_unlock(prev_object);
1861		return (FALSE);
1862	}
1863
1864	prev_size >>= PAGE_SHIFT;
1865	next_size >>= PAGE_SHIFT;
1866	next_pindex = prev_pindex + prev_size;
1867
1868	if ((prev_object->ref_count > 1) &&
1869	    (prev_object->size != next_pindex)) {
1870		vm_object_unlock(prev_object);
1871		return (FALSE);
1872	}
1873
1874	/*
1875	 * Remove any pages that may still be in the object from a previous
1876	 * deallocation.
1877	 */
1878	if (next_pindex < prev_object->size) {
1879		vm_object_page_remove(prev_object,
1880				      next_pindex,
1881				      next_pindex + next_size, FALSE);
1882		if (prev_object->type == OBJT_SWAP)
1883			swap_pager_freespace(prev_object,
1884					     next_pindex, next_size);
1885	}
1886
1887	/*
1888	 * Extend the object if necessary.
1889	 */
1890	if (next_pindex + next_size > prev_object->size)
1891		prev_object->size = next_pindex + next_size;
1892
1893	vm_object_unlock(prev_object);
1894	return (TRUE);
1895}
1896
1897void
1898vm_object_set_writeable_dirty(vm_object_t object)
1899{
1900	struct vnode *vp;
1901
1902	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1903	if (object->type == OBJT_VNODE &&
1904	    (vp = (struct vnode *)object->handle) != NULL) {
1905		VI_LOCK(vp);
1906		if ((vp->v_iflag & VI_OBJDIRTY) == 0)
1907			vp->v_iflag |= VI_OBJDIRTY;
1908		VI_UNLOCK(vp);
1909	}
1910}
1911
1912#ifdef ENABLE_VFS_IOOPT
1913/*
1914 * Experimental support for zero-copy I/O
1915 *
1916 * Performs the copy_on_write operations necessary to allow the virtual copies
1917 * into user space to work.  This has to be called for write(2) system calls
1918 * from other processes, file unlinking, and file size shrinkage.
1919 */
1920void
1921vm_freeze_copyopts(vm_object_t object, vm_pindex_t froma, vm_pindex_t toa)
1922{
1923	int rv;
1924	vm_object_t robject;
1925	vm_pindex_t idx;
1926
1927	GIANT_REQUIRED;
1928	if ((object == NULL) ||
1929		((object->flags & OBJ_OPT) == 0))
1930		return;
1931
1932	if (object->shadow_count > object->ref_count)
1933		panic("vm_freeze_copyopts: sc > rc");
1934
1935	while ((robject = TAILQ_FIRST(&object->shadow_head)) != NULL) {
1936		vm_pindex_t bo_pindex;
1937		vm_page_t m_in, m_out;
1938
1939		bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
1940
1941		vm_object_reference(robject);
1942
1943		vm_object_pip_wait(robject, "objfrz");
1944
1945		if (robject->ref_count == 1) {
1946			vm_object_deallocate(robject);
1947			continue;
1948		}
1949
1950		vm_object_pip_add(robject, 1);
1951
1952		for (idx = 0; idx < robject->size; idx++) {
1953
1954			m_out = vm_page_grab(robject, idx,
1955						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1956
1957			if (m_out->valid == 0) {
1958				m_in = vm_page_grab(object, bo_pindex + idx,
1959						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1960				if (m_in->valid == 0) {
1961					rv = vm_pager_get_pages(object, &m_in, 1, 0);
1962					if (rv != VM_PAGER_OK) {
1963						printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
1964						continue;
1965					}
1966					vm_page_lock_queues();
1967					vm_page_deactivate(m_in);
1968					vm_page_unlock_queues();
1969				}
1970
1971				pmap_page_protect(m_in, VM_PROT_NONE);
1972				pmap_copy_page(m_in, m_out);
1973				m_out->valid = m_in->valid;
1974				vm_page_dirty(m_out);
1975				vm_page_lock_queues();
1976				vm_page_activate(m_out);
1977				vm_page_unlock_queues();
1978				vm_page_wakeup(m_in);
1979			}
1980			vm_page_wakeup(m_out);
1981		}
1982
1983		object->shadow_count--;
1984		object->ref_count--;
1985		TAILQ_REMOVE(&object->shadow_head, robject, shadow_list);
1986		robject->backing_object = NULL;
1987		robject->backing_object_offset = 0;
1988
1989		vm_object_pip_wakeup(robject);
1990		vm_object_deallocate(robject);
1991	}
1992
1993	vm_object_clear_flag(object, OBJ_OPT);
1994}
1995#endif
1996
1997#include "opt_ddb.h"
1998#ifdef DDB
1999#include <sys/kernel.h>
2000
2001#include <sys/cons.h>
2002
2003#include <ddb/ddb.h>
2004
2005static int
2006_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2007{
2008	vm_map_t tmpm;
2009	vm_map_entry_t tmpe;
2010	vm_object_t obj;
2011	int entcount;
2012
2013	if (map == 0)
2014		return 0;
2015
2016	if (entry == 0) {
2017		tmpe = map->header.next;
2018		entcount = map->nentries;
2019		while (entcount-- && (tmpe != &map->header)) {
2020			if (_vm_object_in_map(map, object, tmpe)) {
2021				return 1;
2022			}
2023			tmpe = tmpe->next;
2024		}
2025	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2026		tmpm = entry->object.sub_map;
2027		tmpe = tmpm->header.next;
2028		entcount = tmpm->nentries;
2029		while (entcount-- && tmpe != &tmpm->header) {
2030			if (_vm_object_in_map(tmpm, object, tmpe)) {
2031				return 1;
2032			}
2033			tmpe = tmpe->next;
2034		}
2035	} else if ((obj = entry->object.vm_object) != NULL) {
2036		for (; obj; obj = obj->backing_object)
2037			if (obj == object) {
2038				return 1;
2039			}
2040	}
2041	return 0;
2042}
2043
2044static int
2045vm_object_in_map(vm_object_t object)
2046{
2047	struct proc *p;
2048
2049	/* sx_slock(&allproc_lock); */
2050	LIST_FOREACH(p, &allproc, p_list) {
2051		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2052			continue;
2053		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2054			/* sx_sunlock(&allproc_lock); */
2055			return 1;
2056		}
2057	}
2058	/* sx_sunlock(&allproc_lock); */
2059	if (_vm_object_in_map(kernel_map, object, 0))
2060		return 1;
2061	if (_vm_object_in_map(kmem_map, object, 0))
2062		return 1;
2063	if (_vm_object_in_map(pager_map, object, 0))
2064		return 1;
2065	if (_vm_object_in_map(buffer_map, object, 0))
2066		return 1;
2067	return 0;
2068}
2069
2070DB_SHOW_COMMAND(vmochk, vm_object_check)
2071{
2072	vm_object_t object;
2073
2074	/*
2075	 * make sure that internal objs are in a map somewhere
2076	 * and none have zero ref counts.
2077	 */
2078	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2079		if (object->handle == NULL &&
2080		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2081			if (object->ref_count == 0) {
2082				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2083					(long)object->size);
2084			}
2085			if (!vm_object_in_map(object)) {
2086				db_printf(
2087			"vmochk: internal obj is not in a map: "
2088			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2089				    object->ref_count, (u_long)object->size,
2090				    (u_long)object->size,
2091				    (void *)object->backing_object);
2092			}
2093		}
2094	}
2095}
2096
2097/*
2098 *	vm_object_print:	[ debug ]
2099 */
2100DB_SHOW_COMMAND(object, vm_object_print_static)
2101{
2102	/* XXX convert args. */
2103	vm_object_t object = (vm_object_t)addr;
2104	boolean_t full = have_addr;
2105
2106	vm_page_t p;
2107
2108	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2109#define	count	was_count
2110
2111	int count;
2112
2113	if (object == NULL)
2114		return;
2115
2116	db_iprintf(
2117	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2118	    object, (int)object->type, (uintmax_t)object->size,
2119	    object->resident_page_count, object->ref_count, object->flags);
2120	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2121	    object->shadow_count,
2122	    object->backing_object ? object->backing_object->ref_count : 0,
2123	    object->backing_object, (uintmax_t)object->backing_object_offset);
2124
2125	if (!full)
2126		return;
2127
2128	db_indent += 2;
2129	count = 0;
2130	TAILQ_FOREACH(p, &object->memq, listq) {
2131		if (count == 0)
2132			db_iprintf("memory:=");
2133		else if (count == 6) {
2134			db_printf("\n");
2135			db_iprintf(" ...");
2136			count = 0;
2137		} else
2138			db_printf(",");
2139		count++;
2140
2141		db_printf("(off=0x%jx,page=0x%jx)",
2142		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2143	}
2144	if (count != 0)
2145		db_printf("\n");
2146	db_indent -= 2;
2147}
2148
2149/* XXX. */
2150#undef count
2151
2152/* XXX need this non-static entry for calling from vm_map_print. */
2153void
2154vm_object_print(
2155        /* db_expr_t */ long addr,
2156	boolean_t have_addr,
2157	/* db_expr_t */ long count,
2158	char *modif)
2159{
2160	vm_object_print_static(addr, have_addr, count, modif);
2161}
2162
2163DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2164{
2165	vm_object_t object;
2166	int nl = 0;
2167	int c;
2168
2169	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2170		vm_pindex_t idx, fidx;
2171		vm_pindex_t osize;
2172		vm_offset_t pa = -1, padiff;
2173		int rcount;
2174		vm_page_t m;
2175
2176		db_printf("new object: %p\n", (void *)object);
2177		if (nl > 18) {
2178			c = cngetc();
2179			if (c != ' ')
2180				return;
2181			nl = 0;
2182		}
2183		nl++;
2184		rcount = 0;
2185		fidx = 0;
2186		osize = object->size;
2187		if (osize > 128)
2188			osize = 128;
2189		for (idx = 0; idx < osize; idx++) {
2190			m = vm_page_lookup(object, idx);
2191			if (m == NULL) {
2192				if (rcount) {
2193					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2194						(long)fidx, rcount, (long)pa);
2195					if (nl > 18) {
2196						c = cngetc();
2197						if (c != ' ')
2198							return;
2199						nl = 0;
2200					}
2201					nl++;
2202					rcount = 0;
2203				}
2204				continue;
2205			}
2206
2207
2208			if (rcount &&
2209				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2210				++rcount;
2211				continue;
2212			}
2213			if (rcount) {
2214				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2215				padiff >>= PAGE_SHIFT;
2216				padiff &= PQ_L2_MASK;
2217				if (padiff == 0) {
2218					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2219					++rcount;
2220					continue;
2221				}
2222				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2223					(long)fidx, rcount, (long)pa);
2224				db_printf("pd(%ld)\n", (long)padiff);
2225				if (nl > 18) {
2226					c = cngetc();
2227					if (c != ' ')
2228						return;
2229					nl = 0;
2230				}
2231				nl++;
2232			}
2233			fidx = idx;
2234			pa = VM_PAGE_TO_PHYS(m);
2235			rcount = 1;
2236		}
2237		if (rcount) {
2238			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2239				(long)fidx, rcount, (long)pa);
2240			if (nl > 18) {
2241				c = cngetc();
2242				if (c != ' ')
2243					return;
2244				nl = 0;
2245			}
2246			nl++;
2247		}
2248	}
2249}
2250#endif /* DDB */
2251