vm_object.c revision 105407
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_object.c 105407 2002-10-18 17:24:30Z dillon $
65 */
66
67/*
68 *	Virtual memory object module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/lock.h>
74#include <sys/mman.h>
75#include <sys/mount.h>
76#include <sys/kernel.h>
77#include <sys/sysctl.h>
78#include <sys/mutex.h>
79#include <sys/proc.h>		/* for curproc, pageproc */
80#include <sys/socket.h>
81#include <sys/vnode.h>
82#include <sys/vmmeter.h>
83#include <sys/sx.h>
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/pmap.h>
88#include <vm/vm_map.h>
89#include <vm/vm_object.h>
90#include <vm/vm_page.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_pager.h>
93#include <vm/swap_pager.h>
94#include <vm/vm_kern.h>
95#include <vm/vm_extern.h>
96#include <vm/uma.h>
97
98#define EASY_SCAN_FACTOR       8
99
100#define MSYNC_FLUSH_HARDSEQ	0x01
101#define MSYNC_FLUSH_SOFTSEQ	0x02
102
103/*
104 * msync / VM object flushing optimizations
105 */
106static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
107SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
108        CTLFLAG_RW, &msync_flush_flags, 0, "");
109
110static void	vm_object_qcollapse(vm_object_t object);
111static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
112
113/*
114 *	Virtual memory objects maintain the actual data
115 *	associated with allocated virtual memory.  A given
116 *	page of memory exists within exactly one object.
117 *
118 *	An object is only deallocated when all "references"
119 *	are given up.  Only one "reference" to a given
120 *	region of an object should be writeable.
121 *
122 *	Associated with each object is a list of all resident
123 *	memory pages belonging to that object; this list is
124 *	maintained by the "vm_page" module, and locked by the object's
125 *	lock.
126 *
127 *	Each object also records a "pager" routine which is
128 *	used to retrieve (and store) pages to the proper backing
129 *	storage.  In addition, objects may be backed by other
130 *	objects from which they were virtual-copied.
131 *
132 *	The only items within the object structure which are
133 *	modified after time of creation are:
134 *		reference count		locked by object's lock
135 *		pager routine		locked by object's lock
136 *
137 */
138
139struct object_q vm_object_list;
140struct mtx vm_object_list_mtx;	/* lock for object list and count */
141vm_object_t kernel_object;
142vm_object_t kmem_object;
143static struct vm_object kernel_object_store;
144static struct vm_object kmem_object_store;
145extern int vm_pageout_page_count;
146
147static long object_collapses;
148static long object_bypasses;
149static int next_index;
150static uma_zone_t obj_zone;
151#define VM_OBJECTS_INIT 256
152
153static void vm_object_zinit(void *mem, int size);
154
155#ifdef INVARIANTS
156static void vm_object_zdtor(void *mem, int size, void *arg);
157
158static void
159vm_object_zdtor(void *mem, int size, void *arg)
160{
161	vm_object_t object;
162
163	object = (vm_object_t)mem;
164	KASSERT(object->paging_in_progress == 0,
165	    ("object %p paging_in_progress = %d",
166	    object, object->paging_in_progress));
167	KASSERT(object->resident_page_count == 0,
168	    ("object %p resident_page_count = %d",
169	    object, object->resident_page_count));
170	KASSERT(object->shadow_count == 0,
171	    ("object %p shadow_count = %d",
172	    object, object->shadow_count));
173}
174#endif
175
176static void
177vm_object_zinit(void *mem, int size)
178{
179	vm_object_t object;
180
181	object = (vm_object_t)mem;
182
183	/* These are true for any object that has been freed */
184	object->paging_in_progress = 0;
185	object->resident_page_count = 0;
186	object->shadow_count = 0;
187}
188
189void
190_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
191{
192	static int object_hash_rand;
193	int exp, incr;
194
195	TAILQ_INIT(&object->memq);
196	TAILQ_INIT(&object->shadow_head);
197
198	object->root = NULL;
199	object->type = type;
200	object->size = size;
201	object->ref_count = 1;
202	object->flags = 0;
203	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
204		vm_object_set_flag(object, OBJ_ONEMAPPING);
205	if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
206		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
207	else
208		incr = size;
209	do
210		object->pg_color = next_index;
211	while (!atomic_cmpset_int(&next_index, object->pg_color,
212				  (object->pg_color + incr) & PQ_L2_MASK));
213	object->handle = NULL;
214	object->backing_object = NULL;
215	object->backing_object_offset = (vm_ooffset_t) 0;
216	/*
217	 * Try to generate a number that will spread objects out in the
218	 * hash table.  We 'wipe' new objects across the hash in 128 page
219	 * increments plus 1 more to offset it a little more by the time
220	 * it wraps around.
221	 */
222	do {
223		exp = object_hash_rand;
224		object->hash_rand = exp - 129;
225	} while (!atomic_cmpset_int(&object_hash_rand, exp, object->hash_rand));
226
227	object->generation++;		/* atomicity needed? XXX */
228
229	mtx_lock(&vm_object_list_mtx);
230	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
231	mtx_unlock(&vm_object_list_mtx);
232}
233
234/*
235 *	vm_object_init:
236 *
237 *	Initialize the VM objects module.
238 */
239void
240vm_object_init(void)
241{
242	TAILQ_INIT(&vm_object_list);
243	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
244
245	kernel_object = &kernel_object_store;
246	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
247	    kernel_object);
248
249	kmem_object = &kmem_object_store;
250	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
251	    kmem_object);
252	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
253#ifdef INVARIANTS
254	    vm_object_zdtor,
255#else
256	    NULL,
257#endif
258	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
259	uma_prealloc(obj_zone, VM_OBJECTS_INIT);
260}
261
262void
263vm_object_init2(void)
264{
265}
266
267void
268vm_object_set_flag(vm_object_t object, u_short bits)
269{
270	object->flags |= bits;
271}
272
273void
274vm_object_clear_flag(vm_object_t object, u_short bits)
275{
276	GIANT_REQUIRED;
277	object->flags &= ~bits;
278}
279
280void
281vm_object_pip_add(vm_object_t object, short i)
282{
283	GIANT_REQUIRED;
284	object->paging_in_progress += i;
285}
286
287void
288vm_object_pip_subtract(vm_object_t object, short i)
289{
290	GIANT_REQUIRED;
291	object->paging_in_progress -= i;
292}
293
294void
295vm_object_pip_wakeup(vm_object_t object)
296{
297	GIANT_REQUIRED;
298	object->paging_in_progress--;
299	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
300		vm_object_clear_flag(object, OBJ_PIPWNT);
301		wakeup(object);
302	}
303}
304
305void
306vm_object_pip_wakeupn(vm_object_t object, short i)
307{
308	GIANT_REQUIRED;
309	if (i)
310		object->paging_in_progress -= i;
311	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
312		vm_object_clear_flag(object, OBJ_PIPWNT);
313		wakeup(object);
314	}
315}
316
317void
318vm_object_pip_sleep(vm_object_t object, char *waitid)
319{
320	GIANT_REQUIRED;
321	if (object->paging_in_progress) {
322		int s = splvm();
323		if (object->paging_in_progress) {
324			vm_object_set_flag(object, OBJ_PIPWNT);
325			tsleep(object, PVM, waitid, 0);
326		}
327		splx(s);
328	}
329}
330
331void
332vm_object_pip_wait(vm_object_t object, char *waitid)
333{
334	GIANT_REQUIRED;
335	while (object->paging_in_progress)
336		vm_object_pip_sleep(object, waitid);
337}
338
339/*
340 *	vm_object_allocate_wait
341 *
342 *	Return a new object with the given size, and give the user the
343 *	option of waiting for it to complete or failing if the needed
344 *	memory isn't available.
345 */
346vm_object_t
347vm_object_allocate_wait(objtype_t type, vm_pindex_t size, int flags)
348{
349	vm_object_t result;
350
351	result = (vm_object_t) uma_zalloc(obj_zone, flags);
352
353	if (result != NULL)
354		_vm_object_allocate(type, size, result);
355
356	return (result);
357}
358
359/*
360 *	vm_object_allocate:
361 *
362 *	Returns a new object with the given size.
363 */
364vm_object_t
365vm_object_allocate(objtype_t type, vm_pindex_t size)
366{
367	return(vm_object_allocate_wait(type, size, M_WAITOK));
368}
369
370
371/*
372 *	vm_object_reference:
373 *
374 *	Gets another reference to the given object.
375 */
376void
377vm_object_reference(vm_object_t object)
378{
379	if (object == NULL)
380		return;
381
382	vm_object_lock(object);
383#if 0
384	/* object can be re-referenced during final cleaning */
385	KASSERT(!(object->flags & OBJ_DEAD),
386	    ("vm_object_reference: attempting to reference dead obj"));
387#endif
388
389	object->ref_count++;
390	if (object->type == OBJT_VNODE) {
391		while (vget((struct vnode *) object->handle, LK_RETRY, curthread)) {
392			printf("vm_object_reference: delay in getting object\n");
393		}
394	}
395	vm_object_unlock(object);
396}
397
398/*
399 * handle deallocating a object of type OBJT_VNODE
400 */
401void
402vm_object_vndeallocate(vm_object_t object)
403{
404	struct vnode *vp = (struct vnode *) object->handle;
405
406	GIANT_REQUIRED;
407	KASSERT(object->type == OBJT_VNODE,
408	    ("vm_object_vndeallocate: not a vnode object"));
409	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
410#ifdef INVARIANTS
411	if (object->ref_count == 0) {
412		vprint("vm_object_vndeallocate", vp);
413		panic("vm_object_vndeallocate: bad object reference count");
414	}
415#endif
416
417	object->ref_count--;
418	if (object->ref_count == 0) {
419		mp_fixme("Unlocked vflag access.");
420		vp->v_vflag &= ~VV_TEXT;
421#ifdef ENABLE_VFS_IOOPT
422		vm_object_clear_flag(object, OBJ_OPT);
423#endif
424	}
425	/*
426	 * vrele may need a vop lock
427	 */
428	vrele(vp);
429}
430
431/*
432 *	vm_object_deallocate:
433 *
434 *	Release a reference to the specified object,
435 *	gained either through a vm_object_allocate
436 *	or a vm_object_reference call.  When all references
437 *	are gone, storage associated with this object
438 *	may be relinquished.
439 *
440 *	No object may be locked.
441 */
442void
443vm_object_deallocate(vm_object_t object)
444{
445	vm_object_t temp;
446
447	mtx_lock(&Giant);
448	while (object != NULL) {
449
450		if (object->type == OBJT_VNODE) {
451			vm_object_vndeallocate(object);
452			mtx_unlock(&Giant);
453			return;
454		}
455
456		KASSERT(object->ref_count != 0,
457			("vm_object_deallocate: object deallocated too many times: %d", object->type));
458
459		/*
460		 * If the reference count goes to 0 we start calling
461		 * vm_object_terminate() on the object chain.
462		 * A ref count of 1 may be a special case depending on the
463		 * shadow count being 0 or 1.
464		 */
465		object->ref_count--;
466		if (object->ref_count > 1) {
467			mtx_unlock(&Giant);
468			return;
469		} else if (object->ref_count == 1) {
470			if (object->shadow_count == 0) {
471				vm_object_set_flag(object, OBJ_ONEMAPPING);
472			} else if ((object->shadow_count == 1) &&
473			    (object->handle == NULL) &&
474			    (object->type == OBJT_DEFAULT ||
475			     object->type == OBJT_SWAP)) {
476				vm_object_t robject;
477
478				robject = TAILQ_FIRST(&object->shadow_head);
479				KASSERT(robject != NULL,
480				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
481					 object->ref_count,
482					 object->shadow_count));
483				if ((robject->handle == NULL) &&
484				    (robject->type == OBJT_DEFAULT ||
485				     robject->type == OBJT_SWAP)) {
486
487					robject->ref_count++;
488
489					while (
490						robject->paging_in_progress ||
491						object->paging_in_progress
492					) {
493						vm_object_pip_sleep(robject, "objde1");
494						vm_object_pip_sleep(object, "objde2");
495					}
496
497					if (robject->ref_count == 1) {
498						robject->ref_count--;
499						object = robject;
500						goto doterm;
501					}
502
503					object = robject;
504					vm_object_collapse(object);
505					continue;
506				}
507			}
508			mtx_unlock(&Giant);
509			return;
510		}
511doterm:
512		temp = object->backing_object;
513		if (temp) {
514			TAILQ_REMOVE(&temp->shadow_head, object, shadow_list);
515			temp->shadow_count--;
516#ifdef ENABLE_VFS_IOOPT
517			if (temp->ref_count == 0)
518				vm_object_clear_flag(temp, OBJ_OPT);
519#endif
520			temp->generation++;
521			object->backing_object = NULL;
522		}
523		/*
524		 * Don't double-terminate, we could be in a termination
525		 * recursion due to the terminate having to sync data
526		 * to disk.
527		 */
528		if ((object->flags & OBJ_DEAD) == 0)
529			vm_object_terminate(object);
530		object = temp;
531	}
532	mtx_unlock(&Giant);
533}
534
535/*
536 *	vm_object_terminate actually destroys the specified object, freeing
537 *	up all previously used resources.
538 *
539 *	The object must be locked.
540 *	This routine may block.
541 */
542void
543vm_object_terminate(vm_object_t object)
544{
545	vm_page_t p;
546	int s;
547
548	GIANT_REQUIRED;
549
550	/*
551	 * Make sure no one uses us.
552	 */
553	vm_object_set_flag(object, OBJ_DEAD);
554
555	/*
556	 * wait for the pageout daemon to be done with the object
557	 */
558	vm_object_pip_wait(object, "objtrm");
559
560	KASSERT(!object->paging_in_progress,
561		("vm_object_terminate: pageout in progress"));
562
563	/*
564	 * Clean and free the pages, as appropriate. All references to the
565	 * object are gone, so we don't need to lock it.
566	 */
567	if (object->type == OBJT_VNODE) {
568		struct vnode *vp;
569
570#ifdef ENABLE_VFS_IOOPT
571		/*
572		 * Freeze optimized copies.
573		 */
574		vm_freeze_copyopts(object, 0, object->size);
575#endif
576		/*
577		 * Clean pages and flush buffers.
578		 */
579		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
580
581		vp = (struct vnode *) object->handle;
582		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
583	}
584
585	KASSERT(object->ref_count == 0,
586		("vm_object_terminate: object with references, ref_count=%d",
587		object->ref_count));
588
589	/*
590	 * Now free any remaining pages. For internal objects, this also
591	 * removes them from paging queues. Don't free wired pages, just
592	 * remove them from the object.
593	 */
594	s = splvm();
595	vm_page_lock_queues();
596	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
597		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
598			("vm_object_terminate: freeing busy page %p "
599			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
600		if (p->wire_count == 0) {
601			vm_page_busy(p);
602			vm_page_free(p);
603			cnt.v_pfree++;
604		} else {
605			vm_page_busy(p);
606			vm_page_remove(p);
607		}
608	}
609	vm_page_unlock_queues();
610	splx(s);
611
612	/*
613	 * Let the pager know object is dead.
614	 */
615	vm_pager_deallocate(object);
616
617	/*
618	 * Remove the object from the global object list.
619	 */
620	mtx_lock(&vm_object_list_mtx);
621	TAILQ_REMOVE(&vm_object_list, object, object_list);
622	mtx_unlock(&vm_object_list_mtx);
623
624	wakeup(object);
625
626	/*
627	 * Free the space for the object.
628	 */
629	uma_zfree(obj_zone, object);
630}
631
632/*
633 *	vm_object_page_clean
634 *
635 *	Clean all dirty pages in the specified range of object.  Leaves page
636 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
637 *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
638 *	leaving the object dirty.
639 *
640 *	Odd semantics: if start == end, we clean everything.
641 *
642 *	The object must be locked.
643 */
644void
645vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
646{
647	vm_page_t p, np;
648	vm_pindex_t tstart, tend;
649	vm_pindex_t pi;
650	struct vnode *vp;
651	int clearobjflags;
652	int pagerflags;
653	int curgeneration;
654
655	GIANT_REQUIRED;
656
657	if (object->type != OBJT_VNODE ||
658		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
659		return;
660
661	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : 0;
662	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
663
664	vp = object->handle;
665
666	vm_object_set_flag(object, OBJ_CLEANING);
667
668	tstart = start;
669	if (end == 0) {
670		tend = object->size;
671	} else {
672		tend = end;
673	}
674
675	/*
676	 * If the caller is smart and only msync()s a range he knows is
677	 * dirty, we may be able to avoid an object scan.  This results in
678	 * a phenominal improvement in performance.  We cannot do this
679	 * as a matter of course because the object may be huge - e.g.
680	 * the size might be in the gigabytes or terrabytes.
681	 */
682	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
683		vm_pindex_t tscan;
684		int scanlimit;
685		int scanreset;
686
687		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
688		if (scanreset < 16)
689			scanreset = 16;
690
691		scanlimit = scanreset;
692		tscan = tstart;
693		while (tscan < tend) {
694			curgeneration = object->generation;
695			p = vm_page_lookup(object, tscan);
696			if (p == NULL || p->valid == 0 ||
697			    (p->queue - p->pc) == PQ_CACHE) {
698				if (--scanlimit == 0)
699					break;
700				++tscan;
701				continue;
702			}
703			vm_page_test_dirty(p);
704			if ((p->dirty & p->valid) == 0) {
705				if (--scanlimit == 0)
706					break;
707				++tscan;
708				continue;
709			}
710			/*
711			 * If we have been asked to skip nosync pages and
712			 * this is a nosync page, we can't continue.
713			 */
714			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
715				if (--scanlimit == 0)
716					break;
717				++tscan;
718				continue;
719			}
720			scanlimit = scanreset;
721
722			/*
723			 * This returns 0 if it was unable to busy the first
724			 * page (i.e. had to sleep).
725			 */
726			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
727		}
728
729		/*
730		 * If everything was dirty and we flushed it successfully,
731		 * and the requested range is not the entire object, we
732		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
733		 * return immediately.
734		 */
735		if (tscan >= tend && (tstart || tend < object->size)) {
736			vm_object_clear_flag(object, OBJ_CLEANING);
737			return;
738		}
739	}
740
741	/*
742	 * Generally set CLEANCHK interlock and make the page read-only so
743	 * we can then clear the object flags.
744	 *
745	 * However, if this is a nosync mmap then the object is likely to
746	 * stay dirty so do not mess with the page and do not clear the
747	 * object flags.
748	 */
749	clearobjflags = 1;
750
751	TAILQ_FOREACH(p, &object->memq, listq) {
752		vm_page_flag_set(p, PG_CLEANCHK);
753		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
754			clearobjflags = 0;
755		else
756			vm_page_protect(p, VM_PROT_READ);
757	}
758
759	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
760		struct vnode *vp;
761
762		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
763		if (object->type == OBJT_VNODE &&
764		    (vp = (struct vnode *)object->handle) != NULL) {
765			VI_LOCK(vp);
766			if (vp->v_iflag & VI_OBJDIRTY)
767				vp->v_iflag &= ~VI_OBJDIRTY;
768			VI_UNLOCK(vp);
769		}
770	}
771
772rescan:
773	curgeneration = object->generation;
774
775	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
776		int n;
777
778		np = TAILQ_NEXT(p, listq);
779
780again:
781		pi = p->pindex;
782		if (((p->flags & PG_CLEANCHK) == 0) ||
783			(pi < tstart) || (pi >= tend) ||
784			(p->valid == 0) ||
785			((p->queue - p->pc) == PQ_CACHE)) {
786			vm_page_flag_clear(p, PG_CLEANCHK);
787			continue;
788		}
789
790		vm_page_test_dirty(p);
791		if ((p->dirty & p->valid) == 0) {
792			vm_page_flag_clear(p, PG_CLEANCHK);
793			continue;
794		}
795
796		/*
797		 * If we have been asked to skip nosync pages and this is a
798		 * nosync page, skip it.  Note that the object flags were
799		 * not cleared in this case so we do not have to set them.
800		 */
801		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
802			vm_page_flag_clear(p, PG_CLEANCHK);
803			continue;
804		}
805
806		n = vm_object_page_collect_flush(object, p,
807			curgeneration, pagerflags);
808		if (n == 0)
809			goto rescan;
810
811		if (object->generation != curgeneration)
812			goto rescan;
813
814		/*
815		 * Try to optimize the next page.  If we can't we pick up
816		 * our (random) scan where we left off.
817		 */
818		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
819			if ((p = vm_page_lookup(object, pi + n)) != NULL)
820				goto again;
821		}
822	}
823
824#if 0
825	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
826#endif
827
828	vm_object_clear_flag(object, OBJ_CLEANING);
829	return;
830}
831
832static int
833vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
834{
835	int runlen;
836	int s;
837	int maxf;
838	int chkb;
839	int maxb;
840	int i;
841	vm_pindex_t pi;
842	vm_page_t maf[vm_pageout_page_count];
843	vm_page_t mab[vm_pageout_page_count];
844	vm_page_t ma[vm_pageout_page_count];
845
846	s = splvm();
847	pi = p->pindex;
848	while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
849		if (object->generation != curgeneration) {
850			splx(s);
851			return(0);
852		}
853	}
854	vm_page_lock_queues();
855	maxf = 0;
856	for(i = 1; i < vm_pageout_page_count; i++) {
857		vm_page_t tp;
858
859		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
860			if ((tp->flags & PG_BUSY) ||
861				(tp->flags & PG_CLEANCHK) == 0 ||
862				(tp->busy != 0))
863				break;
864			if((tp->queue - tp->pc) == PQ_CACHE) {
865				vm_page_flag_clear(tp, PG_CLEANCHK);
866				break;
867			}
868			vm_page_test_dirty(tp);
869			if ((tp->dirty & tp->valid) == 0) {
870				vm_page_flag_clear(tp, PG_CLEANCHK);
871				break;
872			}
873			maf[ i - 1 ] = tp;
874			maxf++;
875			continue;
876		}
877		break;
878	}
879
880	maxb = 0;
881	chkb = vm_pageout_page_count -  maxf;
882	if (chkb) {
883		for(i = 1; i < chkb;i++) {
884			vm_page_t tp;
885
886			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
887				if ((tp->flags & PG_BUSY) ||
888					(tp->flags & PG_CLEANCHK) == 0 ||
889					(tp->busy != 0))
890					break;
891				if ((tp->queue - tp->pc) == PQ_CACHE) {
892					vm_page_flag_clear(tp, PG_CLEANCHK);
893					break;
894				}
895				vm_page_test_dirty(tp);
896				if ((tp->dirty & tp->valid) == 0) {
897					vm_page_flag_clear(tp, PG_CLEANCHK);
898					break;
899				}
900				mab[ i - 1 ] = tp;
901				maxb++;
902				continue;
903			}
904			break;
905		}
906	}
907
908	for(i = 0; i < maxb; i++) {
909		int index = (maxb - i) - 1;
910		ma[index] = mab[i];
911		vm_page_flag_clear(ma[index], PG_CLEANCHK);
912	}
913	vm_page_flag_clear(p, PG_CLEANCHK);
914	ma[maxb] = p;
915	for(i = 0; i < maxf; i++) {
916		int index = (maxb + i) + 1;
917		ma[index] = maf[i];
918		vm_page_flag_clear(ma[index], PG_CLEANCHK);
919	}
920	runlen = maxb + maxf + 1;
921
922	splx(s);
923	vm_pageout_flush(ma, runlen, pagerflags);
924	for (i = 0; i < runlen; i++) {
925		if (ma[i]->valid & ma[i]->dirty) {
926			vm_page_protect(ma[i], VM_PROT_READ);
927			vm_page_flag_set(ma[i], PG_CLEANCHK);
928
929			/*
930			 * maxf will end up being the actual number of pages
931			 * we wrote out contiguously, non-inclusive of the
932			 * first page.  We do not count look-behind pages.
933			 */
934			if (i >= maxb + 1 && (maxf > i - maxb - 1))
935				maxf = i - maxb - 1;
936		}
937	}
938	vm_page_unlock_queues();
939	return(maxf + 1);
940}
941
942#ifdef ENABLE_VFS_IOOPT
943/*
944 * Same as vm_object_pmap_copy, except range checking really
945 * works, and is meant for small sections of an object.
946 *
947 * This code protects resident pages by making them read-only
948 * and is typically called on a fork or split when a page
949 * is converted to copy-on-write.
950 *
951 * NOTE: If the page is already at VM_PROT_NONE, calling
952 * vm_page_protect will have no effect.
953 */
954void
955vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
956{
957	vm_pindex_t idx;
958	vm_page_t p;
959
960	GIANT_REQUIRED;
961
962	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
963		return;
964
965	for (idx = start; idx < end; idx++) {
966		p = vm_page_lookup(object, idx);
967		if (p == NULL)
968			continue;
969		vm_page_protect(p, VM_PROT_READ);
970	}
971}
972#endif
973
974/*
975 *	vm_object_pmap_remove:
976 *
977 *	Removes all physical pages in the specified
978 *	object range from all physical maps.
979 *
980 *	The object must *not* be locked.
981 */
982void
983vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
984{
985	vm_page_t p;
986
987	GIANT_REQUIRED;
988	if (object == NULL)
989		return;
990	TAILQ_FOREACH(p, &object->memq, listq) {
991		if (p->pindex >= start && p->pindex < end)
992			vm_page_protect(p, VM_PROT_NONE);
993	}
994	if ((start == 0) && (object->size == end))
995		vm_object_clear_flag(object, OBJ_WRITEABLE);
996}
997
998/*
999 *	vm_object_madvise:
1000 *
1001 *	Implements the madvise function at the object/page level.
1002 *
1003 *	MADV_WILLNEED	(any object)
1004 *
1005 *	    Activate the specified pages if they are resident.
1006 *
1007 *	MADV_DONTNEED	(any object)
1008 *
1009 *	    Deactivate the specified pages if they are resident.
1010 *
1011 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1012 *			 OBJ_ONEMAPPING only)
1013 *
1014 *	    Deactivate and clean the specified pages if they are
1015 *	    resident.  This permits the process to reuse the pages
1016 *	    without faulting or the kernel to reclaim the pages
1017 *	    without I/O.
1018 */
1019void
1020vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1021{
1022	vm_pindex_t end, tpindex;
1023	vm_object_t tobject;
1024	vm_page_t m;
1025
1026	if (object == NULL)
1027		return;
1028
1029	vm_object_lock(object);
1030
1031	end = pindex + count;
1032
1033	/*
1034	 * Locate and adjust resident pages
1035	 */
1036	for (; pindex < end; pindex += 1) {
1037relookup:
1038		tobject = object;
1039		tpindex = pindex;
1040shadowlookup:
1041		/*
1042		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1043		 * and those pages must be OBJ_ONEMAPPING.
1044		 */
1045		if (advise == MADV_FREE) {
1046			if ((tobject->type != OBJT_DEFAULT &&
1047			     tobject->type != OBJT_SWAP) ||
1048			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1049				continue;
1050			}
1051		}
1052
1053		m = vm_page_lookup(tobject, tpindex);
1054
1055		if (m == NULL) {
1056			/*
1057			 * There may be swap even if there is no backing page
1058			 */
1059			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1060				swap_pager_freespace(tobject, tpindex, 1);
1061
1062			/*
1063			 * next object
1064			 */
1065			tobject = tobject->backing_object;
1066			if (tobject == NULL)
1067				continue;
1068			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1069			goto shadowlookup;
1070		}
1071
1072		/*
1073		 * If the page is busy or not in a normal active state,
1074		 * we skip it.  If the page is not managed there are no
1075		 * page queues to mess with.  Things can break if we mess
1076		 * with pages in any of the below states.
1077		 */
1078		vm_page_lock_queues();
1079		if (m->hold_count ||
1080		    m->wire_count ||
1081		    (m->flags & PG_UNMANAGED) ||
1082		    m->valid != VM_PAGE_BITS_ALL) {
1083			vm_page_unlock_queues();
1084			continue;
1085		}
1086 		if (vm_page_sleep_if_busy(m, TRUE, "madvpo"))
1087  			goto relookup;
1088		if (advise == MADV_WILLNEED) {
1089			vm_page_activate(m);
1090		} else if (advise == MADV_DONTNEED) {
1091			vm_page_dontneed(m);
1092		} else if (advise == MADV_FREE) {
1093			/*
1094			 * Mark the page clean.  This will allow the page
1095			 * to be freed up by the system.  However, such pages
1096			 * are often reused quickly by malloc()/free()
1097			 * so we do not do anything that would cause
1098			 * a page fault if we can help it.
1099			 *
1100			 * Specifically, we do not try to actually free
1101			 * the page now nor do we try to put it in the
1102			 * cache (which would cause a page fault on reuse).
1103			 *
1104			 * But we do make the page is freeable as we
1105			 * can without actually taking the step of unmapping
1106			 * it.
1107			 */
1108			pmap_clear_modify(m);
1109			m->dirty = 0;
1110			m->act_count = 0;
1111			vm_page_dontneed(m);
1112		}
1113		vm_page_unlock_queues();
1114		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1115			swap_pager_freespace(tobject, tpindex, 1);
1116	}
1117	vm_object_unlock(object);
1118}
1119
1120/*
1121 *	vm_object_shadow:
1122 *
1123 *	Create a new object which is backed by the
1124 *	specified existing object range.  The source
1125 *	object reference is deallocated.
1126 *
1127 *	The new object and offset into that object
1128 *	are returned in the source parameters.
1129 */
1130void
1131vm_object_shadow(
1132	vm_object_t *object,	/* IN/OUT */
1133	vm_ooffset_t *offset,	/* IN/OUT */
1134	vm_size_t length)
1135{
1136	vm_object_t source;
1137	vm_object_t result;
1138
1139	source = *object;
1140
1141	vm_object_lock(source);
1142	/*
1143	 * Don't create the new object if the old object isn't shared.
1144	 */
1145	if (source != NULL &&
1146	    source->ref_count == 1 &&
1147	    source->handle == NULL &&
1148	    (source->type == OBJT_DEFAULT ||
1149	     source->type == OBJT_SWAP)) {
1150		vm_object_unlock(source);
1151		return;
1152	}
1153
1154	/*
1155	 * Allocate a new object with the given length
1156	 */
1157	result = vm_object_allocate(OBJT_DEFAULT, length);
1158	KASSERT(result != NULL, ("vm_object_shadow: no object for shadowing"));
1159
1160	/*
1161	 * The new object shadows the source object, adding a reference to it.
1162	 * Our caller changes his reference to point to the new object,
1163	 * removing a reference to the source object.  Net result: no change
1164	 * of reference count.
1165	 *
1166	 * Try to optimize the result object's page color when shadowing
1167	 * in order to maintain page coloring consistency in the combined
1168	 * shadowed object.
1169	 */
1170	result->backing_object = source;
1171	if (source) {
1172		TAILQ_INSERT_TAIL(&source->shadow_head, result, shadow_list);
1173		source->shadow_count++;
1174		source->generation++;
1175		if (length < source->size)
1176			length = source->size;
1177		if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1178		    source->generation > 1)
1179			length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1180		result->pg_color = (source->pg_color +
1181		    length * source->generation) & PQ_L2_MASK;
1182		next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1183		    PQ_L2_MASK;
1184	}
1185
1186	/*
1187	 * Store the offset into the source object, and fix up the offset into
1188	 * the new object.
1189	 */
1190	result->backing_object_offset = *offset;
1191
1192	/*
1193	 * Return the new things
1194	 */
1195	*offset = 0;
1196	*object = result;
1197
1198	vm_object_unlock(source);
1199}
1200
1201/*
1202 *	vm_object_split:
1203 *
1204 * Split the pages in a map entry into a new object.  This affords
1205 * easier removal of unused pages, and keeps object inheritance from
1206 * being a negative impact on memory usage.
1207 */
1208void
1209vm_object_split(vm_map_entry_t entry)
1210{
1211	vm_page_t m;
1212	vm_object_t orig_object, new_object, source;
1213	vm_offset_t s, e;
1214	vm_pindex_t offidxstart, offidxend;
1215	vm_size_t idx, size;
1216	vm_ooffset_t offset;
1217
1218	GIANT_REQUIRED;
1219
1220	orig_object = entry->object.vm_object;
1221	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1222		return;
1223	if (orig_object->ref_count <= 1)
1224		return;
1225
1226	offset = entry->offset;
1227	s = entry->start;
1228	e = entry->end;
1229
1230	offidxstart = OFF_TO_IDX(offset);
1231	offidxend = offidxstart + OFF_TO_IDX(e - s);
1232	size = offidxend - offidxstart;
1233
1234	new_object = vm_pager_allocate(orig_object->type,
1235		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
1236	if (new_object == NULL)
1237		return;
1238
1239	source = orig_object->backing_object;
1240	if (source != NULL) {
1241		vm_object_reference(source);	/* Referenced by new_object */
1242		TAILQ_INSERT_TAIL(&source->shadow_head,
1243				  new_object, shadow_list);
1244		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1245		new_object->backing_object_offset =
1246			orig_object->backing_object_offset + offset;
1247		new_object->backing_object = source;
1248		source->shadow_count++;
1249		source->generation++;
1250	}
1251	for (idx = 0; idx < size; idx++) {
1252	retry:
1253		m = vm_page_lookup(orig_object, offidxstart + idx);
1254		if (m == NULL)
1255			continue;
1256
1257		/*
1258		 * We must wait for pending I/O to complete before we can
1259		 * rename the page.
1260		 *
1261		 * We do not have to VM_PROT_NONE the page as mappings should
1262		 * not be changed by this operation.
1263		 */
1264		vm_page_lock_queues();
1265		if (vm_page_sleep_if_busy(m, TRUE, "spltwt"))
1266			goto retry;
1267
1268		vm_page_busy(m);
1269		vm_page_unlock_queues();
1270		vm_page_rename(m, new_object, idx);
1271		/* page automatically made dirty by rename and cache handled */
1272		vm_page_busy(m);
1273	}
1274	if (orig_object->type == OBJT_SWAP) {
1275		vm_object_pip_add(orig_object, 1);
1276		/*
1277		 * copy orig_object pages into new_object
1278		 * and destroy unneeded pages in
1279		 * shadow object.
1280		 */
1281		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1282		vm_object_pip_wakeup(orig_object);
1283	}
1284	TAILQ_FOREACH(m, &new_object->memq, listq)
1285		vm_page_wakeup(m);
1286	entry->object.vm_object = new_object;
1287	entry->offset = 0LL;
1288	vm_object_deallocate(orig_object);
1289}
1290
1291#define	OBSC_TEST_ALL_SHADOWED	0x0001
1292#define	OBSC_COLLAPSE_NOWAIT	0x0002
1293#define	OBSC_COLLAPSE_WAIT	0x0004
1294
1295static __inline int
1296vm_object_backing_scan(vm_object_t object, int op)
1297{
1298	int s;
1299	int r = 1;
1300	vm_page_t p;
1301	vm_object_t backing_object;
1302	vm_pindex_t backing_offset_index;
1303
1304	s = splvm();
1305	GIANT_REQUIRED;
1306
1307	backing_object = object->backing_object;
1308	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1309
1310	/*
1311	 * Initial conditions
1312	 */
1313	if (op & OBSC_TEST_ALL_SHADOWED) {
1314		/*
1315		 * We do not want to have to test for the existence of
1316		 * swap pages in the backing object.  XXX but with the
1317		 * new swapper this would be pretty easy to do.
1318		 *
1319		 * XXX what about anonymous MAP_SHARED memory that hasn't
1320		 * been ZFOD faulted yet?  If we do not test for this, the
1321		 * shadow test may succeed! XXX
1322		 */
1323		if (backing_object->type != OBJT_DEFAULT) {
1324			splx(s);
1325			return (0);
1326		}
1327	}
1328	if (op & OBSC_COLLAPSE_WAIT) {
1329		vm_object_set_flag(backing_object, OBJ_DEAD);
1330	}
1331
1332	/*
1333	 * Our scan
1334	 */
1335	p = TAILQ_FIRST(&backing_object->memq);
1336	while (p) {
1337		vm_page_t next = TAILQ_NEXT(p, listq);
1338		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1339
1340		if (op & OBSC_TEST_ALL_SHADOWED) {
1341			vm_page_t pp;
1342
1343			/*
1344			 * Ignore pages outside the parent object's range
1345			 * and outside the parent object's mapping of the
1346			 * backing object.
1347			 *
1348			 * note that we do not busy the backing object's
1349			 * page.
1350			 */
1351			if (
1352			    p->pindex < backing_offset_index ||
1353			    new_pindex >= object->size
1354			) {
1355				p = next;
1356				continue;
1357			}
1358
1359			/*
1360			 * See if the parent has the page or if the parent's
1361			 * object pager has the page.  If the parent has the
1362			 * page but the page is not valid, the parent's
1363			 * object pager must have the page.
1364			 *
1365			 * If this fails, the parent does not completely shadow
1366			 * the object and we might as well give up now.
1367			 */
1368
1369			pp = vm_page_lookup(object, new_pindex);
1370			if (
1371			    (pp == NULL || pp->valid == 0) &&
1372			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1373			) {
1374				r = 0;
1375				break;
1376			}
1377		}
1378
1379		/*
1380		 * Check for busy page
1381		 */
1382		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1383			vm_page_t pp;
1384
1385			vm_page_lock_queues();
1386			if (op & OBSC_COLLAPSE_NOWAIT) {
1387				if ((p->flags & PG_BUSY) ||
1388				    !p->valid ||
1389				    p->hold_count ||
1390				    p->wire_count ||
1391				    p->busy) {
1392					vm_page_unlock_queues();
1393					p = next;
1394					continue;
1395				}
1396			} else if (op & OBSC_COLLAPSE_WAIT) {
1397				if (vm_page_sleep_if_busy(p, TRUE, "vmocol")) {
1398					/*
1399					 * If we slept, anything could have
1400					 * happened.  Since the object is
1401					 * marked dead, the backing offset
1402					 * should not have changed so we
1403					 * just restart our scan.
1404					 */
1405					p = TAILQ_FIRST(&backing_object->memq);
1406					continue;
1407				}
1408			}
1409
1410			/*
1411			 * Busy the page
1412			 */
1413			vm_page_busy(p);
1414			vm_page_unlock_queues();
1415
1416			KASSERT(
1417			    p->object == backing_object,
1418			    ("vm_object_qcollapse(): object mismatch")
1419			);
1420
1421			/*
1422			 * Destroy any associated swap
1423			 */
1424			if (backing_object->type == OBJT_SWAP) {
1425				swap_pager_freespace(
1426				    backing_object,
1427				    p->pindex,
1428				    1
1429				);
1430			}
1431
1432			if (
1433			    p->pindex < backing_offset_index ||
1434			    new_pindex >= object->size
1435			) {
1436				/*
1437				 * Page is out of the parent object's range, we
1438				 * can simply destroy it.
1439				 */
1440				vm_page_lock_queues();
1441				vm_page_protect(p, VM_PROT_NONE);
1442				vm_page_free(p);
1443				vm_page_unlock_queues();
1444				p = next;
1445				continue;
1446			}
1447
1448			pp = vm_page_lookup(object, new_pindex);
1449			if (
1450			    pp != NULL ||
1451			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1452			) {
1453				/*
1454				 * page already exists in parent OR swap exists
1455				 * for this location in the parent.  Destroy
1456				 * the original page from the backing object.
1457				 *
1458				 * Leave the parent's page alone
1459				 */
1460				vm_page_lock_queues();
1461				vm_page_protect(p, VM_PROT_NONE);
1462				vm_page_free(p);
1463				vm_page_unlock_queues();
1464				p = next;
1465				continue;
1466			}
1467
1468			/*
1469			 * Page does not exist in parent, rename the
1470			 * page from the backing object to the main object.
1471			 *
1472			 * If the page was mapped to a process, it can remain
1473			 * mapped through the rename.
1474			 */
1475			vm_page_rename(p, object, new_pindex);
1476			/* page automatically made dirty by rename */
1477		}
1478		p = next;
1479	}
1480	splx(s);
1481	return (r);
1482}
1483
1484
1485/*
1486 * this version of collapse allows the operation to occur earlier and
1487 * when paging_in_progress is true for an object...  This is not a complete
1488 * operation, but should plug 99.9% of the rest of the leaks.
1489 */
1490static void
1491vm_object_qcollapse(vm_object_t object)
1492{
1493	vm_object_t backing_object = object->backing_object;
1494
1495	GIANT_REQUIRED;
1496
1497	if (backing_object->ref_count != 1)
1498		return;
1499
1500	backing_object->ref_count += 2;
1501
1502	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1503
1504	backing_object->ref_count -= 2;
1505}
1506
1507/*
1508 *	vm_object_collapse:
1509 *
1510 *	Collapse an object with the object backing it.
1511 *	Pages in the backing object are moved into the
1512 *	parent, and the backing object is deallocated.
1513 */
1514void
1515vm_object_collapse(vm_object_t object)
1516{
1517	GIANT_REQUIRED;
1518
1519	while (TRUE) {
1520		vm_object_t backing_object;
1521
1522		/*
1523		 * Verify that the conditions are right for collapse:
1524		 *
1525		 * The object exists and the backing object exists.
1526		 */
1527		if (object == NULL)
1528			break;
1529
1530		if ((backing_object = object->backing_object) == NULL)
1531			break;
1532
1533		/*
1534		 * we check the backing object first, because it is most likely
1535		 * not collapsable.
1536		 */
1537		if (backing_object->handle != NULL ||
1538		    (backing_object->type != OBJT_DEFAULT &&
1539		     backing_object->type != OBJT_SWAP) ||
1540		    (backing_object->flags & OBJ_DEAD) ||
1541		    object->handle != NULL ||
1542		    (object->type != OBJT_DEFAULT &&
1543		     object->type != OBJT_SWAP) ||
1544		    (object->flags & OBJ_DEAD)) {
1545			break;
1546		}
1547
1548		if (
1549		    object->paging_in_progress != 0 ||
1550		    backing_object->paging_in_progress != 0
1551		) {
1552			vm_object_qcollapse(object);
1553			break;
1554		}
1555
1556		/*
1557		 * We know that we can either collapse the backing object (if
1558		 * the parent is the only reference to it) or (perhaps) have
1559		 * the parent bypass the object if the parent happens to shadow
1560		 * all the resident pages in the entire backing object.
1561		 *
1562		 * This is ignoring pager-backed pages such as swap pages.
1563		 * vm_object_backing_scan fails the shadowing test in this
1564		 * case.
1565		 */
1566		if (backing_object->ref_count == 1) {
1567			/*
1568			 * If there is exactly one reference to the backing
1569			 * object, we can collapse it into the parent.
1570			 */
1571			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1572
1573			/*
1574			 * Move the pager from backing_object to object.
1575			 */
1576			if (backing_object->type == OBJT_SWAP) {
1577				vm_object_pip_add(backing_object, 1);
1578
1579				/*
1580				 * scrap the paging_offset junk and do a
1581				 * discrete copy.  This also removes major
1582				 * assumptions about how the swap-pager
1583				 * works from where it doesn't belong.  The
1584				 * new swapper is able to optimize the
1585				 * destroy-source case.
1586				 */
1587				vm_object_pip_add(object, 1);
1588				swap_pager_copy(
1589				    backing_object,
1590				    object,
1591				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1592				vm_object_pip_wakeup(object);
1593
1594				vm_object_pip_wakeup(backing_object);
1595			}
1596			/*
1597			 * Object now shadows whatever backing_object did.
1598			 * Note that the reference to
1599			 * backing_object->backing_object moves from within
1600			 * backing_object to within object.
1601			 */
1602			TAILQ_REMOVE(
1603			    &object->backing_object->shadow_head,
1604			    object,
1605			    shadow_list
1606			);
1607			object->backing_object->shadow_count--;
1608			object->backing_object->generation++;
1609			if (backing_object->backing_object) {
1610				TAILQ_REMOVE(
1611				    &backing_object->backing_object->shadow_head,
1612				    backing_object,
1613				    shadow_list
1614				);
1615				backing_object->backing_object->shadow_count--;
1616				backing_object->backing_object->generation++;
1617			}
1618			object->backing_object = backing_object->backing_object;
1619			if (object->backing_object) {
1620				TAILQ_INSERT_TAIL(
1621				    &object->backing_object->shadow_head,
1622				    object,
1623				    shadow_list
1624				);
1625				object->backing_object->shadow_count++;
1626				object->backing_object->generation++;
1627			}
1628
1629			object->backing_object_offset +=
1630			    backing_object->backing_object_offset;
1631
1632			/*
1633			 * Discard backing_object.
1634			 *
1635			 * Since the backing object has no pages, no pager left,
1636			 * and no object references within it, all that is
1637			 * necessary is to dispose of it.
1638			 */
1639			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1640			KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1641
1642			mtx_lock(&vm_object_list_mtx);
1643			TAILQ_REMOVE(
1644			    &vm_object_list,
1645			    backing_object,
1646			    object_list
1647			);
1648			mtx_unlock(&vm_object_list_mtx);
1649
1650			uma_zfree(obj_zone, backing_object);
1651
1652			object_collapses++;
1653		} else {
1654			vm_object_t new_backing_object;
1655
1656			/*
1657			 * If we do not entirely shadow the backing object,
1658			 * there is nothing we can do so we give up.
1659			 */
1660			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1661				break;
1662			}
1663
1664			/*
1665			 * Make the parent shadow the next object in the
1666			 * chain.  Deallocating backing_object will not remove
1667			 * it, since its reference count is at least 2.
1668			 */
1669			TAILQ_REMOVE(
1670			    &backing_object->shadow_head,
1671			    object,
1672			    shadow_list
1673			);
1674			backing_object->shadow_count--;
1675			backing_object->generation++;
1676
1677			new_backing_object = backing_object->backing_object;
1678			if ((object->backing_object = new_backing_object) != NULL) {
1679				vm_object_reference(new_backing_object);
1680				TAILQ_INSERT_TAIL(
1681				    &new_backing_object->shadow_head,
1682				    object,
1683				    shadow_list
1684				);
1685				new_backing_object->shadow_count++;
1686				new_backing_object->generation++;
1687				object->backing_object_offset +=
1688					backing_object->backing_object_offset;
1689			}
1690
1691			/*
1692			 * Drop the reference count on backing_object. Since
1693			 * its ref_count was at least 2, it will not vanish;
1694			 * so we don't need to call vm_object_deallocate, but
1695			 * we do anyway.
1696			 */
1697			vm_object_deallocate(backing_object);
1698			object_bypasses++;
1699		}
1700
1701		/*
1702		 * Try again with this object's new backing object.
1703		 */
1704	}
1705}
1706
1707/*
1708 *	vm_object_page_remove: [internal]
1709 *
1710 *	Removes all physical pages in the specified
1711 *	object range from the object's list of pages.
1712 *
1713 *	The object must be locked.
1714 */
1715void
1716vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, boolean_t clean_only)
1717{
1718	vm_page_t p, next;
1719	vm_pindex_t size;
1720	int all;
1721
1722	if (object == NULL)
1723		return;
1724
1725	mtx_lock(&Giant);
1726	if (object->resident_page_count == 0) {
1727		mtx_unlock(&Giant);
1728		return;
1729	}
1730	all = ((end == 0) && (start == 0));
1731
1732	/*
1733	 * Since physically-backed objects do not use managed pages, we can't
1734	 * remove pages from the object (we must instead remove the page
1735	 * references, and then destroy the object).
1736	 */
1737	KASSERT(object->type != OBJT_PHYS, ("attempt to remove pages from a physical object"));
1738
1739	vm_object_pip_add(object, 1);
1740again:
1741	vm_page_lock_queues();
1742	size = end - start;
1743	if (all || size > object->resident_page_count / 4) {
1744		for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1745			next = TAILQ_NEXT(p, listq);
1746			if (all || ((start <= p->pindex) && (p->pindex < end))) {
1747				if (p->wire_count != 0) {
1748					vm_page_protect(p, VM_PROT_NONE);
1749					if (!clean_only)
1750						p->valid = 0;
1751					continue;
1752				}
1753
1754				/*
1755				 * The busy flags are only cleared at
1756				 * interrupt -- minimize the spl transitions
1757				 */
1758 				if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1759 					goto again;
1760
1761				if (clean_only && p->valid) {
1762					vm_page_test_dirty(p);
1763					if (p->valid & p->dirty)
1764						continue;
1765				}
1766				vm_page_busy(p);
1767				vm_page_protect(p, VM_PROT_NONE);
1768				vm_page_free(p);
1769			}
1770		}
1771	} else {
1772		while (size > 0) {
1773			if ((p = vm_page_lookup(object, start)) != NULL) {
1774				if (p->wire_count != 0) {
1775					vm_page_protect(p, VM_PROT_NONE);
1776					if (!clean_only)
1777						p->valid = 0;
1778					start += 1;
1779					size -= 1;
1780					continue;
1781				}
1782
1783				/*
1784				 * The busy flags are only cleared at
1785				 * interrupt -- minimize the spl transitions
1786				 */
1787				if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1788					goto again;
1789
1790				if (clean_only && p->valid) {
1791					vm_page_test_dirty(p);
1792					if (p->valid & p->dirty) {
1793						start += 1;
1794						size -= 1;
1795						continue;
1796					}
1797				}
1798				vm_page_busy(p);
1799				vm_page_protect(p, VM_PROT_NONE);
1800				vm_page_free(p);
1801			}
1802			start += 1;
1803			size -= 1;
1804		}
1805	}
1806	vm_page_unlock_queues();
1807	vm_object_pip_wakeup(object);
1808	mtx_unlock(&Giant);
1809}
1810
1811/*
1812 *	Routine:	vm_object_coalesce
1813 *	Function:	Coalesces two objects backing up adjoining
1814 *			regions of memory into a single object.
1815 *
1816 *	returns TRUE if objects were combined.
1817 *
1818 *	NOTE:	Only works at the moment if the second object is NULL -
1819 *		if it's not, which object do we lock first?
1820 *
1821 *	Parameters:
1822 *		prev_object	First object to coalesce
1823 *		prev_offset	Offset into prev_object
1824 *		next_object	Second object into coalesce
1825 *		next_offset	Offset into next_object
1826 *
1827 *		prev_size	Size of reference to prev_object
1828 *		next_size	Size of reference to next_object
1829 *
1830 *	Conditions:
1831 *	The object must *not* be locked.
1832 */
1833boolean_t
1834vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1835	vm_size_t prev_size, vm_size_t next_size)
1836{
1837	vm_pindex_t next_pindex;
1838
1839	if (prev_object == NULL)
1840		return (TRUE);
1841	vm_object_lock(prev_object);
1842	if (prev_object->type != OBJT_DEFAULT &&
1843	    prev_object->type != OBJT_SWAP) {
1844		vm_object_unlock(prev_object);
1845		return (FALSE);
1846	}
1847
1848	/*
1849	 * Try to collapse the object first
1850	 */
1851	vm_object_collapse(prev_object);
1852
1853	/*
1854	 * Can't coalesce if: . more than one reference . paged out . shadows
1855	 * another object . has a copy elsewhere (any of which mean that the
1856	 * pages not mapped to prev_entry may be in use anyway)
1857	 */
1858	if (prev_object->backing_object != NULL) {
1859		vm_object_unlock(prev_object);
1860		return (FALSE);
1861	}
1862
1863	prev_size >>= PAGE_SHIFT;
1864	next_size >>= PAGE_SHIFT;
1865	next_pindex = prev_pindex + prev_size;
1866
1867	if ((prev_object->ref_count > 1) &&
1868	    (prev_object->size != next_pindex)) {
1869		vm_object_unlock(prev_object);
1870		return (FALSE);
1871	}
1872
1873	/*
1874	 * Remove any pages that may still be in the object from a previous
1875	 * deallocation.
1876	 */
1877	if (next_pindex < prev_object->size) {
1878		vm_object_page_remove(prev_object,
1879				      next_pindex,
1880				      next_pindex + next_size, FALSE);
1881		if (prev_object->type == OBJT_SWAP)
1882			swap_pager_freespace(prev_object,
1883					     next_pindex, next_size);
1884	}
1885
1886	/*
1887	 * Extend the object if necessary.
1888	 */
1889	if (next_pindex + next_size > prev_object->size)
1890		prev_object->size = next_pindex + next_size;
1891
1892	vm_object_unlock(prev_object);
1893	return (TRUE);
1894}
1895
1896void
1897vm_object_set_writeable_dirty(vm_object_t object)
1898{
1899	struct vnode *vp;
1900
1901	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1902	if (object->type == OBJT_VNODE &&
1903	    (vp = (struct vnode *)object->handle) != NULL) {
1904		VI_LOCK(vp);
1905		if ((vp->v_iflag & VI_OBJDIRTY) == 0)
1906			vp->v_iflag |= VI_OBJDIRTY;
1907		VI_UNLOCK(vp);
1908	}
1909}
1910
1911#ifdef ENABLE_VFS_IOOPT
1912/*
1913 * Experimental support for zero-copy I/O
1914 *
1915 * Performs the copy_on_write operations necessary to allow the virtual copies
1916 * into user space to work.  This has to be called for write(2) system calls
1917 * from other processes, file unlinking, and file size shrinkage.
1918 */
1919void
1920vm_freeze_copyopts(vm_object_t object, vm_pindex_t froma, vm_pindex_t toa)
1921{
1922	int rv;
1923	vm_object_t robject;
1924	vm_pindex_t idx;
1925
1926	GIANT_REQUIRED;
1927	if ((object == NULL) ||
1928		((object->flags & OBJ_OPT) == 0))
1929		return;
1930
1931	if (object->shadow_count > object->ref_count)
1932		panic("vm_freeze_copyopts: sc > rc");
1933
1934	while ((robject = TAILQ_FIRST(&object->shadow_head)) != NULL) {
1935		vm_pindex_t bo_pindex;
1936		vm_page_t m_in, m_out;
1937
1938		bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
1939
1940		vm_object_reference(robject);
1941
1942		vm_object_pip_wait(robject, "objfrz");
1943
1944		if (robject->ref_count == 1) {
1945			vm_object_deallocate(robject);
1946			continue;
1947		}
1948
1949		vm_object_pip_add(robject, 1);
1950
1951		for (idx = 0; idx < robject->size; idx++) {
1952
1953			m_out = vm_page_grab(robject, idx,
1954						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1955
1956			if (m_out->valid == 0) {
1957				m_in = vm_page_grab(object, bo_pindex + idx,
1958						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1959				if (m_in->valid == 0) {
1960					rv = vm_pager_get_pages(object, &m_in, 1, 0);
1961					if (rv != VM_PAGER_OK) {
1962						printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
1963						continue;
1964					}
1965					vm_page_lock_queues();
1966					vm_page_deactivate(m_in);
1967					vm_page_unlock_queues();
1968				}
1969
1970				vm_page_protect(m_in, VM_PROT_NONE);
1971				pmap_copy_page(m_in, m_out);
1972				m_out->valid = m_in->valid;
1973				vm_page_dirty(m_out);
1974				vm_page_lock_queues();
1975				vm_page_activate(m_out);
1976				vm_page_unlock_queues();
1977				vm_page_wakeup(m_in);
1978			}
1979			vm_page_wakeup(m_out);
1980		}
1981
1982		object->shadow_count--;
1983		object->ref_count--;
1984		TAILQ_REMOVE(&object->shadow_head, robject, shadow_list);
1985		robject->backing_object = NULL;
1986		robject->backing_object_offset = 0;
1987
1988		vm_object_pip_wakeup(robject);
1989		vm_object_deallocate(robject);
1990	}
1991
1992	vm_object_clear_flag(object, OBJ_OPT);
1993}
1994#endif
1995
1996#include "opt_ddb.h"
1997#ifdef DDB
1998#include <sys/kernel.h>
1999
2000#include <sys/cons.h>
2001
2002#include <ddb/ddb.h>
2003
2004static int
2005_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2006{
2007	vm_map_t tmpm;
2008	vm_map_entry_t tmpe;
2009	vm_object_t obj;
2010	int entcount;
2011
2012	if (map == 0)
2013		return 0;
2014
2015	if (entry == 0) {
2016		tmpe = map->header.next;
2017		entcount = map->nentries;
2018		while (entcount-- && (tmpe != &map->header)) {
2019			if (_vm_object_in_map(map, object, tmpe)) {
2020				return 1;
2021			}
2022			tmpe = tmpe->next;
2023		}
2024	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2025		tmpm = entry->object.sub_map;
2026		tmpe = tmpm->header.next;
2027		entcount = tmpm->nentries;
2028		while (entcount-- && tmpe != &tmpm->header) {
2029			if (_vm_object_in_map(tmpm, object, tmpe)) {
2030				return 1;
2031			}
2032			tmpe = tmpe->next;
2033		}
2034	} else if ((obj = entry->object.vm_object) != NULL) {
2035		for (; obj; obj = obj->backing_object)
2036			if (obj == object) {
2037				return 1;
2038			}
2039	}
2040	return 0;
2041}
2042
2043static int
2044vm_object_in_map(vm_object_t object)
2045{
2046	struct proc *p;
2047
2048	/* sx_slock(&allproc_lock); */
2049	LIST_FOREACH(p, &allproc, p_list) {
2050		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2051			continue;
2052		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2053			/* sx_sunlock(&allproc_lock); */
2054			return 1;
2055		}
2056	}
2057	/* sx_sunlock(&allproc_lock); */
2058	if (_vm_object_in_map(kernel_map, object, 0))
2059		return 1;
2060	if (_vm_object_in_map(kmem_map, object, 0))
2061		return 1;
2062	if (_vm_object_in_map(pager_map, object, 0))
2063		return 1;
2064	if (_vm_object_in_map(buffer_map, object, 0))
2065		return 1;
2066	return 0;
2067}
2068
2069DB_SHOW_COMMAND(vmochk, vm_object_check)
2070{
2071	vm_object_t object;
2072
2073	/*
2074	 * make sure that internal objs are in a map somewhere
2075	 * and none have zero ref counts.
2076	 */
2077	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2078		if (object->handle == NULL &&
2079		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2080			if (object->ref_count == 0) {
2081				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2082					(long)object->size);
2083			}
2084			if (!vm_object_in_map(object)) {
2085				db_printf(
2086			"vmochk: internal obj is not in a map: "
2087			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2088				    object->ref_count, (u_long)object->size,
2089				    (u_long)object->size,
2090				    (void *)object->backing_object);
2091			}
2092		}
2093	}
2094}
2095
2096/*
2097 *	vm_object_print:	[ debug ]
2098 */
2099DB_SHOW_COMMAND(object, vm_object_print_static)
2100{
2101	/* XXX convert args. */
2102	vm_object_t object = (vm_object_t)addr;
2103	boolean_t full = have_addr;
2104
2105	vm_page_t p;
2106
2107	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2108#define	count	was_count
2109
2110	int count;
2111
2112	if (object == NULL)
2113		return;
2114
2115	db_iprintf(
2116	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2117	    object, (int)object->type, (u_long)object->size,
2118	    object->resident_page_count, object->ref_count, object->flags);
2119	/*
2120	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2121	 */
2122	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2123	    object->shadow_count,
2124	    object->backing_object ? object->backing_object->ref_count : 0,
2125	    object->backing_object, (long)object->backing_object_offset);
2126
2127	if (!full)
2128		return;
2129
2130	db_indent += 2;
2131	count = 0;
2132	TAILQ_FOREACH(p, &object->memq, listq) {
2133		if (count == 0)
2134			db_iprintf("memory:=");
2135		else if (count == 6) {
2136			db_printf("\n");
2137			db_iprintf(" ...");
2138			count = 0;
2139		} else
2140			db_printf(",");
2141		count++;
2142
2143		db_printf("(off=0x%lx,page=0x%lx)",
2144		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2145	}
2146	if (count != 0)
2147		db_printf("\n");
2148	db_indent -= 2;
2149}
2150
2151/* XXX. */
2152#undef count
2153
2154/* XXX need this non-static entry for calling from vm_map_print. */
2155void
2156vm_object_print(
2157        /* db_expr_t */ long addr,
2158	boolean_t have_addr,
2159	/* db_expr_t */ long count,
2160	char *modif)
2161{
2162	vm_object_print_static(addr, have_addr, count, modif);
2163}
2164
2165DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2166{
2167	vm_object_t object;
2168	int nl = 0;
2169	int c;
2170
2171	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2172		vm_pindex_t idx, fidx;
2173		vm_pindex_t osize;
2174		vm_offset_t pa = -1, padiff;
2175		int rcount;
2176		vm_page_t m;
2177
2178		db_printf("new object: %p\n", (void *)object);
2179		if (nl > 18) {
2180			c = cngetc();
2181			if (c != ' ')
2182				return;
2183			nl = 0;
2184		}
2185		nl++;
2186		rcount = 0;
2187		fidx = 0;
2188		osize = object->size;
2189		if (osize > 128)
2190			osize = 128;
2191		for (idx = 0; idx < osize; idx++) {
2192			m = vm_page_lookup(object, idx);
2193			if (m == NULL) {
2194				if (rcount) {
2195					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2196						(long)fidx, rcount, (long)pa);
2197					if (nl > 18) {
2198						c = cngetc();
2199						if (c != ' ')
2200							return;
2201						nl = 0;
2202					}
2203					nl++;
2204					rcount = 0;
2205				}
2206				continue;
2207			}
2208
2209
2210			if (rcount &&
2211				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2212				++rcount;
2213				continue;
2214			}
2215			if (rcount) {
2216				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2217				padiff >>= PAGE_SHIFT;
2218				padiff &= PQ_L2_MASK;
2219				if (padiff == 0) {
2220					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2221					++rcount;
2222					continue;
2223				}
2224				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2225					(long)fidx, rcount, (long)pa);
2226				db_printf("pd(%ld)\n", (long)padiff);
2227				if (nl > 18) {
2228					c = cngetc();
2229					if (c != ' ')
2230						return;
2231					nl = 0;
2232				}
2233				nl++;
2234			}
2235			fidx = idx;
2236			pa = VM_PAGE_TO_PHYS(m);
2237			rcount = 1;
2238		}
2239		if (rcount) {
2240			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2241				(long)fidx, rcount, (long)pa);
2242			if (nl > 18) {
2243				c = cngetc();
2244				if (c != ' ')
2245					return;
2246				nl = 0;
2247			}
2248			nl++;
2249		}
2250	}
2251}
2252#endif /* DDB */
2253