vm_object.c revision 101196
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_object.c 101196 2002-08-02 03:56:31Z alc $
65 */
66
67/*
68 *	Virtual memory object module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/lock.h>
74#include <sys/mman.h>
75#include <sys/mount.h>
76#include <sys/kernel.h>
77#include <sys/sysctl.h>
78#include <sys/mutex.h>
79#include <sys/proc.h>		/* for curproc, pageproc */
80#include <sys/socket.h>
81#include <sys/vnode.h>
82#include <sys/vmmeter.h>
83#include <sys/sx.h>
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/pmap.h>
88#include <vm/vm_map.h>
89#include <vm/vm_object.h>
90#include <vm/vm_page.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_pager.h>
93#include <vm/swap_pager.h>
94#include <vm/vm_kern.h>
95#include <vm/vm_extern.h>
96#include <vm/uma.h>
97
98#define EASY_SCAN_FACTOR       8
99
100#define MSYNC_FLUSH_HARDSEQ	0x01
101#define MSYNC_FLUSH_SOFTSEQ	0x02
102
103/*
104 * msync / VM object flushing optimizations
105 */
106static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
107SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
108        CTLFLAG_RW, &msync_flush_flags, 0, "");
109
110static void	vm_object_qcollapse(vm_object_t object);
111static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
112
113/*
114 *	Virtual memory objects maintain the actual data
115 *	associated with allocated virtual memory.  A given
116 *	page of memory exists within exactly one object.
117 *
118 *	An object is only deallocated when all "references"
119 *	are given up.  Only one "reference" to a given
120 *	region of an object should be writeable.
121 *
122 *	Associated with each object is a list of all resident
123 *	memory pages belonging to that object; this list is
124 *	maintained by the "vm_page" module, and locked by the object's
125 *	lock.
126 *
127 *	Each object also records a "pager" routine which is
128 *	used to retrieve (and store) pages to the proper backing
129 *	storage.  In addition, objects may be backed by other
130 *	objects from which they were virtual-copied.
131 *
132 *	The only items within the object structure which are
133 *	modified after time of creation are:
134 *		reference count		locked by object's lock
135 *		pager routine		locked by object's lock
136 *
137 */
138
139struct object_q vm_object_list;
140struct mtx vm_object_list_mtx;	/* lock for object list and count */
141vm_object_t kernel_object;
142vm_object_t kmem_object;
143static struct vm_object kernel_object_store;
144static struct vm_object kmem_object_store;
145extern int vm_pageout_page_count;
146
147static long object_collapses;
148static long object_bypasses;
149static int next_index;
150static uma_zone_t obj_zone;
151#define VM_OBJECTS_INIT 256
152
153static void vm_object_zinit(void *mem, int size);
154
155#ifdef INVARIANTS
156static void vm_object_zdtor(void *mem, int size, void *arg);
157
158static void
159vm_object_zdtor(void *mem, int size, void *arg)
160{
161	vm_object_t object;
162
163	object = (vm_object_t)mem;
164	KASSERT(object->paging_in_progress == 0,
165	    ("object %p paging_in_progress = %d",
166	    object, object->paging_in_progress));
167	KASSERT(object->resident_page_count == 0,
168	    ("object %p resident_page_count = %d",
169	    object, object->resident_page_count));
170	KASSERT(object->shadow_count == 0,
171	    ("object %p shadow_count = %d",
172	    object, object->shadow_count));
173}
174#endif
175
176static void
177vm_object_zinit(void *mem, int size)
178{
179	vm_object_t object;
180
181	object = (vm_object_t)mem;
182
183	/* These are true for any object that has been freed */
184	object->paging_in_progress = 0;
185	object->resident_page_count = 0;
186	object->shadow_count = 0;
187}
188
189void
190_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
191{
192	static int object_hash_rand;
193	int exp, incr;
194
195	TAILQ_INIT(&object->memq);
196	TAILQ_INIT(&object->shadow_head);
197
198	object->type = type;
199	object->size = size;
200	object->ref_count = 1;
201	object->flags = 0;
202	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
203		vm_object_set_flag(object, OBJ_ONEMAPPING);
204	if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
205		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
206	else
207		incr = size;
208	do
209		object->pg_color = next_index;
210	while (!atomic_cmpset_int(&next_index, object->pg_color,
211				  (object->pg_color + incr) & PQ_L2_MASK));
212	object->handle = NULL;
213	object->backing_object = NULL;
214	object->backing_object_offset = (vm_ooffset_t) 0;
215	/*
216	 * Try to generate a number that will spread objects out in the
217	 * hash table.  We 'wipe' new objects across the hash in 128 page
218	 * increments plus 1 more to offset it a little more by the time
219	 * it wraps around.
220	 */
221	do {
222		exp = object_hash_rand;
223		object->hash_rand = exp - 129;
224	} while (!atomic_cmpset_int(&object_hash_rand, exp, object->hash_rand));
225
226	object->generation++;		/* atomicity needed? XXX */
227
228	mtx_lock(&vm_object_list_mtx);
229	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
230	mtx_unlock(&vm_object_list_mtx);
231}
232
233/*
234 *	vm_object_init:
235 *
236 *	Initialize the VM objects module.
237 */
238void
239vm_object_init(void)
240{
241	TAILQ_INIT(&vm_object_list);
242	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
243
244	kernel_object = &kernel_object_store;
245	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
246	    kernel_object);
247
248	kmem_object = &kmem_object_store;
249	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
250	    kmem_object);
251	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
252#ifdef INVARIANTS
253	    vm_object_zdtor,
254#else
255	    NULL,
256#endif
257	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
258	uma_prealloc(obj_zone, VM_OBJECTS_INIT);
259}
260
261void
262vm_object_init2(void)
263{
264}
265
266void
267vm_object_set_flag(vm_object_t object, u_short bits)
268{
269	object->flags |= bits;
270}
271
272void
273vm_object_clear_flag(vm_object_t object, u_short bits)
274{
275	GIANT_REQUIRED;
276	object->flags &= ~bits;
277}
278
279void
280vm_object_pip_add(vm_object_t object, short i)
281{
282	GIANT_REQUIRED;
283	object->paging_in_progress += i;
284}
285
286void
287vm_object_pip_subtract(vm_object_t object, short i)
288{
289	GIANT_REQUIRED;
290	object->paging_in_progress -= i;
291}
292
293void
294vm_object_pip_wakeup(vm_object_t object)
295{
296	GIANT_REQUIRED;
297	object->paging_in_progress--;
298	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
299		vm_object_clear_flag(object, OBJ_PIPWNT);
300		wakeup(object);
301	}
302}
303
304void
305vm_object_pip_wakeupn(vm_object_t object, short i)
306{
307	GIANT_REQUIRED;
308	if (i)
309		object->paging_in_progress -= i;
310	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
311		vm_object_clear_flag(object, OBJ_PIPWNT);
312		wakeup(object);
313	}
314}
315
316void
317vm_object_pip_sleep(vm_object_t object, char *waitid)
318{
319	GIANT_REQUIRED;
320	if (object->paging_in_progress) {
321		int s = splvm();
322		if (object->paging_in_progress) {
323			vm_object_set_flag(object, OBJ_PIPWNT);
324			tsleep(object, PVM, waitid, 0);
325		}
326		splx(s);
327	}
328}
329
330void
331vm_object_pip_wait(vm_object_t object, char *waitid)
332{
333	GIANT_REQUIRED;
334	while (object->paging_in_progress)
335		vm_object_pip_sleep(object, waitid);
336}
337
338/*
339 *	vm_object_allocate_wait
340 *
341 *	Return a new object with the given size, and give the user the
342 *	option of waiting for it to complete or failing if the needed
343 *	memory isn't available.
344 */
345vm_object_t
346vm_object_allocate_wait(objtype_t type, vm_pindex_t size, int flags)
347{
348	vm_object_t result;
349
350	result = (vm_object_t) uma_zalloc(obj_zone, flags);
351
352	if (result != NULL)
353		_vm_object_allocate(type, size, result);
354
355	return (result);
356}
357
358/*
359 *	vm_object_allocate:
360 *
361 *	Returns a new object with the given size.
362 */
363vm_object_t
364vm_object_allocate(objtype_t type, vm_pindex_t size)
365{
366	return(vm_object_allocate_wait(type, size, M_WAITOK));
367}
368
369
370/*
371 *	vm_object_reference:
372 *
373 *	Gets another reference to the given object.
374 */
375void
376vm_object_reference(vm_object_t object)
377{
378	if (object == NULL)
379		return;
380
381	mtx_lock(&Giant);
382#if 0
383	/* object can be re-referenced during final cleaning */
384	KASSERT(!(object->flags & OBJ_DEAD),
385	    ("vm_object_reference: attempting to reference dead obj"));
386#endif
387
388	object->ref_count++;
389	if (object->type == OBJT_VNODE) {
390		while (vget((struct vnode *) object->handle, LK_RETRY|LK_NOOBJ, curthread)) {
391			printf("vm_object_reference: delay in getting object\n");
392		}
393	}
394	mtx_unlock(&Giant);
395}
396
397/*
398 * handle deallocating a object of type OBJT_VNODE
399 */
400void
401vm_object_vndeallocate(vm_object_t object)
402{
403	struct vnode *vp = (struct vnode *) object->handle;
404
405	GIANT_REQUIRED;
406	KASSERT(object->type == OBJT_VNODE,
407	    ("vm_object_vndeallocate: not a vnode object"));
408	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
409#ifdef INVARIANTS
410	if (object->ref_count == 0) {
411		vprint("vm_object_vndeallocate", vp);
412		panic("vm_object_vndeallocate: bad object reference count");
413	}
414#endif
415
416	object->ref_count--;
417	if (object->ref_count == 0) {
418		vp->v_flag &= ~VTEXT;
419#ifdef ENABLE_VFS_IOOPT
420		vm_object_clear_flag(object, OBJ_OPT);
421#endif
422	}
423	/*
424	 * vrele may need a vop lock
425	 */
426	vrele(vp);
427}
428
429/*
430 *	vm_object_deallocate:
431 *
432 *	Release a reference to the specified object,
433 *	gained either through a vm_object_allocate
434 *	or a vm_object_reference call.  When all references
435 *	are gone, storage associated with this object
436 *	may be relinquished.
437 *
438 *	No object may be locked.
439 */
440void
441vm_object_deallocate(vm_object_t object)
442{
443	vm_object_t temp;
444
445	mtx_lock(&Giant);
446	while (object != NULL) {
447
448		if (object->type == OBJT_VNODE) {
449			vm_object_vndeallocate(object);
450			mtx_unlock(&Giant);
451			return;
452		}
453
454		KASSERT(object->ref_count != 0,
455			("vm_object_deallocate: object deallocated too many times: %d", object->type));
456
457		/*
458		 * If the reference count goes to 0 we start calling
459		 * vm_object_terminate() on the object chain.
460		 * A ref count of 1 may be a special case depending on the
461		 * shadow count being 0 or 1.
462		 */
463		object->ref_count--;
464		if (object->ref_count > 1) {
465			mtx_unlock(&Giant);
466			return;
467		} else if (object->ref_count == 1) {
468			if (object->shadow_count == 0) {
469				vm_object_set_flag(object, OBJ_ONEMAPPING);
470			} else if ((object->shadow_count == 1) &&
471			    (object->handle == NULL) &&
472			    (object->type == OBJT_DEFAULT ||
473			     object->type == OBJT_SWAP)) {
474				vm_object_t robject;
475
476				robject = TAILQ_FIRST(&object->shadow_head);
477				KASSERT(robject != NULL,
478				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
479					 object->ref_count,
480					 object->shadow_count));
481				if ((robject->handle == NULL) &&
482				    (robject->type == OBJT_DEFAULT ||
483				     robject->type == OBJT_SWAP)) {
484
485					robject->ref_count++;
486
487					while (
488						robject->paging_in_progress ||
489						object->paging_in_progress
490					) {
491						vm_object_pip_sleep(robject, "objde1");
492						vm_object_pip_sleep(object, "objde2");
493					}
494
495					if (robject->ref_count == 1) {
496						robject->ref_count--;
497						object = robject;
498						goto doterm;
499					}
500
501					object = robject;
502					vm_object_collapse(object);
503					continue;
504				}
505			}
506			mtx_unlock(&Giant);
507			return;
508		}
509doterm:
510		temp = object->backing_object;
511		if (temp) {
512			TAILQ_REMOVE(&temp->shadow_head, object, shadow_list);
513			temp->shadow_count--;
514#ifdef ENABLE_VFS_IOOPT
515			if (temp->ref_count == 0)
516				vm_object_clear_flag(temp, OBJ_OPT);
517#endif
518			temp->generation++;
519			object->backing_object = NULL;
520		}
521		/*
522		 * Don't double-terminate, we could be in a termination
523		 * recursion due to the terminate having to sync data
524		 * to disk.
525		 */
526		if ((object->flags & OBJ_DEAD) == 0)
527			vm_object_terminate(object);
528		object = temp;
529	}
530	mtx_unlock(&Giant);
531}
532
533/*
534 *	vm_object_terminate actually destroys the specified object, freeing
535 *	up all previously used resources.
536 *
537 *	The object must be locked.
538 *	This routine may block.
539 */
540void
541vm_object_terminate(vm_object_t object)
542{
543	vm_page_t p;
544	int s;
545
546	GIANT_REQUIRED;
547
548	/*
549	 * Make sure no one uses us.
550	 */
551	vm_object_set_flag(object, OBJ_DEAD);
552
553	/*
554	 * wait for the pageout daemon to be done with the object
555	 */
556	vm_object_pip_wait(object, "objtrm");
557
558	KASSERT(!object->paging_in_progress,
559		("vm_object_terminate: pageout in progress"));
560
561	/*
562	 * Clean and free the pages, as appropriate. All references to the
563	 * object are gone, so we don't need to lock it.
564	 */
565	if (object->type == OBJT_VNODE) {
566		struct vnode *vp;
567
568#ifdef ENABLE_VFS_IOOPT
569		/*
570		 * Freeze optimized copies.
571		 */
572		vm_freeze_copyopts(object, 0, object->size);
573#endif
574		/*
575		 * Clean pages and flush buffers.
576		 */
577		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
578
579		vp = (struct vnode *) object->handle;
580		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
581	}
582
583	KASSERT(object->ref_count == 0,
584		("vm_object_terminate: object with references, ref_count=%d",
585		object->ref_count));
586
587	/*
588	 * Now free any remaining pages. For internal objects, this also
589	 * removes them from paging queues. Don't free wired pages, just
590	 * remove them from the object.
591	 */
592	s = splvm();
593	vm_page_lock_queues();
594	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
595		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
596			("vm_object_terminate: freeing busy page %p "
597			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
598		if (p->wire_count == 0) {
599			vm_page_busy(p);
600			vm_page_free(p);
601			cnt.v_pfree++;
602		} else {
603			vm_page_busy(p);
604			vm_page_remove(p);
605		}
606	}
607	vm_page_unlock_queues();
608	splx(s);
609
610	/*
611	 * Let the pager know object is dead.
612	 */
613	vm_pager_deallocate(object);
614
615	/*
616	 * Remove the object from the global object list.
617	 */
618	mtx_lock(&vm_object_list_mtx);
619	TAILQ_REMOVE(&vm_object_list, object, object_list);
620	mtx_unlock(&vm_object_list_mtx);
621
622	wakeup(object);
623
624	/*
625	 * Free the space for the object.
626	 */
627	uma_zfree(obj_zone, object);
628}
629
630/*
631 *	vm_object_page_clean
632 *
633 *	Clean all dirty pages in the specified range of object.  Leaves page
634 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
635 *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
636 *	leaving the object dirty.
637 *
638 *	Odd semantics: if start == end, we clean everything.
639 *
640 *	The object must be locked.
641 */
642void
643vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
644{
645	vm_page_t p, np;
646	vm_pindex_t tstart, tend;
647	vm_pindex_t pi;
648	struct vnode *vp;
649	int clearobjflags;
650	int pagerflags;
651	int curgeneration;
652
653	GIANT_REQUIRED;
654
655	if (object->type != OBJT_VNODE ||
656		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
657		return;
658
659	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : 0;
660	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
661
662	vp = object->handle;
663
664	vm_object_set_flag(object, OBJ_CLEANING);
665
666	tstart = start;
667	if (end == 0) {
668		tend = object->size;
669	} else {
670		tend = end;
671	}
672
673	/*
674	 * If the caller is smart and only msync()s a range he knows is
675	 * dirty, we may be able to avoid an object scan.  This results in
676	 * a phenominal improvement in performance.  We cannot do this
677	 * as a matter of course because the object may be huge - e.g.
678	 * the size might be in the gigabytes or terrabytes.
679	 */
680	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
681		vm_pindex_t tscan;
682		int scanlimit;
683		int scanreset;
684
685		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
686		if (scanreset < 16)
687			scanreset = 16;
688
689		scanlimit = scanreset;
690		tscan = tstart;
691		while (tscan < tend) {
692			curgeneration = object->generation;
693			p = vm_page_lookup(object, tscan);
694			if (p == NULL || p->valid == 0 ||
695			    (p->queue - p->pc) == PQ_CACHE) {
696				if (--scanlimit == 0)
697					break;
698				++tscan;
699				continue;
700			}
701			vm_page_test_dirty(p);
702			if ((p->dirty & p->valid) == 0) {
703				if (--scanlimit == 0)
704					break;
705				++tscan;
706				continue;
707			}
708			/*
709			 * If we have been asked to skip nosync pages and
710			 * this is a nosync page, we can't continue.
711			 */
712			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
713				if (--scanlimit == 0)
714					break;
715				++tscan;
716				continue;
717			}
718			scanlimit = scanreset;
719
720			/*
721			 * This returns 0 if it was unable to busy the first
722			 * page (i.e. had to sleep).
723			 */
724			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
725		}
726
727		/*
728		 * If everything was dirty and we flushed it successfully,
729		 * and the requested range is not the entire object, we
730		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
731		 * return immediately.
732		 */
733		if (tscan >= tend && (tstart || tend < object->size)) {
734			vm_object_clear_flag(object, OBJ_CLEANING);
735			return;
736		}
737	}
738
739	/*
740	 * Generally set CLEANCHK interlock and make the page read-only so
741	 * we can then clear the object flags.
742	 *
743	 * However, if this is a nosync mmap then the object is likely to
744	 * stay dirty so do not mess with the page and do not clear the
745	 * object flags.
746	 */
747	clearobjflags = 1;
748
749	TAILQ_FOREACH(p, &object->memq, listq) {
750		vm_page_flag_set(p, PG_CLEANCHK);
751		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
752			clearobjflags = 0;
753		else
754			vm_page_protect(p, VM_PROT_READ);
755	}
756
757	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
758		struct vnode *vp;
759
760		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
761		if (object->type == OBJT_VNODE &&
762		    (vp = (struct vnode *)object->handle) != NULL) {
763			if (vp->v_flag & VOBJDIRTY) {
764				mtx_lock(&vp->v_interlock);
765				vp->v_flag &= ~VOBJDIRTY;
766				mtx_unlock(&vp->v_interlock);
767			}
768		}
769	}
770
771rescan:
772	curgeneration = object->generation;
773
774	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
775		int n;
776
777		np = TAILQ_NEXT(p, listq);
778
779again:
780		pi = p->pindex;
781		if (((p->flags & PG_CLEANCHK) == 0) ||
782			(pi < tstart) || (pi >= tend) ||
783			(p->valid == 0) ||
784			((p->queue - p->pc) == PQ_CACHE)) {
785			vm_page_flag_clear(p, PG_CLEANCHK);
786			continue;
787		}
788
789		vm_page_test_dirty(p);
790		if ((p->dirty & p->valid) == 0) {
791			vm_page_flag_clear(p, PG_CLEANCHK);
792			continue;
793		}
794
795		/*
796		 * If we have been asked to skip nosync pages and this is a
797		 * nosync page, skip it.  Note that the object flags were
798		 * not cleared in this case so we do not have to set them.
799		 */
800		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
801			vm_page_flag_clear(p, PG_CLEANCHK);
802			continue;
803		}
804
805		n = vm_object_page_collect_flush(object, p,
806			curgeneration, pagerflags);
807		if (n == 0)
808			goto rescan;
809
810		if (object->generation != curgeneration)
811			goto rescan;
812
813		/*
814		 * Try to optimize the next page.  If we can't we pick up
815		 * our (random) scan where we left off.
816		 */
817		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
818			if ((p = vm_page_lookup(object, pi + n)) != NULL)
819				goto again;
820		}
821	}
822
823#if 0
824	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
825#endif
826
827	vm_object_clear_flag(object, OBJ_CLEANING);
828	return;
829}
830
831static int
832vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
833{
834	int runlen;
835	int s;
836	int maxf;
837	int chkb;
838	int maxb;
839	int i;
840	vm_pindex_t pi;
841	vm_page_t maf[vm_pageout_page_count];
842	vm_page_t mab[vm_pageout_page_count];
843	vm_page_t ma[vm_pageout_page_count];
844
845	s = splvm();
846	pi = p->pindex;
847	while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
848		if (object->generation != curgeneration) {
849			splx(s);
850			return(0);
851		}
852	}
853	vm_page_lock_queues();
854	maxf = 0;
855	for(i = 1; i < vm_pageout_page_count; i++) {
856		vm_page_t tp;
857
858		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
859			if ((tp->flags & PG_BUSY) ||
860				(tp->flags & PG_CLEANCHK) == 0 ||
861				(tp->busy != 0))
862				break;
863			if((tp->queue - tp->pc) == PQ_CACHE) {
864				vm_page_flag_clear(tp, PG_CLEANCHK);
865				break;
866			}
867			vm_page_test_dirty(tp);
868			if ((tp->dirty & tp->valid) == 0) {
869				vm_page_flag_clear(tp, PG_CLEANCHK);
870				break;
871			}
872			maf[ i - 1 ] = tp;
873			maxf++;
874			continue;
875		}
876		break;
877	}
878
879	maxb = 0;
880	chkb = vm_pageout_page_count -  maxf;
881	if (chkb) {
882		for(i = 1; i < chkb;i++) {
883			vm_page_t tp;
884
885			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
886				if ((tp->flags & PG_BUSY) ||
887					(tp->flags & PG_CLEANCHK) == 0 ||
888					(tp->busy != 0))
889					break;
890				if ((tp->queue - tp->pc) == PQ_CACHE) {
891					vm_page_flag_clear(tp, PG_CLEANCHK);
892					break;
893				}
894				vm_page_test_dirty(tp);
895				if ((tp->dirty & tp->valid) == 0) {
896					vm_page_flag_clear(tp, PG_CLEANCHK);
897					break;
898				}
899				mab[ i - 1 ] = tp;
900				maxb++;
901				continue;
902			}
903			break;
904		}
905	}
906
907	for(i = 0; i < maxb; i++) {
908		int index = (maxb - i) - 1;
909		ma[index] = mab[i];
910		vm_page_flag_clear(ma[index], PG_CLEANCHK);
911	}
912	vm_page_flag_clear(p, PG_CLEANCHK);
913	ma[maxb] = p;
914	for(i = 0; i < maxf; i++) {
915		int index = (maxb + i) + 1;
916		ma[index] = maf[i];
917		vm_page_flag_clear(ma[index], PG_CLEANCHK);
918	}
919	runlen = maxb + maxf + 1;
920
921	splx(s);
922	vm_pageout_flush(ma, runlen, pagerflags);
923	for (i = 0; i < runlen; i++) {
924		if (ma[i]->valid & ma[i]->dirty) {
925			vm_page_protect(ma[i], VM_PROT_READ);
926			vm_page_flag_set(ma[i], PG_CLEANCHK);
927
928			/*
929			 * maxf will end up being the actual number of pages
930			 * we wrote out contiguously, non-inclusive of the
931			 * first page.  We do not count look-behind pages.
932			 */
933			if (i >= maxb + 1 && (maxf > i - maxb - 1))
934				maxf = i - maxb - 1;
935		}
936	}
937	vm_page_unlock_queues();
938	return(maxf + 1);
939}
940
941#ifdef ENABLE_VFS_IOOPT
942/*
943 * Same as vm_object_pmap_copy, except range checking really
944 * works, and is meant for small sections of an object.
945 *
946 * This code protects resident pages by making them read-only
947 * and is typically called on a fork or split when a page
948 * is converted to copy-on-write.
949 *
950 * NOTE: If the page is already at VM_PROT_NONE, calling
951 * vm_page_protect will have no effect.
952 */
953void
954vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
955{
956	vm_pindex_t idx;
957	vm_page_t p;
958
959	GIANT_REQUIRED;
960
961	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
962		return;
963
964	for (idx = start; idx < end; idx++) {
965		p = vm_page_lookup(object, idx);
966		if (p == NULL)
967			continue;
968		vm_page_protect(p, VM_PROT_READ);
969	}
970}
971#endif
972
973/*
974 *	vm_object_pmap_remove:
975 *
976 *	Removes all physical pages in the specified
977 *	object range from all physical maps.
978 *
979 *	The object must *not* be locked.
980 */
981void
982vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
983{
984	vm_page_t p;
985
986	GIANT_REQUIRED;
987	if (object == NULL)
988		return;
989	TAILQ_FOREACH(p, &object->memq, listq) {
990		if (p->pindex >= start && p->pindex < end)
991			vm_page_protect(p, VM_PROT_NONE);
992	}
993	if ((start == 0) && (object->size == end))
994		vm_object_clear_flag(object, OBJ_WRITEABLE);
995}
996
997/*
998 *	vm_object_madvise:
999 *
1000 *	Implements the madvise function at the object/page level.
1001 *
1002 *	MADV_WILLNEED	(any object)
1003 *
1004 *	    Activate the specified pages if they are resident.
1005 *
1006 *	MADV_DONTNEED	(any object)
1007 *
1008 *	    Deactivate the specified pages if they are resident.
1009 *
1010 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1011 *			 OBJ_ONEMAPPING only)
1012 *
1013 *	    Deactivate and clean the specified pages if they are
1014 *	    resident.  This permits the process to reuse the pages
1015 *	    without faulting or the kernel to reclaim the pages
1016 *	    without I/O.
1017 */
1018void
1019vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1020{
1021	vm_pindex_t end, tpindex;
1022	vm_object_t tobject;
1023	vm_page_t m;
1024
1025	if (object == NULL)
1026		return;
1027
1028	mtx_lock(&Giant);
1029
1030	end = pindex + count;
1031
1032	/*
1033	 * Locate and adjust resident pages
1034	 */
1035	for (; pindex < end; pindex += 1) {
1036relookup:
1037		tobject = object;
1038		tpindex = pindex;
1039shadowlookup:
1040		/*
1041		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1042		 * and those pages must be OBJ_ONEMAPPING.
1043		 */
1044		if (advise == MADV_FREE) {
1045			if ((tobject->type != OBJT_DEFAULT &&
1046			     tobject->type != OBJT_SWAP) ||
1047			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1048				continue;
1049			}
1050		}
1051
1052		m = vm_page_lookup(tobject, tpindex);
1053
1054		if (m == NULL) {
1055			/*
1056			 * There may be swap even if there is no backing page
1057			 */
1058			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1059				swap_pager_freespace(tobject, tpindex, 1);
1060
1061			/*
1062			 * next object
1063			 */
1064			tobject = tobject->backing_object;
1065			if (tobject == NULL)
1066				continue;
1067			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1068			goto shadowlookup;
1069		}
1070
1071		/*
1072		 * If the page is busy or not in a normal active state,
1073		 * we skip it.  If the page is not managed there are no
1074		 * page queues to mess with.  Things can break if we mess
1075		 * with pages in any of the below states.
1076		 */
1077		vm_page_lock_queues();
1078		if (m->hold_count ||
1079		    m->wire_count ||
1080		    (m->flags & PG_UNMANAGED) ||
1081		    m->valid != VM_PAGE_BITS_ALL) {
1082			vm_page_unlock_queues();
1083			continue;
1084		}
1085 		if (vm_page_sleep_if_busy(m, TRUE, "madvpo"))
1086  			goto relookup;
1087		if (advise == MADV_WILLNEED) {
1088			vm_page_activate(m);
1089		} else if (advise == MADV_DONTNEED) {
1090			vm_page_dontneed(m);
1091		} else if (advise == MADV_FREE) {
1092			/*
1093			 * Mark the page clean.  This will allow the page
1094			 * to be freed up by the system.  However, such pages
1095			 * are often reused quickly by malloc()/free()
1096			 * so we do not do anything that would cause
1097			 * a page fault if we can help it.
1098			 *
1099			 * Specifically, we do not try to actually free
1100			 * the page now nor do we try to put it in the
1101			 * cache (which would cause a page fault on reuse).
1102			 *
1103			 * But we do make the page is freeable as we
1104			 * can without actually taking the step of unmapping
1105			 * it.
1106			 */
1107			pmap_clear_modify(m);
1108			m->dirty = 0;
1109			m->act_count = 0;
1110			vm_page_dontneed(m);
1111		}
1112		vm_page_unlock_queues();
1113		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1114			swap_pager_freespace(tobject, tpindex, 1);
1115	}
1116	mtx_unlock(&Giant);
1117}
1118
1119/*
1120 *	vm_object_shadow:
1121 *
1122 *	Create a new object which is backed by the
1123 *	specified existing object range.  The source
1124 *	object reference is deallocated.
1125 *
1126 *	The new object and offset into that object
1127 *	are returned in the source parameters.
1128 */
1129void
1130vm_object_shadow(
1131	vm_object_t *object,	/* IN/OUT */
1132	vm_ooffset_t *offset,	/* IN/OUT */
1133	vm_size_t length)
1134{
1135	vm_object_t source;
1136	vm_object_t result;
1137
1138	source = *object;
1139
1140	mtx_lock(&Giant);
1141	/*
1142	 * Don't create the new object if the old object isn't shared.
1143	 */
1144	if (source != NULL &&
1145	    source->ref_count == 1 &&
1146	    source->handle == NULL &&
1147	    (source->type == OBJT_DEFAULT ||
1148	     source->type == OBJT_SWAP)) {
1149		mtx_unlock(&Giant);
1150		return;
1151	}
1152
1153	/*
1154	 * Allocate a new object with the given length
1155	 */
1156	result = vm_object_allocate(OBJT_DEFAULT, length);
1157	KASSERT(result != NULL, ("vm_object_shadow: no object for shadowing"));
1158
1159	/*
1160	 * The new object shadows the source object, adding a reference to it.
1161	 * Our caller changes his reference to point to the new object,
1162	 * removing a reference to the source object.  Net result: no change
1163	 * of reference count.
1164	 *
1165	 * Try to optimize the result object's page color when shadowing
1166	 * in order to maintain page coloring consistency in the combined
1167	 * shadowed object.
1168	 */
1169	result->backing_object = source;
1170	if (source) {
1171		TAILQ_INSERT_TAIL(&source->shadow_head, result, shadow_list);
1172		source->shadow_count++;
1173		source->generation++;
1174		if (length < source->size)
1175			length = source->size;
1176		if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1177		    source->generation > 1)
1178			length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1179		result->pg_color = (source->pg_color +
1180		    length * source->generation) & PQ_L2_MASK;
1181		next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1182		    PQ_L2_MASK;
1183	}
1184
1185	/*
1186	 * Store the offset into the source object, and fix up the offset into
1187	 * the new object.
1188	 */
1189	result->backing_object_offset = *offset;
1190
1191	/*
1192	 * Return the new things
1193	 */
1194	*offset = 0;
1195	*object = result;
1196
1197	mtx_unlock(&Giant);
1198}
1199
1200/*
1201 *	vm_object_split:
1202 *
1203 * Split the pages in a map entry into a new object.  This affords
1204 * easier removal of unused pages, and keeps object inheritance from
1205 * being a negative impact on memory usage.
1206 */
1207void
1208vm_object_split(vm_map_entry_t entry)
1209{
1210	vm_page_t m;
1211	vm_object_t orig_object, new_object, source;
1212	vm_offset_t s, e;
1213	vm_pindex_t offidxstart, offidxend;
1214	vm_size_t idx, size;
1215	vm_ooffset_t offset;
1216
1217	GIANT_REQUIRED;
1218
1219	orig_object = entry->object.vm_object;
1220	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1221		return;
1222	if (orig_object->ref_count <= 1)
1223		return;
1224
1225	offset = entry->offset;
1226	s = entry->start;
1227	e = entry->end;
1228
1229	offidxstart = OFF_TO_IDX(offset);
1230	offidxend = offidxstart + OFF_TO_IDX(e - s);
1231	size = offidxend - offidxstart;
1232
1233	new_object = vm_pager_allocate(orig_object->type,
1234		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
1235	if (new_object == NULL)
1236		return;
1237
1238	source = orig_object->backing_object;
1239	if (source != NULL) {
1240		vm_object_reference(source);	/* Referenced by new_object */
1241		TAILQ_INSERT_TAIL(&source->shadow_head,
1242				  new_object, shadow_list);
1243		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1244		new_object->backing_object_offset =
1245			orig_object->backing_object_offset + offset;
1246		new_object->backing_object = source;
1247		source->shadow_count++;
1248		source->generation++;
1249	}
1250	for (idx = 0; idx < size; idx++) {
1251	retry:
1252		m = vm_page_lookup(orig_object, offidxstart + idx);
1253		if (m == NULL)
1254			continue;
1255
1256		/*
1257		 * We must wait for pending I/O to complete before we can
1258		 * rename the page.
1259		 *
1260		 * We do not have to VM_PROT_NONE the page as mappings should
1261		 * not be changed by this operation.
1262		 */
1263		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
1264			goto retry;
1265
1266		vm_page_busy(m);
1267		vm_page_rename(m, new_object, idx);
1268		/* page automatically made dirty by rename and cache handled */
1269		vm_page_busy(m);
1270	}
1271	if (orig_object->type == OBJT_SWAP) {
1272		vm_object_pip_add(orig_object, 1);
1273		/*
1274		 * copy orig_object pages into new_object
1275		 * and destroy unneeded pages in
1276		 * shadow object.
1277		 */
1278		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1279		vm_object_pip_wakeup(orig_object);
1280	}
1281	TAILQ_FOREACH(m, &new_object->memq, listq)
1282		vm_page_wakeup(m);
1283	entry->object.vm_object = new_object;
1284	entry->offset = 0LL;
1285	vm_object_deallocate(orig_object);
1286}
1287
1288#define	OBSC_TEST_ALL_SHADOWED	0x0001
1289#define	OBSC_COLLAPSE_NOWAIT	0x0002
1290#define	OBSC_COLLAPSE_WAIT	0x0004
1291
1292static __inline int
1293vm_object_backing_scan(vm_object_t object, int op)
1294{
1295	int s;
1296	int r = 1;
1297	vm_page_t p;
1298	vm_object_t backing_object;
1299	vm_pindex_t backing_offset_index;
1300
1301	s = splvm();
1302	GIANT_REQUIRED;
1303
1304	backing_object = object->backing_object;
1305	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1306
1307	/*
1308	 * Initial conditions
1309	 */
1310	if (op & OBSC_TEST_ALL_SHADOWED) {
1311		/*
1312		 * We do not want to have to test for the existence of
1313		 * swap pages in the backing object.  XXX but with the
1314		 * new swapper this would be pretty easy to do.
1315		 *
1316		 * XXX what about anonymous MAP_SHARED memory that hasn't
1317		 * been ZFOD faulted yet?  If we do not test for this, the
1318		 * shadow test may succeed! XXX
1319		 */
1320		if (backing_object->type != OBJT_DEFAULT) {
1321			splx(s);
1322			return (0);
1323		}
1324	}
1325	if (op & OBSC_COLLAPSE_WAIT) {
1326		vm_object_set_flag(backing_object, OBJ_DEAD);
1327	}
1328
1329	/*
1330	 * Our scan
1331	 */
1332	p = TAILQ_FIRST(&backing_object->memq);
1333	while (p) {
1334		vm_page_t next = TAILQ_NEXT(p, listq);
1335		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1336
1337		if (op & OBSC_TEST_ALL_SHADOWED) {
1338			vm_page_t pp;
1339
1340			/*
1341			 * Ignore pages outside the parent object's range
1342			 * and outside the parent object's mapping of the
1343			 * backing object.
1344			 *
1345			 * note that we do not busy the backing object's
1346			 * page.
1347			 */
1348			if (
1349			    p->pindex < backing_offset_index ||
1350			    new_pindex >= object->size
1351			) {
1352				p = next;
1353				continue;
1354			}
1355
1356			/*
1357			 * See if the parent has the page or if the parent's
1358			 * object pager has the page.  If the parent has the
1359			 * page but the page is not valid, the parent's
1360			 * object pager must have the page.
1361			 *
1362			 * If this fails, the parent does not completely shadow
1363			 * the object and we might as well give up now.
1364			 */
1365
1366			pp = vm_page_lookup(object, new_pindex);
1367			if (
1368			    (pp == NULL || pp->valid == 0) &&
1369			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1370			) {
1371				r = 0;
1372				break;
1373			}
1374		}
1375
1376		/*
1377		 * Check for busy page
1378		 */
1379		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1380			vm_page_t pp;
1381
1382			if (op & OBSC_COLLAPSE_NOWAIT) {
1383				if (
1384				    (p->flags & PG_BUSY) ||
1385				    !p->valid ||
1386				    p->hold_count ||
1387				    p->wire_count ||
1388				    p->busy
1389				) {
1390					p = next;
1391					continue;
1392				}
1393			} else if (op & OBSC_COLLAPSE_WAIT) {
1394				if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1395					/*
1396					 * If we slept, anything could have
1397					 * happened.  Since the object is
1398					 * marked dead, the backing offset
1399					 * should not have changed so we
1400					 * just restart our scan.
1401					 */
1402					p = TAILQ_FIRST(&backing_object->memq);
1403					continue;
1404				}
1405			}
1406
1407			/*
1408			 * Busy the page
1409			 */
1410			vm_page_busy(p);
1411
1412			KASSERT(
1413			    p->object == backing_object,
1414			    ("vm_object_qcollapse(): object mismatch")
1415			);
1416
1417			/*
1418			 * Destroy any associated swap
1419			 */
1420			if (backing_object->type == OBJT_SWAP) {
1421				swap_pager_freespace(
1422				    backing_object,
1423				    p->pindex,
1424				    1
1425				);
1426			}
1427
1428			if (
1429			    p->pindex < backing_offset_index ||
1430			    new_pindex >= object->size
1431			) {
1432				/*
1433				 * Page is out of the parent object's range, we
1434				 * can simply destroy it.
1435				 */
1436				vm_page_lock_queues();
1437				vm_page_protect(p, VM_PROT_NONE);
1438				vm_page_free(p);
1439				vm_page_unlock_queues();
1440				p = next;
1441				continue;
1442			}
1443
1444			pp = vm_page_lookup(object, new_pindex);
1445			if (
1446			    pp != NULL ||
1447			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1448			) {
1449				/*
1450				 * page already exists in parent OR swap exists
1451				 * for this location in the parent.  Destroy
1452				 * the original page from the backing object.
1453				 *
1454				 * Leave the parent's page alone
1455				 */
1456				vm_page_lock_queues();
1457				vm_page_protect(p, VM_PROT_NONE);
1458				vm_page_free(p);
1459				vm_page_unlock_queues();
1460				p = next;
1461				continue;
1462			}
1463
1464			/*
1465			 * Page does not exist in parent, rename the
1466			 * page from the backing object to the main object.
1467			 *
1468			 * If the page was mapped to a process, it can remain
1469			 * mapped through the rename.
1470			 */
1471			vm_page_rename(p, object, new_pindex);
1472			/* page automatically made dirty by rename */
1473		}
1474		p = next;
1475	}
1476	splx(s);
1477	return (r);
1478}
1479
1480
1481/*
1482 * this version of collapse allows the operation to occur earlier and
1483 * when paging_in_progress is true for an object...  This is not a complete
1484 * operation, but should plug 99.9% of the rest of the leaks.
1485 */
1486static void
1487vm_object_qcollapse(vm_object_t object)
1488{
1489	vm_object_t backing_object = object->backing_object;
1490
1491	GIANT_REQUIRED;
1492
1493	if (backing_object->ref_count != 1)
1494		return;
1495
1496	backing_object->ref_count += 2;
1497
1498	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1499
1500	backing_object->ref_count -= 2;
1501}
1502
1503/*
1504 *	vm_object_collapse:
1505 *
1506 *	Collapse an object with the object backing it.
1507 *	Pages in the backing object are moved into the
1508 *	parent, and the backing object is deallocated.
1509 */
1510void
1511vm_object_collapse(vm_object_t object)
1512{
1513	GIANT_REQUIRED;
1514
1515	while (TRUE) {
1516		vm_object_t backing_object;
1517
1518		/*
1519		 * Verify that the conditions are right for collapse:
1520		 *
1521		 * The object exists and the backing object exists.
1522		 */
1523		if (object == NULL)
1524			break;
1525
1526		if ((backing_object = object->backing_object) == NULL)
1527			break;
1528
1529		/*
1530		 * we check the backing object first, because it is most likely
1531		 * not collapsable.
1532		 */
1533		if (backing_object->handle != NULL ||
1534		    (backing_object->type != OBJT_DEFAULT &&
1535		     backing_object->type != OBJT_SWAP) ||
1536		    (backing_object->flags & OBJ_DEAD) ||
1537		    object->handle != NULL ||
1538		    (object->type != OBJT_DEFAULT &&
1539		     object->type != OBJT_SWAP) ||
1540		    (object->flags & OBJ_DEAD)) {
1541			break;
1542		}
1543
1544		if (
1545		    object->paging_in_progress != 0 ||
1546		    backing_object->paging_in_progress != 0
1547		) {
1548			vm_object_qcollapse(object);
1549			break;
1550		}
1551
1552		/*
1553		 * We know that we can either collapse the backing object (if
1554		 * the parent is the only reference to it) or (perhaps) have
1555		 * the parent bypass the object if the parent happens to shadow
1556		 * all the resident pages in the entire backing object.
1557		 *
1558		 * This is ignoring pager-backed pages such as swap pages.
1559		 * vm_object_backing_scan fails the shadowing test in this
1560		 * case.
1561		 */
1562		if (backing_object->ref_count == 1) {
1563			/*
1564			 * If there is exactly one reference to the backing
1565			 * object, we can collapse it into the parent.
1566			 */
1567			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1568
1569			/*
1570			 * Move the pager from backing_object to object.
1571			 */
1572			if (backing_object->type == OBJT_SWAP) {
1573				vm_object_pip_add(backing_object, 1);
1574
1575				/*
1576				 * scrap the paging_offset junk and do a
1577				 * discrete copy.  This also removes major
1578				 * assumptions about how the swap-pager
1579				 * works from where it doesn't belong.  The
1580				 * new swapper is able to optimize the
1581				 * destroy-source case.
1582				 */
1583				vm_object_pip_add(object, 1);
1584				swap_pager_copy(
1585				    backing_object,
1586				    object,
1587				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1588				vm_object_pip_wakeup(object);
1589
1590				vm_object_pip_wakeup(backing_object);
1591			}
1592			/*
1593			 * Object now shadows whatever backing_object did.
1594			 * Note that the reference to
1595			 * backing_object->backing_object moves from within
1596			 * backing_object to within object.
1597			 */
1598			TAILQ_REMOVE(
1599			    &object->backing_object->shadow_head,
1600			    object,
1601			    shadow_list
1602			);
1603			object->backing_object->shadow_count--;
1604			object->backing_object->generation++;
1605			if (backing_object->backing_object) {
1606				TAILQ_REMOVE(
1607				    &backing_object->backing_object->shadow_head,
1608				    backing_object,
1609				    shadow_list
1610				);
1611				backing_object->backing_object->shadow_count--;
1612				backing_object->backing_object->generation++;
1613			}
1614			object->backing_object = backing_object->backing_object;
1615			if (object->backing_object) {
1616				TAILQ_INSERT_TAIL(
1617				    &object->backing_object->shadow_head,
1618				    object,
1619				    shadow_list
1620				);
1621				object->backing_object->shadow_count++;
1622				object->backing_object->generation++;
1623			}
1624
1625			object->backing_object_offset +=
1626			    backing_object->backing_object_offset;
1627
1628			/*
1629			 * Discard backing_object.
1630			 *
1631			 * Since the backing object has no pages, no pager left,
1632			 * and no object references within it, all that is
1633			 * necessary is to dispose of it.
1634			 */
1635			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1636			KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1637
1638			mtx_lock(&vm_object_list_mtx);
1639			TAILQ_REMOVE(
1640			    &vm_object_list,
1641			    backing_object,
1642			    object_list
1643			);
1644			mtx_unlock(&vm_object_list_mtx);
1645
1646			uma_zfree(obj_zone, backing_object);
1647
1648			object_collapses++;
1649		} else {
1650			vm_object_t new_backing_object;
1651
1652			/*
1653			 * If we do not entirely shadow the backing object,
1654			 * there is nothing we can do so we give up.
1655			 */
1656			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1657				break;
1658			}
1659
1660			/*
1661			 * Make the parent shadow the next object in the
1662			 * chain.  Deallocating backing_object will not remove
1663			 * it, since its reference count is at least 2.
1664			 */
1665			TAILQ_REMOVE(
1666			    &backing_object->shadow_head,
1667			    object,
1668			    shadow_list
1669			);
1670			backing_object->shadow_count--;
1671			backing_object->generation++;
1672
1673			new_backing_object = backing_object->backing_object;
1674			if ((object->backing_object = new_backing_object) != NULL) {
1675				vm_object_reference(new_backing_object);
1676				TAILQ_INSERT_TAIL(
1677				    &new_backing_object->shadow_head,
1678				    object,
1679				    shadow_list
1680				);
1681				new_backing_object->shadow_count++;
1682				new_backing_object->generation++;
1683				object->backing_object_offset +=
1684					backing_object->backing_object_offset;
1685			}
1686
1687			/*
1688			 * Drop the reference count on backing_object. Since
1689			 * its ref_count was at least 2, it will not vanish;
1690			 * so we don't need to call vm_object_deallocate, but
1691			 * we do anyway.
1692			 */
1693			vm_object_deallocate(backing_object);
1694			object_bypasses++;
1695		}
1696
1697		/*
1698		 * Try again with this object's new backing object.
1699		 */
1700	}
1701}
1702
1703/*
1704 *	vm_object_page_remove: [internal]
1705 *
1706 *	Removes all physical pages in the specified
1707 *	object range from the object's list of pages.
1708 *
1709 *	The object must be locked.
1710 */
1711void
1712vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, boolean_t clean_only)
1713{
1714	vm_page_t p, next;
1715	vm_pindex_t size;
1716	int all;
1717
1718	if (object == NULL)
1719		return;
1720
1721	mtx_lock(&Giant);
1722	if (object->resident_page_count == 0) {
1723		mtx_unlock(&Giant);
1724		return;
1725	}
1726	all = ((end == 0) && (start == 0));
1727
1728	/*
1729	 * Since physically-backed objects do not use managed pages, we can't
1730	 * remove pages from the object (we must instead remove the page
1731	 * references, and then destroy the object).
1732	 */
1733	KASSERT(object->type != OBJT_PHYS, ("attempt to remove pages from a physical object"));
1734
1735	vm_object_pip_add(object, 1);
1736again:
1737	vm_page_lock_queues();
1738	size = end - start;
1739	if (all || size > object->resident_page_count / 4) {
1740		for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1741			next = TAILQ_NEXT(p, listq);
1742			if (all || ((start <= p->pindex) && (p->pindex < end))) {
1743				if (p->wire_count != 0) {
1744					vm_page_protect(p, VM_PROT_NONE);
1745					if (!clean_only)
1746						p->valid = 0;
1747					continue;
1748				}
1749
1750				/*
1751				 * The busy flags are only cleared at
1752				 * interrupt -- minimize the spl transitions
1753				 */
1754 				if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1755 					goto again;
1756
1757				if (clean_only && p->valid) {
1758					vm_page_test_dirty(p);
1759					if (p->valid & p->dirty)
1760						continue;
1761				}
1762				vm_page_busy(p);
1763				vm_page_protect(p, VM_PROT_NONE);
1764				vm_page_free(p);
1765			}
1766		}
1767	} else {
1768		while (size > 0) {
1769			if ((p = vm_page_lookup(object, start)) != NULL) {
1770				if (p->wire_count != 0) {
1771					vm_page_protect(p, VM_PROT_NONE);
1772					if (!clean_only)
1773						p->valid = 0;
1774					start += 1;
1775					size -= 1;
1776					continue;
1777				}
1778
1779				/*
1780				 * The busy flags are only cleared at
1781				 * interrupt -- minimize the spl transitions
1782				 */
1783				if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1784					goto again;
1785
1786				if (clean_only && p->valid) {
1787					vm_page_test_dirty(p);
1788					if (p->valid & p->dirty) {
1789						start += 1;
1790						size -= 1;
1791						continue;
1792					}
1793				}
1794				vm_page_busy(p);
1795				vm_page_protect(p, VM_PROT_NONE);
1796				vm_page_free(p);
1797			}
1798			start += 1;
1799			size -= 1;
1800		}
1801	}
1802	vm_page_unlock_queues();
1803	vm_object_pip_wakeup(object);
1804	mtx_unlock(&Giant);
1805}
1806
1807/*
1808 *	Routine:	vm_object_coalesce
1809 *	Function:	Coalesces two objects backing up adjoining
1810 *			regions of memory into a single object.
1811 *
1812 *	returns TRUE if objects were combined.
1813 *
1814 *	NOTE:	Only works at the moment if the second object is NULL -
1815 *		if it's not, which object do we lock first?
1816 *
1817 *	Parameters:
1818 *		prev_object	First object to coalesce
1819 *		prev_offset	Offset into prev_object
1820 *		next_object	Second object into coalesce
1821 *		next_offset	Offset into next_object
1822 *
1823 *		prev_size	Size of reference to prev_object
1824 *		next_size	Size of reference to next_object
1825 *
1826 *	Conditions:
1827 *	The object must *not* be locked.
1828 */
1829boolean_t
1830vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1831	vm_size_t prev_size, vm_size_t next_size)
1832{
1833	vm_pindex_t next_pindex;
1834
1835	if (prev_object == NULL)
1836		return (TRUE);
1837	mtx_lock(&Giant);
1838	if (prev_object->type != OBJT_DEFAULT &&
1839	    prev_object->type != OBJT_SWAP) {
1840		mtx_unlock(&Giant);
1841		return (FALSE);
1842	}
1843
1844	/*
1845	 * Try to collapse the object first
1846	 */
1847	vm_object_collapse(prev_object);
1848
1849	/*
1850	 * Can't coalesce if: . more than one reference . paged out . shadows
1851	 * another object . has a copy elsewhere (any of which mean that the
1852	 * pages not mapped to prev_entry may be in use anyway)
1853	 */
1854	if (prev_object->backing_object != NULL) {
1855		mtx_unlock(&Giant);
1856		return (FALSE);
1857	}
1858
1859	prev_size >>= PAGE_SHIFT;
1860	next_size >>= PAGE_SHIFT;
1861	next_pindex = prev_pindex + prev_size;
1862
1863	if ((prev_object->ref_count > 1) &&
1864	    (prev_object->size != next_pindex)) {
1865		mtx_unlock(&Giant);
1866		return (FALSE);
1867	}
1868
1869	/*
1870	 * Remove any pages that may still be in the object from a previous
1871	 * deallocation.
1872	 */
1873	if (next_pindex < prev_object->size) {
1874		vm_object_page_remove(prev_object,
1875				      next_pindex,
1876				      next_pindex + next_size, FALSE);
1877		if (prev_object->type == OBJT_SWAP)
1878			swap_pager_freespace(prev_object,
1879					     next_pindex, next_size);
1880	}
1881
1882	/*
1883	 * Extend the object if necessary.
1884	 */
1885	if (next_pindex + next_size > prev_object->size)
1886		prev_object->size = next_pindex + next_size;
1887
1888	mtx_unlock(&Giant);
1889	return (TRUE);
1890}
1891
1892void
1893vm_object_set_writeable_dirty(vm_object_t object)
1894{
1895	struct vnode *vp;
1896
1897	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1898	if (object->type == OBJT_VNODE &&
1899	    (vp = (struct vnode *)object->handle) != NULL) {
1900		if ((vp->v_flag & VOBJDIRTY) == 0) {
1901			mtx_lock(&vp->v_interlock);
1902			vp->v_flag |= VOBJDIRTY;
1903			mtx_unlock(&vp->v_interlock);
1904		}
1905	}
1906}
1907
1908#ifdef ENABLE_VFS_IOOPT
1909/*
1910 * Experimental support for zero-copy I/O
1911 *
1912 * Performs the copy_on_write operations necessary to allow the virtual copies
1913 * into user space to work.  This has to be called for write(2) system calls
1914 * from other processes, file unlinking, and file size shrinkage.
1915 */
1916void
1917vm_freeze_copyopts(vm_object_t object, vm_pindex_t froma, vm_pindex_t toa)
1918{
1919	int rv;
1920	vm_object_t robject;
1921	vm_pindex_t idx;
1922
1923	GIANT_REQUIRED;
1924	if ((object == NULL) ||
1925		((object->flags & OBJ_OPT) == 0))
1926		return;
1927
1928	if (object->shadow_count > object->ref_count)
1929		panic("vm_freeze_copyopts: sc > rc");
1930
1931	while ((robject = TAILQ_FIRST(&object->shadow_head)) != NULL) {
1932		vm_pindex_t bo_pindex;
1933		vm_page_t m_in, m_out;
1934
1935		bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
1936
1937		vm_object_reference(robject);
1938
1939		vm_object_pip_wait(robject, "objfrz");
1940
1941		if (robject->ref_count == 1) {
1942			vm_object_deallocate(robject);
1943			continue;
1944		}
1945
1946		vm_object_pip_add(robject, 1);
1947
1948		for (idx = 0; idx < robject->size; idx++) {
1949
1950			m_out = vm_page_grab(robject, idx,
1951						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1952
1953			if (m_out->valid == 0) {
1954				m_in = vm_page_grab(object, bo_pindex + idx,
1955						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1956				if (m_in->valid == 0) {
1957					rv = vm_pager_get_pages(object, &m_in, 1, 0);
1958					if (rv != VM_PAGER_OK) {
1959						printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
1960						continue;
1961					}
1962					vm_page_lock_queues();
1963					vm_page_deactivate(m_in);
1964					vm_page_unlock_queues();
1965				}
1966
1967				vm_page_protect(m_in, VM_PROT_NONE);
1968				pmap_copy_page(m_in, m_out);
1969				m_out->valid = m_in->valid;
1970				vm_page_dirty(m_out);
1971				vm_page_activate(m_out);
1972				vm_page_wakeup(m_in);
1973			}
1974			vm_page_wakeup(m_out);
1975		}
1976
1977		object->shadow_count--;
1978		object->ref_count--;
1979		TAILQ_REMOVE(&object->shadow_head, robject, shadow_list);
1980		robject->backing_object = NULL;
1981		robject->backing_object_offset = 0;
1982
1983		vm_object_pip_wakeup(robject);
1984		vm_object_deallocate(robject);
1985	}
1986
1987	vm_object_clear_flag(object, OBJ_OPT);
1988}
1989#endif
1990
1991#include "opt_ddb.h"
1992#ifdef DDB
1993#include <sys/kernel.h>
1994
1995#include <sys/cons.h>
1996
1997#include <ddb/ddb.h>
1998
1999static int
2000_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2001{
2002	vm_map_t tmpm;
2003	vm_map_entry_t tmpe;
2004	vm_object_t obj;
2005	int entcount;
2006
2007	if (map == 0)
2008		return 0;
2009
2010	if (entry == 0) {
2011		tmpe = map->header.next;
2012		entcount = map->nentries;
2013		while (entcount-- && (tmpe != &map->header)) {
2014			if (_vm_object_in_map(map, object, tmpe)) {
2015				return 1;
2016			}
2017			tmpe = tmpe->next;
2018		}
2019	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2020		tmpm = entry->object.sub_map;
2021		tmpe = tmpm->header.next;
2022		entcount = tmpm->nentries;
2023		while (entcount-- && tmpe != &tmpm->header) {
2024			if (_vm_object_in_map(tmpm, object, tmpe)) {
2025				return 1;
2026			}
2027			tmpe = tmpe->next;
2028		}
2029	} else if ((obj = entry->object.vm_object) != NULL) {
2030		for (; obj; obj = obj->backing_object)
2031			if (obj == object) {
2032				return 1;
2033			}
2034	}
2035	return 0;
2036}
2037
2038static int
2039vm_object_in_map(vm_object_t object)
2040{
2041	struct proc *p;
2042
2043	/* sx_slock(&allproc_lock); */
2044	LIST_FOREACH(p, &allproc, p_list) {
2045		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2046			continue;
2047		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2048			/* sx_sunlock(&allproc_lock); */
2049			return 1;
2050		}
2051	}
2052	/* sx_sunlock(&allproc_lock); */
2053	if (_vm_object_in_map(kernel_map, object, 0))
2054		return 1;
2055	if (_vm_object_in_map(kmem_map, object, 0))
2056		return 1;
2057	if (_vm_object_in_map(pager_map, object, 0))
2058		return 1;
2059	if (_vm_object_in_map(buffer_map, object, 0))
2060		return 1;
2061	return 0;
2062}
2063
2064DB_SHOW_COMMAND(vmochk, vm_object_check)
2065{
2066	vm_object_t object;
2067
2068	/*
2069	 * make sure that internal objs are in a map somewhere
2070	 * and none have zero ref counts.
2071	 */
2072	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2073		if (object->handle == NULL &&
2074		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2075			if (object->ref_count == 0) {
2076				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2077					(long)object->size);
2078			}
2079			if (!vm_object_in_map(object)) {
2080				db_printf(
2081			"vmochk: internal obj is not in a map: "
2082			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2083				    object->ref_count, (u_long)object->size,
2084				    (u_long)object->size,
2085				    (void *)object->backing_object);
2086			}
2087		}
2088	}
2089}
2090
2091/*
2092 *	vm_object_print:	[ debug ]
2093 */
2094DB_SHOW_COMMAND(object, vm_object_print_static)
2095{
2096	/* XXX convert args. */
2097	vm_object_t object = (vm_object_t)addr;
2098	boolean_t full = have_addr;
2099
2100	vm_page_t p;
2101
2102	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2103#define	count	was_count
2104
2105	int count;
2106
2107	if (object == NULL)
2108		return;
2109
2110	db_iprintf(
2111	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2112	    object, (int)object->type, (u_long)object->size,
2113	    object->resident_page_count, object->ref_count, object->flags);
2114	/*
2115	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2116	 */
2117	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2118	    object->shadow_count,
2119	    object->backing_object ? object->backing_object->ref_count : 0,
2120	    object->backing_object, (long)object->backing_object_offset);
2121
2122	if (!full)
2123		return;
2124
2125	db_indent += 2;
2126	count = 0;
2127	TAILQ_FOREACH(p, &object->memq, listq) {
2128		if (count == 0)
2129			db_iprintf("memory:=");
2130		else if (count == 6) {
2131			db_printf("\n");
2132			db_iprintf(" ...");
2133			count = 0;
2134		} else
2135			db_printf(",");
2136		count++;
2137
2138		db_printf("(off=0x%lx,page=0x%lx)",
2139		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2140	}
2141	if (count != 0)
2142		db_printf("\n");
2143	db_indent -= 2;
2144}
2145
2146/* XXX. */
2147#undef count
2148
2149/* XXX need this non-static entry for calling from vm_map_print. */
2150void
2151vm_object_print(
2152        /* db_expr_t */ long addr,
2153	boolean_t have_addr,
2154	/* db_expr_t */ long count,
2155	char *modif)
2156{
2157	vm_object_print_static(addr, have_addr, count, modif);
2158}
2159
2160DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2161{
2162	vm_object_t object;
2163	int nl = 0;
2164	int c;
2165
2166	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2167		vm_pindex_t idx, fidx;
2168		vm_pindex_t osize;
2169		vm_offset_t pa = -1, padiff;
2170		int rcount;
2171		vm_page_t m;
2172
2173		db_printf("new object: %p\n", (void *)object);
2174		if (nl > 18) {
2175			c = cngetc();
2176			if (c != ' ')
2177				return;
2178			nl = 0;
2179		}
2180		nl++;
2181		rcount = 0;
2182		fidx = 0;
2183		osize = object->size;
2184		if (osize > 128)
2185			osize = 128;
2186		for (idx = 0; idx < osize; idx++) {
2187			m = vm_page_lookup(object, idx);
2188			if (m == NULL) {
2189				if (rcount) {
2190					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2191						(long)fidx, rcount, (long)pa);
2192					if (nl > 18) {
2193						c = cngetc();
2194						if (c != ' ')
2195							return;
2196						nl = 0;
2197					}
2198					nl++;
2199					rcount = 0;
2200				}
2201				continue;
2202			}
2203
2204
2205			if (rcount &&
2206				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2207				++rcount;
2208				continue;
2209			}
2210			if (rcount) {
2211				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2212				padiff >>= PAGE_SHIFT;
2213				padiff &= PQ_L2_MASK;
2214				if (padiff == 0) {
2215					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2216					++rcount;
2217					continue;
2218				}
2219				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2220					(long)fidx, rcount, (long)pa);
2221				db_printf("pd(%ld)\n", (long)padiff);
2222				if (nl > 18) {
2223					c = cngetc();
2224					if (c != ' ')
2225						return;
2226					nl = 0;
2227				}
2228				nl++;
2229			}
2230			fidx = idx;
2231			pa = VM_PAGE_TO_PHYS(m);
2232			rcount = 1;
2233		}
2234		if (rcount) {
2235			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2236				(long)fidx, rcount, (long)pa);
2237			if (nl > 18) {
2238				c = cngetc();
2239				if (c != ' ')
2240					return;
2241				nl = 0;
2242			}
2243			nl++;
2244		}
2245	}
2246}
2247#endif /* DDB */
2248